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Abstract

Markov Random Field, or MRF, models are a powerful

tool for modeling images. While much progress has been

made in algorithms for inference in MRFs, learning the pa-

rameters of an MRF is still a challenging problem. In this

paper, we show how variational optimization can be used

to learn the parameters of an MRF. This method for learn-

ing, which we refer to as Variational Mode Learning, finds

the MRF parameters by minimizing a loss function that pe-

nalizes the difference between ground-truth images and an

approximate, variational solution to the MRF. In particular,

we focus on learning parameters for the Field of Experts

model of Roth and Black. In addition to demonstrating the

effectiveness of this method, we show that a model based on

derivative filters performs quite similarly to the Field of Ex-

perts model. This suggests that the Field of Experts model,

which is difficult to interpret, can be understood as impos-

ing piecewise continuity on the image.

1. Introduction

Markov Random Field (MRF) models are a powerful
tool for modeling images because they allow long-term in-
teractions between pixels to be expressed through a com-
bination of local interactions. While these models have
a long history in computer vision [14, 12], their popular-
ity has been spurred by development of efficient, powerful
algorithms for inference and energy minimization in these
models [5, 23, 21]. While MRFs are often combined with
classifiers and estimators that have been built using train-
ing examples, the parameters of the MRF are often hand-
designed according to some heuristic, such as the system
in [15]. These models are hand-designed because the in-
ference step often required for learning MRF parameters is
infeasible for the types of models often used in vision ap-
plications.
In this paper, we propose a new method for learning the

parameters of continuous-valued MRF models. We focus
on models that are similar to the Field of Experts model
proposed by Roth and Black [13]. Rather than maximizing
the likelihood of the training data, the MRF parameters are
found by minimizing a loss function that measures the dif-
ference between the ground-truth image and optimal image
under the MRF model. A unique aspect of our approach is

that by using an approximation to this optimal image, the
loss can be differentiated with respect to the parameters.
This approximate mode of the MRF, which is central to the
success of our method, is computed using variational opti-
mization – leading us to refer to this method as Variational
Mode Learning.

Using Variational Mode Learning, we train two differ-
ent MRF models to denoise images. One model is identical
to the Field of Experts model, while the other model is de-
signed around a fixed set of derivative filters. The second
model is useful because it can be intuitively interpreted as
enforcing piecewise continuity on the image. The denoised
images returned by this second model are extremely simi-
lar to the images produced using the parameters from [13].
These similarities indicate that the Field of Experts model
can likewise be understood as imposing higher-order conti-
nuity on images.

Below, Section 1.1 describes related approaches for
learning MRF parameters, while Section 2 discusses back-
ground material on MRFs. Section 4 describes the vari-
ational optimization at the core of the learning algorithm.
The actual learning algorithm is discussed in Section 5. Fi-
nally, Section 6 describes the experiments and discusses
how the Field of Experts model can be understood in terms
of continuity.

1.1. Related Work

The problem of learning the parameters of discrete-
valued MRF is considered in both the work of Levin and
Weiss [11] and Anguelov et al. [2]. Both papers learn pa-
rameters for labeling pixels in an image. In this paper, we
instead focus on continuous-valued models. Continuous-
valued models are more appropriate for modeling images
because the computational complexity of inference and
other tasks is independent of the dynamic range of the im-
age. Besides the computational issues involved with the
number of states needed per pixel to model images, the un-
derlying approximations used in these discrete-models limit
the types of relationships that can be expressed between pix-
els. The bounds used in [11], developed by Wainwright et
al. [22], are limited, practically, to modeling relationships
between pairs of pixels. The learning technique used in
[2] is limited to learning parameters in MRFs with a spe-
cific, limited type of relationship between pixels, which is
referred to as a generalized Potts model.

In [13], Roth and Black learn the parameters of a
continuous-valued MRF model by using a sampling strat-
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egy based on a criterion known as the contrastive diver-
gence [8]. Using this method, the parameters are updated
using each training point to draw one sample from the cur-
rent distribution. There are both practical and theoretical
disadvantages to this sampling-based optimization. Theo-
retically, it is still unknown whether the contrastive diver-
gence algorithm converges – although there is strong belief
that it does [6]. From a practical point of view, the method
is only able to compute approximate gradients, which may
be problematic for optimization methods that are sensitive
to errors in the gradient calculation.
Viewed in the context of these other methods, the Vari-

ational Mode Learning strategy described in Section 5 has
several particularly attractive properties:

1. In Variational Mode Learning, exact derivative calcu-
lations are used to optimize the MRF parameters. One
benefit of using exact gradients is that convergence can
be guaranteed by choosing the appropriate non-linear
optimization algorithm.

2. Like the contrastive divergence scheme used in [13], it
is possible to learn the parameters for models that con-
sider the relationship between relatively large groups
of pixels.

3. As Section 5 will show, this strategy is based on lin-
ear algebra routines that are available in most pro-
gramming environments. This makes implementa-
tion of Variational Mode Learning relatively conve-
nient. Our entire implementation of the training rou-
tines consisted of roughly 350 lines of MATLAB
code. A sample implementation will be available at
http://www.eecs.ucf.edu/˜mtappen.

2. Markov Random Field Models and Energy
Functions

An MRF can be written as a Gibbs distribution:

p(x; θ) =
1

Z
exp

(

−

NC
∑

k=1

Vk(x(k); θ)

)

(1)

where the sum is over all NC cliques, k, in the graph. Each
function Vk(x(k); θ) is a clique potential function associ-
ated with clique x(k). The potential functions also have a

set of parameters, θ. The term 1
Z
, also known as the par-

tition function, is a normalization constant that ensures the
density integrates to 1.
In many vision applications, the clique potential func-

tions often represent some sort of smoothness assumption.
Assuming that the distribution is over images and that x can
be structured as an image, many smoothness assumptions
can be represented as

Vk(x; θ) = ρ(θT xk) (2)

where the vector xk contains the variables in clique k and θ
is a vector of coefficients. The function ρ(·) is some error
function, such as ρ(x) = x2 [3].
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Figure 1. This graph shows a plot of the Lorentzian error func-
tion. As the error rises, the rate of increase in the error function
decreases. This makes this function robust to large outlier errors.

This model can represent many popular smoothness as-
sumptions. For example, if ρ(x) = x2 and θT xk is equiv-
alent to computing the difference between neighboring pix-
els, Equation 2 is equivalent to the membrane model from
[14, 19]. Making θT xk equivalent to computing second
derivatives would instead represent the thin plate model.

Recently, researchers have demonstrated improved re-
sults on applications such as super-resolution [17], CCD
demosaicing [17], image in-painting [13], and image de-
noising [13] by setting ρ(·) to be a robust error function.
Examples of robust error functions include the truncated
quadratic function and the Lorentzian error function [3]
which is

ρ(x) = log

(

1 +
1

2
x2

)

(3)

A unique feature of robust error functions is that, unlike
the quadratic error function, the magnitude of the derivative
of the error function does not increase as the error rises. As
shown in Figure 1, the rate of increase in the Lorentzian er-
ror function actually decreases as the error rises. This prop-
erty makes this function robust to large outlier errors.

The Field of Experts model uses the Lorentzian error
function to define the clique potentials. The model is de-
fined by a set of linear filters, f1 . . . fNf

, and a set of
weights, α1 . . . αNf

, that are associated with the filters.
These filters and weights define a probability density over
images, x:

p(x) =
1

Z
exp



−

Nf
∑

i=1

αi

∑

r,c

ρ ((x ∗ fi)(r, c))



 (4)

where (x ∗ fi)(r, c) denotes the pixel at location (r, c) in
the image produced by convolving x with the filter fi. The
inner sum is over all locations in each filtered image.

In [13], the density in Equation 4 is used as a prior. De-
pending on the task, it is combined with different likelihood
functions to form posterior distributions over images. For
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Figure 2. This graph shows the Lorentzian error function, plot-
ted in blue, with a set of quadratic upper bounds, plotted in red.
Each quadratic function corresponds to a particular value of the
variational parameter λ. It can be shown that the Lorentzian error
function is the infimum of the set of these quadratic functions.

example, when denoising images, the Field of Experts prior
is combined with a Gaussian likelihood function:

p(x|y) =
1

Z
exp

(

−β
∑

r,c (x(r, c)− y(r, c))
2

−
∑Nf

i=1 αi

∑

r,c ρ ((x ∗ fi)(r, c))
)

(5)
where y is a noisy observation of x. The term β is a scalar
weight. Denoised estimates of x can be found by maximiz-
ing either Equation 5 or the log of Equation 5. Throughout
this paper, we will focus on models with the same form as
5, where the relationship between the observation, y, and
the latent image, x, is Gaussian. We will also assume that
β = 1.

3. Upper Bounds and Variational Methods

Given the noisy observation, y, the denoised estimate of
x can be found by maximizing Equation 5. This section
introduces the basic ideas behind a variational method for
optimizing a model like Equation 5 to find the denoised esti-
mate of x. This variational optimization method, described
in Section 4, will form the basis of the learning algorithm
described in Section 5.
In [9], Jordan et al. describe how log(x) can be upper-

bounded by a family of linear functions. The Lorentzian er-
ror function cannot be upper-bounded by a linear function,
but it can be bounded by a quadratic function. For brevity,
we will drop the 1

2 term from the Lorentzian function for
the rest of this paper and focus on the function

ρ(x) = log(1 + x2)

We define each quadratic upper bound as a quadratic
function in x with coefficients determined by λ:

h(x, λ) = a(λ)x2 + b(λ)x + d(λ) (6)

The coefficent functions a(λ), b(λ), and d(λ) are chosen
by imposing the following constraints on h(·):

h(λ0, λ0) = log(1 + λ2
0)

h′(λ0, λ0) = 2λ0

1+λ2

0

h′(0, λ0) = 0 (7)

The first constraint implies that the value of the quadratic
function determined by λ0 must be equal to the value of
the Lorentzian function at λ0. The second constraint re-
quires that the quadratic bound have the same slope as the
Lorentzian at λ0, while the third constraint requires that the
approximation has its minimum at 0. Effectively, λ is a
variational parameter that indexes a set of quadratic upper-
bounds on the Lorentzian error function. Each of these up-
per bounds touches the Lorentzian at two locations. Figure
2 shows these upper bounds for different values of λ.
As Figure 2 shows, the Lorentzian error function can also

be written as a minimization over the variational parameter
λ:

log(1 + x2) = min
λ

(

x2

1 + λ2
+ log(1 + λ2)−

λ2

1 + λ2

)

(8)
This can be verified by differentiating

x2

1 + λ2
+ log(1 + λ2)−

λ2

1 + λ2
(9)

with respect to λ. The derivative will be equal to zero at
λ = −x, 0 and x. Checking the second derivative reveals
that the second derivative is only positive at λ = −x and
λ = x. Plugging either of these values into Equation 9
verifies Equation 8. Families of quadratic upper-bounds for
other robust penalty functions are described in [7] and [3].

4. Variational Optimization

Using this variational formulation of log(1 + x2), the
task of finding the image, x, that minimizes the negative
log-posterior of the model can now be rewritten as:

min
x,λ

Nf
∑

i=1

αi

∑

r,c

(x ∗ fi)(r, c)
2

1 + λ2
i,r,c

+ log(1 + λ2
i,r,c)−

λ2
i,r,c

1 + λ2
i,r,c

+
∑

r,c

(x(r, c)− y(r, c))
2

(10)
Here λi,x,y denotes the unique variational parameter as-

sociated with every term in the exponent of Equation 5.
This suggests a two-step coordinate descent algorithm

for finding the image, x, that minimizes the variational neg-
ative log-likelihood in Equation 10.

1. Treat all values of λ as constants and minimize Equa-
tion 10 in terms of x.

The value of x that minimizes Equation 10 can be com-
puted in closed-form using the pseudoinverse. More
details are given in Section 4.1.

2. Treat x as a constant and minimize Equation 10 with
respect to each λ by setting

λi,r,c ← (x ∗ fi)(r, c) (11)



for all filters and pixel responses. This step minimizes
Equation 10 because, using Equation 8, each term

(x ∗ fi)(r, c)
2

1 + λ2
i,r,c

+ log(1 + λ2
i,r,c)−

λ2
i,r,c

1 + λ2
i,r,c

will be minimized when it equals log(1 + (x ∗
fi)(r, c)

2). Setting each λi,r,c to (x ∗ fi)(r, c) makes
each of these terms equal to log

(

1 + (x ∗ fi)(r, c)
2
)

.

In each of these two steps, the optimal solution for one
set of variables is computed, thus guaranteeing that the en-
ergy will never increase. The initial value of x can be any
image, but the observed image, y, is a logical initialization.
This variational optimization method is similar to contin-

uation methods and the Graduated Non-Convexity (GNC)
method [4, 12]. In the GNC method, a non-convex energy
function is approximated with a set of approximate energy
functions. The first approximation is convex, then succeed-
ing approximations are adjusted to more closely match the
energy function. Unlike the variational optimization de-
scribed above, the successive approximations are not nec-
essarily convex.

4.1. Minimizing with Respect to the Image

In Step 1 above, Equation 10 is minimized with respect
to the current image estimate, x. This section describes the
basic steps for performing this minimization for the basic
Field of Experts model described in Equation 5.
Performing this minimization is described most easily

using matrix notation. Treating all λ as constants, Equa-
tion 10 can be rewritten using matrix notation by defining
a set of convolution matrices F1 . . . FNf

. These matrices
are defined such that multiplying an image, x, that has been
unwrapped into a vector, with a matrix Fj will return the
unwrapped version of x ∗ fj . Essentially, each matrix Fj

represents convolution with filter fj . After dropping the
constant terms in Equation 10, the quadratic minimization
over x can be rewritten as

FT W (λ)F , where F =









F1

F2

...
FNf









(12)

The matrixW (λ) is a diagonal matrix with the entry on the
diagonal in row r′, wr′ set to

wr′ =
αi

1 + λ2
i,r,c

(13)

where i, r, and c, are the image indices of the constraint
corresponding to row r′.
The quadratic term in Equation 10 can be incorporated

by appending the identity matrix to F and solving the sys-
tem (FT W (λ)F )−1FT W ŷ, where ŷ is a vector created
by unwrapping the observation and prepending the correct
number of zeros. The matrix W (λ) is likewise extended
with ones along the diagonal.

Thus, Step 1 can be rewritten as

x←
(

FT W (λ)F
)−1

FT W (λ)ŷ (14)

5. Variational Mode Learning for MRF Pa-
rameters

Having shown how the Lorentzian MRF model can be
optimized using a variational technique, this section de-
scribes how to use this optimization technique to learn the
MRF parameters. We refer to this method for learning pa-
rameters as Variational Mode Learning because the param-
eters are found by minimizing the loss of an approximate
mode of the MRF. This mode is found through variational
optimization. To motivate the necessity of this method,
Section 5.1 discusses how traditional maximum-likelihood
learning is infeasible for many MRFs.

5.1. Using the Likelihood to Learn MRF Parame
ters

Traditionally, the parameters of the MRF model are
found by maximizing the log-likelihood of the training im-
ages, t1 . . . tNx :

log p(t1...Nx
; θ) =

Nx
∑

m=1

−

(

NC
∑

k=1

Vk(tm
(k), θ)

)

− log Z

(15)
where we have used p(t1...NT

) to denote P (t1 . . . tNx
).

The derivative of Equation 15 with respect to a parameter

θj ,
∂ log P (t1...NT

;θ)

∂θj
, can be expressed as using an expecta-

tion:

−

(

Nx
∑

m=1

NC
∑

k=1

∂Vc(t
m
(k), θ)

∂θj

− Ep(x;θ)

[

∂V (xm
(k), θ)

∂θj

])

(16)
The expectation, denoted E[·] is computed using p(x; θ),
which is the probability density over images defined by the
current parameters, θ.
Unfortunately, computing this expectation is infeasible

for MRF models with loops in the graph defining the MRF.
The Field of Experts model has loops, but Roth and Black
were able to achieve good results by instead using a sam-
pling strategy to minimize the contrastive divergence [8].
However, as discussed in Section 1.1, it is unknown whether
this method converges, and the gradients computed are not
exact.

5.2. Using a Loss Function Instead

As recent work has pointed out, the difficulties of learn-
ing parameters using the log-likelihood can be avoided by
focusing on the mode of the MRF’s distribution [1, 10, 18].
Instead of maximizing the likelihood of the training data,
the parameters can be adjusted to make the most-likely
point in the MRF as similar as possible to the ground-
truth image. Given a training image, t, and a loss function
L(x, t) that penalizes the difference between t and x, the



parameters θ can be found by using the following optimiza-
tion:

min
θ

L(x, t)

s.t. x = argmin
x
− log p(x|y; θ)

(17)

where y is the observation. Assuming a differentiable loss
function, this would be straightforward to optimize with
gradient descent techniques if

argmin
x
− log p(x|y; θ)

were also differentiable with respect to θ. While this arg
min expression cannot be differentiated, it can be replaced
with an approximate solution.
Let xNI (θ) define the result returned by running n iter-

ations of the variational optimization steps defined in Sec-
tion 4. Instead of trying to find the solution of the non-linear
program in Equation 4, we propose solving the following
problem:

min
θ

L(xNI (θ), t) (18)

Essentially, we have replaced the maximum of p(x|y; θ)
with the approximate maximum computed using NI iter-
ations of the variational optimization method described in
Section 4. As the next section will show, this approximate
maximum can be differentiated analytically, thus allowing
the parameters to be optimized with gradient-descent tech-
niques.
This approach to estimating the MRF parameters is sim-

ilar to that used by Geman and Reynolds [7]. Although [7]
uses a different approach and assumptions to estimate the
model parameters, both that approach and our approach es-
timate parameters based on the minima found through co-
ordinate descent.

5.3. Differentiating the Approximate Solution

The key to optimizing Equation 18 is differentiating
xn(θ) with respect to θ. These derivatives can be computed
using this identity from matrix calculus:

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 (19)

The derivative of the loss, which we will shorten to L,
computed with respect to a single parameter, θj is

∂L

∂θj

=
∂L

∂xn

∂xn

∂θj

(20)

where ∂L
∂xn is a 1×Np vector and

∂x
n

∂θj
is a Np × 1 vector.

Using the chain rule, ∂x
n

θj
can be computed. Recall, from

Section 4.1, that at each iteration

x←
(

FT W (λ)F
)−1

FT W (λ)ŷ (21)

The diagonal weight matrixW (λ) is computed using the
variational parameters, which are in turn computed from the
previous value of x.
Hence, xn(θ) can be rewritten as

xn(θ)←
(

FT W (xn−1(θ), θ)F
)−1

FT W (xn−1(θ), θ)ŷ
(22)

The one tricky aspect of differentiating Equation 22 is
that xn(θ) depends on θ in two ways. First, the parameters,
θ, directly influence the weighting matrix, W (xn−1(θ), θ)
and the filter matrices F1 . . . FNf

, if the filters are part of

the parameters. The second way that θ affects xn(θ) is that
W (xn−1(θ), θ) also depends on xn−1(θ).
For clarity in the derivations below, we will introduce a

new term xn(xn−1
∗

, θ). When using this notation, we treat
xn−1 as a constant that does not depend on θ. Likewise,
xn(xn−1, θ∗) will denote that θ is being treated as a con-
stant.
Using this notation, ∂L

∂θj
can be written as

∂L

∂θj

=
∂L

∂xn

∂xn(xn−1
∗

, θ)

∂θj

+
∂L

∂xn

∂xn(xn−1, θ∗)

∂θj

(23)

The second term in Equation 23 can be computed using
the Jacobian matrix:

∂L

∂xn

∂xn(xn−1, θ∗)

∂θj

=
∂L

∂xn
Jn
x
(xn−1)

∂Xn−1

θj

(24)

where Jn
x
(xn−1) is the Jacobian matrix relating xn and

xn−1.
Due to space limitations, we will not describe de-

tailed derivations for computing quantities such as
∂x

n(xn−1

∗
,θ)

∂θj
, though derivations for similar quan-

tities can be found in [16]. A sample MATLAB
implementation of these steps will be available at
http://www.eecs.ucf.edu/˜mtappen.

5.4. Computing the Derivatives Efficiently

Equation 24 suggests an efficient algorithm, reminiscent
of the back-propagation algorithm for neural networks, for

computing ∂L
∂θj
:

1. Initialize ∂L
∂θj
to all zeros.

2. Initialize ∂L
∂x

NI
, where NI is the number of variational

optimization steps used to compute xNI . The opti-
mization is started with the initial estimate x0.

3. For n = NI . . . 0

(a) ∂L
∂θj
← ∂L

∂θj
+ ∂L

∂xn

∂x
n(xn−1

∗
,θ)

∂θj

(b) If n > 0, ∂L
∂xn−1 ←

∂L
∂xn Jn

x
(xn−1)

6. Learning Parameters for Denoising

In this section, we apply the learning algorithm described
in the previous section to find MRF parameters for denois-
ing images. Variational Mode Learning was used to find the
parameters for two different models. Section 6.1 describes
the results for a model that uses a fixed set of derivative fil-
ters, while Section 6.3 describes the results when learning a
model identical to the Field of Experts model.



Figure 3. The set of filters used for the model referred to in this
paper as the Robust Derivative (RD) model. These filters include
a complete set of first, second, and third derivatives.
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Figure 4. This plot shows the training error after each pass of the
stochastic gradient descent algorithm through the data. The error
stopped decreasing significantly after eight passes.

Besides demonstrating the effectiveness of the algo-
rithm, the results from the model with a fixed set of filters,
which we will refer to as the Robust Derivative model, will
also provide a new way of describing the underlying mech-
anism that the Field of Experts model relies on. In [13],
Roth and Black point out that filters in the Field of Ex-
perts model lack “the clearly interpretable structure of the
filters learned using the standard PoE [Products of Experts]
model.” Section 6.2 discusses how the similarity between
the results from this model and the Field of Experts model
suggests that the Field of Experts model can be understood
as imposing piecewise continuity on the image.

6.1. The Robust Derivative Model

Similar to Equation 5, we define the conditional density,
p(x|y;α, β), of the latent image x given the observation y,
using parameters α and β), to have the form

p(x|y;α, β) ∝ exp
(

−
∑

r,c (x(r, c)− y(r, c))
2

−
∑Nf

i=1 αi

∑

r,c ρ ((x ∗ fi)(r, c), βi)
)

(25)
where ρ(x, β) is

ρ(x, β) = log
(

1 + (βx)2
)

(26)

In this model, the filters, f1 . . . fNf
are not listed as pa-

rameters of the model. Instead, we fix the filters to be a
set of derivative filters. These filters are shown in Figure
3. These filters include a complete set of first, second, and
third derivatives – which leads to the name Robust Deriva-
tive model.
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Figure 5. This scatterplot shows the RMS error in each of the 68
test images when denoised with either the Field of Experts (FoE)
model or the Robust Derivative model described in this paper. The
Robust Derivative model outperforms the FoE model for all im-
ages where the point is above the red line. As this figure shows,
the results between the two models are comparable.

The parameters in the Robust Derivative model are the
weights associated with each filter, α1 . . . αNf

, and the β
parameters. As shown in Figure 1, the Lorentzian error
function is convex near x = 0 and becomes non-convex
as x increases. In essence, each β parameter controls the
range of filter responses that fall in the convex portion. As
β becomes smaller, the model will behave more like a Gaus-
sian MRF. As β grows the MRF’s behavior becomes more
non-Gaussian.
The parameters α and β were found by minimizing

the loss function in Equation 18. Specifically, we mini-
mized the squared-difference between the ground-truth im-
ages and the training images. For training, we used 400
27×27 image patches. The noisy observations were created
by adding noise with a standard deviation, σ, of 15. Rather
than using the steepest-descent algorithm to optimize the
loss function, we instead used the stochastic gradient de-
scent algorithm. When optimizing with stochastic gradi-
ent descent, the parameter vector is updated by computing
the gradient for a small subset of the data. This allows up-
dates to be computed much more quickly. Vishwanathan et
al. have found the stochastic gradient descent algorithm to
work well for training Conditional Random Fields [20]. In
the implementation used for the results in this section, each
update was computed using two training examples.
Sixteen iterations of the variational optimization scheme

were used when computing the image estimates during
training. In other words, the loss was computed using
x16(θ). As Figure 4 shows, the training stopped decreas-
ing after eight iterations. Training the model was very ef-
ficient – eight iterations took 3.6 hours on a single 2.6GHz
Pentium IV workstation.
To test the quality of the model, we tested with the same

images used in [13]. For comparison, we also denoised the
images using the Field of Experts implementation provided
by Roth and Black. When running the Field of Experts
code, we used a step-size of 0.6 and 5000 iterations. We



(a) Original (b) Noisy Observation (c) Results using FoE Model (d) Results using Derivative
Model

Figure 6. An example of denoised images produced by the Robust Derivative model described in this paper and the Field of Experts model
from [13]. The results are quite similar, though the Robust Derivative model tends to capture slightly more high-frequency texture. This
similarity suggests that the Field of Experts model is using the same heuristics and cues as the Robust Derivative model, which can be
understood as imposing piecewise continuity on the image.

(a) Original (b) Noisy Observation (c) Results using FoE Model (d) Results using Derivative
Model

Figure 7. These images show a second example comparing the results from the Field of Experts model and the Robust Derivative model.
Again, the results are very similar, though the results from the Robust Derivative model are slightly sharper.

used a large number of iterations to get as close as possible
to a true local maximum under the model. This enabled us
to compare how well the two models capture the statistics
of natural images. Denoised estimates were produced in a
similar fashion using the Robust Derivative model.
Figure 5 shows a comparison of the RMS error in the

estimate produced by each model over all the training im-
ages. In this figure, the Robust Derivative model produces
better estimates for all those images where the plotted point
falls above the red line. As can be seen in Figure 5, the two
models perform quite similarly.
Examining the images in Figures 6 and 7 shows that the

results are also qualitatively very similar. The primary dif-
ference is that the Robust Derivative model tends to bring
out more of the fine detail in the images.

6.2. Using the Robust Derivative Model to Under
stand the Field of Experts Model

The similarity in the denoised estimates produced by the
two models is significant because it provides insight into the
computational mechanism underlying the Field of Experts
model. The Robust Derivative model, from Equation 25,
can also be expressed as an outlier process [3]. An outlier
process can be expressed as

J(x) =
∑

<xi,xj>

z<i,j>(xi − xj)
2 + Ψ(z<i,j>) (27)

where the sum is over all pairs of neighboring pixels in x.
The quadratic term (xi − xj)

2 will cause outlier pairs to
dominate the cost, but their influence can be trimmed by the
variable z, where 0 ≤ z ≤ 1. Each variable z<i,j> can be
thought of as an indicator variable that decides whether or
not to impose the quadratic penalty. The penalty function
Ψ(z<i,j>) prevents all z<i,j> from going to zero.
In [3], Black and Rangarajan show how the energy func-

tion in the exponent of Equation 25 can be expressed as an
outlier process, similar to Equation 27. Using the outlier-
process view, the Robust Derivative model can be viewed
as imposing higher-order piecewise continuity on the esti-
mated image. The continuity is piecewise because z<i,j>

can go to 1 across edges and no continuity is enforced.
The similarity between the results from the Robust

Derivative model and the Field of Experts model suggests
that that the Field of Experts model can also be viewed
as imposing piecewise, higher-order continuity on the es-
timated image.

6.3. Learning Derivative Filters

The same learning algorithm can also be used to learn
the derivative filters themselves. Using the same method
described above, we trained a model identical to the Field
of Experts model. In this model, each filter is expressed
as the combination of a set of 5 × 5 basis filters. While



computing the gradient, almost 80% of the computation was
in computing the matrix products, FT WF from Equation
12. The matrices corresponding to these filters are much
less sparse than the matrices corresponding to the derivative
filters, so computing the gradients took significantly longer.
Evaluated on the training set described above, the de-

noised estimates found using these filters and weights had
an average RMS error of 8.07 and a mean PSNR of 30.25
dB. These results are comparable to those produced using
the FoE model trained by Roth and Black. Using the pa-
rameters from Roth and Black, the average RMS error was
7.86 and the mean PSNR was 30.49 dB.
When denoising full-size images using these learned fil-

ters, we found it necessary to increase the weight of the
quadratic term that penalizes the difference between the es-
timated image and the observed image. Given the much
larger set of parameters to optimize over, compared to the
Robust Derivative model, the filters are likely overly spe-
cialized for denoising 27× 27 images. Utilizing computing
clusters to optimize the model on larger images would likely
lead to significantly improved results.

7. Conclusion

We have introduced a new method for learning the
parameters of continuous-valued Markov Random Fields.
Variational Mode Learning is relatively easy to implement
and is based on computing exact derivatives of a loss func-
tion. This enables it to inherit convergence properties from
the optimization algorithm used to train the parameters.
We have also shown how the parameters can be found ef-

ficiently using stochastic gradient descent and generate re-
sults that are comparable to those from the Field of Experts
model. In particular, we have used Variational Mode Learn-
ing to train a derivative-based model to denoise images. The
results from this model are quite similar to those from the
Field of Experts model, suggesting that the Field of Experts
model can be interpreted as imposing piecewise continuity
on the image.
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