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Abstract
Templates are a very common solution to generate code. They
are used for different tasks like rendering webpages, creating Java
Beans and so on. Most template systems have no notion of the ob-
ject language and just generate text. The drawback of this approach
is the possibility to generate syntactical incorrect code. This can
lead to all kinds of annoying errors.

In this paper we present an approach for a syntax safe template
engine. Syntax safety guarantees that the generated code can be
correctly parsed. To ensure this we use the object language gram-
mar to evaluate the template.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages

Keywords Repleo, Code Generators, Templates, Syntax Safety,
ASF+SDF, Meta Programming, Concrete Object Syntax

1. Introduction
The way we program evolves. Over the years applications get more
complex. To handle this complexity we program at a higher level
of abstraction and encapsulate algorithms in objects. A next step
in abstraction is model driven generation, such as Model Driven
Architecture (MDA) [18]. The goal of MDA is to specify a model
independent of the platform and maximize the automation to con-
vert this model into working applications. These applications have
the characteristics that they consist of various components, imple-
mented in the most suited programming language. For instance
SQL for the database, Java for the business rules and JSP for the
web interface.

In this article we will focus on the technology to transform a
model into source code. The OMG MDA standardization commit-
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tee works on a model-to-text [5] proposal. They propose a genera-
tor based on templates. Templates are text documents (object lan-
guage) punched with holes (placeholders with meta language). We
believe this WYSIWYG1 approach is user friendly, but considering
the object language as text should be avoided because it can lead to
syntax errors [17].

Some existing meta-programming approaches [19] [14] im-
prove this by offering syntax safe or even type safe code generation.
Syntax safety guarantees that the generated code can be correctly
parsed, in other words the code does not contain context-free syn-
tax errors. Type safety guarantees that the code does not contain
non-context-free errors like type conflicts, double declarations of
variables, etcetera. Switching to other object languages is not trivial
with these approaches.

We present Repleo, a generic system to build template evalua-
tors, parameterized with an (off-the-shelf) object language gram-
mar [12]. This offers the opportunity to improve error checking by
checking the syntax of a template and guarantees that the generated
code is syntactically correct. The use of such an instantiated tem-
plate evaluator is equivalent to a text based template evaluator, with
respect to writing templates.

Writing templates is a complex and error prone task. We devel-
oped an IDE to support the writing of templates, which provides
syntax directed features for templates such as syntax highlighting.
These features are based on the parameterized parser of the tem-
plate evaluator.

Our system is flexible with respect to changing to another object
language. It is a main requirement for using the system in an
(MDA) environment where a lot of different target languages must
be supported. We have a parameterization mechanism to instantiate
the evaluator for different object languages.

1.1 Roadmap
This paper is organized as follows: Section 2 describes syntax safe
templates. In section 3 we present the template meta language. The
implementation of the template engine is discussed in section 4.
An illustration of possible applications will be given in section 5.
Related work and conclusions are presented in section 6 and 7.

2. Syntax Safe Templates
A template based generation process uses a model and a set of tem-
plates. An evaluator is used to generate code given these two ingre-
dients, see Figure 1. The model is an artifact describing the appli-
cation at a high level of abstraction. It will probably be developed

1 What You See Is What You Get: Templates representing concrete object
code.
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Figure 1. Template based generator

using a graphical notation like UML [6]. The model is used by the
evaluator to replace the placeholders in a template. Those placehol-
ders contain expressions to obtain data from the model. To illustrate
the concept of templates a Java template is shown in Listing 1. This
template is evaluated using the model given in Listing 2 to generate
the Java class presented in Listing 3.

1 class <%record/name%> {
2
3 <%record/cons/vis%> <%record/name % >(){}
4
5 <%foreach record/field do%>
6 private <%type%> <%name%>;
7
8 <%type%> <%"get" || name %>(){
9 <%if log then%>

10 System.out.println ("get"
11 + <%"\""|| name ||"\""% >+"() is called .");
12 <% fi %>
13 return <%name%>;
14 }
15 <%od%>
16 }

Listing 1. Java Template

1 record(
2 number (104) ,
3 name(" Customer"),
4 cons(
5 vis(" public ")
6 ),
7 field (
8 name(" firstName"),
9 type(" String"),

10 log(true)
11 ),
12 field(
13 name(" lastName"),
14 type(" String"),
15 log(false)
16 )
17 )

Listing 2. Data structure example

1 class Customer {
2 public Customer (){}
3 private String firstName;
4 String getfirstName (){
5 System.out.println ("get"
6 +" firstName "+"() is called .");
7 return firstName;
8 }
9 private String lastName;

10 String getlastName (){
11 return lastName;
12 }
13 }

Listing 3. Result of generation

The importance of syntax safe templates is illustrated by Table 1.
This table summarizes errors that could be made in a template as
shown in Listing 1 and in a model as shown in Listing 2. There
are three possible causes of syntax errors in a template based
generation system. First, the object code of a template contains
syntax errors and the generated code inherits those errors (error
A, B, C). Second, the data obtained from the model to substitute a
placeholder does not syntactically fit into the object code of the
template (error D, E, F). Finally, the meta code contains errors
(error G, H).

In our system we use a grammar of the object language com-
bined with a meta language grammar. Such a grammar allows us to
parse the object and meta code of templates simultaneous, thereby
addressing error A, B, and C. Error D, E, and F are detected by
parsing the data obtained from the model before inserting it in the
object code. The meta code is checked during evaluation which de-
tects error G and H. The result is a syntax safe template evaluator.

The syntax safe template evaluator provides an early detection
of syntactic errors resulting in a less error prone generation system
and easier debugging. A text based evaluator with a parser at the
back-end is not sufficient to ensure the syntax safety of the output.
Consider error C of Table 1. This error will only arise in the
generated code when the expression of the condition of line 9 of
Listing 1 yields true. Our approach detects this kind of syntax errors
at the moment the template is parsed, so we can ensure a condition
can not introduce syntax errors. A syntax error is detected statically
and not by the use of the generated code.

3. Template Meta Language
In the previous section we have shown a template. Templates con-
sists of object language code with placeholders. These placeholders
contain instructions for the evaluator. We use a simple tree navi-
gation language similar to XPath [4]. The exact form of the meta
language is not essential for our requirements. It could be any other
language as long it has a grammar.

We have chosen for a simple meta language because templates
are by nature complex due to the mix of object language and meta
language. Since readability of templates is mainly influenced by the
amount and complexity of the meta code, we use a meta language
which only supports basic instructions such as queries, a basic
set of expressions and instructions for the generation process like
substitution, iteration and conditional (enumerated in Table 2).

This restricted meta language has some consequences for our in-
put model. A restricted meta language can not be used for complex
queries or calculations. Therefor the results of such calculations
must be present in the model. However most models are specified
at a high level of abstraction, independent of the object code. As a
result a restricted meta language might require an enriched model.
To separate concerns we derive this model during a separate model
transformation phase. These transformations can be compared with
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Substitute by creating error
line

A 1 clss <%record/name%> { class misspelled.
B 1 class <%foreach record/attribute lists after class not allowed.

do%> <%name%> <%od%> {

C 10 1System.out.println("get" 1System is not a valid Java identifier.
D 1 class <%record/number%> { Identifier is not allowed to be a number.
E Model, 3 name("Shop-Client") Identifier contains a dash.
F Model, 5 vis("abstract" ) constructor modifier abstract not allowed.
G 1 class <%record/naam%> { path record/naam is not a valid path in model.
H 1 class <%1 || record/name%> { type conflict in meta code int || string.

Table 1. Possible errors in template and model

Syntax Description
<%Expr%> Substitute placeholder by result of Expr.
<%foreach Expr do%> For every element in the list returned by Expr

subtemplate evaluate the subtemplate.
<%od%>

<%if Expr then%> If Expr is true then include subtemplate.
subtemplate Note: only allowed if result may be empty in object language.

<%fi%>

<%if Expr then%> If Expr is true then include subtemplate1
subtemplate1 else include subtemplate2.

<%else%>
subtemplate2

<%fi%>

Table 2. Evaluator instructions of the template meta language

the model transformations in the MDA approach [18]. Further dis-
cussion of this topic is beyond the scope of this article.

4. Repleo Implementation
In order to validate our ideas we designed and implemented a
prototype of a syntax safe template evaluator. The implementation
is split in two parts. The first part consists of a parser based on the
combination of the grammars of the object language and the meta
language to derive a parse tree.

The second part is the evaluator and is responsible for substi-
tuting the placeholders. An important requirement is that the eval-
uator does not introduce syntactically incorrect nodes in the parse
tree while substituting these placeholders.

4.1 Syntax Definition Formalism
A grammar is used to check the syntactical correctness of an in-
put sentence and to construct a parse tree of this sentence. We use
the Syntax Definition Formalism (SDF) [7] for defining grammars.
SDF supports, besides the traditional BNF-like symbols, also sym-
bols like character classes and associative lists to define the rep-
etition of symbols. The main differences between SDF and BNF-
like formalisms are modularity and the way production rules are
written. The production rules differ because of the swapped left-
and right-hand side, for example "a" -> A instead of A ::= ’a’.
SDF definitions can be divided in modules. Modularity allows us
to combine grammars, which is very suited for meta programming.
It will be explained in Section 4.2,

SDF can be used to specify grammars for programming lan-
guages, like Java and C. Listing 4 shows an SDF module for a
small artificial boolean expression language to illustrate relevant
SDF features.

1 module BooleanList
2
3 imports Whitespace
4 context -free start -symbols Booleans
5 context -free syntax
6 { Boolean "," }* -> Booleans
7 Boolean "&" Boolean -> Boolean
8 BoolCon -> Boolean
9 "true" -> BoolCon

10 "false" -> BoolCon

Listing 4. A boolean expression grammar.

The grammar of Listing 4 can be used to parse a term like
true, true & false, false. The start symbol Booleans is
defined as a list of at least zero Boolean nonterminals separated by
a comma and is an example of an associative list2. The parse tree
for this term is shown in Figure 2. For the ease of presentation we
have chosen for this small specification because the Java grammar
is too big.

4.2 Grammar Modules
SDF supports a modular structure for describing grammars. Gram-
mar chunks can be embedded in modules and imported by other
modules. The modular structure provides a powerful mechanism to
re-use parts of grammar definitions.

The BooleanList module of Listing 4 imports the module
Whitespace that defines the layout (spaces, tabs, and new lines).
The BooleanList module itself can be imported by other mod-
ules.

2 SDF supports separated lists; {Boolean”, ”}∗ is an example.
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Figure 2. Parse tree for the term true, true & false, false.

4.3 Combining Object Language and Meta Language
The modularity of SDF provides a powerful way to define template
grammars. Template grammars are based on three subgrammars:
the object language grammar, the meta language grammar and a
grammar defining the combination of both.

The modularity allows us to specify these grammars separately.
The advantage of this concept is the ease of using off-the-shelf
object language grammars [12]. When a grammar is not present, it
is possible to specify the complete grammar, but this can be a non-
trivial job. However, minimal syntax correctness can be guaranteed
by defining a restricted grammar consisting of only the minimal
lexical requirements [15].

Combining the object language and meta language is as easy
as importing both grammars in one module and describing their
connection. In order to connect the object and meta language,
the nonterminals of the object language must be related to the
nonterminals of the meta language. The implementation will be
given in the rest of this section.

4.3.1 Defining Substitution Placeholders
In order to parse a template with a substitution placeholder it is
necessary to embed the placeholder in the object language. For
example the substitution placeholder <%elem%> in the template
<%elem%> , true & false , false can only be parsed when it
is recognized as a Boolean 3. This can be achieved by embedding
the substitution placeholder in the BooleanList grammar as an
alternative for Boolean.

In order to add a substitution placeholder to the BooleanList
grammar we introduce a generic module, as shown in Listing 5.
This module defines a substitution placeholder typed by any arbi-
trary nonterminal X and adds this placeholder as an alternative for
this nonterminal X. This allows us to re-use this module for any
object language. Line 5 of Listing 5 shows the definition of the
substitution placeholder. It consists of hedges4 and the nonterminal
Expr. The Expr nonterminal is defined in the module MetaExpres-
sions containing the grammar for the basic operations of the meta
language and generic instructions for obtaining data from models.
The parameter X of the nonterminal PlaceHolder[[X]] is used
for the explicit typing. The connection of object and meta language
is defined on line 6. This production rule adds an alternative for
recognizing the placeholder of type X to the nonterminal X.

3 elem is a query pointing to the content of the elem node in the model.
4 Hedges mark the transition between object and meta language.

1 module PlaceHolder[X]
2
3 imports MetaExpressions
4 context -free syntax
5 "<%"Expr"%>" -> PlaceHolder [[X]]
6 PlaceHolder [[X]] -> X

Listing 5. Generic substitution placeholder module.

The combination module for the BooleanList template grammar
is presented in Listing 6. This module imports the object language
module and the placeholder module where parameter X is substi-
tuted by the nonterminal Boolean 5.

1 module Combination
2
3 imports BooleanList
4 imports PlaceHolder[Boolean]

Listing 6. Combination module for parsing BooleanList tem-
plate.

The parse tree of a BooleanList template is displayed in Fig-
ure 3. The nonterminal PlaceHolder[[Boolean]] marks the
subtree representing the substitution placeholder. Embedding place-
holders in an object language can result in syntactical ambiguities
when parsing a template. In Section 4.7 we will discuss this prob-
lem in more detail.

START

{Boolean ","}*hhhhhhhhh
ll

(((((((((
Boolean

PlaceHolder[[Boolean]]
HHH

���
<% Expr

SS��
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Boolean
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!!!
Boolean

BoolCon

true

& Boolean

BoolCon

false

Boolean

BoolCon

false

Figure 3. Parse tree of the template <%elem%> , true &
false, false.

4.3.2 Java Example
The grammar shown in Listing 7 is defined to parse the Java
template of Listing 1. The parameterization of the placeholders
allows to define a very compact combination module.

The selection process of the nonterminals for parameterization
of the placeholders must be done manually. Automatic parameteri-
zation of placeholders with every object language symbol can lead
to unexpected behavior. It is hard to automatically predict which
symbols must be selected for the parameterization of placeholders.
A similar problem is discussed in [23]. Although they generate
their connection rules, they consider it as useful to have full control
over the selection of the symbols.

5 Details on the parameterization mechanism of SDF can be found in [2].
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1 module JavaTemplate
2
3 imports Java
4 imports PlaceHolder[Identifier]
5 imports PlaceHolder[Type]
6 imports PlaceHolder[Modifier]
7 imports PlaceHolderList[ClassBodyDeclaration]
8 imports PlaceHolderIfThenList[BlockStm]

Listing 7. Combination module for Java template.

Special attention should be given to line 7 and 8 of Listing 7. Those
lines introduces new imported modules. The PlaceHolderList
module defines the grammar of the iterator placeholder in order to
parse the foreach construct of line 5 to 15 in the Java template of
Listing 1. A substitution placeholder is not sufficient to generate
multiple items, in this case body declarations for a class. The
iterator processes a list obtained from the model and instantiates
the subtemplate for each element of the list. Listing 8 shows the
grammar of the generic iteration placeholder.

1 module PlaceHolderList[X]
2
3 imports MetaExpressions
4 context -free syntax
5 "<%foreach" Expr "do%>" X* "<%od%>"
6 -> PlaceHolderList [[X]]
7 PlaceHolderList [[X]] -> X*

Listing 8. Generic iteration placeholder module.

The iteration placeholder is also parameterized by a nontermi-
nal. This parameterization is necessary for the connection of the
placeholder to the object language nonterminal. Beside the con-
nection the parameterization is also used to define the start symbol
of the subtemplate. It enforces that an iteration placeholder for a
list of nonterminals X can only contain a subtemplate consisting of
a list of nonterminals X.

The second new placeholder, introduced in line 8 of the Java-
Template module is the conditional placeholder. This kind of
placeholders is used to include a subtemplate based on a condition
based on data obtained from the model. In order to guarantee the
syntactical correctness, the subtemplate(s) of a conditional may not
introduce syntactical incorrect code. The concept to guarantee the
syntactical correct subtemplate is similar to the iterator approach.
Consider the grammar of the conditional if-then placeholder for
lists in Listing 9. It is parameterized with nonterminal X. The start
symbol of the subtemplate of the conditional must be of type X.

1 module PlaceHolderIfThenList[X]
2
3 imports MetaExpressions
4 context -free syntax
5 "<%if" Expr "then%>" X* "<%fi%>"
6 -> PlaceHolderList [[X]]
7 PlaceHolderList [[X]] -> X*

Listing 9. Generic if then placeholder module for lists.

4.4 SQL Example
The next example shows a SQL select statement template. Consider
Listing 10, this template also uses the model of Listing 2. The result
of the evaluation is shown in Listing 11.

1 SELECT
2 <%foreach record/field do%>
3 <%name%>
4 <%od%>
5 FROM <%record/name%>;

Listing 10. SQL Template

1 SELECT
2 firstName , lastName
3 FROM Customer;

Listing 11. Result of evaluation of SQL Template

The combination module to parse this template is shown in List-
ing 12. It introduces a new placeholder at line 5. This placeholder
is for associative lists with a separator. The separator is defined in
the second argument of the parameterization.

1 module SqlTemplate
2
3 imports Sql
4 imports PlaceHolder[Identifier]
5 imports PlaceHolderSepList[SelectSubList ","]

Listing 12. Combination module for SQL template.

4.5 Evaluation
In the previous section we described the approach to guarantee
the syntax correctness of the template. In this section we will
discuss the evaluator. In order to generate syntactic correct code
the evaluator takes a parsed template and a model.

The first step in evaluating a template is locating the placehol-
ders in the parse tree. This is done by a top down tree traversal
mechanism. The traversal stops when a node is recognized as a
placeholder. When a placeholder is located the evaluator interprets
the meta code of this placeholder and replaces it if nothing fails.

In this section we will illustrate the mechanism by discussing
the evaluation of the substitution and iterator placeholders.

4.5.1 Substitution Evaluation
The most elementary feature of a template is the substitution place-
holder. A substitution placeholder is replaced by the result of the
evaluation of the expression inside the placeholder.

Consider line 1 of the Java template of Listing 1. It contains the
substitution placeholder <%record/name%>. The expression is a
query to obtain data from the model. When evaluating this template
the following steps are executed:

1. Locate placeholder ( <%record/name%> ).

2. Evaluate the expression (lookup the value stored at
record/name in the model).

3. Parse the result obtained by evaluating the expression (
parse-identifier("Customer") ).

4. Replace the placeholder by the result of the parser (
<%record/name%> := Customer ) if step 2 and 3 succeed.

The replacement of the placeholder is only allowed if step 2 and
step 3 are successfully evaluated. In case of an error the evaluator
generates an error message and does not replace the placeholder.

The error messages of step 2 are related to the evaluation of the
expression. The following errors can occur:

• The path of the query does not exist in the model (e.g.
record/naam).

• The expression contains a type conflict (e.g., 12||"foo").
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These errors are checked while interpreting the meta language
constructs.

Step 3 is the most important step to guarantee the syntactical
correctness of the resulting code. The result of the expression is
parsed. An error message is generated when parsing fails other-
wise the placeholder is replaced. The start symbol for the parser is
inferred from the explicit typing of the placeholder with the nonter-
minal.

4.5.2 Iteration Evaluation
The foreach-statement is used to generate repetitive language ele-
ments in the object code. This process is based on instantiating a
subtemplate for every element in a list obtained from the model. A
query is used to obtain the list from the model.

Consider the foreach-statement at line 5 to 11 of the Java tem-
plate of Listing 1. The subtemplate of this foreach is represented in
line 6 to 10 and contains Java class body declarations (i.e. a field
declaration and a method declaration).

The evaluator will iterate over the list obtained from the model
and will evaluate the subtemplate for every element in the list. The
iterator evaluation algorithm is based on the substitution placehol-
der algorithm except for step 3. Step 3 is replaced by a loop instanti-
ating the subtemplate for every element in the list. The instantiation
process is recursive, so a subtemplate can contain object code with
placeholders.

To reduce the length of the queries the foreach instruction uses
a context switch when evaluating the subtemplate. This allows to
use the query type and name instead of record/field/type
and record/field/name in the subtemplate, shown in line 6 of
Listing 1.

4.6 Implementation Framework
We have shown the basic concepts of the implementation of the
template grammar and evaluator. A prototype of the evaluator is
implemented in the term rewriting system ASF+SDF [2]. We have
chosen for ASF+SDF because of the combination of a parser and
strongly typed first-order functional language.

SDF is used in combination with the SGLR parser [22]. The
SGLR parsing algorithm allows us to define an SDF definition
containing multiple languages and to use this grammar to parse a
term in a single parsing process. We do not need different parsers
for the different languages inside a template.

ASF (Algebraic Specification Formalism) can be seen as a
strongly typed first-order functional programming language. It pro-
vides traversal functionality to visit nodes in a tree and match on
certain nonterminals [20]. Beside the traversals ASF allows to de-
fine equations which can be executed as rewrite rules. The strong
typing of the equations of ASF guarantees the syntax safety of our
evaluator.

4.7 Syntactic Ambiguities
Introducing placeholders in an object language can lead to unde-
sired behavior. Sometimes a placeholder in a template can be valid
for different defined placeholder types. When parsing a template
this leads to ambiguities. The nonterminals to parameterize the
placeholders must be selected carefully to prevent those ambigu-
ities, although ambiguities could not always be avoided.

Consider line 3 of the example Java template of Listing 1.
This line contains two placeholders. It could be interpreted as a
constructor declaration or a method declaration. This conflict is
caused by the first placeholder, which could be parsed as a Type or
Modifier illustrated in Figure 4. The final result when evaluating
this line depends on the content of the model.

We allow ambiguous templates and we use a disambiguation fil-
ter based on term rewriting [21] to solve the ambiguities. The tem-

ClassBodyDec

Ambiguity+

llllllllll

YYYYYYYYYYYYYYYYYY

MethodDecHead

llllllllll
ConstructorDecHead

llllllllll

PlaceHolder[[Type]] PlaceHolder[[Modifier]]

PlaceHolder[[Identifier]] PlaceHolder[[Identifier]]

Figure 4. Simplified parse tree of the ambiguity Listing 1 line 3.

plate is parsed and instead of solving the ambiguities during pars-
ing, the ambiguities are stored in the parse tree. Those ambiguities
are represented by a node containing a list of possible alternatives.

The evaluator is capable to detect these ambiguity nodes. In
order to deal with ambiguities the evaluator tries to evaluate the
alternatives of the ambiguities in the same model context. We stop
evaluating the alternatives when the first successfully evaluated
alternative is found. We can omit from evaluating every alternative
to improve the performance of the system. Evaluating the different
alternatives could result in different structures of the parse trees, but
the leaves of those trees contain the same lexicals. The unparsed
text of the different trees does not differ. This assumption and the
fact that we unparse the parse tree allows us to stop evaluating the
ambiguity alternatives after a successful evaluation is found. The
evaluator generates an error when it is not possible to evaluate any
of the alternatives successfully .

5. Applications
Our main goal is to provide a syntax safe template engine for source
code generation in a MDA context. Repleo is not limited to this
domain. In this section we discuss in which domains our system
could be applied.

5.1 Information Systems
From the MDA perspective this is an interesting domain. A lot of
information system frameworks exists to support developers and to
reduce boiler-plate code. At the moment the Spring framework [10]
is a popular base architecture for Java based information systems.

Although those frameworks provide a lot of abstraction, there
exists repetitive definitions. This repetition does not only exist in
the java source code files, but also in XML property files and JSP
files.

At the moment we generate Java Beans, SQL queries and XML
files for the Spring framework. A class diagram is used as model.

5.2 ApiGen
ApiGen [11] is an application to generate a Java or C API for
creating, manipulating and querying tree-like data structures based
on ATerms [1]. The base for an API is an SDF syntax definition
to define the structure of the tree. The current implementation
of ApiGen is based on a Java program consisting of println()
statements.

ApiGen consists of two stages. First, it reads an Abstract Data
Type (ADT) specification, generated from an SDF definition, con-
taining the specification of the tree structure. This ADT format
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is concise. ApiGen enriches the ADT with inferred information,
which could be seen as separated model transformations as dis-
cussed in section 3. The second stage is generating the code.

In order to proof our concept we extracted the object code from
the generator source and implemented it in Java templates. The
println() statements could easily be mapped into templates. We
also used an ADT enrich stage. This allows us to reduce the amount
of calculations in the templates. The meta code of the templates
consists mainly of queries and string concatenations.

We have experienced a number of benefits over the println()
generator. First, the structure of the templates is very similar to
the output. The syntax safety makes it easier to write templates,
because it directly generates an error if we make a syntax mistake
in the template. Second, the generator is smaller and easier to
maintain, because we have separated the evaluator logic from the
representation of the object code.

6. Related Work
There are many approaches and concepts to generate code from a
model. We give an overview of some work similar to our approach.

6.1 Text Template Based Generators
A popular mechanism to generate code are text-based template
evaluators. They are well accepted and frequently used for different
tasks, like HTML generation for webpages and code generation.
The benefits are separation of concerns (logic and object code) and
reusability of templates.

A lot of template evaluators exists. Some examples are ERb [8]
and StringTemplate [16]. They all have in common that they are
text-based. Ignoring the object language makes them flexible, easy
to parse and fast in evaluating, but also unsafe. We were inspired
by the WYSIWYG approach of these systems. In contrast with our
system, misspellings and other syntactical errors in the object code
of the templates and the generated code are not detected by the text
based template engines.

6.2 Concrete Object Language Meta Programming
MetaML [19], domain specific embedded compilers [14] and
MetaBorg [3] present approaches to generate programs, where a
grammar is used for the object language.

MetaML is a homogeneous meta programming approach to
generate ML with ML in the context of multistage programming.
ML is a general-purpose functional programming language. Mul-
tistage programming is a technique to produce a specialized in-
stantiated solution from a generic solution. For example unfolding
a recursive function for xy , when y is known before runtime, to
x ∗ x(y−1) etcetera until y = 0. MetaML ensures the generated
code is syntactically correct and type safe.

Domain specific embedded compilers [14] is a technology to
express a domain specific language, such as SQL, in a high or-
der typed language like Haskell. This solution can ensure the SQL
statements are syntax and type correct. The type safety is obtained
by introducing phantom types for SQL expressions. Phantom typ-
ing is a technique to create annotations containing type information
for the nonterminals in the parse tree of the SQL expression. It is
a nice idea for typing languages embedded in some other (host)
language. This system is useful when the embedded language is
used by the host language to invoke another component, such as a
database, or when this language is used to expand to host language,
such as a UI definition, by an external generator.

MetaBorg [3] shows another approach for embedding domain
specific languages in a host language. They show a technique to
embed a DSL for UI definitions (SWUL) in Java source code and
expand this definition in Java code when evaluating the input pro-

gram. The type safety check is performed by an extended Java type-
checker on the input program. The extension provides a mechanism
to check the DSL, the connection between the DSL and Java and
finally the Java code. The transformation of SWUL to Java is ex-
pressed in Stratego/XT [24]. There is no guarantee the code will
not get ill-formed during this transformation, because the transfor-
mation may be not syntax safe.

Repleo is a heterogeneous meta programming system with a pa-
rameterizable object language. More important, none of these ap-
proaches use an external model to instruct their generation process.
Furthermore, domain specific embedded compilers and MetaBorg
are not template evaluators.

6.3 Safegen
SafeGen [9] is a recent approach to achieve type safe templates. It
uses an automatic theorem prover to prove the well-formedness of
the generated code for all possible inputs.

This approach heavily depends on the assumptions that the in-
put is a valid Java program and the knowledge of the Java type sys-
tem. The template programmer can define placeholders (cursors) to
obtain data from the Java input program. Those placeholders must
contain constraints based on their use in the template. For example
a placeholder in the extends section of a class in a template must
guarantee the extended class is not final. A prover is used to check
the constraints, this ensures that the template can not generate ill-
formed code.

This system depends on the notion that the input and output pro-
gram is Java. This fact makes the environment not capable to gen-
erate code from an abstract high-level model in another representa-
tion than the object language, because it depends heavily on reflec-
tion. Although they could give more and better guarantees about
the generator, we believe switching to another object language and
model representation is hard. Our approach is more flexible in re-
spect to these important requirements for a MDA environment.

6.4 API Based Generators
Another kind of approach for generating code is to manually build
a structural representation, like an abstract or concrete syntax tree,
of the object code.

6.4.1 API
An API based on the grammar of a language can provide func-
tionality to build an abstract syntax tree or concrete syntax tree of
the object language. Such an API consists of methods, classes or
functions to instantiate the different components of a language, for
example a class Class, class Method, class FieldDeclaration. The
structure is hierarchical, so a Class can contain Methods and Field-
Declarations. Examples of these systems are Jenerator [25] pro-
viding an environment for building generators for Java or an API
based on a grammar generated by ApiGen [11], as described in sec-
tion 5.2.

6.4.2 Generator
A generator based on an API instantiates an abstract or concrete
syntax tree when generating code. This tree can be used to guaran-
tee the syntactical correctness. The hierarchical structure of the tree
must match the grammar of the object language and the construc-
tors of the classes instantiating the lexical nodes must validate the
lexical requirements.

The drawback of this approach is the complexity of defining
a generator. The generator programmer must manually instantiate
the nodes of the abstract or concrete syntax tree and therefor needs
detailed knowledge of the object language grammar. This approach
also implies the representation of the object code is not concrete
and so hard to read and understand for a human.
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6.5 Future Work
At the moment we are able to guarantee the syntax correctness of
the templates. An open question is to guarantee type correctness of
the templates and/or the generated code. There are two problems.
First, the context, like imported libraries or code generated in the
future, of the template is not known. Second, the exact content of
the model is not known before evaluating the template.

Given that the context and model are not known, it is not pos-
sible to fully type check the generated code during the evaluation
of the template. Probably a type inference system could provide
some guarantees. However it is questionable whether it is worth to
invest a lot of effort to implement such a system for every object
language, while type correctness can not be ensured completely.

Another problem which can occur in the generated code is the
clash between a variable already defined in the template and a
generated variable based on data obtained from the model. It could
be interesting to investigate whether syntactic hygiene [13] can be
used to reduce these possible conflicts between the model and the
template.

7. Conclusion
In this paper we have presented a syntax safe template based gene-
ration system. Syntax safe templates provide a mechanism to detect
syntactical errors earlier in the process and closer to the source of
the error, instead of dealing with errors at compile time.

The parameterization concept of the evaluator allows us to in-
stantiate template evaluators for different languages. This espe-
cially confirms to the requirements for the MDA approach to gen-
erate code for various languages. We already have an SDF, Java,
SQL and XML engine.

The approach presented in this paper provides syntax safety of
templates and can be used instead of text based template engines.
Our approach allows the WYSIWYG development of templates
in the same way as for text templates. The amount of syntactical
checking finally depends on the granularity of the underlying gram-
mar.

Finally, having the parse tree of both object language and meta
language creates the possibility to implement advanced IDE fea-
tures. Templates are not well supported by IDE’s due their multilin-
gual nature. We already have syntax highlighting, but other source
code based features for both languages simultaneously could be
possible, such as auto-completion.
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