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Abstract—Hardware constraints, which motivate receive an-
tenna selection, also require that various antenna elements at
the receiver be sounded sequentially to obtain estimates required
for selecting the ‘best’ antenna and for coherently demodulating
data thereafter. Consequently, the channel state information
at different antennas is outdated by different amounts and
corrupted by noise. We show that, for this reason, simply
selecting the antenna with the highest estimated channel gain
is not optimum. Rather, a preferable strategy is to linearly
weight the channel estimates of different antennas differently,
depending on the training scheme. We derive closed-form ex-
pressions for the symbol error probability (SEP) of AS for
MPSK and MQAM in time-varying Rayleigh fading channels for
arbitrary selection weights, and validate them with simulations.
We then characterize explicitly the optimal selection weights
that minimize the SEP. We also consider packet reception, in
which multiple symbols of a packet are received by the same
antenna. New suboptimal, but computationally efficient weighted
selection schemes are proposed for reducing the packet error
rate. The benefits of weighted selection are also demonstrated
using a practical channel code used in third generation cellular
systems. Our results show that optimal weighted selection yields
a significant performance gain over conventional unweighted
selection.

Index Terms—Antenna selection, multiple antennas, diver-
sity methods, fading channels, channel estimation, modulation
schemes, channel coding, delays, training.

I. INTRODUCTION

ANTENNA selection (AS) is a popular technique to reduce
the hardware costs at the transmitter or receiver of a

wireless system [1]–[7]. It uses fewer radio frequency (RF)
chains than the actual number of antenna elements, and
only processes signals from a dynamically selected subset
of antennas. This is advantageous since antenna elements are
typically cheap and easy to implement, while the RF chains
are expensive. Consequently, many next generation standards
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such as IEEE 802.11n [8], Third Generation Partnership
Project (3GPP) Long Term Evolution (LTE) [9], and the
IEEE 802.16m Advanced WiMax [10] have standardized or
are standardizing AS at the transmitter or the receiver, or
both. In this paper, we concentrate on single receive antenna
selection. While a receiver can have more RF chains, the
model we consider is practically relevant and, as we shall
see, analytically rich and insightful. It achieves the same full
diversity order as subset selection (with more RF chains) with
perfect channel state information (CSI) [4], [11]–[14].

In practice, the CSI for receive AS, which is the focus of
this paper, needs to be acquired using a pilot-based training
scheme. The low hardware complexity, which is a key moti-
vator for AS, imposes unique constraints on how training gets
done for AS: given the limited number of RF chains, only
one antenna can be activated at any instant. Consequently, the
transmitter needs to send pilot(s) multiple times to enable the
receiver to sequentially receive pilots with different antennas
and estimate their corresponding links to the transmitter. The
receive antenna is then selected based on these estimates.

Depending on the system design, the pilots can be sev-
eral milliseconds apart. For example, in the IEEE 802.11n
standard [8], a multiple access control (MAC) based training
protocol is used for transmit and/or receive antenna selection.
In it, a sequence of consecutive ‘training packets’ are trans-
mitted to obtain the CSI of all antennas. The primary reason
for doing this is to ensure that the physical layer protocols
in the standard do not have to be modified considerably to
accommodate AS training [15]. The pilots embedded in the
physical layer header of each training packet help estimate the
channel gains. Each training packet, which carries a physical
layer header and a data payload, can be several milliseconds
long. For this reason, the pilots sent across the training packets
are also spaced several milliseconds apart. Thus, the CSI at the
receiver is imperfect not just because of noise in the channel
estimates but also because of training delays. Since different
channels are estimated at different times, the CSI at different
antenna elements is outdated by different amounts by the time
data symbols are demodulated.

While receive AS has been explored extensively in the
literature, most papers assume perfect CSI at the receiver.
Imperfect CSI can lead to inaccurate selection and imperfect
data decoding, both of which increase the symbol error
probability (SEP) or the packet error rate (PER). Receive AS
with imperfect channel estimates, but with only estimation
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errors due to noise, has been explored in [7], [16]–[20].
While [21], [22] considered outdated channel estimates, the
unequal outdatedness of the CSI of the antennas was not
factored in. While [23] considered unequal outdatedness, it
selected the antenna with the highest estimated channel gain.

In this paper, we analyze and optimize the performance
of AS over time-varying Rayleigh fading channels given a
practical training model. We show that imperfect CSI has a
significant impact on AS performance and argue that the selec-
tion criterion should account for the training delays (amount
of outdatedness) encountered in any practical AS system.
Intuitively, it should deemphasize in a monotonic fashion the
more outdated estimates. Accordingly, we propose to use a
selection criterion that weights the channel estimates to select
the best antenna. We show that such a weighting is indeed
optimal for minimizing SEP. We derive general closed-form
expressions for the SEP of MPSK and MQAM constellations
as a function of the selection weights and the antenna sounding
pattern. We also characterize explicitly the optimal selection
weights and study their asymptotic behavior. As we shall see,
training delays coupled with noisy estimates lead to an error
floor in the SEP, which does not occur when just noisy (or
perfect) estimates are considered. Optimal selection weights
lower the error floor significantly.

In addition to SEP, we also investigate the problem from
a PER perspective, in which multiple symbols of the packet
need to be received by the same antenna. Characterizing
and minimizing the PER turns out to be a much harder
problem analytically. We, therefore, develop an approximation
for the PER and use it to determine the optimal weights.
We also propose two new suboptimal selection algorithms
for minimizing the PER that are computationally simple and
effective. For coded packets, the benefits of weighted selection
are verified using the practical channel mother code specified
in third generation 3GPP cellular system standard.

The paper is organized as follows. The system model is
developed in Sec. II. Symbol error probability with weighted
selection is analyzed and optimized in Sec. III. Packet error
probability is dealt with in Sec. IV. The results and conclu-
sions follow in Sec. V and Sec. VI, respectively. Several math-
ematical derivations and proofs are relegated to the Appendix.

II. MODEL

Consider a system with one transmit antenna, 𝑁 receive
antennas, and one RF chain at the receiver. Let ℎ𝑘(𝑡) denote
the frequency-flat channel between the transmitter and the
𝑘th receive antenna at time 𝑡. It is modeled as a circularly
symmetric complex Gaussian random variable (RV) with unit
variance. Furthermore, the channel gains for different receive
antennas are assumed to be independent and identically dis-
tributed (i. i. d.), which is the case when the receive antennas
are spaced sufficiently apart [24].

A. Channel Estimation

We consider a transmission format in which multiple pilot
symbols precede multiple data symbols, as shown in Fig. 1.
The transmitter sends a pilot symbol 𝑝𝑝 (of duration 𝑇𝑠) to
each receive antenna sequentially so that all 𝑁 channels can
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Fig. 1. Training for receive antenna selection.

be estimated and the optimum antenna selected to receive the
data symbols block.1 The 𝑘th receive antenna is estimated at
time 𝑇𝑘. Two consecutive pilot symbols are separated in time
by a duration 𝑇𝑝. Note that the order in which antennas are
trained does not affect the SEP (or PER) since the channel
gains of different antennas are assumed to be i. i. d.

Pilot-based channel estimation is imperfect due to:
1. Noise-induced channel estimation errors: The signal re-
ceived by the 𝑘th antenna is

𝑟𝑘(𝑇𝑘) = 𝑝𝑝ℎ𝑘(𝑇𝑘) + 𝑛𝑘(𝑇𝑘),

where 𝑝𝑝 is a complex pilot symbol with ∣𝑝𝑝∣2 = 𝐸𝑝, and
𝑛𝑘(𝑡) is a circularly symmetric complex Gaussian process
with zero mean and power 𝑁0 that is independent of ℎ𝑘(𝑡).
Therefore, the channel estimate for the 𝑘th receive antenna is

ℎ̂𝑘(𝑇𝑘) =
𝑝∗𝑝𝑟𝑘(𝑇𝑘)

∣𝑝𝑝∣2
= ℎ𝑘(𝑇𝑘) + 𝑒𝑘, (1)

where the noise-induced channel estimation error 𝑒𝑘 = 𝑛𝑘(𝑇𝑘)
𝑝𝑝

has a variance 𝜎2
𝑒 = 𝑁0

𝐸𝑝
. Here, 𝐸𝑝 is the pilot symbol energy.

2. Outdated channel estimates: Due to the time-varying
nature of the wireless links, the 𝑁 channels will have changed
by the time data transmission starts. Using a first order
autoregressive model, the channel for receive antenna 𝑘 at
time 𝑡 + 𝛿 can be written in terms of the channel at time 𝑡
as [21], [25]

ℎ𝑘(𝑡+ 𝛿) = 𝜌𝑘(𝛿)ℎ𝑘(𝑡) +

√
1− ∣𝜌𝑘(𝛿)∣2𝑛′

𝑘(𝑡+ 𝛿), (2)

where 𝜌𝑘(𝛿) is the channel correlation coefficient.2 The vari-
ation 𝑛′

𝑘(𝑡 + 𝛿), 𝑘 = 1, 2, . . . , 𝑁 , is a circularly symmetric
complex Gaussian RV with unit variance that is independent of
ℎ𝑘(𝑡). The channel correlation coefficient depends on the time
difference 𝛿 and the Doppler spectrum (which, in turn, depends

1In order to reduce overhead IEEE 802.11n usually transmits payload data
together with each pilot tone. These payload data have to be received with
the same antenna element for which the pilot tone is intended. Thus, the
error probability for the payload does not depend on any selection algorithm,
and is irrelevant for the purposes of this paper. Note that 𝑇𝑝 also captures
the inter-packet spacing required to switch between antennas. However, the
switching time is small compared to a packet duration.

2The regressive model in (2) uses the simplifying assumption that the
channel realizations at different times can be computed based only on the
correlation with the channel at time 𝑡 = 0, and not as a realization of a
stochastic process with a continuous correlation function. The approximation
is good so long as the maximum Doppler frequency times 𝛿 is small and no
channel prediction is used. This will be verified in Section V.
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on the velocity, angular spectrum, and antenna pattern of the
mobile station [24]). Our derivations in Sec. III and Sec. IV
are valid for arbitrary Doppler spectra; for the simulations in
Sec. V, we use the classical Jakes spectrum [24] in which
𝜌𝑘(𝛿) = 𝐽0(2𝜋𝑓𝑑𝛿), where 𝐽0(.) is the zeroth order Bessel
function of the first kind [26] and 𝑓𝑑 is the maximum Doppler
frequency.

B. Weighted Antenna Selection

The standard selection criterion is to pick the antenna with
the highest (estimated) channel gain [16]. However, as we shall
see, this is not optimal when the CSI of different antennas is
outdated by different amounts – it is possible that the antenna
with the highest estimated channel gain could have severely
outdated CSI and should not be selected. For the data symbol
transmitted at time 𝑡𝑖, we propose selecting the antenna based
on weighted channel gain estimates as follows:

[1̂]𝑖 = arg max
1≤𝑘≤𝑁

𝑤𝑘,𝑖

∣∣∣ℎ̂𝑘∣∣∣2 . (3)

The symbol [1̂]𝑖, following standard order-statistics notation,
denotes the index of the selected antenna, with the cap ([̂.])
showing that the selection decision was based on estimates.
Antenna [1̂]𝑖 is then used for receiving the data symbol. We
will see that, because of time-varying nature of the channel,
the optimal weights – and, hence, the selected antenna –
depend on 𝑖. We will show later that linear weighting is indeed
the optimal strategy for minimizing the SEP.

C. Data Reception

As shown in Fig. 1, the pilots are followed by 𝐷 data
symbols, each of duration 𝑇𝑠 and energy 𝐸𝑠; we assume
that the duration of a data symbol is much shorter than the
coherence time of the channel. When the data symbol 𝑠𝑖 is
transmitted at time 𝑡𝑖, the signal received by antenna [1̂]𝑖 is
given by3

𝑦[1̂]𝑖(𝑡𝑖) = ℎ[1̂]𝑖(𝑡𝑖)𝑠𝑖 + 𝑛[1̂]𝑖
(𝑡𝑖). (4)

The data symbols are equi-probable and derived from
the MPSK or MQAM constellations. For MPSK, 𝑠𝑖 ∈{√

𝐸𝑠 exp(
𝑗2𝜋𝑚
𝑀 ),𝑚 = 0, . . . ,𝑀 − 1

}
. For MQAM, 𝑠𝑖 =√

3𝐸𝑠

2(𝑀−1) (𝑎𝐼 + 𝑗𝑎𝑄), where 𝑎𝐼 , 𝑎𝑄 ∈ {2𝑙 − 1 − √
𝑀, 𝑙 =

1, . . . ,
√
𝑀}.

III. SYMBOL ERROR PROBABILITY ANALYSIS AND

OPTIMIZATION

We now analyze the SEP for the 𝑖th symbol for receive
AS with imperfect and outdated CSI for both MPSK and
MQAM. Henceforth, we simplify our notation as follows: we
denote ℎ̂𝑘 (𝑇𝑘) by ℎ̂𝑘, 𝑛′

𝑘(𝑡) by 𝑛′
𝑘, 𝜌𝑘(𝑡𝑖 − 𝑇𝑘) by 𝜌

(𝑖)
𝑘 ,

and 𝑛𝑘(𝑡) by 𝑛𝑘. Pr (𝐴), E [𝐴], and var [𝐴] shall denote
the probability, expectation, and variance of 𝐴, respectively.
Similarly, Pr (𝐴∣𝐵), E [𝐴∣𝐵], and var [𝐴∣𝐵] shall denote the
conditional probability, expectation, and variance of 𝐴 given
𝐵, respectively. x∗ shall denote the complex conjugate of x.

3For brevity, we shall refer to the data symbol transmitted at time 𝑡𝑖 as the
𝑖th data symbol.

The imperfect channel estimates are used for both selection
and data decoding. Therefore, the maximum likelihood (ML)
decision variable, 𝒟, for the signal received by antenna [1̂]𝑖
is:

𝒟 = ℎ̂∗
[1̂]𝑖

𝑦[1̂]𝑖(𝑡𝑖).

Using (1) and (2), we can write the channel at time 𝑡𝑖 in terms
of its estimate. Hence,

𝒟 = ℎ̂∗
[1̂]𝑖

(
𝜌
(𝑖)

[1̂]𝑖

(̂
ℎ[1̂]𝑖−𝑒[1̂]𝑖

)
𝑠𝑖 +

√
1−
∣∣∣𝜌(𝑖)

[1̂]𝑖

∣∣∣2𝑛′
[1̂]𝑖
𝑠𝑖 + 𝑛[1̂]𝑖

)
.

(5)
The above equation brings out one important aspect associated
with training for antenna selection in time-varying fading
channels. It can be seen that the decision variables for symbols
transmitted at different times will be different, and so will their
error probabilities. This is quantified by the following Lemma
about the statistics of 𝒟, which turn out to depend on 𝑖.

Lemma 1: Conditioned on {ℎ̂𝑘}𝑁𝑘=1 and 𝑠𝑖, 𝒟 is a com-
plex Gaussian RV with conditional mean and variance given
by

𝜇𝒟 ≜ E
[
𝒟
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1, 𝑠𝑖

]
=
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝜌(𝑖)
[1̂]𝑖

𝑠𝑖𝑞
2, (6)

𝜎2
𝒟 ≜ var

[
𝒟
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1, 𝑠𝑖

]
=

(
1−
∣∣∣𝜌(𝑖)

[1̂]𝑖

∣∣∣2) ∣𝑠𝑖∣2
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2
+
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 ∣∣∣𝜌(𝑖)
[1̂]𝑖

∣∣∣2 ∣𝑠𝑖∣2 𝜎2
𝑒𝑞

2 +
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2𝑁0, (7)

where 𝑞2 ≜ 1/(1 + 𝜎2
𝑒).

Proof: The proof is given in Appendix A.
We are now ready to derive the SEPs for MPSK and MQAM

in the following two theorems. Let 𝛾 ≜ 𝐸𝑠

𝑁0
(average SNR per

branch) and 𝜀 ≜ 𝐸𝑝

𝐸𝑠
.

Theorem 1: With training delays and noisy channel esti-
mates, the SEP for the 𝑖th MPSK symbol received at time 𝑡𝑖
when the selection weight for antenna 𝑘 is 𝑤𝑘 is

𝑃MPSK
𝑖 (𝛾)=

1

𝜋

𝑁∑
𝑚=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚

(−1)𝑟

𝑟!
(
1+
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

)
[
𝑀−1

𝑀
𝜋

−
tan−1

(√
𝛼
(𝑖)
𝑚(𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟) tan

(
𝑀−1
𝑀 𝜋
))

√
𝛼
(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟)

]
, (8)

where

𝛼(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

≜ 1+

(
1+
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

)
𝜀
∣∣∣𝜌(𝑖)𝑚 ∣∣∣2sin2( 𝜋𝑀 )

(
𝜀

(
1−
∣∣∣𝜌(𝑖)𝑚 ∣∣∣2

)
+
1+𝜀

𝛾
+

1

𝛾2

)
. (9)

Proof: The proof is relegated to Appendix B.
The symbol

∑𝑁
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚
above denotes∑1

𝑙0=1

∑𝑁
𝑙1=1

(𝑙1 ∕=𝑚)

∑𝑁
𝑙2=1

(𝑙2 ∕=𝑚,𝑙2 ∕=𝑙1)
⋅ ⋅ ⋅∑𝑁

𝑙𝑟=1
(𝑙𝑟 ∕=𝑚,𝑙𝑟 ∕=𝑙1,⋅⋅⋅ ,𝑙𝑟 ∕=𝑙𝑟−1)

.

This is done to keep the notation compact.
Theorem 2: With training delays and noisy channel esti-

mates, the SEP for the 𝑖th MQAM symbol received at time 𝑡𝑖
is given by
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𝑃MQAM
𝑖 (𝛾)

= 2

(
1− 1√

𝑀

) 𝑁∑
𝑚=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚

(−1)𝑟 /𝑟!

1 +
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

×
⎛
⎝1− 1√

𝛽
(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

⎞
⎠

−
𝑁∑

𝑚=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚

(−1)𝑟 /𝑟!

1 +
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

×
(
1− 1√

𝑀

)2

⎛
⎜⎜⎝1−

4tan−1

(√
𝛽
(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

)

𝜋

√
𝛽
(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟)

⎞
⎟⎟⎠, (10)

where

𝛽(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

≜1+

(
1+
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

)
𝜀
∣∣∣𝜌(𝑖)𝑚 ∣∣∣2( 3

2(𝑀−1)

)
(
𝜀

(
1−
∣∣∣𝜌(𝑖)𝑚 ∣∣∣2

)
+
1+𝜀

𝛾
+

1

𝛾2

)
. (11)

Proof: The proof is given in Appendix C.

A. Optimal Selection Weights

With the above general formulae in place, we are now

ready to derive the optimal selection weights
{
𝑤opt
𝑘,𝑖

}𝑁
𝑘=1

that

minimize the SEP for the 𝑖th MPSK or MQAM symbol at an
average SNR 𝛾.

Theorem 3: For 1 ≤ 𝑘 ≤ 𝑁 , the optimal selection weights
that minimize the SEP of the 𝑖th MPSK or MQAM symbol
received at time 𝑡𝑖 are given by

𝑤opt
𝑘,𝑖(𝛾) =

∣∣∣𝜌(𝑖)𝑘 ∣∣∣2(
𝜀

(
1−
∣∣∣𝜌(𝑖)𝑘 ∣∣∣2

)
+ 1+𝜀

𝛾 + 1
𝛾2

) . (12)

Furthermore, linearly weighting the estimated channel gains
as done in (3) is the optimal strategy.

Proof: The proof is given in the Appendix D.
Observe that the optimal selection rule requires the knowl-

edge of the temporal channel correlation coefficients and the
pilot and data SNRs. Knowing the data SNR is equivalent to
knowing the pilot SNR because the ‘pilot power boosting’
factor, 𝜀, is always known a priori at the receiver. Notice
that even the conventional coherent receiver that uses the
unweighted selection rule requires knowledge of the pilot and
data SNRs. Thus, the only additional information needed in a
coherent receiver that uses the optimal weights is the temporal
channel correlation. The temporal correlation can be estimated
from the noisy estimates of the channel gains because it
depends on array geometry, antenna radiation pattern, and the
scattering environment, and, thus, changes on a much slower
time scale than the instantaneous fading. Several techniques

have been developed for this purpose, see, for example, [27],
[28] and the references therein.

The optimal weights can take any value from 0 to infinity.
Notice that the optimal weight for an antenna 𝑘 increases
as its channel correlation coefficient increases, which is in
line with our intuition. In typical regimes of operation of
𝑓𝑑𝑇𝑝, the correlation coefficient decreases as the training
delay increases. Thus, as expected, the optimal weight for an
antenna also monotonically decreases as the training delay
increases. The result above also implies that the optimal
selection weights – and, hence, the selected antenna – can be
different for data symbols transmitted at different times. This
will play an important role in understanding the suboptimal
algorithm proposed later for PER minimization.

When the training delays are the same, i.e., 𝜌(𝑖)𝑘 = 𝜌, the op-
timum weights do not depend on 𝑘 and 𝑖, which is equivalent
to setting all the weights to unity, i.e., performing selection
without weighting. For large training delays

(∣∣∣𝜌(𝑖)𝑘 ∣∣∣≪ 1
)

the
optimum weights, after removing common factors, simplify to
the following 𝜌-weighting scheme:

𝑤opt
𝑘,𝑖(𝛾) ≈

∣∣∣𝜌(𝑖)𝑘 ∣∣∣2 . (13)

Interestingly, using MMSE channel prediction to handle the
time-variations also leads to the 𝜌-weighting scheme. Thus,
Theorem 3 also shows that the MMSE prediction is not SEP
optimal.

B. Asymptotic Behavior of SEP With Optimal Weights

We now consider the asymptotic behavior of the
SEP expressions in (8) and (10) as the average
SNR per branch, 𝛾, increases. For MPSK, let
lim𝛾→∞ 𝛼

(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) ≜ 𝛼

(𝑖)
𝑘,asm(𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

and 𝑃MPSK
𝑖,asm ≜ lim𝛾→∞ 𝑃MPSK

𝑖 (𝛾). For MQAM, let

lim𝛾→∞ 𝛽
(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) ≜ 𝛽

(𝑖)
𝑘,asm(𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

and 𝑃MQAM
𝑖,asm ≜ lim𝛾→∞ 𝑃MQAM

𝑖 (𝛾). When training delays

are absent, 𝜌(𝑖)𝑘 = 1, for all 𝑘 and 𝑖. From (9) and (11), it
follows that 𝛼(𝑖)

𝑘,asm(.) = 1 and 𝛽
(𝑖)
𝑘,asm(.) = 1, for all 𝑘 and 𝑖.

Substituting these asymptotic values in (8) and (10), we can
show that 𝑃MPSK

𝑖,asm ≡ 0 and 𝑃MQAM
𝑖,asm ≡ 0, which is consistent

with the results in [16].
For non-zero training delays, we have 𝜌(𝑖)𝑘 < 1. From (12),

we can see that the asymptotic optimal weights (after remov-
ing common factors) equal

lim
𝛾→∞𝑤opt

𝑘,𝑖(𝛾) =

∣∣∣𝜌(𝑖)𝑘 ∣∣∣2
1−
∣∣∣𝜌(𝑖)𝑘 ∣∣∣2

. (14)

Substituting the above weights in (9) and (11) and simplifying
further we get

𝛼
(𝑖)
𝑘,asm(.) = 1− csc2

( 𝜋
𝑀

)⎛⎜⎝𝑟 + 1− 1∣∣∣𝜌(𝑖)𝑘 ∣∣∣2
−

𝑟∑
𝑗=1

1∣∣∣𝜌(𝑖)𝑙𝑗
∣∣∣2
⎞
⎟⎠ ,

𝛽
(𝑖)
𝑘,asm(.) = 1− 2(𝑀 − 1)

3

⎛
⎜⎝𝑟 + 1− 1∣∣∣𝜌(𝑖)𝑘 ∣∣∣2

−
𝑟∑

𝑗=1

1∣∣∣𝜌(𝑖)𝑙𝑗
∣∣∣2
⎞
⎟⎠ .
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Upon substituting these asymptotic values in the SEP formulae
for MPSK and MQAM, we find that 𝑃MPSK

𝑖,asm and 𝑃MQAM
𝑖,asm are

no longer identically 0. Hence, an irreducible error floor exists
at high SNR, and depends on the correlations {𝜌(𝑖)𝑘 }𝑁𝑘=1.

IV. SELECTION TO MINIMIZE PACKET ERROR RATE (PER)

In practice, non-zero switching times are required to switch
between antennas. Unless these switching times are much
smaller than the data symbol duration, they motivate the
practical restriction that all the data symbols of a packet must
be received by the same antenna. This constraint introduces
a new twist to the selection problem since different symbols
of a packet experience different training delays. The fading-
averaged packet error rate (PER) cannot be directly determined
from the fading-averaged SEPs of the 𝐷 different symbols
since the same antenna and antenna estimate is used to decode
the all data symbols in the packet. As we shall see below, this
makes an exact analysis significantly more difficult.

We first analyze the case where an uncoded packet is
transmitted, and show that an approximation for the PER can
still be derived and used to determine the optimal selection
weights. Since the analysis of receive AS for the coded packet
case remains an intractable problem, we use simulations in
the next section to study weighted selection for coded packet
transmissions. The weighted selection criteria motivated by
and validated for the uncoded packet case considered below
shall prove useful for the coded case.

A. Exact PER Analysis

An uncoded packet is in error when at least one of the
𝐷 data symbols is decoded incorrectly. We use the weighted
selection rule given in (3) except that the weights, 𝑤𝑘, and
the selected antenna, [1̂], do not depend on the symbol index
𝑖 since all the 𝐷 data symbols are now received by same
antenna. Conditioned on {ℎ̂𝑘}𝑁𝑘=1, the symbol errors are
independent. Therefore, for MPSK, the PER conditioned on
the estimated channel gains equals

PER
(
𝛾∣{ℎ̂𝑘}𝑁𝑘=1

)

= 1−
𝐷∏
𝑖=1

⎛
⎜⎝1− 1

𝜋

∫ 𝑀−1
𝑀 𝜋

𝜃𝑖=0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]∣∣∣2 𝑏(𝑖)[1̂]

sin2 𝜃𝑖

⎞
⎟⎠ d𝜃i

⎞
⎟⎠ ,

=

𝐷∑
𝑖=1

𝐷∑
𝑞1,...,𝑞𝑖=1
𝑞1 ∕=𝑞2⋅⋅⋅∕=𝑞𝑖

(−1)𝑖+1

𝑖!𝜋𝑖

×
∫ 𝑀−1

𝑀 𝜋

𝜃𝑞1=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃𝑞𝑖=0

exp

⎛
⎝− ∣∣∣ℎ̂[1̂]∣∣∣2

𝑖∑
𝑙=1

𝑏
(𝑞𝑙)

[1̂]

sin2 𝜃𝑞𝑙

⎞
⎠ 𝑑𝜃𝑞1 ⋅ ⋅ ⋅ 𝑑𝜃𝑞𝑖.

(15)

Along lines similar to Theorem 1, we can now compute the
fading-averaged PER and get

PER(𝛾)=
𝐷∑
𝑖=1

𝑁∑
𝑘=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑘

𝐷∑
𝑞1,...,𝑞𝑖=1
𝑞1 ∕=𝑞2⋅⋅⋅∕=𝑞𝑖

(−1)𝑟+𝑖+1

𝑟!𝑖!𝜋𝑖 (1+𝜎2
𝑒)

×
∫ 𝑀−1

𝑀 𝜋

𝜃𝑞1=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃𝑞𝑖=0

(
𝑖∑

𝑙=1

𝑏
(𝑞𝑙)
𝑘

sin2 𝜃𝑞𝑙
+
1+
∑𝑟

𝑗=1
𝑤𝑘

𝑤𝑙𝑗

1+𝜎2
𝑒

)−1

𝑑𝜃𝑞1⋅ ⋅ ⋅ 𝑑𝜃𝑞𝑖.
(16)

This can be reduced to an (𝑖 − 1)-dimensional integral us-
ing (29). However, any further simplification of PER is not
possible. The same problem also arises for MQAM packets.

Consequently, finding the optimal weights for minimizing
the PER is a non-trivial problem. We present below three dif-
ferent approaches that overcome this barrier. Surprisingly, all
lead to a similar improved performance. In the first approach,
we derive a tractable and closed-form approximate expression
for the PER that involves no integrals whatsoever. Therefore,
computationally efficient gradient search algorithms can now
be employed to find the optimal weights that minimize the
PER. In the other two approaches, we propose sub-optimal
selection algorithms that use the SEP optimality results from
the previous section.

B. PER Approximation

The key step that enables the approximation is captured in
the Lemma below, which provides a bound on the integrand
in (16).

Lemma 2: If {𝑎𝑘}𝑛𝑘=1 and 𝑏 are non-negative numbers,
then∫ 𝑀−1

𝑀 𝜋

𝜃𝑛=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃1=0

(
𝑛∑

𝑘=1

𝑎𝑘

sin2 𝜃𝑘
+𝑏

)−1

𝑑𝜃1 ⋅ ⋅ ⋅ 𝑑𝜃𝑛≥ 1

𝑏

𝑛∏
𝑘=1

𝜏𝑘,

(17)
where

𝜏𝑘 ≜ 𝑀 − 1

𝑀
𝜋 −
√

𝑎𝑘∑𝑛
𝑖=𝑘 𝑎𝑖 + 𝑏

× tan−1

⎛
⎝
√∑𝑛

𝑖=𝑘 𝑎𝑖 + 𝑏

𝑎𝑘
tan

(
𝑀 − 1

𝑀
𝜋

)⎞⎠ . (18)

Proof: The proof is given in Appendix E.
Using the above Lemma, it can be shown that the integral

term in (16) is lower bounded as:

∫ 𝑀−1
𝑀 𝜋

𝜃𝑞1=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃𝑞𝑖=0

(
𝑖∑

𝑙=1

𝑏
(𝑞𝑙)
𝑘

sin2 𝜃𝑞𝑙
+
1+
∑𝑟

𝑗=1
𝑤𝑘

𝑤𝑙𝑗

1 + 𝜎2
𝑒

)−1

𝑑𝜃𝑞1⋅ ⋅ ⋅ 𝑑𝜃𝑞𝑖

≥
(

𝑖∏
𝑚=1

𝑧
(𝑚)
𝑟,𝑖,𝑘

) (
1 + 𝜎2

𝑒

)(
1 +
∑𝑟

𝑗=1
𝑤𝑘

𝑤𝑙𝑗

) ,

where 𝑧
(𝑚)
𝑟,𝑖,𝑘 = 𝑀−1

𝑀 𝜋− 1√
𝑔
(𝑚)
𝑟,𝑖,𝑘

tan−1

(√
𝑔
(𝑚)
𝑟,𝑖,𝑘 tan

(
𝑀−1
𝑀 𝜋

))

and 𝑔
(𝑚)
𝑟,𝑖,𝑘 ≜

∑𝑖
𝑙=𝑚 𝑏

(𝑞𝑙)

𝑘

𝑏
(𝑞𝑚)
𝑘

+
1+

∑𝑟
𝑗=1

𝑤𝑘
𝑤𝑙𝑗

𝑏
(𝑞𝑚)
𝑘 (1+𝜎2

𝑒)
.

Substituting this bound in the various terms of the PER
equation and simplifying leads to the following approximation:

PER (𝛾) ≈
𝐷∑
𝑖=1

𝑁∑
𝑘=1

𝑁−1∑
𝑟=0

(−1)𝑟+𝑖+1

𝑟!𝑖!𝜋𝑖

(
𝑖∏

𝑚=1

𝑧
(𝑚)
𝑟,𝑖,𝑘

)

×
𝑁∑

𝑙0,...,𝑙𝑟=1
𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑘

𝐷∑
𝑞1,...,𝑞𝑖=1
𝑞1 ∕=𝑞2⋅⋅⋅∕=𝑞𝑖

1(
1 +
∑𝑟

𝑗=1
𝑤𝑘

𝑤𝑙𝑗

) . (19)
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Note that this is an approximation and not a bound because
of the alternating signs of various terms. Computationally
efficient gradient search algorithms, such as the Nelder-Mead
method implemented in Matlab, can now be employed to
find the optimal selection weights. By normalizing one of the
weights to unity, the gradient search algorithms effectively
need to search over an 𝑁 − 1 dimensional space of positive
real numbers. Notice that even this provides a significant
computational advantage over a Monte Carlo based search
that first measures the PER and then iterates over different
weights.

Despite fast gradient search techniques being available, this
is computationally intensive for larger 𝑁 . This motivates us
to propose and investigate the performance of the following
two suboptimal approaches to find the selection weights.

C. Approach 2: Select Antenna That is SEP Optimal Most
Often

Consider an ideal receiver in which the antennas can be
switched on a symbol-by-symbol basis. In this case, the PER
is minimized by using for each symbol index its SEP optimal
antenna. This involves evaluating for each symbol index its
optimal selection weights and then selecting the best antenna
as per (3) and (12). It is indeed possible that the selected
antennas are different for different data symbol transmission
indices since the corresponding optimal weights are different.

The above procedure suggests the following algorithm for
selecting the best antenna when the same antenna must be
used for receiving the entire packet: Use the antenna that is
SEP optimal for the most time in a packet. Mathematically,
the rule can be stated as:

[1̂] = arg max
1≤𝑘≤𝑁

𝐷∑
𝑖=1

𝐼{[1̂]𝑖=𝑘}, (20)

where [1̂]𝑖 is given by equation (3) and 𝐼{𝑥} is the indicator
function that equals 1 if 𝑥 is true, and is 0 otherwise.
Since we have derived a closed-form expression for the SEP
optimal weights, this algorithm is fast. It requires only𝑂(𝐷𝑁)
calculations and is guaranteed to terminate.

D. Approach 3: Select Antenna With Maximum Post-
Processing SNR

From the expression for SEP optimal weights, we can
see that the optimal selection rule also maximizes the post-
processing SNR. This is because the post-processing SNR,
Γ
(𝑖)
𝑘 , when the 𝑖th MPSK data symbol is received by 𝑘th an-

tenna, can be shown to be directly proportional to
∣∣∣ℎ̂𝑘∣∣∣2 𝑤opt

𝑘,𝑖.
This suggests the following algorithm for selecting the an-
tenna: Calculate the post-processing SNR for each of the data
symbols in the packet and use the antenna that maximizes the
total post-processing SNR over the packet, i.e.,

[1̂] = arg max
1≤𝑘≤𝑁

(
𝐷∑
𝑖=1

𝑤
opt
𝑘,𝑖

) ∣∣∣ℎ̂𝑘∣∣∣2 . (21)
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Fig. 2. Effect of normalized Doppler spread and weights (8PSK, 𝑇𝑝 = 10𝑇𝑠,
and 𝑁 = 4).

V. SIMULATIONS

We now present graphically the results derived in Sec-
tions III and IV, and study the effect of parameters such
as 𝑁 , 𝑓𝑑𝑇𝑝, and {𝑤𝑘}𝑁𝑘=1 on the SEP and PER. We also
compare these with Monte Carlo simulations with 104 samples
generated for each SNR (𝛾 ≜ 𝐸𝑠/𝑁0). The simulator of [29]
is used to generate the time-varying Rayleigh channels. From
Sec. II-A, the correlation values for 𝑘 = 1, 2, . . . , 𝑁 and
𝑖 = 1, 2, . . . , 𝐷 equal 𝜌(𝑖)𝑘 = 𝐽0 (2𝜋𝑓𝑑((𝑁 − 𝑘)𝑇𝑝 + 𝑖𝑇𝑠)).
Throughout the simulations the pilot SNR is kept the same as
data SNR (𝜀 = 1). Unless mentioned otherwise, the SEP of
the first data symbol (𝑖 = 1) is plotted. We first study SEP
and then PER.

Figures 2 and 3 plot the SEP as a function of the SNR
for MPSK and MQAM, respectively, for 𝑁 = 4 antennas.
One can see that the SEP always decreases to 0 as the
SNR increases when 𝑓𝑑𝑇𝑝 = 0, even with noisy estimates.
On the other hand, an error floor exists when 𝑓𝑑𝑇𝑝 > 0,
which increases as 𝑓𝑑𝑇𝑝 increases. Also shown is the effect
of different selection weights on the SEP. For 𝑓𝑑𝑇𝑝 ≈ 0, all
the six curves for the different weighting schemes coincide
because 𝑤opt

𝑘,𝑖 ≈ 1. For large 𝑓𝑑𝑇𝑝, 𝑤
opt
𝑘,𝑖(𝛾) = ∣𝜌(𝑖)𝑘 ∣2 performs

almost as well as optimal weighting, which is in line with the
analysis in Sec. III-A. We no longer plot the simulations given
the excellent match between analytical and simulation results
for all the weighting schemes.4 Similar behavior is observed
for higher values of 𝑖. As 𝑖 increases, the relative gains
obtained by using the optimal selection weights decrease. This
is because the relative variation among the weights of different
antennas decreases as all the weights decrease towards 0. The
effect of 𝑇𝑝/𝑇𝑠 is studied in Fig. 4. It shows that optimal
weighting improves performance in both low and high Doppler
regimes.

Figure 5 shows how often each antenna is selected by opti-
mal weighting for different values of the normalized Doppler
spread. At an SNR of 12 dB and 𝑓𝑑𝑇𝑝 = 0.06, antenna 1

4For MQAM, there is a small mismatch between analytical and simulation
results in Fig. 3. This is explained in Appendix C, which derives the SEP for
MQAM.
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Fig. 3. Effect of normalized Doppler spread and weights (16QAM, 𝑇𝑝 =
10𝑇𝑠, and 𝑁 = 4).
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Fig. 4. Effect of normalized Doppler spread and the ratio 𝑇𝑝/𝑇𝑠 (8PSK
and 𝑁 = 4).

(𝜌(1)1 = 0.6866) and antenna 4 (𝜌(1)4 = 0.9996) get selected
1.4% and 58.8% of the time, respectively, for decoding the
first data symbol. However, for 𝑓𝑑𝑇𝑝 = 0.01, the numbers
change to 21.7% and 27.2% for antenna 1 (𝜌(1)1 = 0.9905)
and antenna 4 (𝜌(1)4 = 0.9999), respectively.

Figure 6 compares the SEP of MPSK for 𝑁 = 2, 4, and 8
receive antennas as a function of the SNR at 𝑓𝑑𝑇𝑝 = 0.01 for
the no-weighting and optimal weighting selection schemes.
In the no-weighting scheme, increasing the number of re-
ceive antennas worsens performance. This is because selection
becomes more inaccurate – and unequally so for different
antennas – as the training delays increase. However, the
optimal weights, which account for this, remedy this problem.
Furthermore, they also substantially reduce the error floors by
one to two orders of magnitude.

An alternative view is presented in Fig. 7, which compares
the SEP of MPSK for 𝑁 = 2, 4, and 8 antennas at an SNR of
10 dB as a function of the Doppler spread. For no-weighting,
𝑁 = 8 outperforms others when 0 ≤ 𝑓𝑑𝑇𝑝 ≤ 0.017. However,
for 0.017 ≤ 𝑓𝑑𝑇𝑝 ≤ 0.044 and 𝑓𝑑𝑇𝑝 ≥ 0.044, 𝑁 = 4 and
𝑁 = 2, respectively, are the best choices. In contrast, for op-
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timal weighting, 𝑁 = 8 is always best choice.5 However, for
higher Doppler spreads, the performance difference between
smaller and larger number of antennas decreases.

The effect of different training delays for different antennas
is studied in Fig. 8. Also plotted is the SEP for the hypothetical
case where the training delays are the same and lead to a worst
case correlation of 𝜌𝑘 = 𝜌min (maximum training delay) or a
best case correlation of 𝜌𝑘 = 𝜌max (minimum training delay).
It can be seen that the difference in training delays among the
antennas has a greater impact at higher SNR values.

Next, we consider weighted antenna selection for packet
reception. Figure 9 plots the PER from simulations when the
receive antenna is selected: (i) without using any weights,
(ii) using the weights obtained from the PER approximation
(Sec. IV-B), and (iii) using the most often SEP optimal antenna
(Sec. IV-C). Selection based on the total post-processing SNR
(Sec. IV-D) is not shown as it is very close to that of the above

5Note that the conclusions would be different if one assumed a fixed overall
energy budget, so that using more pilot tones reduces the available energy for
the payload data. In that case, more antennas need not be better even with
weighted selection.
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two algorithms. We see that weighted selection significantly
improves the PER compared to no weighting. Furthermore,
the different selection weighting approaches result in similar
performance. This is because, with high probability, the an-
tenna that maximizes the post-processing SNR will remain
SEP-optimal for many data symbols in the packet. If the
channel changes significantly between adjacent data symbols,
i .e., at high Doppler, Approach 2 performs marginally better
than Approach 3. While the PER approximation turns out to
be about 3 dB loose in approximating the PER, it is still a
good tool for selecting the receive antenna. To benchmark the
proposed suboptimal algorithms, the figure also plots the PER
if a genie could somehow tell the receiver which antenna is
optimal.6

Finally, in Fig. 10 we study weighted selection in a prac-
tical coded system. For this, we used the rate 1/3 mother

6We generate the genie-aided result by measuring, from simulations, the
noise-averaged PER for each antenna, and then selecting the antenna with
lowest PER. While this is computationally impractical, it provides a better
benchmark than, for example, the perfect CSI case as the genie-aided receiver
uses imperfect estimates for data decoding. Since the genie can measure PER
at all the antennas of the receiver, it performs better than any practical scheme.

convolutional code specified in the 3GPP Wideband CDMA
standard [30]. Its generator polynomial is 𝐺 = [133 171 165].
Hard decision Viterbi decoding was performed at the receiver.
Each codeword/packet is 100 bits long and is 8PSK mod-
ulated. Bit error rate (BER) is plotted to enable a direct
comparison with the uncoded results, for which the SEP
was shown. The antenna is selected using suboptimal criteria
proposed in Sections IV-C and IV-D. The BER obtained by
choosing the genie-advised optimal antenna is also plotted as a
benchmark. The observations are similar to the uncoded PER
case. Weighted selection again outperforms no-weighting.
Furthermore, the performance of the two weighting schemes is
similar, which is primarily due to the large correlation between
the channels observed by the 𝐷 symbols. The performance
gains from optimal weighting are even more for PER (figure
not shown).

VI. CONCLUSIONS

In this paper we analyzed receive AS with channel estimates
that are affected both by noise and the time variations of the
fading channel. For practical training (pilot) structures that
are typical for AS systems, the channel estimates of different
antenna elements are outdated by different amounts. We saw
that this has important consequences for the selection criteria
and the overall system performance. Our most important
results and insights are the following: We proposed a new
optimal selection scheme that weights the channel estimates
before antenna selection. We derived closed-form expressions
for the SEP for both MPSK and MQAM constellations in
such a system, and derived the optimal weights to be used.
The optimal weights are different from those suggested by
MMSE prediction, and can significantly improve performance.
We saw that increasing the number of antenna elements can
worsen performance when unweighted AS is used. Optimum
weighted selection could remedy this effect. We also con-
sidered uncoded and coded packet reception, in which the
receiver is constrained in practice to use the same receive
antenna to receive the entire packet. We found an approximate
expression for the PER that was used to find the selection
weights. The uncoded packet case also motivated other com-
putationally efficient criteria for selecting the optimal antenna
to minimize the PER. These criteria, which were motivated
in different ways by the analytical results on SEP optimal
weights, led to significant, but similar, improvements in the
PER for both uncoded and coded packets. We believe that
similar selection criteria carry over to antenna selection over
frequency-selective channels, which is an interesting avenue
for future work.

APPENDIX

A. Proof of Lemma 1

Note that 𝑒𝑘 is independent of ℎ𝑘 but not ℎ̂𝑘. From (1),
we can see that 𝑒𝑘, conditioned on ℎ̂𝑘, is a Gaussian RV.
Hence, using standard results on conditional Gaussians, its
first conditional moment is

E
[
𝑒𝑘∣ℎ̂𝑘

]
= E [𝑒𝑘] +

Cov
(
𝑒𝑘, ℎ̂𝑘

)
var
[
ℎ̂𝑘

] (
ℎ̂𝑘 −E

[
ℎ̂𝑘

])
, (22)
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where Cov (., .) denotes covariance. On substituting

Cov
(
𝑒𝑘, ℎ̂𝑘

)
=𝜎2

𝑒 and var
[
ℎ̂𝑘

]
=1+𝜎2

𝑒 , we get

E
[
𝑒𝑘∣ℎ̂𝑘

]
=

𝜎2
𝑒

1 + 𝜎2
𝑒

ℎ̂𝑘 = ℎ̂𝑘
(
1− 𝑞2

)
. (23)

From (5), 𝒟 depends only on the RVs ℎ̂[1̂]𝑖 , [1̂]𝑖, and 𝑠𝑖. Hence,

E
[
𝒟∣{ℎ̂𝑘}𝑁𝑘=1, 𝑠𝑖

]
= E
[
𝒟∣ℎ̂[1̂]𝑖 , [1̂]𝑖, 𝑠𝑖

]
,

=
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝜌(𝑖)
[1̂]𝑖

𝑠𝑖 − ℎ̂∗
[1̂]𝑖

𝜌
(𝑖)

[1̂]𝑖
𝑠𝑖E
[
𝑒[1̂]𝑖 ∣ℎ̂[1̂]𝑖 , [1̂]𝑖

]
,

=
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝜌(𝑖)
[1̂]𝑖

𝑠𝑖𝑞
2. (24)

The first equality follows because both 𝑛′
𝑘 and 𝑛𝑘 are inde-

pendent of ℎ̂𝑘. The second equality directly follows from (23).
Again using standard results on conditional Gaussians, we

have

var
[
𝑒𝑘

⏐⏐⏐ℎ̂𝑘] = var [𝑒𝑘]−
Cov

(
𝑒𝑘, ℎ̂𝑘

)(
Cov

(
ℎ̂𝑘, 𝑒𝑘

))∗
var
[
ℎ̂𝑘

] ,

= 𝑞2𝜎2
𝑒 . (25)

The expression in (7) then follows.

B. Proof of Theorem 1

The standard SEP expression for MPSK when 𝒟 is a
Gaussian RV [31, (40)] is

𝑃𝑖

(
Err
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1

)
=

1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

exp

(
− ∣𝜇𝒟∣2 sin2

(
𝜋
𝑀

)
𝜎2
𝒟 sin2 𝜃

)
d𝜃.

Making use of the results of Lemma 1, the above equation
can be simplified to

𝑃𝑖

(
Err
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1

)
=

1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2𝑏(𝑖)
[1̂]𝑖

sin2 𝜃

⎞
⎟⎠d𝜃, (26)

where 𝑏
(𝑖)
𝑘 ≜

𝐸𝑠

∣∣∣𝜌(𝑖)𝑘

∣∣∣2𝑞4 sin2( 𝜋
𝑀 )∣∣∣𝜌(𝑖)𝑘

∣∣∣2𝐸𝑠𝜎2
𝑒𝑞

2+𝑁0+

(
1−

∣∣∣𝜌(𝑖)𝑘

∣∣∣2
)
𝐸𝑠

. Expressing

𝑞2 and 𝜎2
𝑒 in terms of 𝛾, 𝑏

(𝑖)
𝑘 simplifies further to

𝑏
(𝑖)
𝑘 =

𝜀
∣∣∣𝜌(𝑖)𝑘

∣∣∣2 sin2( 𝜋
𝑀 )

(1+ 1
𝛾𝜀 )

(
𝜀

(
1−

∣∣∣𝜌(𝑖)𝑘

∣∣∣2
)
+ 1+𝜀

𝛾 + 1
𝛾2

) . Averaging over the se-

lected antenna index, we get

𝑃𝑖

(
Err
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1

)

=

𝑁∑
𝑚=1

Pr
(
[1̂]𝑖=𝑚

⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1

)
𝑃𝑖

(
Err
⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1, [1̂]𝑖=𝑚

)
,

=
1

𝜋

𝑁∑
𝑚=1

⎡
⎢⎣ 𝑁∏
𝑙=1
𝑙 ∕=𝑚

Pr

(
𝑤𝑙

∣∣∣ℎ̂𝑙∣∣∣2<𝑤𝑚

∣∣∣ℎ̂𝑚∣∣∣2⏐⏐⏐{ℎ̂𝑘}𝑁𝑘=1

)⎤⎥⎦

×
∫ 𝑀−1

𝑀 𝜋

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂𝑚∣∣∣2𝑏(𝑖)𝑚
sin2 𝜃

⎞
⎟⎠d𝜃.

From (1), the probability density function, 𝑓(𝑥), and the

cumulative distribution function, 𝐹 (𝑥), of
∣∣∣ℎ̂∣∣∣2 are given

by 𝑓(𝑥) = 1
1+𝜎2

𝑒
exp
(

−𝑥
1+𝜎2

𝑒

)
and 𝐹 (𝑥) = 1 − exp

(
−𝑥

1+𝜎2
𝑒

)
.

Therefore, the SEP averaged over {ℎ̂𝑘}𝑁𝑘=1 equals

𝑃𝑖 (Err) =
1

𝜋

𝑁∑
𝑚=1

∫ ∞

0

∫ 𝑀−1
𝑀 𝜋

0

exp

(
−𝑥𝑏(𝑖)𝑚
sin2 𝜃

)

× 𝑓(𝑥)

𝑁∏
𝑙=1
𝑙 ∕=𝑚

𝐹

(
𝑤𝑚𝑥

𝑤𝑙

)
d𝜃dx . (27)

The term
∏𝑁

𝑙=1
𝑙 ∕=𝑚

𝐹
(
𝑤𝑚𝑥
𝑤𝑙

)
in the integrand above, when

expanded, takes the following form [26]:

𝑁−1∑
𝑟=0

(−1)𝑟

𝑟!

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚

exp

⎛
⎜⎝−𝑥

(∑𝑟
𝑗=1

𝑤𝑚

𝑤𝑙𝑗

)
1 + 𝜎2

𝑒

⎞
⎟⎠ .
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Consequently, the SEP expression in (27) simplifies to:

𝑃𝑖 (Err) =
1

𝜋 (1 + 𝜎2
𝑒)

𝑁∑
𝑚=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑚

(−1)
𝑟

𝑟!

×
∫ 𝑀−1

𝑀 𝜋

0

(
𝑏
(𝑖)
𝑚

sin2 𝜃
+

1 +
∑𝑟

𝑗=1
𝑤𝑚

𝑤𝑙𝑗

1 + 𝜎2
𝑒

)−1

d𝜃. (28)

The single integral above can be eliminated using the follow-
ing identity, which follows from [26, (2.562)]. For 𝑎, 𝑏 > 0,

∫ 𝜁

0

(
𝑎

sin2 𝜃
+ 𝑏

)−1

𝑑𝜃

≡ 1

𝑏

[
𝜁 −
√

𝑎

𝑎+ 𝑏
tan−1

(√
𝑎+ 𝑏

𝑎
tan 𝜁

)]
. (29)

C. Proof of Theorem 2

The standard MQAM SEP expression when 𝒟 is a Gaussian
RV is7 [31, (48)]

𝑃𝑖

(
Err∣{ℎ̂𝑘}𝑁𝑘=1

)
=

4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

exp

(
−1.5 ∣𝜇𝒟∣2 /𝜎2

𝒟
(𝑀−1) sin2 𝜃

)
d𝜃

− 4

𝜋

(
1− 1√

𝑀

)2 ∫ 𝜋
4

0

exp

(
−1.5 ∣𝜇𝒟∣2 /𝜎2

𝒟
(𝑀−1) sin2 𝜃

)
d𝜃. (30)

From Lemma 1, the above equation can be simplified to

𝑃𝑖

(
Err∣{ℎ̂𝑘}𝑁𝑘=1

)
=

4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2𝑐(𝑖)
[1̂]𝑖

sin2 𝜃

⎞
⎟⎠d𝜃

− 4

𝜋

(
1− 1√

𝑀

)2 ∫ 𝜋
4

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝑐(𝑖)
[1̂]𝑖

sin2 𝜃

⎞
⎟⎠ d𝜃, (31)

where 𝑐(𝑖)𝑘 =
𝜀
∣∣∣𝜌(𝑖)𝑘

∣∣∣2( 1.5
𝑀−1 )

(1+ 1
𝛾𝜀)

(
𝜀

(
1−

∣∣∣𝜌(𝑖)𝑘

∣∣∣2
)
+ 1+𝜀

𝛾 + 1
𝛾2

) . Along the lines of

Appendix B, we can show that

E

⎡
⎢⎣∫ 𝜓

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝑏(𝑖)
[1̂]𝑖

sin2 𝜃

⎞
⎟⎠ 𝑑𝜃

⎤
⎥⎦

=

𝑁∑
𝑘=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑘

{
1 +

𝑟∑
𝑗=1

𝑤𝑘

𝑤𝑙𝑗

}−1

× (−1)𝑟

𝑟!

⎡
⎢⎢⎣𝜓 −

tan−1

(√
𝛼
(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) tan𝜓

)
√
𝛼
(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

⎤
⎥⎥⎦ ,

7The derivation of this expression assumes that the variance of 𝒟 is the
same for all symbols of the MQAM constellation. With imperfect estimation,
this is no longer the case, as can be seen from (7). However, as the simulation
results in [16] and this paper show, the approximation is accurate.

where 𝛼(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) is defined in (9), the expectation

is taken over the channel estimates {ℎ̂𝑘}𝑁𝑘=1, and 𝜓 is either
𝜋
4 or 𝜋

2 . Hence, each of the two integrals in (31) simplifies to

E

⎡
⎢⎣∫ 𝜓

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂[1̂]𝑖

∣∣∣2 𝑐(𝑖)
[1̂]𝑖

sin2 𝜃

⎞
⎟⎠ 𝑑𝜃

⎤
⎥⎦

=

𝑁∑
𝑘=1

𝑁−1∑
𝑟=0

𝑁∑
𝑙0,...,𝑙𝑟=1

𝑙0=1,𝑙1 ∕=⋅⋅⋅∕=𝑙𝑟 ∕=𝑘

{
1 +

𝑟∑
𝑗=1

𝑤𝑘

𝑤𝑙𝑗

}−1

× (−1)𝑟

𝑟!

⎡
⎢⎢⎣𝜓 −

tan−1

(√
𝛽
(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) tan𝜓

)
√
𝛽
(𝑖)
𝑘 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 )

⎤
⎥⎥⎦ ,

where 𝛽(𝑖)
𝑚 (𝛾, 𝑤𝑙1 , . . . , 𝑤𝑙𝑟 ) is defined in (11). Substituting this

in (31) yields the desired result.

D. Proof of Theorem 3

The proof below also shows that linear weighting is indeed
the SEP optimal selection strategy among all possible selec-
tion strategies. Let antenna 𝑘 be selected and used for data
reception. For MQAM, (31) can be rewritten as

𝑃𝑖

(
Err∣ℎ̂𝑘

)
=

4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

𝜉(𝜃) exp

⎛
⎜⎝−
∣∣∣ℎ̂𝑘∣∣∣2𝑐(𝑖)𝑘
sin2 𝜃

⎞
⎟⎠d𝜃,

(32)
where 𝜉(𝜃) = 1/

√
𝑀 , for 0 ≤ 𝜃 < 𝜋/4, and 𝜉(𝜃) = 1, for

𝜋/4≤ 𝜃≤𝜋/2. From this special form of the SEP, it follows
that the minimum SEP obtained by selecting the best antenna
equals

4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

𝜉(𝜃) min
𝑘=1,...,𝑁

exp

⎛
⎜⎝−
∣∣∣ℎ̂𝑘∣∣∣2𝑐(𝑖)𝑘
sin2 𝜃

⎞
⎟⎠d𝜃. (33)

It is important to note that (31) and (33) hold for any selection
strategy – they do not assume linear weighted selection. Thus,
the optimal antenna to use for data reception is the one that

maximizes argmax𝑘

(∣∣∣ℎ̂𝑘∣∣∣2 𝑐(𝑖)𝑘
)

, which shows that linear

weighting is the optimal strategy and that the optimal weights
are as stated in the theorem. A similar argument works for
MPSK since (26) can be written in a form similar to (32) as

𝑃𝑖

(
Err∣ℎ̂𝑘

)
=

1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

exp

⎛
⎜⎝−
∣∣∣ℎ̂𝑘∣∣∣2 𝑏(𝑖)𝑘
sin2 𝜃

⎞
⎟⎠ 𝑑𝜃. (34)

An alternate proof that exploits the symmetry
inherent in the SEP expression to show that
∂

∂𝑤𝑝
𝑃MPSK
𝑖 (𝛾)

⏐⏐⏐
{𝑤𝑘,𝑖}𝑁

𝑘=1
={𝑤opt

𝑘,𝑖}𝑁

𝑘=1

= 0 is given in [32].
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E. Proof of Lemma 2

Using (29), the inner most integral in (17) reduces to

∫ 𝑀−1
𝑀 𝜋

0

(
𝑛∑

𝑘=1

𝑎𝑘

sin2 𝜃𝑘
+ 𝑏

)−1

𝑑𝜃1 =

(
𝑛∑

𝑘=2

𝑎𝑘

sin2 𝜃𝑘
+ 𝑏

)−1

×
[
𝑀−1

𝑀
𝜋− 1

𝑧2
tan−1

(
𝑧2 tan

(
𝑀−1

𝑀
𝜋

))]
,

with 𝑧2 ≜
∑𝑛

𝑘=2

𝑎𝑘
sin2 𝜃

+𝑎1+𝑏

𝑎1
. Since sin2(𝜃) ≤ 1, it easily

follows that 𝑧2 ≥
∑𝑛

𝑘=1 𝑎𝑘+𝑏

𝑎1
. For 𝑀 > 2, tan

(
𝑀−1
𝑀 𝜋

)
< 0.

Hence, 𝑧2 tan
(
𝑀−1
𝑀 𝜋

) ≤
∑𝑛

𝑘=1 𝑎𝑘+𝑏

𝑎1
tan
(
𝑀−1
𝑀 𝜋

)
. This re-

sults in

𝑀 − 1

𝑀
𝜋 − 1

𝑧2
tan−1

(
𝑧2 tan

(
𝑀 − 1

𝑀
𝜋

))
≥ 𝜏1,

where 𝜏𝑘 is defined in theorem statement. (For 𝑀 = 2, the
above inequality is trivially satisfied since tan

(
𝜋
2

)
= ∞.)

Hence, for 𝑀 ≥ 2,

∫ 𝑀−1
𝑀 𝜋

0

(
𝑛∑

𝑘=1

𝑎𝑘

sin2 𝜃𝑘
+𝑏

)−1

𝑑𝜃1 ≥ 𝜏1

(
𝑛∑

𝑘=2

𝑎𝑘

sin2 𝜃𝑘
+𝑏

)−1

.

Using the above identity recursively, the 𝑛-dimensional inte-
gral can be simplified as follows:

∫ 𝑀−1
𝑀 𝜋

𝜃𝑛=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃1=0

(
𝑛∑

𝑘=1

𝑎𝑘

sin2 𝜃𝑘
+ 𝑏

)−1

𝑑𝜃1 ⋅ ⋅ ⋅ 𝑑𝜃𝑛

≥ 𝜏1

∫ 𝑀−1
𝑀 𝜋

𝜃𝑛=0

⋅ ⋅ ⋅
∫ 𝑀−1

𝑀 𝜋

𝜃2=0

(
𝑛∑

𝑘=2

𝑎𝑘

sin2 𝜃𝑘
+ 𝑏

)−1

𝑑𝜃2 ⋅ ⋅ ⋅ 𝑑𝜃𝑛

≥ ⋅ ⋅ ⋅ ≥ 1

𝑏

𝑛∏
𝑘=1

𝜏𝑘.
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