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ABSTRACT
In this paper, we develop a semantic annotation technique
for location-based social networks to automatically annotate
all places with category tags which are a crucial prerequisite
for location search, recommendation services, or data clean-
ing. Our annotation algorithm learns a binary support vec-
tor machine (SVM) classifier for each tag in the tag space to
support multi-label classification. Based on the check-in be-
havior of users, we extract features of places from i) explicit
patterns (EP) of individual places and ii) implicit relatedness
(IR) among similar places. The features extracted from EP
are summarized from all check-ins at a specific place. The
features from IR are derived by building a novel network of
related places (NRP) where similar places are linked by vir-
tual edges. Upon NRP, we determine the probability of a
category tag for each place by exploring the relatedness of
places. Finally, we conduct a comprehensive experimental
study based on a real dataset collected from a location-based
social network, Whrrl. The results demonstrate the suitabil-
ity of our approach and show the strength of taking both EP
and IR into account in feature extraction.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; J.4 [Computer
Applications]: Social and Behavior Sciences

General Terms
Algorithms, Design, Experimentation

Keywords
Semantic Annotation, Points of Interest, User Behavior,
Location-Based Social Networks

1. INTRODUCTION
With the increasing availability of GPS-enabled smart

phones, rapid development of location-based services, and
growing interests in on-line social networking, a number of
location-based social networking (LBSN) services such as
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Whrrl1, Foursquare2 and Facebook Places3 have emerged.
These services allow users to explore places, write reviews,
and share their locations and experiences with others. The
number of available places in LBSNs is growing continu-
ously.4 Many places have been labeled with useful tags such
as restaurant or cinema, which are crucial for assisting users
in searching and exploring new places as well as for develop-
ing recommendation services [2, 12, 28]. However, based on
our analysis of data collected from Whrrl and Foursquare,
about 30% of all places are lacking any meaningful textual
descriptions. To address this problem, we develop a novel
technique, namely semantic annotation of places (SAP), to
automatically and precisely annotate all places with seman-
tic tags for LBSNs.

?

check-in, i.e., 
<user, place, 
time stamp>

semantic tags 
are missing

?

Figure 1: Users and places in an LBSN

Figure 1 shows a bipartite graph representation of the
user-place relationship in an LBSN. Let U and P denote
the set of all users and places in the system, respectively.
Users and places are connected through a set of check-in
activities C = {〈u, p, h〉|u ∈ U ∧ p ∈ P ∧ h ∈ H}, where H
is a set of time stamps. Each check-in c ∈ C describes that
“a user u has checked in a place p at time h”. Note that a
place pi may be annotated by users with a set of semantic
tags Ti ⊆ T , where T presents the tag space. Our proposed
SAP technique assigns tags to places where semantic tags are
missing. These targeted places are depicted with question
marks in Figure 1.

The problem of place semantic annotation can be formu-
lated as predicting appropriate tags for a given place. In
LBSNs, a place may be associated with multiple tags. For
instance, a place associated with a tag restaurant may also
be tagged with bar. Hence, place semantic annotation in
LBSNs may be addressed as a multi-label classification prob-
lem [3, 29]. While multi-label classification techniques have
been developed for many applications, such as protein func-
tion classification [6], music categorization [13] and semantic
scene classification [3], the problem has not been explored
previously under the context of LBSNs, where we can only

1www.whrrl.com
2www.foursquare.com
3www.facebook.com/places
4Points of Interest (POIs) are usually referred to as places
in LBSNs.
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operate over user check-in activities (i.e., 〈u, p, h〉 ∈ C) for
certain places and time stamps.

We propose to address the place semantic annotation prob-
lem by learning a binary SVM for each tag in the tag space
in order to realize the multi-label classification. To do so,
a fundamental issue is to identify and extract a number of
descriptive features for each place in the system. Select-
ing the right features is important because those features
have a direct impact on the effectiveness of the classification
task. As mentioned earlier, the only data resource we have
is the user check-in activities at various places and times.
Therefore, we explore the user behaviors and seek unique
features of places captured in the check-in activities. For-
tunately, human behaviors are not completely random, e.g.,
people usually visit restaurants for lunch at around noon.
Moreover, people exhibit patterns in their activities, e.g.,
different places visited by the same person at the same time
may be similar (e.g., having the same tags).

By leveraging the observations hinted in the above-mentioned
examples, we extract features of places in two different but
complementary aspects: 1) explicit patterns (EP) at indi-
vidual places; and 2) implicit relatedness (IR) among simi-
lar places. Features extracted from EP, corresponding to a
given place, can be derived from all check-ins at the place
based on statistical analysis. In this paper, we propose to
extract population features (e.g., number of unique visitors)
and temporal features (e.g., distribution of check-in time)
as semantic descriptions of specific places. On the other
hand, we extract features from IR to capture the relatedness
among places by exploiting the regularity of user check-in ac-
tivities to similar places. Since only some places are tagged,
we could make good use of IR by deriving descriptive fea-
tures of a given place from its “related” places.

To facilitate extraction of features from IR, we develop a
novel algorithm to build a network of related places (NRP)
that captures the relatedness amongst places by exploring
regularities of user check-ins to similar places. We propose
a family of graph representations that capture the user-
place and time-place relationships from the user check-in
activities. We employ the Random Walk and Restart tech-
nique [27] on these graphs to estimate the relatedness of
places in order to build an NRP. In the obtained NRP, place
pairs with high relatedness values imply high similarity in
the tag space and thus are linked. Accordingly, we derive the
probability for a specific tag being labeled to a place (called
label probability) from its linked (similar) places. This la-
bel probability is thus treated as a feature of IR, along with
population and temporal features derived from EP, to feed
the binary SVM in our SAP algorithm.

This research work has made a number of significant con-
tributions, as summarized below.

• We propose to tackle the problem of place semantic
annotation in LBSNs, which is a crucial prerequisite
for effective retrieval and recommendation of POIs in
LBSNs.

• We formulate the task of place semantic annotation
in LBSNs as a multi-label classification problem and
propose a two-phase algorithm to learn a binary SVM
classifier for each tag in the entire tag space. In the
proposed semantic annotation of places (SAP) algo-
rithm, we explore explicit patterns (EP) at individ-
ual places and implicit relatedness (IR) among simi-
lar places by exploiting the user check-in activities to
extract descriptive features for places. To overcome
several technical challenges in realizing the proposed
algorithm, we develop a number of techniques for ex-
tracting population and temporal features, building a

network of related places (NRP), and deriving label
probability for each place in the system.

• Through a comprehensive experimental study, using a
real dataset collected from Whrrl, we validate our pro-
posed ideas and evaluate our SAP algorithm in terms
of three different feature sets: i) features extracted
from EP, ii) features extracted from IR, and iii) all
features (i.e., combination of i) and ii)). The exper-
imental results show that using all features achieves
the best performance among the three tested feature
sets. More importantly, features derived from both EP
and IR contribute significantly in unique aspects to the
classification of different semantic tags. For example,
features from EP are effective in labeling tags such as
restaurant and nightlife because most people exhibit
similar behaviors in visiting restaurants and nightlife
places. On the other hand, features from IR are ex-
cellent for tagging places related to shopping as some
people exhibit strong patterns in such activities.

The remainder of this paper is organized as follows. In
Section 2, we review related works. Next, in Section 3, we
give an overview of the proposed semantic annotation of
places (SAP) algorithm, describe how we extract EP and IR
features, and detail the realization of our SAP algorithm. In
Section 4, we further discuss the issue of extracting features
from IR and detail our approach. In Section 5, we conduct
an empirical study using the collected Whrrl dataset and
analyze our results. Finally, in Section 6, we conclude this
work and point out future directions.

2. RELATED WORK
In this section, we review a number of existing works in

the areas of data mining, multi-label classification, and clas-
sification of networked data.

Due to the increasing availability of location-based ser-
vices and GPS-enabled devices, real traces of user locations
and activities have been collected and used in several stud-
ies [1, 14, 15]. A variety of approaches for projecting user
trajectories from GPS data have been proposed, including
particle filtering [10], Markov models [1], Dynamic Baysian
Networks [14], and Eigenbehaviors [7]. Data traces used
in these studies typically do not contain explicit informa-
tion regarding user activities. The LBSN data investigated
in our research is unique in two aspects: i) semantic tags
associated with places provide rich information about cate-
gories and activities (e.g., food, restaurant, hotel, shopping,
etc.); and ii) user check-ins logged in LBSNs usually are
not continual, thus revealing partial views of user activi-
ties. These differences bring several new challenges to our
research. The most related work is [15], which studies peo-
ple’s naming preferences. The authors argue that people
have different naming preferences under different contexts,
and thus use a wide range of terms such as home and near
Liberty Bridge to disclose their locations to others. Notice
that, even though our work also explores people’s naming
preferences on places, we focus on enriching places with se-
mantic tags such as restaurant and cinema for supporting
location search and retrieval.

Place semantic annotation has been formulated as a multi-
label classification problem in this paper. Previous studies
on multi-label classification have primarily been conducted
in the application domains of text classification [25, 19], pro-
tein function classification [6], music categorization [13], and
semantic scene classification [3]. In [25], BoosTexer, extend-
ing AdaBoost [8], has been developed to handle multi-label
text categorization. In [19], a mixture model derived by ex-
pectation maximization (EM) has been trained to select the
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most probable set of labels from the power set of possible
classes. In [11], a set of binary SVM classifiers have been
developed to realize multi-label classification for text clas-
sification. In [6], the notion of entropy has been extended
to include multi-label data for gene expression in order to
generate accurate rules for gene expression comprehension.
In [21], geographical knowledge has been employed to help
assign semantic tags to geo-tagged Flickr photos. Note that
place semantic annotation for LBSNs is a new research topic
that has not been studied previously.

To derive correlations amongst places from patterns of in-
dividual check-ins, we depict users and places as nodes of a
bipartite graph as shown in Figure 1. We then construct a
network of related places to facilitate classification. There
exists some work on classifying networked data, which are
generally of the same type such as web-pages or text docu-
ments connected via various explicit relations (e.g., hyper-
links [16]). Studies on simultaneously inferring interrelated
values over networked data have been reported in [4, 26]. In
[17], a simple univariate classifier, called the weighted-vote
relational neighbor (wvRN), has been developed by obtain-
ing a weighted average of the estimated class membership
scores of the nodes’ neighbors. Moreover, similar to [4], a
relaxation labeling method has been proposed for collective
inference [24]. In [18], a case study on learning attributes
of network data has been presented. In [20], a cautious col-
lective classification that adopts only top-k most confidently
predicted labels has been proposed. Gallagher et al. propose
ghost edges to create edges between nodes based on the in-
trinsic structure of the networks to improve the classification
of sparse labels [9].

3. SEMANTIC ANNOTATION OF PLACES
We design a two-phase algorithm to address the place se-

mantic annotation problem. The first phase takes care of
the feature extraction, while the second phase handles the
semantic annotation. The task of feature extraction explores
two lines of ideas as discussed earlier in the Introduction. On
the one hand, we explore the explicit patterns (EP) corre-
sponding to a specific place to abstract aggregated user be-
haviors as population features and temporal features. On the
other hand, we explore the implicit relatedness (IR) amongst
places in order to formulate descriptive features of a given
place from its similar places. Features derived from EP and
IR are used to learn a binary SVM for each tag in the tag
space in the semantic annotation phase. Given a place, the
prediction by a specific SVM classifier decides whether this
place belongs to the category of the corresponding semantic
tag or not. After checking all SVM classifiers, we obtain all
qualified semantic tags for the place under examination.

3.1 Features from EP
Our goal is to extract discriminative EP features from

places with the same tag. Intuitively, users behave differ-
ently at different places due to the nature of functions and
activities offered by these places. As a result, different pat-
terns, naturally formed in aggregated behaviors of visitors
to various kinds of places, are embedded in the user check-in
activities which are logged in LBSNs. In a check-in record,
the most important information is user and time, besides the
place itself. In the following, we propose to extract several
population features and temporal features to depict places
as below.

• F1 (total number of check-ins) - Based on the obser-
vation from the Whrrl dataset, shown in Figure 2, we
find the number of check-ins to a restaurant is usu-
ally larger than the number of check-ins to a hospital.
Hence the number of check-ins, which is discriminative

for the classification of places such as restaurants and
hospitals, is a good population feature for semantic
annotation.

• F2 (total number of unique visitors) - This feature fo-
cuses on the number of unique visitors. Based on our
analysis on the Whrrl dataset, we find F2 to be a simi-
lar phenomenon to F1. Thus, we aggregate the number
of unique visitors at a specific location as the second
population feature extracted from EP.
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• F3 (maximum number of check-ins by a single visitor)
- As shown in Figure 3, people may check in a place
tagged as restaurant for multiple times, while they may
check in a hotel for only 1-2 times. Thus, the maximum
number of check-ins by a single user at a place is useful
to decide whether a place is a restaurant or a hotel. We
use it as the third population feature extracted from
EP.
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• F4 (distribution of check-in time in a week) - We ana-
lyze the distribution of check-ins at different categories
of places over the days of a week. As shown in Figure 4,
users check in college campuses more often on week-
days than on weekends. On the contrary, they check in
bars on weekends more frequently than on weekdays.
Since there are different distributions of check-in days
for different kinds of places, we consider the distribu-
tion to be a very useful temporal feature.

• F5 (distribution of check-in time in 24-hour scale) -
By plotting the distribution of check-ins in the 24-
hours time scale, we show in Figure 5 two very differ-
ent distribution patterns corresponding to two kinds
of places (i.e., restaurant and shop). There are clearly
two peak times, corresponding to lunch and dinner pe-
riods, for places associated with the tag restaurant.
On the other hand, shopping time looks like a normal
distribution with most activities between 7:00am and
8:00pm, while there is no obvious peak shopping time
observed. These observations regarding the patterns
of massive visitors at different kinds of places provide
strong support that check-in time distributions in 24-
hours time scale is a good temporal feature for seman-
tic annotation.
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Note that, besides of the aforementioned patterns, check-
in activities at different places may show seasonal patterns,
e.g., most people go to ski areas during winter. However, due
to the limited time span in the period of data collection, we
only consider F4 and F5 as the temporal features in this
study.

3.2 Features from IR
As discussed in [7], there is regularity in people’s activities.

Take one of the Whrrl users as an example. We find that the
user visits places in the performing arts and entertainment
category (including museums and galleries) in the morning
(at around 10:00am), visits places for food at lunch/dinner
time, and usually goes shopping at around 4:00pm. Such
regularity appears in certain users and thus can be used
for correlating similar places. However, extracting features
from implicated relatedness (IR) among similar places (e.g.,
checked in at the same time) is not as straightforward as
extracting features from EP.

To capture the relatedness among places and extract dis-
criminative features from IR, our approach is to build a net-
work of related places (NRP). In an NRP, places are linked
based on their relatedness, measured by the information
provided in user check-ins through the Random Walk and
Restart technique [27]. Upon the NRP, we determine the la-
bel probability for each place by exploring the relatedness of
places. As such, the label probability derived from IR serves
as a feature for classification. Details of feature extraction
form IR will be introduced in Section 4.

3.3 Semantic Annotation
After the feature extraction phase, features derived from

both EP and IR are used as inputs for the semantic annota-
tion phase to learn a binary SVM for each tag. We choose
SVM as the binary classifier because it has shown excellent
performance in similar tasks. In our approach, all places
are used for each binary SVM training, i.e., an instance la-
beled with the specific semantic tag under examination is
considered as a positive example, while places without this
label serve as negative examples. For instance, places tagged
shopping are positive examples for a classifier for shopping,
but negative examples for a classifier for nightlife. For a
place to be annotated with such a semantic tag, a binary
classifier for each tag is expected to classify the place as
an instance of the tag class. As a result, the place will be
automatically annotated with proper semantic tags.

4. IR FEATURE EXACTION
To facilitate the extraction of features from implicit re-

latedness among similar places, we develop a new algorithm
that builds a network of related places (NRP) to capture
the relatedness between places, and further derive the label
probability as an IR feature for each tag and each place upon
the obtained NRP as follows.

4.1 Network of Related Places
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(a) UP graph (b) TP graph

Figure 7: Graph representa-
tions of LBSN data

As discussed earlier, we intend to exploit the behavior
patterns of LBSN users for semantic annotation of places.
By analyzing the Whrrl dataset, we find that the check-in
activities of Whrrl users do exhibit a strong regularity that
supports our idea. In the analysis, we study the diversity of
places individual users visit by computing the entropy of se-
mantic tags (in eight activity categories) in their check-ins.
The result is shown in Figure 6. Smaller entropy indicates
that places checked in by LBSN users usually have simi-
lar semantic tags. From the figure, we observe that about
22.07% of users have their check-in entropies smaller than
0.5 and about 75% of users have their entropies smaller than
1. In other words, a great number of Whrrl users visit sim-
ilar places. Therefore, we build a user-place (UP) graph,
which consists of users and places connected in accordance
with the check-in records. Let c(ui, pj , hs) ∈ C denote a
check-in record describing that user ui has checked in place
pj at time stamp hs, where C is the collection of all check-in
records. Definition 1 gives the formal definition of the UP
graph.

Definition 1. User-Place (UP) Graph, denoted by
Gu(Vu, Eu), is an undirected bipartite graph (as illustrated in
Figure 7(a)). Here Vu = U ∪P , where U and P are the sets
of all users and places, respectively, and Eu = {ei,j |c(ui, pj , ·)
∈ C}, where c(ui, pj , ·) denotes that user ui has visited place
pi at some time. In this graph, each edge ei,j ∈ Eu is as-
sociated with a weight wi,j , denoting how often user ui has

visited place pi. Formally, wi,j =
∣∣∣{c(ui, pj , hs)}

∣∣∣.
On the other hand, the timing of check-ins at similar

places may be similar. Therefore, we build a temporal-
place (TP) graph, where the time space is discreterized into
twenty-four hours, to capture the similarity between places
in the temporal dimension. Definition 2 gives the formal
definition of the TP graph.

Definition 2. Temporal-Place (TP) Graph, denoted by
Gt(Vt, Et), is an undirected bipartite graph (as illustrated
in Figure 7(b)). Here, Vt = H ∪ P , where H and P are
the sets of all times (i.e. hours) and places, respectively,
and Et = {ej,s|c(·, pj , hs) ∈ C}, where c(·, pj , hs) denotes
that a user has visited place pj at time hs. In this graph,
each edge ej,s ∈ Et is associated with a weight wj,s, denot-
ing how often pj has been checked in at time hs. Formally,

wj,s =
∣∣∣{c(ui, pj , hs)}

∣∣∣.
In the aforementioned graphs, places are indirectly con-

nected through users and times. In the following, we propose
to use the Random Walk and Restart method [27] to esti-
mate the relatedness between pair-wise places in both user
and time aspects in order to build a network of related places
(NRP), where edges are explicitly established among places
according to their relatedness values.

To construct the NRP, we need to derive the relatedness of
places from the UP graph and TP graph. In our approach,
we first obtain two relatedness values rux,y and rtx,y for ev-
ery pair of places px, py(∈ P ) through Random Walk and
Restart (RWR) over the UP and TP graphs, respectively,
and then combine them into one relatedness value between
place nodes in the NRP. Here we only describe how RWR
proceeds on the UP graph since operations on the TP graph
are similar. Given a node x, an RWR is performed by ran-
domly following one of its links to another node y of the UP
graph based on the transition probabilities of these links, in
addition to a probability a to restart at node x. For the
UP graph, we prepare a random walk transition matrix that
consists of two zero matrices, i.e., user-user matrix (UU)
and place-place matrix (PP ), and a user-place matrix (ac-
tually UP ) and its transpose UP T , where the probability of
transiting between a place pj and a user ui is proportional
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to wi,j (in Definition 1). The stationary, or steady-state,
probabilities for each pair of nodes can be obtained by re-
cursively processing RandomWalk and Restart until conver-
gence. The converged probabilities (i.e., relatedness values)
give us the long-term visiting rates from any given node to
any other node. In this way, we can calculate the relatedness
of all pairs of location nodes, denoted by rpx,y(∀px, py ∈ P ).

Note that the transition matrix for the TP graph can be
derived in a similar way. Accordingly, we can obtain two re-
latedness values rux,y and rtx,y for a pair of places px, py from
the UP and TP graphs. Since both user and time informa-
tion can help relate the semantic tags of places, we estimate
the overall relatedness rpx,y between place pairs px, py by in-
tegrating them as follows.

rpx,y = ηrux,y + (1− η)rtx,y, ∀px, py ∈ P
where η is a smoothing factor between 0 and 1. Based on the
formula, places checked in by the same user at around the
same time show strong relatedness because both relatedness
from user and time aspects are considered.

Finally, we build a network of related places (NRP), where
each place is connected to places with top-k relatedness val-
ues. More specifically, an NRP is defined as follows.

Definition 3. A network of related places NRP = {P,E}
is a directed graph, consisting of only places. For each place
pi ∈ P , let P k

i denote the set of top-k related places to pi.
Thus, E = {e(x, i)|∀pi ∈ P, px ∈ P k

i }. Here e(x, i) is a
directed edge from px to pi.

4.2 Label Probability Derivation
As mentioned before, in a real LBSN, only some places

have tags. The idea of extracting features from IR is to
derive descriptive features of a given place from its “related”
and tagged places. The network of related places (NRP)
is constructed by connecting similar places together, so we
aim to infer the tags of a given place by the tags of its
neighbors. In order to derive an IR feature for use in the
SVM, we derive the probability for a place to be labeled with
a given semantic tag from its neighbors. More specifically,
the label probability of a place can be estimated from the
label probability of its neighbors recursively [16]. Let Ni be
the set of immediate neighbors which have edges pointing
to place pi, and yi be a variable denoting a tag of place pi.
For all possible tags t ∈ T , we adopt the relaxation labeling
method [24] to find the final Pr(yi = t|Ni) (t ∈ T ) for each
place pi. Relaxation labeling freezes the current estimations
of each pi so that, at round n+1, all places will be updated
based on the estimations from round n. As shown below,
the label probability of pi is calculated by considering both
the weighted average of the label probabilities of places in
Ni, and the current label probability of pi itself.

Pr(n+1)(yi = t|Ni) = β
(n+1)
t

1

Z

∑
pj∈Ni

rpj,iPr(n)(yj = t|Nj)

+ (1− β
(n+1)
t )Pr(n)(yi = t|Ni)

where Z =
∑

pj∈Ni
rpj,i is a normalization term and rpj,i is the

relatedness between places pj and pi, and Pr(n)(yi = t|Ni)
denotes the estimation of Pr(yi = t|Ni) at round n. Note
that, we define the

β
(n+1)
t = β

(n)
t α,

where β
(0)
t (t ∈ T ) is a constant between 0 and 1, and α

is a decay factor, i.e., 0 < α < 1. Note that in our daily
activities, some of them exhibit more regularity than oth-
ers (e.g., restaurants against shops). Therefore, we employ

different β
(0)
t values for different semantic tags. Note that

different tags have different β
(0)
t values, where label proba-

bility calculation with larger β
(0)
t settings converges slower

than the one with smaller β
(0)
t . More importantly, a larger

β
(0)
t implies that the label probability of a given place should

be estimated not only according to the immediate neighbors,
but also influenced by places in multi-hops away as there are

multiple rounds of calculation. A smaller β
(0)
t suggests that

the label probability is only affected by close-by neighbors
as there are very few rounds of calculation.

Here, we discuss how to initialize Pr(0)(yi = t|Ni) for each
pi ∈ P . Let Ptest denote the set of testing places, i.e., places
that do not have any semantic tags. The label probability of
a testing place is initialized as 0.5; while the label probability
of a place already labeled with semantic tags is initialized as
1 or 0 according to the labels. Formally, the label probability
is initialized as follows.

Pr(0)(yi = t|Ni) =

{
0.5 if pi ∈ Ptest

1 if pi ∈ P − Ptest and t ∈ Ti

0 if pi ∈ P − Ptest and t /∈ Ti

Once we get the label probability estimation for each pos-
sible tag on a place pi, they are treated as IR features for
SVM training. Note that features extracted from IR do not
consider the explicit patterns exhibited in each individual
place. Thus, in our SAP algorithm, we propose to com-
bine features extracted from both EP and IR to address the
problem of semantic annotation of places.

5. PERFORMANCE EVALUATION
In this section, we conduct a comprehensive set of experi-

ments to validate our proposed ideas and evaluate our SAP
algorithm in terms of three different feature sets: i) features
extracted from EP, ii) features extracted from IR, and iii)
combination of i) and ii). Here, we use one of the most
popular classification toolkits, LIBSVM [5], as the binary
SVM classifier. In the following, we first discuss the col-
lected dataset and the preprocessing steps for experiments,
then introduce the metrics employed to evaluate the perfor-
mance, and finally analyze the experiment results.

5.1 Dataset Description
We crawled the Whrrl website, a representative LBSN,

for a month to collect a dataset consisting of 5,892 users,
53,432 places and 199 types of tags.5 Among those places,
20% of them are not specified with any semantic tags. In
the vocabulary of semantic tags, we find that a lot of tag
words sharing the same topic could be grouped in the same
category. For example, Pizzerias, Coffee, Bakeries, Snacks,
Delis, Cafes, Ice Cream and etc, all belong to the same cat-
egory, namely, Restaurant & Food. Without loss of general-
ity, we build a tag hierarchy based on Yelp6 to merge those
199 semantic tags into 21 categories to simplify the task of
place semantic annotation. We show the top eight major
categories and their corresponding percentages in Table 1.
As shown, Restaurants & Food, Shopping, Nightlife are the
most popular check-in places in Whrrl, i.e., 74% of places
are within these three categories. Furthermore, we find that
about 33.5% of places belong to multiple categories in our
dataset.

In order to conduct the experiments, we pre-process this
raw dataset to obtain a ground-truth dataset for perfor-
mance evaluation. First, places in the ground-truth dataset
should have category tags, so we filter out those places with-
out category tags. Next, since we are interested in exploring

5Unfortunately, we cannot obtain the check-in time in
Foursquare. Thus, we conduct the performance evaluation
only upon the whrrl dataset.
6http://www.yelp.com
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Figure 8: Performance comparison

Category z% Category z%

Restaurants&Food 37% Hotel & Travel 4%
Shopping 18% Arts & Entertainment 3%
Nightlife 19% Health and Medical 2%
Active life 5% Beauty and Spas 2%

Table 1: Categories and their percentages (z%)

user behaviors, users who have less than 40 check-in records
are not included in the ground-truth dataset. Third, we cal-
culate the activity entropies of those users and select the
users and their places with entropies less than 0.5 as the
dataset to conduct performance evaluation. Moreover, we
randomly remove the category tags of x% places (named
testing places, and x% = 10%, 20% and 40% with default
value 20%) over the ground-truth dataset. The SAP algo-
rithm is used to recover the category tags for those testing
places.

5.2 Performance Metrics
Given a testing place set Ptest, we conduct a performance

evaluation by measuring the following four metrics: ham-
ming loss, one-error, coverage and average precision, as they
are widely employed in previous multi-label classification
studies [25, 29]. Hamming loss aims to measure the accu-
racy of the predicted tag set against the ground-truth tag set
associated with a testing place. The other three metrics con-
cern the ranking of tags annotated by the SAP algorithm,
i.e., we consider that SAP performs well when the ground-
truth tags are ranked high in the predicted ranked tag list.
Note that although we define place semantic annotation as
a classification problem, LIBSVM provides probability out-
put [23] (i.e., the probability of the corresponding label),
which can be used to rank the semantic tag for each place.
Let Pr(tx|fi) be the probability output for place pi being
with tag tx (∈ T ), where fi denotes the set of features of
pi. According to Pr(tx|fi), we get a ranked list of semantic
tags, denoted as Yi, where semantic tags with the highest
Pr(tx|fi) are ranked at the top.

Hamming loss (hlPtest ): evaluating how many times a
place-tag pair is misclassified, i.e., a tag not belonging to
the place is predicted or a tag belonging to the place is not

predicted. Formally, hlPtest = 1
|Ptest|

∑
Pi∈Ptest

HD(
−→
T i,

−→
Y i)

|T | ,

where T is the whole tag space,
−→
T i and

−→
Y i are the ground-

truth and predicted tag vectors for testing place pi, and

HD(
−→
T i,

−→
Y i) is the hamming distance between

−→
T i and

−→
Y i.

In the ground-truth tag vector
−→
T i of a place Ptest, the vector

element corresponding to a tag t is set to 1 if t is associated

with Ptest; otherwise, it is set to 0. The predicted vector
−→
Y i

is generated by the SAP algorithm accordingly.
One-error: evaluating how many times the first (or top)

ranked predicted tag is not in the ground-truth tag set of
the place. Formally, one-errorPtest = 1

|Ptest|
∑

pi∈Ptest
f([

argmaxtx∈T Pr(tx|fi)] /∈ Ti), where for any predicate π,
f(π) equals 1 if π holds and 0 otherwise.

Coverage: evaluating how far we need, on average, to go
down the list of predicted tags (Yi) in order to recover all
the ground-truth tags associated with the place pi. Let R(x)
denote the rank of tx in the ranked list Yi generated by SAP.
Formally, coveragePtest

= 1
|Ptest|

∑
pi∈Ptest

maxtx∈Ti R(x)−1.

Note that one-error and coverage measures are not suffi-
cient for evaluating our SAP algorithm, which may achieve
good coverage but suffer high one-error, or vice versa. Thus
we introduce the average precision, which takes the rank-
ing positions of all ground-truth tags into consideration, to
evaluate the predicted ranked tag list.

Average Precision (AP): Given a place pi ∈ Ptest and
a ranked tag list Yi generated by our SAP algorithm, the av-
erage precision for a test place pi is defined as AvePreci =∑|Ti|

j=1

I(j)(nj/j)

|Ti| , where |Ti| and nj denote the total num-

ber of ground-truth tags and the number of ground-truth
tags before the position (j + 1) in the tag list Yi, respec-
tively, and I(j) is an indicator which takes value 1 if the
tag at position j is a ground-truth tag and value 0 other-
wise. Therefore, the overall average precision is measured
as APPtest =

1
|Ptest|

∑
pi∈Ptest

AvePreci.

5.3 Experimental Results
As mentioned earlier, we conduct a series of experiments

to evaluate the proposed SAP algorithm by comparing three
different feature sets. We label the results obtained using
features derived from EP and IR by EP and IR, respectively,
and label the results obtained using all features by SAP. We
also perform sensitivity tests on a number of tuning parame-
ters and different mark-off rates, as well as discreterized and
continuous representations of temporal information. Note
that we use η = 0.2, k = 5 and β as listed in Table 2 as the
default parameter settings throughout the experiment.7

Category β Category β

Restaurants&Food 0.9 Hotel & Travel 0.3
Shopping 0.1 Arts & Entertainment 0.1
Nightlife 0.9 Health and Medical 0.1
Active life 0.1 Beauty and Spas 0.1

Table 2: Optimal β settings under η = 0.2 and k = 5

5.3.1 Overall Performance
In order to evaluate the performance of our SAP algo-

rithm in detail, we not only show the performance over the
entire dataset (labeled with overall as show in Figure 8),
but also the performance for subsets of testing places in
the same category (according to the ground-truth). More
specifically, we show three categories of places: Restaurants
& Food (labeled with Res), Nightlife (labeled with NL) and
Shopping (labeled with Sh). These categories were chosen
since they constitute the majority (i.e., about 74% ) of all
places. As shown in Figure 8, under the default setting,

7β refers to β
(0)
t in this experiment.

525



SAP shows the best performance consistently, while both EP
and IR also demonstrate good strength for the task of se-
mantic annotation in LBSNs. Note that EP performs better
than IR for the places in the groups of Res and NL, partic-
ularly for the performance metrics one-error, coverage and
average precision. The reason is that most people have the
same routine for activities in those categories. As a result,
those activities have very distinctive characteristics, such as
the distribution of check-in times extracted from EP. Thus,
EP is able to tag these kinds of places very well. On the
other hand, IR shows great strength in labeling places with
shopping tags. Regularity of shopping activities of individu-
als helps to discover the shopping places from other related
shopping places, although different people may go shopping
at different times.

5.3.2 Tuning Parameters
Next, we test the impact of tuning parameters, including

β, η and k, on classification performance of SAP for Res, NL
and Sh. Notice that the impact of each tuning parameters
is tested by fixing all other parameters in default settings.
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Figure 9: Impact of β

As mentioned earlier, the optimal settings for the classi-
fiers for different categories are different as shown in Table 2.
Note that β tunes the influence from immediate neighboring
places and places in multiple hops away. Here, we check the
impact of β on the performance of classification, with par-
ticular interests in Res, NL and Sh. As shown in Figure 9, β
has significant impact on the classification performance for
all categories. Both Res and NL show very similar behavior
with the variation of β. The best performance setting of β
for Res and NL is 0.9, implying that the the label probability
of a given place should be estimated not only according to
its immediate neighbors but also the places in multiple hops
away. The reason is that in an NRP, Res (NL) places are
clustered together, thus a larger β can provide more robust
and accurate estimation. On the other hand, the best β
setting of Sh is 0.1, indicating that the label probability es-
timation of shopping places is very sensitive to the influence
from their neighbors. A smaller β suggests that the label
probability of a given place is only affected by immediate
neighbors. We find that Sh places are usually not clustered
as well as Res because the regularity of Sh activities are
not as regular as Res activities. Thus, it is better to only

use information from immediate neighbors to estimate label
probability for Sh places.
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Figure 10: Impact of η
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Figure 11: Impact of k

In Figure 10, we show our test on the parameter η, which
is used to tune the weight of place relatedness values com-
puted from user and time aspects. As shown, we find the
impact of η on classification of Res and NL places is very
limited. A possible reason is that places in both Res and
NL categories are well clustered according to either common
users or common time. Another reason is that the default
β setting for Res and NL is 0.9, which means influence from
places even in multiple hops away is contributing to accurate
estimation of label probability. The selection of immediate
neighbors is not that sensitive to η as long as places in those
categories are clustered together. Nevertheless, η does af-
fect the performance for Sh places, as label probabilities of
Sh places are mostly affected by immediate neighbors (i.e.,
β = 0.1 for Sh activities). As shown in Figure 10, when
η = 0.2, SAP shows the best performance on classification of
Sh places in terms of the metrics of hamming loss, one error
and average precision; when η = 0.9, the coverage perfor-
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mance turns out to be the best for Sh places. Accordingly,
we consider η = 0.2 as a proper parameter setting and use it
as the default setting throughout the experiment. It implies
that both user and time are important to discover similar
places through user behavior, particularly for the classifica-
tion of Sh places. Besides, as the majority of check-ins for
a visitor are usually Res places, time information plays an
important role to link similar Sh places through the regular
behaviors of people.

We further test the tuning parameter k in Figure 11, where
k determines the number of neighboring places for a given
place in an NRP. Similarly, we find that the variation of k has
almost no impact on the classification performance of Res
and NL places since places in both categories are clustered
together. However, the selection of k affects the performance
of classification for Sh places. In Figure 11, the best setting
of k for the classification of Sh places is different for various
performance metrics. Nevertheless, we find that k should be
set to a proper value, in order to avoid the noise introduced
by a large number of neighboring places.

5.3.3 Test on Mark-off Rate
Here, we investigate the impact of different mark-off rates

to the performance of EP, IR and SAP. As shown in Figure 12,
the performance of algorithms with different feature sets all
degrade to some extent as the mark-off rate increases. Nev-
ertheless, SAP shows the best performance consistently over
all mark-off rates as it includes all the features.
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Figure 12: Impact of mark-off rate, x%

5.3.4 Test on Continuity of Time
Check-in time is continuous in the temporal dimension,

even though we simplify it as discrete twenty-four hours in
the initial design of TP graph. Here, we investigate the
impact of the continuity of time on the performance of SAP.
In order to capture the continuity of time, we propose a
method to smooth hours following the intuition that a user
who checks in a place at time hs, would probably check in
similar places around the times hs−1 and hs+1, where hs−1

and hs+1 are adjacent times to hs. More specifically, for each
check-in at place pj and time hs, we establish additional m
edges to the m most adjacent time nodes beside the time
node hs during the TP graph construction. For example, if
hs presents 20:00 and m = 1, we establish edges from the
place to the time nodes 19:00 and 21:00, in addition to 20:00
in the construction of the TP graph.
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Figure 13: Discrete Hours Vs. Smoothed Hours

Finally, we test the SAP algorithm, with m = 1 and β, η
and k following the aforementioned default settings. The SAP
algorithm following the initial design is denoted as Discrete-
SAP, while the SAP algorithm with smoothed-hour TP graph
design denoted by Smoothed-SAP. As shown in Figure 13, the
impact on classification of Res and NL places are marginal,
since places in those categories have been clustered together
with Discrete-SAP. However, considering continuity of time
does help improve the classification performance for Sh places,
as shopping places checked in around the same time pe-
riod (although in different hours) are possibly discovered as
neighboring places in an NRP.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate the place semantic anno-

tation problem, which aims to automatically annotate all
places with semantic tags in location-based social networks.
Such tags are a crucial pre-requisite for location search, rec-
ommendation services, or data cleaning. In order to tackle
this problem, we propose a novel semantic annotation algo-
rithm which learns a binary SVM for each tag. Based on
the check-in behavior of users, we extract features of places
from two aspects: explicit pattern (EP) at individual places
and implicit relatedness (IR) among similar places. Specif-
ically, we extract EP features by aggregating user check-in
behaviors to the corresponding places and extract IR fea-
tures by exploiting the place relatedness exhibited by regu-
larity of user behavior. Finally, we conduct a comprehensive
experimental study based on a real dataset collected from
Whrrl. The results demonstrate the suitability of our ap-
proach and also support the assumption that both EP and
IR need to be taken into account. Particularly, most people
follow the same and distinctive pattern to visit restaurants
and nightlife places. Thus, features extracted from EP hold
very powerful discriminative capability. On the other hand,
against EP, features from IR are excellent for tagging places
related to shopping because some individuals exhibit strong
patterns in certain shopping activities.

Through our analysis on the Whrrl dataset, we find some
semantic tags usually co-occur, e.g., restaurant and bars. In
the future, we plan to explore the correlation among seman-
tic tags for the semantic annotation of places. In addition,
we plan to include some alternative approaches (e.g., [22])
for comparison and to use multiple large-scale datasets to
validate our proposed SAP algorithm.
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