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Because of its availability, ease of collection, and corre-
lation with physiology and pathology, urine is an attractive
source for clinical proteomics/peptidomics. However, the
lack of comparable data sets from large cohorts has
greatly hindered the development of clinical proteomics.
Here, we report the establishment of a reproducible, high
resolution method for peptidome analysis of naturally oc-
curring human urinary peptides and proteins, ranging

from 800 to 17,000 Da, using samples from 3,600 individ-
uals analyzed by capillary electrophoresis coupled to MS.
All processed data were deposited in an Structured Query
Language (SQL) database. This database currently con-
tains 5,010 relevant unique urinary peptides that serve as
a pool of potential classifiers for diagnosis and monitoring
of various diseases. As an example, by using this source
of information, we were able to define urinary peptide
biomarkers for chronic kidney diseases, allowing diagno-
sis of these diseases with high accuracy. Application of
the chronic kidney disease-specific biomarker set to an
independent test cohort in the subsequent replication
phase resulted in 85.5% sensitivity and 100% specificity.
These results indicate the potential usefulness of capillary
electrophoresis coupled to MS for clinical applications
in the analysis of naturally occurring urinary pep-
tides. Molecular & Cellular Proteomics 9:2424–2437,
2010.
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Chronic kidney disease (CKD)1 is often characterized by a
slow, progressive loss of renal function with a loss of glomer-
ular filtration over a period of months or years that may
eventually lead to end stage renal disease (ESRD). Patients
with ESRD require renal replacement therapy (dialysis or kid-
ney transplantation). The most common causes of CKD in
North America, Europe, and Japan are diabetic nephropathy,
hypertension, and glomerulonephritis (1). Together, these dis-
eases account for �75% of all adult cases of ESRD. Histor-
ically, kidney diseases were classified according to the ana-
tomical compartment of the kidney that is involved. On this
basis, vascular diseases include large and small vessel dis-
eases, such as hypertensive nephropathy and vasculitis. Glo-
merular diseases comprise a diverse group of histologically
defined primary glomerulopathies (e.g. focal segmental glo-
merulosclerosis (FSGS), membranous glomerulonephritis
(MGN), minimal change disease (MCD), and IgA nephropathy
(IgAN)) and secondary glomerulopathies due to diabetes mel-
litus (diabetic nephropathy), systemic autoimmune disorders
(e.g. lupus erythematosus and hemolytic-uremic syndrome),
or chronic viral infection (e.g. hepatitis and HIV). Tubular dis-
eases are characterized by low molecular weight proteinuria
and multiple transport defects (e.g. DeToni-Debré-Fanconi
syndrome).

In clinical practice, renal damage is generally detected by
proteinuria/albuminuria on urinalysis or quantitative measure-
ment, changes in serum creatinine concentration for estima-
tion of glomerular filtration rate, or both. However, these
methods have major limitations as they are nonspecific and
frequently are also late manifestations of renal damage.
Therefore, we have sought to define alternative biomarkers for
renal damage that may enable earlier and more accurate
disease assessment.

Analysis of urine plays a central role in clinical diagnostics
as it can be collected non-invasively. Urine as a body fluid for
clinical analysis is relatively stable, probably due to the fact
that it is “stored” for hours in the bladder; hence, proteolytic

degradation by endogenous proteases may be essentially
complete by the time of voiding (2). This is in sharp contrast to
blood for which the activation of proteases and, conse-
quently, generation of an array of proteolytic breakdown prod-
ucts are inevitably associated with its collection (3). The hu-
man urinary peptidome has been extensively investigated to
gain insight about disease processes affecting the kidney and
the urogenital tract (4–6). Urinary proteins and peptides orig-
inate not only from glomerular filtration but also from tubular
secretion, epithelial cells shed from the kidney and urinary
tract, secreted exosomes, and seminal secretions (7–9). Urine
is a rich source of biomarkers for a wide range of diseases due
to specific changes in its proteome (10–13). To test the fea-
sibility of urinary proteomics as a non-invasive diagnostic tool,
large scale studies are needed to analyze urine samples with
reliable and quantitative experimental procedures. Various
techniques have been applied to this effort, including two-
dimensional electrophoresis combined with mass spectrom-
etry (MS) and/or immunochemical identification of proteins
(14–16), liquid chromatography coupled to mass spectrome-
try (LC-MS) (17, 18), and surface-enhanced laser desorption/
ionization mass spectrometry (SELDI-MS) (19).

Because of mostly technical challenges, studies relying on
proteomics experimental procedures are often restricted to
the comparison of two groups of subjects (i.e. healthy con-
trols versus patients with a well defined disease entity) with
only a few individuals in each group. The lack of comparability
severely limits the suitability of such data for a meta-analysis
approach to define broadly applicable biomarkers. Conse-
quently, findings from several studies cannot be used to ex-
plore the human urinary proteome/peptidome in its entirety. In
addition, the health state of patients with kidney disease is
often too heterogeneous to be reliably classified by biomark-
ers identified by such a strictly single disease-oriented ap-
proach. Diagnosis of individuals with different stages or types
of kidney disease (disease controls) is conceivable by multi-
plex screening of proteomics data. Realization of such an
approach critically depends on the use of a measurement
platform allowing analysis of proteomic profiles within a rea-
sonably short time and with high resolution and on the gen-
eration of a reference database for the human urinary
proteome/peptidome.

Capillary electrophoresis coupled to mass spectrometry
(CE-MS) enables reproducible and robust high resolution
analysis of several thousand low molecular weight urinary
proteins/peptides in less than an hour (5). In comparison
with other proteomics methods, CE-MS offers several ad-
vantages. (i) It provides fast separation with high resolution.
(ii) It is robust: capillaries are inexpensive and can be re-
conditioned efficiently using NaOH. (iii) It is compatible with
most volatile buffers and analytes generally required for ESI.
(iv) It provides a stable constant flow, avoiding the necessity
of buffer gradients (for more details, see recent reviews (3,
5, 20)).
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This approach has recently been used to analyze urine
samples from healthy individuals and patients with various
chronic kidney diseases in several independent masked stud-
ies (21–27), including IgAN (28), diabetic nephropathy (29),
and ANCA-associated vasculitis (30). The high number of data
sets analyzed under identical conditions using the same tech-
nological platform allows comprehensive characterization of
the low molecular weight proteome (peptidome) that can then
become a primary source of information for the diagnosis,
classification, and monitoring of a wide range of diseases.
Here, we report the analysis of the human urinary peptidome
by CE-MS and the identification of peptide urinary biomarkers
for the detection of pathological changes in the kidney during
the development of many forms of CKD. Furthermore, we
have replicated these findings in an independent cohort.

EXPERIMENTAL PROCEDURES

Sample Collection—Since 2004, urine samples were collected at
�20 clinical centers (Europe, America, and Australia) using consistent
standard operating procedures for sample collection, storage, and
transport.2 All samples were collected as a midstream portion of a
spontaneously voided, second morning urine (with the exception of
urine samples for the analysis of prostate cancer where an initial
portion of a second morning urine was collected) and were stored
immediately at �20 °C until analysis. The accepted diagnostic refer-
ence standard of the respective disease was used for the character-
ization of disease status (e.g. cystoscopy for the analysis of bladder
cancer and renal biopsy for diagnosis of the type of CKD). All healthy
controls (HC) were checked with a dipstick urinalysis for proteinuria.
Clinical data for this study are shown in Table I. Furthermore, clinical
parameters of the majority of individual samples have been published
previously (25, 28, 30) and are available upon request. The study
complied with the guidelines of the Declaration of Helsinki (www.
wma.net/en/30publications/10policies/b3/index.html). Informed con-
sent was obtained from all subjects, and ethical approval was ob-
tained from the appropriate Institutional Review Boards.

Sample Preparation—A 0.7-ml aliquot of urine was thawed imme-
diately prior to use and diluted with 0.7 ml of an aqueous solution
supplemented with 2 M urea, 10 mM NH4OH, and 0.02% SDS. To
remove proteins of higher molecular mass, the sample was filtered
using Centrisart ultrafiltration devices (20-kDa molecular mass cutoff;
Sartorius, Goettingen, Germany) at 3,000 � g for 45 min at 4 °C.
Subsequently, 1.1 ml of filtrate was applied onto a PD-10 desalting
column (GE Healthcare) equilibrated in 0.01% NH4OH in HPLC grade
water to remove urea, electrolytes, and salts. Finally, all samples were
lyophilized, stored at 4 °C, and resuspended in HPLC grade water
shortly before CE-MS analysis as described previously (27). The
resuspension volume was adjusted to yield 0.8 �g/�l protein as
measured by BCA assay (Interchim, Montlucon, France).

CE-MS Analysis—CE-MS analysis was performed with a P/ACETM

MDQ capillary electrophoresis system (Beckman Coulter, Brea, CA)
coupled on line to micro-TOF-MS instrument (Bruker Daltonics, Bre-
men, Germany) (27). The electroionization sprayer (Agilent Technolo-
gies, Santa Clara, CA) was grounded, and the ion spray interface
potential was set between �4.0 and �4.5 kV. Data acquisition and
MS acquisition experimental procedures were automatically con-
trolled by the CE via contact closure. Spectra were accumulated
every 3 s over a range of m/z 350–3,000.

The analytical characteristics of the CE-MS system have been
extensively investigated by Kolch et al. (3) and Theodorescu et al. (27).
Briefly, the average recovery of the sample preparation was �85%
with a detection limit of �1 fmol. Monoisotopic mass signals were
resolved for z � 6. Mass accuracy of the CE-TOF-MS method was
determined to be �25 ppm for monoisotopic resolution and �100
ppm for unresolved peaks (z � 6). Mass accuracy of the CE-TOF-MS
method was determined to be �25 ppm for monoisotopic resolution
and �100 ppm for unresolved peaks (z � 6).

CE-FT-ICR-MS Analysis—For CE-FT-ICR-MS, a Bruker Daltonics
Apex Qe instrument equipped with a 12-tesla magnet, and an Apollo
II ion source was used. Coupling of the P/ACETM 5510 capillary
electrophoresis system (Beckman Coulter) via the Agilent ESI sprayer
was performed as above. The instrument was tuned with a peptide
standard mixture (27) and externally mass-calibrated on arginine clus-
ters (�0.1-ppm calibration errors). Mass spectra were acquired over
an m/z range of 300–2,000. Ions were stored in the collision cell for
500 ms, and five spectra were accumulated for each scan, resulting in
a scan interval of 5 s.

A set of 20 samples was reanalyzed. The number of FT-ICR-
detectable features was significantly lowered (by a factor of �10).
After normalization of the CE migration time, the analysis using CE-
FT-ICR resulted in �500 features, which can be matched to the
CE-TOF-MS entities, which are in the urinary database. Eighty of
these features were selected, enabling alignment with high confi-
dence (because their sequence could be identified or they were found
to be present at relatively high abundance) or providing a good
coverage of features over the whole CE time and mass area. For mass
calibration of the CE-TOF-MS data, the precise masses of these
features detected by CE-FT-ICR-MS (see supplemental Table III)
were used as references in a linear regression (see also Ref. 31).

Data Processing—Mass spectral ion peaks representing identical
molecules at different charge states (m/z with z � 1, 2, 3,…) were
deconvoluted into single masses using MosaiquesVisu software (32)
(www.proteomiques.com). Only signals observed in a minimum of
three consecutive spectra with a signal-to-noise ratio of at least 4
were considered. Signals with a calculated charge of 1� were auto-
matically excluded to minimize interference with matrix compounds
or drugs. MosaiquesVisu used a probabilistic clustering algorithm and
used both isotopic distributions and conjugated masses for charge
state determination of the entities. TOF-MS data were calibrated
utilizing Fourier transform-ion cyclotron resonance mass spectrome-
try (FT-ICR-MS) data as reference masses and applying linear regres-
sion. Both CE migration time and ion signal intensity (amplitude)
showed high variability, mostly due to different amounts of salt and
peptides in the sample, and were consequently normalized. Refer-
ence signals of over 1,700 urinary entities were used for CE time
calibration by local regression. For normalization of analytical and
urine dilution variances, MS signal intensities were normalized relative
to 29 “housekeeping” peptides with small relative standard. For cal-
ibration, linear regression was performed (27, 33). The resulting peak
list characterized each feature by its molecular mass (Da) and nor-
malized CE migration time (min). Normalized signal intensity was used
as a measure for relative abundance.

Data sets were accepted only if the following quality control criteria
were met. A minimum of 950 chromatographic features (mean num-
ber of features minus one standard deviation) must be detected with
a minimal MS resolution of 8,000 (required resolution to resolve ion
signals with z � 6) in a minimal migration time interval (the time
window in which separated signals can be detected) of 10 min. After
calibration, the mean deviation of migration time (compared with
reference standards) must be below 0.35 min.

Urinary Peptidome Database—All detected features in the urine
samples that passed the quality control criteria (on average, 1,7242 H. Mischak, unpublished data.
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features were detected in each urine sample, ranging from 983 to
4,094) were deposited in a Microsoft Structured Query Language
(SQL) database and subsequently matched for further analysis and
comparison of individual samples. For clustering, features in different
samples were considered identical if the mass deviation was lower than
�50 ppm for 800-Da entities, gradually increasing to �75 ppm for
15-kDa features. Due to analyte diffusion effects, CE peak widths in-
crease with CE migration time. In the data clustering process, this effect
was considered by linearly increasing cluster widths over the entire
electropherogram (19–45 min) from 2 to 5%. A feature that can be
detected in a specific cluster will be assigned to a respective protein
ID with its amplitude value. Feature signals that could not be related
to a specific cluster possess a value of 0. After calibration, deviation
of migration time was controlled to be below 0.35 min. This process
resulted in the tentative definition of 116,869 different features. Each
feature (presumably peptide) was assigned a unique identification
number (protein ID). As described previously (25, 34), several of these
features appeared sporadically, being observed in only one or a few
samples. To eliminate such entities of apparently low significance
from the analysis, only those features detected in more than 20% of
the urine samples in at least one group (samples from patients with
the same disease) were further investigated. This noise-filtering proc-
ess reduced the number of features available for analysis significantly.
Applying these limits, 5,010 “relevant” different entities characterized
by molecular mass (Da) and normalized CE migration time (min) were
detected. The filtered data of all individual samples are available.3

Statistical Analysis—Estimates of sensitivity and specificity were
calculated based on tabulating the number of correctly classified sam-
ples. Confidence intervals (95% CI) were based on binomial calculations
performed with MedCalc version 8.1.1.0 (MedCalc Software, Mari-
akerke, Belgium; www.medcalc.be). The receiver operating character-
istic (ROC) plot was evaluated as it provides a single measure of overall
accuracy that is not dependent upon a particular threshold (35).

For statistical differential analysis, we set a frequency threshold of
30% for a feature to be deemed valid in one of the considered groups
and to be included in downstream analysis. For each of the entities,
q values were estimated from the permutation method implemented
in the Cran package called “samr” (36) (available at: http://cran.at.r-
project.org/web/packages/index.html). We retained all peptides with
a q value �0.05 from the samr output for downstream analysis. The
q values were adjusted p values found using an optimized FDR
approach. The FDR approach is optimized by using characteristics of
the p value distribution to produce a list of q values. A p value of 0.05
implies that 5% of all tests will result in false positives. An FDR-
adjusted p value (a q value) of 0.05 implies that 5% of significant tests
will result in false positives. The latter is clearly a far smaller quantity.
To test the results of the samr analysis, we calculated a p value for
each feature using the standard Wilcoxon rank sum test. From those
p values, the q values were obtained using the Cran package “fdrtool”
(available at http://cran.at.r-project.org/web/packages/index.html)
and the Bioconductor package “fdrame” (37, 38) (available at http://
www.bioconductor.org/packages/release/Software.html). The agree-
ment between the lists of differentially expressed markers (i.e. q value
�0.05) using the different packages was higher than 94%. Super-
vised classification was performed on the training data using Mosa-
Cluster software (Biomosaiques Software GmbH) for support vector
machines (SVM) classification (23).

Classification—MosaCluster (version 1.6.5) was developed for the
discrimination between different patient groups. This software tool
allows the classification of samples in the high dimensional parameter
space by using SVM. For this purpose, MosaCluster generates

polypeptide models, which rely on peptides displaying statistically
significant differences when comparing data from patients with a
specific disease with those from healthy controls or patients with
other diseases. Each of these peptides allegorizes one dimension in
the n-dimensional parameter space (25, 39–41).

CE-MS Platform Validation—For statistical evaluation, F-test for
comparison of standard deviations was used. For statistical testing,
the classification score of the CKD classification model was used,
reflecting the overall variability of the system (detection, deconvolu-
tion, clustering, and classification). Relative standard deviations were
calculated with the entire observed classification range of the CKD
model (lowest observed values ��1.4 and highest observed values
��1.6). Hence, a standard deviation of S.D. � 3 corresponds to
100% (statistical spread).

To assess intra- and intersample variations, reproducibility was
based on the analysis of three individual urine samples (healthy con-
trols) that were processed in 15 replicates. Therefore, each urine
sample was prepared by one operator 15 times, and the 15 replicates
were measured with the same device on 1 day. Over the next days,
the second and the third batches of 15 replicates were processed as
independent sets of experiments.

After assessment of variances over a short period of time, for one
of the three urine samples (see reproducibility analysis below), the
time point of analysis and operator/device dependences were as-
sessed (intermediate precision). Therefore, at 15 different days the
urine sample was prepared twice by two different operators; one
aliquot was measured at device 1, and the second aliquot was mea-
sured at device 2.

To determine the statistical variances observed for CKD diagnosis
of individuals over the time course of a month, classification results
were assessed for four healthy volunteers (two males and two fe-
males). For each individual, second morning urine samples were taken
on Wednesday (reflecting working activities) and on Sunday (reflecting
weekend activities) for 4 weeks. The duration of sampling reflects vari-
ances according to work-life balance and according to menstrual cycle
for females. All urine samples were immediately stored at �20 °C after
sampling for at least 24 h until time of preparation. All samples were
prepared together as a single batch by one operator and were mea-
sured using the same device over a short period of time.

Sequencing of Peptides—Candidate biomarkers and other native
peptides from urine were sequenced using CE-MS/MS or LC-MS/MS
analysis from different sequencing platforms (42). Sequencing using
MALDI-TOF-TOF was performed on an Ultraflex instrument (Bruker
Daltonics). To retain the information on migration time, the entire CE
run (see “CE-MS Analysis”) was spotted onto a MALDI target plate
using a Probot microfraction collector (LC Packings, San Francisco,
CA), depositing one spot every 15 s. Matrix solution (2 mg/ml
�-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 0.1% TFA)
was added to the CE eluate during application onto the plate with a
flow rate of 4 �l/min. The plate was initially examined in MS mode.
Subsequently, peptides were fragmented using the tandem mass
spectrometry (MS/MS) mode. MALDI-TOF-TOF-MS/MS was carried
out using MALDI postsource decay (PSD) in combination with LIFT-
cell TOF/TOF setup of the Ultraflex mass spectrometer.

For sequencing using ESI-Q-TOF, a Qq-orthogonal time-of-flight
mass spectrometer (micrOTOF-Q, Bruker Daltonics) in MS and
MS/MS modes directly coupled to a CE system via a coaxial sheath
liquid sprayer (Agilent Technologies) was used for the experiments.
The CE conditions were adapted to the conditions described under
“CE-MS Analysis” to have comparable migration time of the peptides.
The MS analysis was performed in positive electrospray mode with an
ESI-TOF sprayer kit from Agilent Technologies (Palo Alto, CA). The
ESI sprayer was grounded, and the sheath liquid, consisting of 30%
(v/v) isopropanol (Sigma-Aldrich Chemie GmbH) and 0.5% (v/v) for-

3 http://mosaiques-diagnostics.de/diapatpcms/mosaiquescms/
front_content.php?idcat�257/; version 2.0; password: Mosa573X.
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mic acid in HPLC grade water, was applied coaxially with a rate of 2
�l/min. The MS system operates in data-dependent MS/MS mode
with one full-scan MS spectrum (50–3,000 m/z) followed by three
MS/MS spectra. The repetition rate of the TOF was set to 1.5 Hz in the
full-scan mode and 1 Hz in the MS/MS mode. The instrument was
operated at 15,000 resolution. Argon was used as collision gas, and
the collision energies were set automatically, depending on the m/z
value and the charge state of the peptide. All data were externally
calibrated using a sodium formate cluster. The calibration was used
for both MS modes.

For sequencing using ESI ion trap, an aliquot corresponding to
�25–50 �g (2.5–5 �l) of a sample was loaded onto a preanalytical
column that consisted of a 10-cm-long piece of 360-�m-outer diam-
eter � 100-�m-inner diameter fused silica (Polymicro Technologies,
Phoenix, AZ) packed with C18 particles (5–15-�m YMC ODS-A, Wa-
ters, Milford, MA). After sample loading, the column was washed
extensively with 0.1% acetic acid and then butt-connected using a
Teflon sleeve to an analytical column, which consisted of a 10-cm-
long piece of 360-�m-outer diameter � 50-�m-inner diameter fused
silica with an integrated nanospray tip (1–2-�m orifice) and packed
with C18 resin (5-�m YMC ODS-AQ). Peptides were eluted using high
performance liquid chromatography (Agilent 1100, Agilent Technolo-
gies, Palo Alto, CA) with a flow rate of �100 nl/min using a splitter.
Peptides were eluted directly into an ESI interface and analyzed with
a Finnigan LTQ linear quadrupole ion trap mass spectrometer
(Thermo Electron Corp., San Jose, CA). The LTQ was operated with a
“top 10” data-dependent analysis method consisting of a repeated
data acquisition cycle of one full mass spectrum (m/z 400–2000)
followed by 10 MS/MS spectra, which corresponded to fragmentation
mass spectra of the top 10 most abundant ions from the MS.

MS/MS experiments were also performed on an Ultimate 3000
nanoflow system (Dionex/LC Packings, Sunnyvale, CA) connected to
an LTQ Orbitrap hybrid mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) equipped with a nanoelectrospray ion source. The
mass spectrometer was operated in data-dependent mode to auto-
matically switch between MS and MS/MS acquisition. Survey full-
scan MS spectra (from m/z 300 to 2,000) were acquired in the Orbi-
trap. Ions were sequentially isolated for fragmentation in the linear ion
trap using collision-induced dissociation. General mass spectromet-
ric conditions were as follows: electrospray voltage, 1.6 kV; no sheath
and auxiliary gas flow; ion transfer tube temperature, 225 °C; collision
gas pressure, 1.3 millitorrs; normalized collision energy, 32% for
MS/MS. Ion selection threshold was 500 counts for MS/MS. In addi-
tion, samples were analyzed using electron transfer dissociation (43–
45). Peptides were separated by nano-reversed phase HPLC (Agilent
1100; flow split by a tee to �60 nl/min) and introduced into an
electron transfer dissociation-capable LTQ quadrupole linear ion trap
(Thermo Fisher Scientific, San Jose, CA) via nano-ESI using instru-
mental parameters described previously (46).

Raw data files were either converted into dta files (RAW files
generated by ion traps from Thermo Fisher Scientific) with the use of
DTA Generator (47, 48) or into mgf files (data derived from MALDI-
TOF and Q-TOF analyses) with the use of DataAnalysis (version 4.0;
Bruker Daltonics). All resultant MS/MS data were submitted to
MASCOT (www.matrixscience.com; release number, 2.3.01) for a
search against human entries (20,295 sequences) in the Swiss-Prot
database (Swiss-Prot Number 2010.06) without any enzyme speci-
ficity and with up to one missed cleavage. No fixed modification was
selected, and oxidation products of methionine, proline, and lysine
residues were set as variable modifications. The accepted parent ion
mass deviation was 0.5 Da (20 ppm for all Orbitrap spectra); the
accepted fragment ion mass deviation was 0.7 Da. Only search
results with a MASCOT peptide score equal to or higher than the
MASCOT score threshold were included (see supplemental Table I).

Additionally, ion coverage was controlled to be related to main spec-
tral fragment features (b/y or c/z ion series) (see also the
supplemental figures). For further validation of obtained peptide iden-
tifications, the strict correlation between peptide charge at pH 2 and
CE migration time was utilized to minimize false positive identification
rates (42, 49). As depicted in Fig. 1, the polypeptides are arranged in
four to five lines. The members of each line are characterized by the
numbers of basic amino acids (arginine, histidine, and lysine) included
in the peptide sequence. Specifically, the peptides in the right line
contain no basic amino acids; only the N terminus of the peptide is
positively charged at pH 2. In contrast, peptides in the other lines
(from right to left) show increasing numbers of basic amino acids in
addition to their N-terminal ammonium group (49). The calculated
CE migration time of the sequence candidate based on its peptide
sequence (number of basic amino acids) was compared with the
experimental migration time. A peptide was accepted only if it had
a mass deviation below �25 ppm and a CE migration time deviation
less than �2 min. The full list of identified peptides and MS/MS
spectra is available at Human ProteinPedia (http://www.humanpro-
teinpedia.org; accession number HuPA_00670).

RESULTS

All urine samples were prepared using a standard protocol
and analyzed by CE-MS, resulting in individual data sets
containing information on generally 1,200–2,000 features
(presumably peptides) per sample. All information recom-
mended by the “minimum information about proteomics ex-
periments” guidelines (50) for proteome analysis was re-
corded and is available upon request. The resulting list of
peptides was defined by mass, migration time, and ion
counts, the last of which served as a measure of the relative
abundance of a peptide.3

To improve mass accuracy, 20 samples were reanalyzed
using CE on line-coupled to FT-ICR-MS. Because of the high
costs and the lower sensitivity (higher detection limit) of FT-
ICR-MS instruments in comparison with TOF instruments, it
was not practical to analyze all samples by CE-FT-ICR-MS.
The high FT-ICR-MS resolution also enabled an accurate
analysis of the first isotope signal of ions with z� 6, which is
crucial for determination of the exact mass of proteins and
high molecular weight peptides. These data were used to
refine the TOF-MS masses of the urinary peptides.

During additional calibration steps using “internal standard”
peptides (27, 33) for reference, CE migration time and signal
intensity were corrected for analytical variances and urine
dilution effects. All calibrated data are publicly accessible on
the Internet.3 A subsequent, thorough data calibration (see
“Data Processing”) allowed digital compilation (matching of
data from respective samples) of individual data sets to an
averaged “case-specific” data set. This compiled data set can
be compared with any compiled “control group” data set,
enabling the identification of statistically significant changes
for biomarker definition.

The main purpose of this “human urinary peptidome data-
base” is to serve as a universal platform for definition and
validation of biomarkers for a variety of diseases and (patho)-
physiological changes. For the selection of CKD-specific bi-
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omarkers, data from individual samples were compiled (21,
27) and grouped according to patients’ clinical profiles (diag-
nostic group). These groups included healthy subjects (n �

379) and patients with various biopsy-proven kidney diseases
(n � 230) (for details, see Tables I and II). All peptides were
statistically analyzed using multiple testing correction (51).
This approach resulted in 634 peptides of statistical signifi-
cance. To reduce this large number of variables, we chose
only a subset of these peptides with known sequence infor-
mation. This strategy resulted in the identification of a panel of
273 peptides listed in supplemental Table I. Subsequently, an
SVM classification model was generated based on these pep-
tides to distinguish between healthy subjects and individuals
with biopsy-proven kidney diseases (Fig. 1). In the training set,
a sensitivity of 98.7% and a specificity of 100% were ob-
served (for ROC curve analysis, see also Fig. 2, “Training
Set”). To avoid any bias introduced by the use of samples
from only one clinical center, samples from patients with
different diseases or (patho)physiological conditions collected
at different centers were included in this training set.

In agreement with the recently published guidelines for
clinical proteomics (52), we reproduced this biomarker pattern
in a multicenter prospective study using an independent
blinded cohort (test set) of 144 individuals, including pa-
tients with different kidney diseases (n � 110) and controls
(n � 34). Upon unblinding, all controls and 94 patients with
CKD were correctly classified, resulting in a sensitivity of
85.5% (95% CI, 77.5–91.4) and a specificity of 100% (95%
CI, 89.6–100.0) (see Fig. 2, “Test Set,” and supplemental Table
IIa, “prospective study”).

CKD is frequently associated with underlying pathologies due
to complications of diabetes, hypertension, or chronic viral in-
fection. Therefore, we examined the specificity of the identified
markers using further “disease controls” present in the human
urinary peptidome database. This test set consisted of pa-
tients with diabetes mellitus types I and II, untreated HIV
patients, patients with benign prostatic hyperplasia (BPH),
and patients with arterial hypertension. Furthermore, we
included in this test set additional patients with prior MCD
who now have complete remission induced by treatment

TABLE I
Demographic data of all patients used in this study

The first part shows the clinical data of patients with different diseases (see column “Group”), which represents the training set. The total
number (n) of patients, gender ratio (male/female), age, serum (S) creatinine, and proteinuria status are shown. All patients included in the test
set are listed in the second part. Patients representing further controls are listed in the last part of the table where blood pressure values for
the hypertensive patients are given in the last column. ND, not done; DN, diabetic nephropathy; SLE, systemic lupus erythematosus; SBP,
systolic blood pressure; DBP, diastolic blood pressure.

Group n
Gender

(male/female)
Age

(mean � S.D.)
S creatinine

(mean � S.D.)
Proteinuria

(mean � S.D.)
Blood pressure

(SBP/DBP)

years �mol/liter g/d mm Hg

Training set
Healthy controls 379 196/183 33 � 16 ND �0.1a

ANCA 30 15/15 61 � 7 179 � 85 0.89 � 0.53
SLE 21 9/12 39 � 12 109 � 56 1.10 � 2.24
MGN 30 24/6 40 � 23 97 � 23 1.27 � 1.00
MCD 22 10/12 51 � 18 113 � 73 0.32 � 0.44
IgAN 44 34/10 43 � 14 163 � 96 1.88 � 2.42
FSGS 25 17/8 46 � 26 126 � 49 1.64 � 2.53
DN 58 46/12 53 � 9 133 � 82 1.71 � 2.25

Test set
Healthy controls 34 21/13 54 � 13 ND �0.1a

FSGS 12 9/3 59 � 14 130 � 22 0.82 � 1.40
MGN 15 9/5 57 � 13 100 � 14 5.75 � 2.58
SLE 9 4/5 42 � 17 170 � 104 1.40 � 1.74
ANCA 23 11/12 69 � 4 230 � 152 0.80 � 0.83
IgAN 18 12/6 46 � 18 156 � 112 1.81 � 2.12
MCD 4 2/2 51 � 11 182 � 84 1.06 � 2.34
DN 10 7/3 65 � 13 86 � 24 4.22 � 2.79
Other CKD 18 10/8 56 � 16 132 � 81 1.73 � 2.10

Additional controls
HIV 29 22/7 44 � 3 65 � 3 ND ND
Diabetes mellitus II 22 9/13 66 � 7 82 � 50 16.3 � 20.0b ND
Diabetes mellitus I 36 16/20 53 � 7 ND ND ND
BPH 34 34/0 64 � 8 ND ND ND
Hypertension 13 10/3 61 � 9 ND 0.25 � 0.19 147 � 13/80 � 10
MCD, remission 3 2/1 20 � 2 ND 0.09 � 0.05 ND

a Tested with dipstick method.
b Urinary albumin.
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with glucocorticoids. All these patients showed no evidence
of renal damage based on clinical history, serum creatinine,
or urinary protein levels (see Table I). The results of the
classification with the CKD model are shown in
supplemental Table IIb, “additional controls.” None of the
29 patients with HIV, one of the 22 patients with diabetes
mellitus type II, one of the 36 patients with diabetes mellitus
type I, none of the 34 patients with BPH, one of the 13
patients with arterial hypertension, and none of the five
patients with MCD in remission were classified as having
CKD, resulting in an overall specificity of 97.8%.

To precisely gauge the analytical variability of the CE-MS-
based CKD platform, a set of experiments for platform vali-
dation was performed: temperature stability, postpreparation
stability, frost/defrost stability, reproducibility, intermediate
precision, and time course were evaluated. In all tests, urine
samples were processed as described under “Experimental
Procedures.”

The aim of the stability analyses was the assessment of
sample stability at room temperature, at 4 °C, and after re-
peated freeze/thaw cycles. Additionally, postpreparation sta-
bility of the prepared sample for 24 h at 4 °C in an autosam-
pler was investigated. Both prolonged storage (at room
temperature for 6 h and at 4 °C for 24 h) and repeated freeze/
thaw cycles did not yield significant differences in standard
deviations (see Fig. 3A). Furthermore, all analyses resulted in
SVM scores. This finding implied a consistent classification
result for these patients in all experiments. All observed sta-
tistical spreads were below 11%. Variances observed for
postpreparation stability were in the range of 6%.

Reproducibility and intermediate precision analyses were
used to determine the statistical variances of the SVM clas-
sification result 1) under the same operating conditions over a
short period of time (reproducibility or intra-assay precision)
and 2) at different days by different operators with different
devices in a long period of time (intermediate precision or
within-laboratory precision). As depicted in Fig. 3B, the rela-
tive intra-assay standard deviation was below 7% for all
tested samples. As expected, relative interassay standard
deviation increased (p � 0.005); however, it was still below
10%. Intermediate precision included different lot numbers of
buffers, solvents, and chemicals. Both devices underwent
biannual maintenance service.

Statistical variances were determined for time course ex-
periments (see Fig. 3C) observed for CKD diagnosis of indi-
viduals over the course of a month. The variances were in the
range of the intermediate precision, suggesting stable expres-
sion of the CKD pattern and, thus, a small biological variance
over time.

We aimed to identify as many peptides of the human urinary
database as possible by applying state-of-the-art top-down
MS/MS. Sequence information was obtained for 444 of the
5,010 peptides constituting the human urinary peptidome
database.3 As described previously (42, 49), the migration
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time in CE depends on peptide mass and charge state at pH
2, equaling the number of free amino groups (N-terminal and
basic amino acids). Therefore, it is not a prerequisite to use
CE separation for MS/MS sequencing as the number of basic
amino acids as well as the calculated mass serve to assign a
putative sequence to a signal in the CE-MS spectrum. The
identification and annotation are associated with a level of
uncertainty, but this level appeared to be very low as all data
generated by CE-MS/MS were confirmed by LC-MS/MS iden-
tification and, thus, confirmed the subsequent annotation of
CE-MS data. Furthermore, of the 273 potential CKD biomar-
kers, 107 were also among the features detected in the FT-
ICR data (see supplemental Table I, last two columns), which
show mass differences compared with the calculated masses
of the sequences of 0.5 ppm (�0.9 ppm).

The sequenced markers for the diagnosis of CKD were
fragments of different collagens, blood proteins (e.g. �1-
antitrypsin, serum albumin, hemoglobin � chain, and fibrin-
ogen � chain), and kidney-specific proteins (e.g. uromodulin,
sodium/potassium-transporting ATPase � chain, and mem-
brane-associated progesterone receptor component 1) as
well as fragments of various secreted proteins (see Table
III and supplemental Table I). As depicted in Fig. 1 and

supplemental Table I, fragments from serum proteins in-
creased, whereas those of most of the collagens decreased in
CKD.

DISCUSSION

Here, we report the application of CE-MS for the analysis of
the human urinary peptidome and demonstrate its utility for
the definition of biomarkers of CKD in general. These biomar-
kers apparently reflect primary pathogenetic changes as well
as the response to certain disease processes. Hence, their
usefulness extends beyond the applicability to diseases of the
urogenital tract, and the approach may be applicable to dis-
eases that result in systemic manifestations. Although genetic
analysis can predict the risk of a disease, proteomics, with its
potential to monitor dynamic processes, may more clearly
show at which point in time the risk manifests itself as disease
and also facilitates monitoring of the response to therapy.
Thus, these methods are complementary in the therapeutic
approach to an individual patient (29, 53).

Recently, several groups have reported sequencing of an
array of urinary proteins (15, 54). Although these data sets
impressively encompass many proteins (and the potential for
insightful information), clinically applicable information, i.e. for

FIG. 1. Peptide patterns distinguish-
ing patients with CKD from HC. The
compiled data sets of urine samples
from 230 patients with CKD (left panel)
and 379 healthy control subjects (right
panel) included in the training set are
shown. Normalized molecular mass (y
axis) is plotted against normalized CE
migration time (x axis). The mean signal
intensity is represented in three-dimen-
sional depiction.

FIG. 2. ROC curves for classification
of patient cohorts with “CKD pattern.”
ROC analysis for CKD diagnosis of the
training set and the test set after un-
blinding is shown. AUC, area under the
curve.

Human Urinary Peptidome for Diagnosis of Kidney Diseases

Molecular & Cellular Proteomics 9.11 2431

http://www.mcponline.org/cgi/content/full/M110.001917/DC1
http://www.mcponline.org/cgi/content/full/M110.001917/DC1
http://www.mcponline.org/cgi/content/full/M110.001917/DC1


the definition of biomarkers, is completely missing. Moreover,
all of these studies used tryptic digests of urinary proteins.
The sequences from these peptides allowed the investigators
to tentatively assign a particular protein to the obtained se-
quence with variable confidence. Unfortunately, because of
the in vitro manipulation of samples by digestion, it is not
possible to define which of these peptides are natural con-
stituents of human urine. The information that is essentially
required in clinical proteomics is restricted to only naturally
occurring urinary peptides. Furthermore, in cases where bi-

omarkers must be defined with a high level of confidence,
information on their relative abundance is critically required.

We have therefore attempted to obtain such substantial
information: the naturally occurring peptides are defined by
molecular mass and migration time, and the relative abun-
dance is defined by ion counting, which is normalized by the
use of “internal standards” (27, 33). The latter resemble pep-
tides that are present in almost every sample and that do not
change significantly in their ion counts in all samples and
disease groups investigated to date. Although this approach

FIG. 3. Analytical variability of CE-
MS-based CKD platform. A, statistical
spread of temperature stability, freeze/
thaw stability, and postpreparation sta-
bility are shown. Reproducibility and in-
termediate precision (B) and time course
(C) are plotted against their statistical
spread. p values are depicted in boxes.
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does not allow unambiguous identification that can be real-
ized only by amino acid sequence analysis, it does permit a
tentative identification based on the exact mass and migration
time. Sequencing was performed in a second step but was
hindered by several obstacles associated with MS sequenc-
ing of naturally occurring peptides (tryptic digests cannot be
utilized because of a loss of connectivity to the original iden-
tification parameters (55)). Major obstacles are suboptimal
use of proteomics search machines (like MASCOT or the open
mass spectrometry search algorithm) for naturally occurring
peptides (5, 34) as well as the chemical nature of the pep-
tides that prevents successful sequencing (42). For an as-
signment of the sequences to the correct label (protein ID in
our database), there is a small chance of error. Assignment
of two different peptides to one label and assignment of one
peptide to two labels are likely to occur. At the same time
and based on our MS/MS data, the results indicate that not
every peptide that may theoretically be found was in fact
detected. The pool of identical peptides present in urine is
generally limited, reducing the challenge of correct assign-
ment (because of a limited number of features present).
Furthermore, errors in assignment will result in higher vari-
ability; thus, such peptides will likely be excluded as poten-
tial biomarkers.

CE-MS analysis of urine enables a tentative identification of
biomarkers for a variety of diseases of the kidney and the
urogenital tract (21, 22, 24, 25, 27, 56), although the high bio-
logical variability of peptides represents a serious methodolog-
ical impediment. Therefore, it appears imperative to evaluate
clinical disease conditions not on the basis of single peptide
markers but rather on the basis of a biomarker set consisting of
distinct and clearly defined discriminating molecules. A panel of
biomarkers will tolerate changes in individual analytes without
jeopardizing the diagnostic precision, which means that varia-
bility will not result in gross changes of the diagnostic result.

In comparison with LC-MS, CE-MS seems to have several
advantages when analyzing urine samples. Of high relevance
are the reproducibility and insensitivity toward interfering
compounds and the fact that no “flow-through fraction” is
generated. Small peptides that are highly charged generally
do not bind to the typically used reversed phase columns and,
thus, will be lost for LC-MS analysis. However, these small
peptides would be detected by CE-MS analysis. Large mol-
ecules (�5 kDa) frequently do not elute efficiently off the LC
column, and their relative abundance thus cannot be as-
sessed with sufficient accuracy. These molecules are, how-
ever, easily and reproducibly detectable by CE-MS. A further
advantage is the relative insensitivity of CE-MS to precipitates

TABLE III
Source proteins and peptide distribution of CKD biomarkers

Protein Swiss-Prot name Number of fragments

Collagen �-1 (I) chain CO1A1_HUMAN 126
Collagen �-1 (III) chain CO3A1_HUMAN 55
�1-Antitrypsin A1AT_HUMAN 18
Collagen �-2 (I) chain CO1A2_HUMAN 15
Uromodulin UROM_HUMAN 11
Serum albumin ALBU_HUMAN 9
Fibrinogen � chain FIBA_HUMAN 5
Polymeric immunoglobulin receptor PIGR_HUMAN 4
�2-HS-glycoprotein FETUA_HUMAN 3
Clusterin CLUS_HUMAN 2
Collagen �-1 (II) chain CO2A1_HUMAN 2
Membrane-associated progesterone receptor component 1 PGRC1_HUMAN 2
Osteopontin OSTP_HUMAN 2
Sodium/potassium-transporting ATPase � chain ATNG_HUMAN 2
Transthyretin TTHY_HUMAN 2
�1B-Glycoprotein A1BG_HUMAN 1
Antithrombin-III ANT3_HUMAN 1
Apolipoprotein A-I APOA1_HUMAN 1
�2-Microglobulin B2MG_HUMAN 1
CD99 antigen CD99_HUMAN 1
Collagen �-1 (V) CO5A1_HUMAN 1
Collagen �-1 (XVII) chain COHA1_HUMAN 1
Collagen �-1 (XVIII) chain COIA1_HUMAN 1
Collagen �-2 (VIII) chain CO8A2_HUMAN 1
Cystatin-B CYTB_HUMAN 1
Ig � chain C regions LAC_HUMAN 1
Neurosecretory protein VGF VGF_HUMAN 1
Pro-SAAS PCSK1_HUMAN 1
Prostaglandin-H2 D-isomerase PTGDS_HUMAN 1
Psoriasis susceptibility 1 candidate gene 2 protein PS1C2_HUMAN 1
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that interfere substantially with LC separation. Furthermore,
such precipitates can be removed effectively using NaOH,
which is applied routinely after each CE-MS analysis (enabling
reproducible reconditioning). A similar approach is impossible
in LC-MS. These and additional advantages are outlined in
more detail in several recent reviews (3, 34, 57). Furthermore,
CE-MS analysis could be viewed as a very reproducible pro-
teomics approach for the diagnosis of CKD. The analysis of
samples stored under different conditions showed no in-
creased variance, indicating that these urinary peptides are
stable biomarkers, which may be also an advantage of using
multiple biomarkers (biomarker pattern) instead of a single
biomarker. Variances observed for postpreparation stability
suggested sufficient resistance of the CKD biomarkers to
oxidation, postpreparation precipitation, and degradation. In
summary, these data underline the analytical robustness of
the CE-MS-based diagnostic platform and represent the
foundation for its routine clinical application for the diagnosis
of CKD as already demonstrated for other indications, such as
graft-versus-host disease (26).

We have shown that several peptides were differentially
excreted in the urine of patients with different forms of CKD
compared with healthy individuals (22, 25). These studies
were pilot studies aiming toward the differential diagnosis of
certain types of CKD and were compromised by low statistical
power for marker definition because of the small numbers of
patients and relatively poor mass resolution. Furthermore, the
frequently observed high content of proteins in samples from
patients with CKD resulted in precipitation during separation
even in the case of CE-MS, thereby limiting accuracy and
rendering comparison of multiple data sets challenging or
even impossible. Therefore, the protocol for sample prepara-
tion has been optimized by the removal of proteins above 25
kDa without significant loss of low molecular mass urinary
components (23). This improved method, consisting of an
additional ultrafiltration step in the presence of SDS and urea
to prevent the interaction of proteins and peptides (23), was
used for all samples reported here and resulted in a higher
consistency of obtained data sets compared with those from
the pilot studies mentioned above. Nevertheless, these
changes in preanalytical handling clearly disqualify old data
sets for storage in the urinary database and proteomics com-
parison on the highest level for data consistency.

Recently, using the new sample preparation protocol, we
showed that urinary biomarkers enable differential diagnosis of
specific single chronic renal diseases (IgA nephropathy, diabetic
nephropathy, and ANCA-associated vasculitis) with sufficient
sensitivity and specificity in blinded data sets (28–30). Here, we
present the applications of the urinary peptidome database for
the non-invasive diagnosis of CKD in general.

To assess the value of an optimized human urinary pep-
tidome database, we utilized the data for the diagnosis of
CKD as a representative example of urogenital tract diseases.
Using this peptidome database, 273 biomarkers were de-

fined. The complexity of diseases and the pathological pro-
cesses involved suggest that the concept of a single biomar-
ker indicating not only a reliable diagnosis but also a stage in
the pathological process and prognosis appears question-
able. Combining multiple independent biomarkers into a di-
agnostic or predictive pattern (Fig. 1) may better address this
problem. Many algorithms utilizing the available information
on multiple biomarkers have emerged (39) with hierarchical
decision tree-based classification methods (58), support vec-
tor machines (59), and Gaussian processes (60) among them
(for more detailed information, see Ref. 39).

We hypothesized that a combination of the 273 CKD-spe-
cific biomarkers in a CKD-specific biomarker pattern would
more accurately discriminate CKD patients from unaffected
individuals. Although some of the classifiers of these biomar-
kers might appear as unnecessary to increase their specificity
and sensitivity, an analysis investigating different algorithms
for identification of biomarkers and establishment of classifi-
ers demonstrated that an increase in the number of biomar-
kers produced a more robust model.4 Therefore, it appears
appropriate to include a large number of biomarkers in a
multidimensional model, and this is the reason why we did not
reduce the number of biomarkers in the model. Due to the
excellent performance of the classifier, it has not been further
optimized because further optimization will be quite challeng-
ing, likely requiring additional data on �1,000 subjects.

Another issue is the heterogeneity of the cohort: CKD is a
conglomerate of diseases, and this fact is also reflected by the
character of the biomarkers. Although certain biomarkers may
serve well as classifiers on their own, their combination does not
necessarily enhance classification performance. On the other
hand, a moderately well performing individual biomarker may in
fact increase performance of the classification algorithm, i.e.
when a particular biomarker reflects disease for only a subset of
samples. Therefore, we built an SVM classification model with
273 peptides to distinguish healthy subjects from individuals
with biopsy-proven kidney disease in the training set. Subse-
quently, we applied the model/panel to the test set to test the
model. Under such circumstances, overfitting to or “memoriz-
ing” the training set and thus poor classification of blinded data
sets can be minimized. The classification of a blinded test
cohort of 34 healthy controls and 110 patients with CKD re-
sulted in a sensitivity of 85.5% and a specificity of 100.0%. We
further examined the specificity of the identified markers using
additional disease controls in the human urinary peptidome
database. The overall specificity of 97.8% reflects the relatively
high 10–20% prevalence of CKD worldwide (61, 62), especially
manifested in older patients with diabetes mellitus type II and
arterial hypertension (see Table I).

4 M. Dakna, Mohammed Dakna, Keith Harris, Alexandros Kalousis,
Sebastien Carpentier, Walter Kolch, Joost P. Schanstra, Marion
Haubitz, Antonia Vlahou, Harald Mischak, and Mark Girolami submit-
ted manuscript.
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Most of the biomarker peptides in the urine are a product of
proteolytic activity. Extracellular proteases may reflect the pres-
ence of the disease and its progression (63). Disease-induced
changes in protease activities may be more readily recognized
by focusing the analysis on the proteolytic fragments rather than
on the specific protease itself (63). CE-MS analysis may be
suitable to indicate changes in the tightly regulated activity of
proteases and protease inhibitors by displaying relative abun-
dance of their potential cleavage products.

Collagen fragments, especially fragments of collagen �-1 (I)
chain, appear to be the major constituents of urinary peptides
(see Table III). These peptides likely reflect normal physiolog-
ical turnover of the extracellular matrix (64). In addition to
CKD, collagen fragments are also the source of identified
biomarkers for the diagnosis of coronary artery disease (CAD)
(65, 66). The main difference of the biomarkers for the diag-
nosis of CAD and of CKD is the direction of their regulation.
Whereas most of the collagen-derived biomarkers for CAD
showed increased urinary excretion, the collagen-derived bi-
omarkers indicated CKD by their relative paucity (see
supplemental Table I). This differential regulation may arise
from differences in the activity of collagenases. Increased
levels of circulating collagenases have been reported in pa-
tients with stable angiographic coronary atherosclerosis or
intermittent claudication (65). Elevated matrix metallopro-
tease-9 activity has been found in unstable plaques, suggest-
ing a crucial role in plaque rupture. In contrast, decreased
activity of collagenases was observed in CKD patients (29).
Regardless of the primary etiology, CKD in its severe presen-
tation is characterized by tubular atrophy, interstitial fibrosis,
and glomerulosclerosis. Hence, it has been assumed that
diminished activity of matrix metalloproteases may be re-
sponsible for the accumulation of proteins in the extracellular
matrix and collagens that typify the fibrotic kidney (67). This
histology may be interpreted to indicate increased levels of
inhibitors of matrix metalloproteases, i.e. tissue inhibitors of
matrix metalloproteinase. Furthermore, accumulation of ex-
tracellular matrix as predominantly observed in diabetic ne-
phropathy was recently shown to be associated with de-
creased urinary excretion of several specific collagen
fragments (29). These explanations are speculative but are
fitting at a conceptual level and have been mentioned here to
highlight the significance of the human urinary database in a
way that opens a door for further investigation whereby re-
searchers of all disciplines are invited to participate.

�1-Antitrypsin and its fragments were reported to be up-
regulated in several types of CKD (57, 63, 68, 69). Thus,
increased urinary excretion of a fragment of this highly
abundant plasma protein, together with fragments derived
from serum albumin and fibrinogen, may reflect chronic
renal damage. Uromodulin has been reported to be down-
regulated in diabetic nephropathy (29, 70, 71), and reduced
excretion of specific uromodulin fragments also has been
observed in other forms of CKD (30). Decreased urinary

levels of these collagen- and uromodulin-derived peptide
fragments may serve as indicators of (patho)physiological
changes in CKD.

As we learn to better appreciate the individual differences in
the responses to therapy, objective methods to measure
these changes will become of prime importance. This need
will pave the way for proteomics-based personalized diagno-
sis that could be used to tailor therapy to an individual patient.
Non-invasive urinary proteomics has the advantage of real
time monitoring, and adjustments to therapy can thus be
made accordingly. This vision appears within reach, but its
realization depends heavily on the establishment of tools that
allow a quick and robust comparison of the patient’s pro-
teomic profiles against those of healthy controls and patients
with other diseases. Thus, we posit that the urinary peptidome
and its application in CKD as presented here are a major step
forward in this direction. We anticipate that the availability of
such tools in the future will significantly improve the options
for patients with respect to diagnosis and therapy.

The present study with several hundred patients reveals the
potential of distinct biomarker panels in clinical diagnosis of
complex chronic diseases. Thorough platform standardization
is needed to address the intrinsic/biological variability of the
human peptidome. The human urinary peptidome database
presented here is an important step toward proteomics be-
coming a diagnostic tool in the clinical settings as recently
demonstrated for graft-versus-host disease (26).
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