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Abstract

We propose a statistical process control (SPC) scheme that can be imple-
mented in industrial practice, where the quality of a process can be charac-
terized by a general linear profile. We start by reviewing the general linear
profile model and the existing monitoring methods. Based on that, a novel
multivariate exponentially weighted moving average monitoring (MEWMA)
scheme is proposed for such a profile. Three enhancement features are in-
troduced to further improve the performance of the proposed scheme, which
include 1) the variable sampling interval, 2) the self-starting function, and 3)
the parametric diagnostic approach. Throughout this paper, a deep reactive
ion etching (DRIE) example from semiconductor manufacturing, which has
a profile that fits a quadratic polynomial regression model well, is used to
illustrate the implementation of the proposed approach.
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1 Introduction

Statistical process control (SPC) has been widely used to monitor various indus-

trial processes. Most SPC applications assume that the quality of a process can be

adequately represented by the distribution of a quality characteristic. However, in

many situations, the quality of a process may be better characterized and summa-

rized by a relationship between the response variable and one or more explanatory

variables. That is, the focus would be on monitoring the profile that represents such

a relationship, instead of on monitoring a single characteristic. Among others, stud-

ies focusing on linear profiles have been particularly influential. See, for example,

Jensen et al. (1984), Mestek el al. (1994), Stover and Brill (1998), Lawless et al.

(1999) and Kang and Albin (2000).

Kang and Albin (2000) proposed two control charts for Phase II monitoring

of simple linear profiles. One of these is a multivariate T 2 chart and the other

is a combination of an exponentially weighted moving average (EWMA) chart to

monitor the regression residuals and a range (R) chart to monitor the standard

deviations. Kim et al. (2003) proposed a method based on the combination of

three EWMA charts. Instead of using deviations from the in-control process center,

they coded the independent variable so that the average value was zero and used

the estimated regression coefficients from each sample, i.e., the estimates of the Y -

intercept and slope, to construct two univariate EWMA charts. Another one-sided

EWMA chart was then used to monitor the increases in standard deviation of the

process. Gupta et al. (2006) compared the performance of two phase II monitoring

schemes of linear profiles, the control charting schemes proposed by Croarkin and

Varner (1982) and Kim et al. (2003). Their simulation study showed that Croarkin

and Varner’s method (1982) performed poorly compared to Kim et al.’s (2003)

combined control charting scheme. Mahmoud and Woodall (2004) studied the Phase

I method for monitoring the linear profiles. Following that, Mahmoud et al. (2005)

proposed a change-point method, based on the likelihood ratio statistics, to detect

sustained changes in a linear profile data set in Phase I. Zou et al. (2006) proposed

a control chart based on change-point model for monitoring linear profiles for which

the parameters are unknown but may be estimated from historical samples. A

extensive discussion of research problems in monitoring linear profiles can be found
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in Woodall et al. (2004).

All these recent studies concentrated on the situation with a simple linear pro-

file that can be adequately represented by a straight line. Although such a simple

linear profile can characterize various applications as in the literature, general linear

profiles that include both a polynomial regression and a multiple linear regression

relationship may be even more representative of most industrial applications. How-

ever, research on monitoring and diagnosis of general linear profiles is still scanty.

In this paper, we focus on a study of the Phase II method for monitoring a general

linear profile that can be represented by a polynomial regression or a multiple linear

regression relationship. We propose utilizing a multivariate exponentially weighted

moving average (MEWMA) scheme (Lowry et al. (1992)) for the transformations of

estimated parameters, as a single chart to monitor both the coefficients and variance

of a general linear profile. The complexity of the proposed single chart approach

will not increase as the profile parameters increase as in the existing multiple chart

approaches in most of the literature. Also, this chart can be designed and con-

structed easily and has rather satisfactory performance. In addition, the proposed

MEWMA scheme for general linear profiles can be enhanced by the following three

features: (1) we enhance the proposed charting scheme with variable sampling inter-

val (VSI) features to improve the efficiency of detecting profile changes; (2) we add

a self-starting feature to the proposed chart for situations with unknown parameters

or short-run productions where complete Phase I modeling is not feasible; (3) we

provide a systematic diagnostic approach to identify the location of the change and

to determine which parameters in the profile have changed.

The remainder of this paper is organized as follows: in Section 2, we introduce the

deep reactive ion etching (DRIE) example from semiconductor manufacturing that

motivates this research. After that, the general linear profile model and the existing

monitoring methods such as Kim et al. (2003) are reviewed in Section 3. In Section

4, our proposed MEWMA schemes are presented. The proposed chart with the VSI

feature is presented in Section 5. The average run length (ARL) and average time to

signal (ATS) calibrations of the proposed chart are discussed in Section 6. Based on

those results, the monitoring performance of the proposed scheme is compared with

that of existing methods in Section 7. A systematic approach for profile diagnosis
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is provided in Section 8, which is critical for a more complicated general linear

profile. After that, the performance assessments of the estimates of change-points

and the identification of special causes are also reported. A self-starting control

scheme enhancement is proposed in Section 9 to deal with the cases with unknown

parameters and short-run productions. The motivated DRIE example, which has a

profile that fits a quadratic polynomial regression model well, is used to illustrate

the implementation of the proposed approach step by step in Section 10. Section 11

concludes this paper by summarizing its contributions and suggesting some future

research. Some derivations are detailed in the Appendix.

2 The Motivating Example: Monitoring a Deep

Reactive Ion Etching Process

We use a micro-electro-mechanical systems (MEMS) fabrication example taken from

semiconductor manufacturing to illustrate the motivation for this research. In par-

ticular, the deep reactive ion etching (DRIE) process is selected, because it is a key

operation in MEMS fabrication to form desired patterns on semiconductor wafers,

and it requires careful control and monitoring on a run-to-run basis.

The DRIE process involves complex chemical-mechanical reactions on a machine

called an inductive coupled plasma (ICP) silicon etcher made by Surface Technology

System Ltd. (STS) (see McAuley et al. (2001), Rauf et al. (2002) and Zhou et al.

(2004) for more details about this system). A schematic diagram of such a system

is provided in the appendix. The central part of the machine is a process chamber,

within which wafers are loaded and processed. The system first releases etching

plasma into the chamber to etch trenches following a designed mask pattern, then,

in the deposition step, different gases are introduced into the chamber to generate

a protective film on the sidewalls. The etching and deposition steps are repeated

alternately until a preset processing time is reached, or the end point detection

module confirms the correct etching depth.

In the DRIE process, the quality measurement of an etched wafer is conducted

with a scanning electron microscope (SEM) in laboratories, and one of the most

important quality characteristics is the profile of a trench that may significantly
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impact the downstream operations (May et al. (1991)). The desired profile is the one

with smooth and vertical sidewalls as indicated in center sample of Figure 1, which

is called the anisotropic profile. Ideally, the sidewalls of a trench are perpendicular

to the bottom of the trench with certain degrees of smoothness around the corners.

Various shapes of profile, such as positive and negative profiles, which are due to

under-etching and over-etching, are considered to be unacceptable (see Figure 1).

PositiveNegative

Figure 1: Illustrations of various etching profiles from a DRIE process.

Current industrial practice is to monitor the angles of the sidewalls. Although

the sidewall angle is easier to measure, it is known to contain incomplete information

about the trench profile, and, in many cases, it may not differentiate various out-

of-control profiles. Although it is natural to consider directly monitoring the profile

of the trench, which may give more complete information for effective monitoring

and diagnosis, exactly how to implement SPC monitoring of a DRIE profile, which

apparently cannot be modeled as a straight line, still remains a challenge. In the

remainder of this paper, we propose an SPC scheme to monitor such a profile and

give a step-by-step demonstration of how to implement the proposed scheme in

practice in a later section.

3 The General Linear Profile Model and Existing

Monitoring Schemes

In this section we describe the modeling of a general linear profile and review the

existing profile monitoring schemes in the literature.

Assume that for the jth random sample collected over time, we have the obser-

vations (Xj ,Yj), where Yj is nj-variate vector and Xj is a nj × p (nj > p) matrix.
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It is assumed that when the process is in statistical control, the underlying model is

Yj = Xjβ + εj , (1)

where β = (β(1), β(2), · · · , β(p)) is the p-dimensional coefficient vector and the εjs are

i.i.d as a nj-variate multivariate normal random vector with mean zero and σ2I co-

variance matrix. Without loss of generality, here suppose that Xj is of form (1,X∗
j),

where X∗
j is orthogonal to 1 and 1 is a p-variate vector of all 1s. Otherwise, we can

obtain such a form through some appropriate transformations. The njs are usually

equal (denoted as n) and the explanatory variable, Xj, is assumed to be fixed for

different j (denoted as X). This is usually the case in practical calibration appli-

cations and is also consistent with Kang and Ablin (2000), Kim et al. (2003) and

Mahmoud and Woodall (2004), where the emphasis is on simple linear regression.

Woodall et al. (2004) also mentioned the extension of simple linear profiles to other

more complex linear profiles and listed some relevant references. Jensen et al. (1984)

studied such a profile as well, although their model is not exactly the same. Their

schemes are similar to that of Kim et al. (2003) but focus on controlling one param-

eter of the coefficients and variance individually. They propose some Shewhart-type

control charts for monitoring the coefficients and variance.

The simplest case of model (1), the straight line regression model, is considered

by Kang and Ablin (2000), Kim et al. (2003), Mahmoud and Woodall (2004) and

Mahmoud et al. (2005). Denote by {(xi, yij), i = 1, 2, · · · , n} the jth random

sample collected over time. When the process is in control, the relationship between

the response and explanatory variables is assumed to be

yij = A0 + A1xi + εij, i = 1, 2, · · · , n, (2)

where the εij/σ is an i.i.d standard normal random variable.

By using the coded explanatory values, Kim et al. (2003) obtained the following

alternative form of the underlying model

yij = B0 + B1x
∗
i + εij, i = 1, 2, · · · , n, (3)

where B0 = A0 + A1x̄, B1 = A1, x∗
i = (xi − x̄) and x̄ = 1

n

n∑
i=1

xi. For the jth sample,

the least square estimators for B0, B1 and σ2 are, respectively,

b0j = ȳj, b1j =
Sxy(j)

Sxx

, MSEj =
1

n − 2

n∑

i=1

(yij − b1jx
∗
i − b0j)

2, (4)
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where ȳj = 1
n

n∑
i=1

yij, Sxx =
n∑

i=1

(xi − x̄)2 and Sxy(j) =
n∑

i=1

(xi − x̄)yij. Note that

these three estimators are independent. Thus, they proposed to use three EWMA

charts (EWMAI , EWMAS, EWMAE) to detect if the Y -intercept (B0), slope (B1)

and standard deviation (σ) had changed, respectively. They are

EWMAI(j) = θb0j + (1 − θ)EWMAI(j − 1)

EWMAS(j) = θb1j + (1 − θ)EWMAS(j − 1)

EWMAE(j) = max
{
θln(MSEj) + (1 − θ)EWMAE(j − 1), ln(σ2)

}
,

where EWMAI(0) = B0, EWMAS(0) = B1 , EWMAE(0) = ln(σ2) and θ is a

smoothing constant. The three EWMA charts are used jointly, and the profile

change is detected as one of the chart signals. Their ARL comparisons show that

the three EWMA charts are more effective than Kang and Albin’s (2000) methods

in terms of detecting sustained shifts in the Y -intercept and slope, and increases in

the error variance. The three EWMA charts are particularly effective in detecting

shifts in the slope of the line, i.e., the changes in parameter B1 of equation (3).

Also, the authors argued that their method seemed more interpretable. Thus, in

our paper, the combined multiple EWMA charts approach (denoted as KMW chart

hereafter) is used as a benchmark for comparisons with our proposed scheme.

Note that monitoring simple linear profiles that have three parameters to be

controlled is similar to monitoring the two parameters of mean (µ) and variability

(σ2) simultaneously in conventional SPC applications. The combination of two

EWMA charts is usually required to monitor both the mean and variability. Gan

(1995) suggested a simple procedure to design a combination using a two-sided

EWMA chart for the mean and two one-sided EWMA charts for the variability. His

method is similar to the approach by Kim et al. (2003). One of their difference

is the number of the parameters to be controlled, and another difference is that

Kim et al. (2003) only considered the upper-sided chart for detecting the standard

deviation. Reynolds and Stoumnos (2001) considered the use of two EWMA charts

as well for individual observations.

As we can see, the KMW approach requires three EWMA charts (even more, an-

other one-sided EWMA chart may be needed to detect a decrease in variance) to be

handled side by side, each one having a statistic that needs to be updated and plot-
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ted for every sample. Such a scheme may be manageable for a simple linear profile

case, but it can become quite complicated and infeasible for a general linear profile,

as the setup of general profile charting schemes requires even more control charts

to be combined simultaneously to monitor these additional parameters. Hence, the

design, implementation and performance assessment of such a combined scheme will

be rather complex and impractical.

In our paper, we purpose to use one single chart to monitor all the profile pa-

rameters so that the design and operation of the monitoring scheme can be greatly

simplified. Here, we firstly consider the Phase II case in which the in-control (IC)

values of parameters β and σ2 are assumed to be known, i.e., it is assumed that the

IC data set used in Phase I is large enough so that errors associated with estimating

the three parameters can be neglected. The case of monitoring the general linear

profiles with estimated parameters will be discussed in Section 9.

4 A Novel Multivariate EWMA Chart for Moni-

toring a General Linear Profile

In this section, we will propose a novel MEWMA scheme to monitor a general linear

profile.

To monitor a general linear profile model (1), there are p + 1 parameters, p co-

efficients and the standard deviations σ, to be controlled simultaneously. Following

the notation in model (1), we define

Zj(β) = (XτX)
1

2 (β̂j − β)/σ (5)

Zj(σ) = Φ−1
{
F

(
(n − p)σ̂j/σ

2; n − p
)}

, (6)

where β̂j = (XτX)−1XτYj, σ̂j = 1
n−p

(Yj−Xβ̂j)
τ (Yj−Xβ̂j), Φ−1(·) is the inverse of

the standard normal cumulative distribution function and F (·; ν) is the chi-square

distribution function with ν degrees of freedom (χ2
ν). Note that this type of trans-

formation with the use of an EWMA chart have been suggested by Quesenberry

(1995) and Chen et al. (2001). Denote Zj as (Zj(β),Zj(σ))τ , which is known as a

(p + 1)-variate random vector. The vector is assumed to be multivariate normally

distributed with a mean zero and an identity covariance matrix when the process is
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in control. Such a transformation has fairly nice properties: the distribution of this

random vector is independent of the sample size, n, when the process is in control

and therefore we can handle the case of variable sample size conveniently. Moreover,

the choice of the control limits will not be affected by n so that the control chart can

be designed more easily. Another advantage of transforming σ̂j to Zj(σ) is that the

distribution of Zj(σ) would be symmetric, so that the control chart can be sensitive

to decreases in the standard deviation as well.

Here, the EWMA charting statistic is defined as:

Wj = λZj + (1 − λ)Wj−1 j = 1, 2, · · · , (7)

where W0 is a p + 1-dimensional starting vector and λ is a parameter (chosen such

that 0 < λ ≤ 1) that regulates the magnitude of the smoothing. The chart signals

if

Uj = Wτ
j Wj > L

λ

2 − λ
, (8)

where L > 0 is chosen to achieve a specified IC ARL. This control scheme can be

deemed as a special application of MEWMA charts. The MEWMA chart was first

proposed by Lowry et al. (1992). The design of MEWMA charts was investigated

by Prabhu and Runger (1997).

In this paper, the smoothing constant, λ, in equation (7) is first taken to be 0.2

in our numerical study, which is consistent with Kim et al. (2003). In general, a

smaller λ leads to a quicker detection of smaller shifts (Lucas and Saccucci (1990)

and Prabhu and Runger (1997)). The starting vector, W0, is chosen to be zero and

the control limits, L, are fixed according to the designed IC ARL and λ.

Through the transformation, the control limits of the proposed MEWMA chart

are independent of size, n. Therefore, the control limits, L, can be conveniently

tabulated as in Table 1. Here, the values of L are provided for various values of

λ and IC ARL when p = 2 corresponds to the simple linear regression model. To

determine other values of p, λ and IC ARL, a computer program is available from

the authors upon request.
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Table 1 The control limits L of our proposed MEWMA
chart for various λ and IC ARL when p = 2

λ
ARL 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
200.0 9.38 10.79 11.47 11.87 12.14 12.32 12.56 12.69
370.4 11.06 12.36 12.97 13.34 13.57 13.74 13.94 14.04
500.0 11.85 13.10 13.69 14.04 14.26 14.41 14.60 14.70

In this paper, we evaluate the charting performance by ARL. Runger and Prabhu

(1996) and Rigdon (1995a, 1995b) presented theoretical developments with Markov

chains and integral equations, respectively, to determine the performance of MEWMA

charts. Here, we extend the work of Runger and Prabhu (1996) and easily calculate

the IC and OC ARL of the proposed MEWMA chart via the Markov chain model.

In Kim et al. (2003), the performance of their KMW chart is analyzed through

simulations. The control limits of the three EWMA charts are chosen so that each

individual chart has the same IC ARL, while jointly achieving a specified overall IC

ARL. The determination of control limits for the KMW chart by simulation is not

trivial, because large numbers of simulated runs are required to obtain an accept-

able standard error. Moreover, as the control limits of the KMW chart depend on

the sample size, n, as well, the design of this scheme could be tedious. Although

a three-dimensional Markov chain may be explored to evaluate the performance of

the KMW chart, there would be considerable computing burden.

Kang and Albin (2000) proposed an alternative using the T 2 chart, which is also

a single multivariate chart that monitors a profile. The T 2 chart is a Shewhart-type

multivariate chart, while our proposed chart is a EWMA-type. In addition to the

difference in chart type, we use a random vector with mean zero and an identity

covariance matrix that contains the transformation of the standard deviation while

their T 2 chart does not. The resulting advantage is that our proposed chart would

be effective in detecting both the increase and decrease in the standard deviation

and sensitive to small and moderate shifts as well.

Another alternative that may also be applied to the linear profile case is the Max-

EWMA chart proposed by Chen et al. (2001). Their chart monitors the maximum

absolute value of Wj’s p+1 components instead of Uj . Performance comparisons of

these two control schemes have been conducted (available from the authors) and nu-

merical results show that there is no significant difference between them. However,

10



similar to the drawback of the KMW chart, the performance of the MaxEWMA

chart is difficult to evaluate because this needs to be done through simulations. Al-

though Calzada et al. (2004) use a two-dimensional integral equation to obtain the

ARLs for the chart proposed by Chen et al. (2001), extending this method to even

the three-dimensional case would require excessive computing load.

Note that Kim et al. (2003) and Woodall et al. (2004) mention that the multi-

variate EWMA chart may be used to improve the performce of the T 2 chart but the

interpretation of an out-of-control signal would not be straightforward. However, in

Section 8, we provide a simple diagnostic aid that can provide information for iden-

tifying and isolating the out-of-control signal with at least comparable diagnostic

performance to that of the KMW scheme.

5 Adding Variable Sampling Features to the Pro-

posed Profile Monitoring Scheme

The variable sampling interval (VSI) scheme is a known approach to enhancing

the efficiency of SPC monitoring schemes. However, existing multiple chart profile

monitoring schemes such as the KMW scheme cannot easily incorporate the VSI

feature. Because MEWMA is a single chart, a VSI version can be designed and

implemented for a general linear profile without much modification and can largely

improve the efficiency in detecting profile changes.

The conventional practice in applying SPC control charts to monitoring a process

is to use a fixed sampling rate (FSR) that takes samples of fixed sample size (FSS)

with a fixed sampling interval (FSI). In recent years, several modifications have been

suggested to improve traditional FSR policies that provide better performance than

conventional charts in the sense of quicker responses to a process change. Among

them, adopting a variable sampling interval in a control chart instead of a FSI is

one of the most popular and useful approaches to improving the detection ability.

In a VSI control chart, the sampling interval is varied as a function of the control

statistic. The basic idea of the VSI feature is to use a shorter sampling interval if

there is some indication of a possible change, but to use a longer sampling interval

if there is no such indication.
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Many researchers have contributed to the theory and practice of the VSI chart.

Most work on developing VSI control charts focuses on monitoring the mean, such

as Reynolds et al. (1988), Reynolds and Arnold (1989), Reynolds (1989), Reynolds

et al. (1990), Runger and Montgomery (1993) and Reynolds and Arnold (2001), etc.

Chengular et al. (1989) introduced a VSI Shewhart chart for monitoring the mean

and variance with a sample size of n > 1. Reynolds and Stoumbos (2001) added

the VSI feature to various combinations of control charts to detect the shift in the

mean and variance using individual observations. There are rather few research

works on VSI multivariate control charts. Aparisi and Haro (2001) considered a

VSI control chart based on Hotelling’s statistic. Reynolds and Kim (2005a, 2005b)

recently investigated MEWMA control charts based on sequential sampling and

unequal sample sizes respectively.

Past work on VSI control charts (see e.g. Reynolds (1989)) has shown that it

is sufficient to use only two possible values for the sampling intervals. Hence, in

this paper, we consider two possible interval values, say 0 < d1 ≤ d2. To apply the

VSI feature to the MEWMA control chart, additional warning limits 0 ≤ L1 ≤ L

inside the control limits are applied to determine which sampling interval to use

next. In particular, a long sampling interval, d2, should be used after the sample, j,

is obtained, if Uj falls inside the warning limits of L1
λ

2−λ
. On the other hand, a short

sampling interval, d1, should be used if Uj falls outside of these limits but inside the

control limits of L λ
2−λ

. If Uj falls outside of the control limits, then an out-of-control

signal would be triggered as in the case of the traditional FSI MEWMA chart.

When evaluating the statistical performance of a VSI control chart, both the

average time to signal (ATS) and average number of samples to signal (ANSS)

should be considered, because the ATS is not simply a constant multiple of the

ANSS, as is the case with an FSI chart. In the comparative study in this paper,

we require that all of the charts being compared have the same in-control sampling

rate and the same false alarm rate. This ensures that the charts being compared

will have the same ATS and ANSS when the process is in control. When different

control charts being compared are designed to have the same IC ATS and ANSS,

these charts can then be fairly compared according to the steady-state ATS (SSATS).

The SSATS is defined as the expected time from the point of the shift to the point at
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which the chart signals, under the assumption that the control statistic has reached

a stationary or steady state distribution by the time the shift occurs.

Discussion of the assumptions used in defining the SSATS can be found in

Reynolds et al. (1990). The computation of SSATS is more complicated than

that of ATS for the reason that the point at which the shift occurs may fall within

the interval between two samples. For the VSI and FSI MEWMA charts, the ATS

and SSATS can also be evaluated by the Markov chain approximation, which is

detailed in Section 6. The performance comparisons between FSI and VSI schemes

are presented in Section 7.

Here, Table 2 provides the values of the warning limits, L1, that will make the in-

control ATS and ANSS equal to the ATS and ANSS with the corresponding control

limits, L, tabulated in Table 1.

Table 2 The warning limits L1 of our proposed MEWMA
chart for various λ and IC ATS when p = 2

(d1, d2) = (0.1, 1.9)
λ

ATS 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
200.0 2.038 2.190 2.247 2.278 2.297 2.310 2.326 2.334
370.4 2.172 2.265 2.299 2.317 2.327 2.335 2.344 2.349
500.0 2.217 2.290 2.315 2.328 2.337 2.342 2.350 2.354

(d1, d2) = (0.5, 1.25)
λ

ATS 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
200.0 2.925 3.142 3.225 3.268 3.296 3.316 3.339 3.349
370.4 3.120 3.254 3.301 3.329 3.345 3.356 3.369 3.375
500.0 3.186 3.290 3.329 3.347 3.358 3.367 3.378 3.383

(d1, d2) = (0.25, 1.50)
λ

ATS 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
200.0 2.536 2.723 2.795 2.832 2.855 2.872 2.892 2.903
370.4 2.704 2.818 2.860 2.881 2.896 2.905 2.917 2.923
500.0 2.760 2.849 2.882 2.899 2.909 2.916 2.924 2.928

13



6 ARL and ATS Calibrations of the Proposed

Profile Monitoring Scheme

Because our proposed chart is a special case of the MEWMA chart proposed by

Lowry et al. (1992), the Markov chain approximation presented by Runger and

Prabhu (1996) may be extended to calculate our ARLs. Here, we only briefly de-

scribe the Markov chain approximation method, but highlight some necessary mod-

ifications. For more detail on the Markov chain approximation for a conventional

MEWMA chart, readers may refer to Runger and Prabhu (1996).

First, because the vector, Z, (here we suppress the sample number j for sim-

plicity) is a vector with a mean zero and identity covariance. The IC ARL can be

evaluated by the same approach as in Runger and Prabhu (1996). A one-dimensional

Markov chain is used to approximate the IC ARL. Define the (m + 1) by (m + 1)

transition probability matrix, P = (pij), where the element pij denotes the proba-

bility of a transition from state i to j, and (m+1) is the number of transition states.

Now, we have for i = 0, 1, 2, · · · , m,

pij = f−1
1

(
(j + 0.5)2g2/λ2; p + 1; ξ

)
− f−1

(
(j − 0.5)2g2/λ2; p + 1; ξ

)
0 < j ≤ m

pi0 = f−1
1

(
(0.5)2g2/λ2; p + 1; ξ

)
j = 0

where g = (L λ
2−λ

)
1

2 /(m+1), ξ = [(1−λ)ig/λ]2 and f−1
1 (·; ν; ξ) is the inverse function

of the noncentral chi-squared distribution function with ν degrees of freedom and

non-centrality parameter ξ. The IC ARL can then be evaluated by

ARL = lτ (I − P)−11,

where I denotes the (m + 1)-dimensional identity matrix and l is a (m + 1) vector

with a 1 as the first element. Note that a computer program calculates the ARL of

the MEWMA chart presented by Molnau et al. (2001) can be directly utilized.

Next, we consider the approximation under an out-of-control condition. Lowry

et al. (1992) and Runger and Prabhu (1996) have shown that the off-target per-

formance of the MEWMA chart may be determined by assuming, without loss of

generality, that the off-target mean vector is δl. The two-dimensional Markov chain

can then be used to analyze the OC ARL of MEWMA. One dimension that includes
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m2 + 1 states is used to analyze the properties of IC components, while the other

dimension of the Markov chain that has 2m1+1 transition states is for analyzing the

performance of the OC component. Therefore, a (2m1 + 1) × (m2 + 1) dimensional

matrix is utilized.

In our case, when the regression coefficients of a linear profile change, i.e., from

β to β∗, the noncentrality parameter, δ, is

δ =
1

σ

√
(β∗ − β)τ (XτX)(β∗ − β). (9)

However, when the standard deviation of the profile changes from σ to δσ, both the

distributions of Z(β) and Z(σ) would also change, although their independency still

holds. Furthermore, the Z(σ) would be no longer normally distributed. Thus, some

modifications are necessary to obtain the OC ARL in the profile case.

In fact, if we divide Z by δ, the distributions of Z(β) would be a p-dimensional

vector that was standard multivariate normally distributed. It can be verified that

the run-length distributions of the EWMA of Z/δ with the control limit L λ
2−λ

/δ

turn out to be the same as that of the EWMA of Z with the control limit L λ
2−λ

.

Hence, a two-dimensional Markov chain can still be used for this case. The on target

one-dimensional Markov chain can then be obtained by a similar approach as the

IC case described above with the control limits L λ
2−λ

/δ replacing L λ
2−λ

, and degrees

of freedom p + 1 replacing p in the f−1
1 function. Also, the transitional probability

of the off-target part, Z(σ)/δ, from state i to j denoted by v(i, j) can be obtained

as follows: similar to Runger and Prabhu (1996), we partition the control limits,

−L λ
2−λ

/δ and L λ
2−λ

/δ, into 2m+1 states of length g. Let ci = −L λ
2−λ

/δ+(i−0.5)g.

Then,

v(i, j) = Pr
{1

λ

[
− L

λ

2 − λ
/δ + (j − 1)g − (1 − λ)ci

]
< Z(σ)/δ

<
1

λ

[
− L

λ

2 − λ
/δ + jg − (1 − λ)ci

]}

= F
(
F−1

(
Φ

( δ

λ

[
− L

λ

2 − λ
/δ + jg − (1 − λ)ci

])
; n − 2

)
/δ2; n − 2

)

−F
(
F−1

(
Φ

( δ

λ

[
− L

λ

2 − λ
/δ + (j − 1)g − (1 − λ)ci

])
; n − 2

)
/δ2; n − 2

)
,

where F is the chi-squared distribution function defined in Section 3. After that,

we combine the two one-dimensional transition probability matrices into a bivariate
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Markov chain by the methodology of Runger and Prabhu (1996). The OC ARL

when a shift in the standard deviation occurs can then be obtained.

Now, we consider the calculation of the ATS and SSATS for profile monitoring.

When the process is in control, we can obtain a one-dimensional transition proba-

bility matrix, P, from the calculation of the ARL for the MEWMA chart. By using

the same methodology as in Reynolds et al. (1990), the IC ATS can be expressed as

ATS = d0 + lτ (I −P)−1d,

where d0 is the interval between the beginning of the process and the time the first

sample is taken, and d is a (m + 1) vector. The ith element of d corresponds to the

interval to be taken after the control statistics fall inside the state, i. The approach

to determine the d is as follows: when the upper limit of ith state is smaller than the

warning limit, say (i + 0.5)g ≤ (L1
λ

2−λ
)

1

2 , then the ith element of d is d2. When the

lower limit of the ith state is larger than the warning limit, say (i−0.5)g > (L1
λ

2−λ
)

1

2 ,

then the ith element of d is d1. When the warning limit falls between the the upper

limit and lower limit, the extrapolations are used. In this paper, all of the numerical

results are for the general case with d0 = 1.

To compute the SSATS, the bivariate Markov chain illustrated above can be

applied as well. Note that although the two-dimensional Markov chain is used to

determine the statistical properties of the MEWMA chart when the process is out of

control, it is also be valid in the in-control case. Define Q0 as the (2m1+1)×(m2+1)-

dimensional transition probability matrix when the process is in control. Let d be

a (2m1 + 1) × (m2 + 1) vector, and the ith element of this vector corresponds to

the interval being taken after the control statistics fall inside the state, i. Denote π

to be the normalized eigenvector subject to πτQ0 = πτ . Suppose α is the vector of

starting probabilities that the shift occurs in an interval between samples. Then, ατ

can be expressed in matrix notation, α = πτ
D

πL
, where D is a diagonal matrix with

d on the diagonal. Then, the SSATS can be expressed as

SSATS = ατ [(I − Q)−1 −
1

2
I]d,

where Q is a (2m1+1)×(m2+1) dimension matrix when the process is out of control.

The Q can then be calculated by the same method used to calculate the OC ARLs.
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In addition, similar to Runger and Prabhu (1996), we compute (I−P)b = 1, which

can be quicker than computing (I −P)−11, in obtaining the ARL and ATS.

In this paper, the IC ARL and ATS are obtained using m = 100 and the OC

ARL and SSATS are obtained using m1 = m2 = 30.

We have conducted simulations to verify the accuracy of the Markov chain ap-

proximation for the profile monitoring case, and the results are very satisfactory.

7 Monitoring Performance Comparisons

In this section, we investigate the monitoring performance of the proposed MEWMA

scheme via ARL comparisons. Although our proposed control chart can be used to

monitor the general linear profile model (1), there seem to be no other effective and

comparable methods for such a model except for the simple straight line model (2),

i.e., p = 2 in model (1). Hence, we compare the performance of our proposed control

chart and the KMW chart under model (2) (or (3) equivalently).

For simplicity and consistency with the literature, the change-point is assumed

to be τ = 0, and only the case of overall IC ARL=200 is considered. The underlying

IC model is the same as that in Kang and Albin (2000), in which the parameters in

the in-control model are A0 = 3, A1 = 2 and σ2 = 1, xi = 2, 4, 6, 8. In Kim et al.

(2003), the control limits are set to be 3.0156, 3.0109 and 1.3723 for the three EWMA

charts (EWMAI , EWMAS, EWMAE), respectively, when the smoothing constant, λ,

is chosen to be 0.2. In the case of known parameters, this design has an overall IC

ARL of roughly 200 and the IC ARL of each chart is about 584. The ARL results of

the KMW and MEWMA charts are evaluated with 50,000 simulations and Markov

chain approximation, respectively. Moreover, the types of shifts considered in this

paper are consistent with those in Kim et al. (2003).

We compared our proposed MEWMA chart with the KMW chart in terms of out-

of-control ARL. The OC ARLs of our MEWMA chart and that of the KMW chart for

detecting shifts in A0, A1, σ and B1 are given in Table 3. Note that when the process

parameter A1 is changed to A1 + δ1σ, it can be easily checked that the noncentrality

parameter, δ, in (9) becomes δ1

√
n · X̄ + Sxx. From this table, we observe that for

a detection of shift in A1, the two charts have very similar performances with large
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shifts. With small and moderate shifts, our proposed MEWMA performs a little

better than the KMW chart. Also, for detecting a shift in the standard deviation, our

proposed MEWMA chart performs better than the KMW chart, except with a very

small shift. Our proposed MEWMA chart has a slight disadvantage in detecting the

moderate and large shifts in intercept A0 and B1 compared with the KMW chart,

but the difference between them seems negligible.

Table 3 ARL comparisons between
MEWMA and KMW charts for shifts in
A0, A1, the standard deviation and B1.

A0 A1

δ1 MEWMA KMW δ1 MEWMA KMW
0.1000 131.5 133.7 0.0250 99.0 101.6
0.2000 59.9 59.1 0.0375 57.4 61.0
0.3000 29.6 28.3 0.0500 35.0 36.5
0.4000 17.2 16.2 0.0625 23.1 24.6
0.5000 11.5 10.7 0.0750 16.4 17.0
0.6000 8.5 7.9 0.1000 9.8 10.3
0.8000 5.8 5.1 0.1250 6.9 7.2
1.0000 4.1 3.8 0.1500 5.3 5.5
1.5000 2.6 2.4 0.2000 3.7 3.8
2.0000 2.0 1.9 0.2500 2.9 2.9

σ B1

δ1 MEWMA KMW δ1 MEWMA KMW
1.1000 76.2 72.8 0.0500 120.5 120.8
1.1500 48.7 48.1 0.0750 77.3 77.3
1.2000 33.2 33.5 0.1000 50.0 49.1
1.2500 24.1 24.9 0.1500 24.0 22.8
1.3000 18.4 19.4 0.2000 14.0 13.1
1.4000 12.1 12.7 0.2500 9.5 8.9
1.6000 7.0. 7.2 0.3000 7.1 6.6
1.8000 4.9 5.1 0.4000 4.7 4.4
2.2000 3.1 3.2 0.5000 3.6 3.3
2.6000 2.3 2.5 0.7000 2.5 2.3
3.0000 1.9 2.1 0.9000 2.0 1.9

Note that in detecting the change of standard deviation, the KMW chart is an

upper-sided scheme, i.e., it is for detecting an increase but not directly for a decrease

in variance. However, our approach can detect the decreases in variance without

modification. The ARL results are shown in Table 4.
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Table 4 ARLs of the MEWMA chart
in detecting a decrease in variance.

δ1 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ARL 3.3 3.9 4.5 5.3 6.4 7.8 9.7
δ1 0.45 0.50 0.55 0.60 0.65 0.70 0.75

ARL 12.5 16.5 22.9 33.0 49.1 74.9 114.5

Simultaneous shifts in the intercept and slope in model (3) are also considered in

this paper. The OC ARL values are obtained and summarized in Table 5. The mag-

nitudes of shifts in intercept (B0) δ1 and slope (B1) δ2 are consistent with Kim et al.

(2003). It can be clearly seen that the noncentrality parameter is δ =
√

δ2
1n + δ2

2Sxx.

Here, the MEWMA chart performs better than the KMW chart in most cases except

when one of δ1 and δ2 is very large but the other is very small.

Table 5 The ARL comparisons between MEWMA and KMW charts under
combinations of intercept (δ1) and slope (δ2) shifts in model (3)

MEWMA δ2

KMW 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
0.05 155.8 111.0 72.9 48.0 32.8 23.5 17.7 13.9 11.3 9.5

157.6 114.7 74.8 48.3 32.2 22.5 16.9 13.2 10.7 8.9
0.10 118.0 89.2 62.1 42.8 30.2 22.2 16.9 13.5 11.0 9.3

122.1 94.6 66.4 44.9 30.7 21.9 16.6 13.1 10.6 8.9
0.15 82.2 66.3 49.5 36.1 26.7 20.2 15.8 12.8 10.6 9.0

84.6 70.8 54.5 39.6 28.5 20.9 16.1 12.8 10.4 8.8
0.20 56.4 48.0 38.2 29.6 22.9 18.1 14.5 12.0 10.1 8.7

57.1 51.1 42.4 33.3 25.4 19.5 15.4 12.4 10.2 8.7
δ1 0.25 39.5 35.0 29.4 24.0 19.5 15.9 13.2 11.1 9.5 8.2

39.5 36.5 32.3 27.1 22.0 17.8 14.4 11.9 10.0 8.5
0.30 28.7 26.2 22.9 19.6 16.5 13.9 11.8 10.2 8.8 7.8

28.2 26.9 24.7 22.0 18.8 15.7 13.2 11.2 9.6 8.3
0.35 21.7 20.2 18.3 16.1 14.0 12.2 10.6 9.3 8.2 7.3

20.9 20.2 19.1 17.6 15.8 13.9 12.1 10.5 9.1 8.0
0.40 17.0 16.1 14.9 13.5 12.0 10.7 9.5 8.5 7.6 6.9

16.2 15.9 15.3 14.5 13.5 12.1 10.9 9.7 8.6 7.6
0.45 13.7 13.2 12.4 11.4 10.5 9.5 8.6 7.8 7.1 6.5

13.1 12.9 12.6 12.1 11.4 10.6 9.8 8.9 8.0 7.3
0.50 11.4 11.1 10.5 9.9 9.2 8.5 7.8 7.2 6.6 6.1

10.8 10.8 10.6 10.3 9.9 9.3 8.7 8.1 7.5 6.9

We may conclude from Tables 3-5 that for detecting shifts in simple linear pro-

files, the single scheme MEWMA chart has at least comparable performance with

the combination scheme KMW chart. The MEWMA chart usually outperforms the
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KMW chart when several parameters have changed. Some other numerical results

have been obtained (available from the authors) for shifts in combinations of either

B0 and σ or B1 and σ to validate this argument.

Finally, we show the improved performance gained in terms of ATS by adding

the VSI feature to the MEWMA chart for monitoring linear profiles. Although the

VSI feature may also be applied to the KMW chart, the design of the combination

of three VSI EMWA charts is not at all trivial because three warning limits and

three control limits need to be simultaneously chosen so that all charts have the

same individual IC average sampling rate and IC average false-alarm rate. Here, we

compare only the SSATS of the FSI and VSI MEWMA charts. We do not tabulate

the SSATS of the FSI KMW chart because the performance of the KMW chart

would be similar to that of the MEWMA chart. Table 6 presents the SSATS values

of the VSI and FSI MEWMA charts for the linear profiles models (2). The shifts in

intercept and standard deviation are investigated. The IC ATS and ANSS of each

chart are both set to be equal to 200.0. That is, the average IC sampling rate of

the VSI chart is one sample per unit time. All the numerical results listed in Table

6 are obtained by Markov chain approximation.

Table 6 SSATS comparisons between FSI MEMWA and VSI MEWMA
charts for the shift in intercept and standard deviation.

A0 σ
δ1 FSI VSI δ1 FSI VSI

d1=0.5 d1 = 0.25 d1 = 0.1 d1=0.5 d1 = 0.25 d1 = 0.1
d2=1.25 d2 = 1.5 d2 = 1.9 d2=1.25 d2 = 1.5 d2 = 1.9

0.1 127.9 124.4 122.2 120.0 0.1 2.7 2.1 1.9 1.8
0.2 57.6 51.9 48.3 45.2 0.3 5.8 4.3 3.6 3.3
0.4 28.1 23.3 20.4 18.1 0.5 15.9 11.2 8.7 7.1
0.4 16.1 12.6 10.6 9.2 0.7 73.8 63.9 57.6 51.1
0.5 10.6 8.0 6.6 5.8 1.1 73.2 68.9 66.3 63.9
0.6 7.6 5.7 4.8 4.2 1.2 31.2 27.4 25.2 23.4
0.8 4.8 3.6 3.1 2.8 1.4 16.9 14.1 12.5 11.4
1.0 3.4 2.6 2.3 2.1 1.8 10.8 8.8 7.7 6.9
1.5 2.0 1.6 1.4 1.4 2.2 4.0 3.2 2.7 2.6
2.0 1.4 1.1 1.0 1.1 2.6 2.4 1.9 1.7 1.7
3.0 0.8 0.7 0.8 0.9 3.0 1.3 1.1 1.1 1.2

From Table 6, we conclude that adding the VSI feature can provide quite sub-
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stantial reductions in the time required to detect small and moderate shifts. The

results presented here are fairly consistent with previous research on univariate VSI

control charts. In general, the interval, d1, should be as small as possible for bet-

ter statistical performance (Reynolds et al. (1990)), so it usually depends on how

soon it is feasible to sample again after the current sample is taken. The sampling

interval, d2, on the other hand, could be chosen to be long so that the resulting

control chart will have an acceptable average sampling rate. Similar conclusions can

be obtained for other types of changes as well.

8 Diagnostic Aids in Profile Monitoring

In the practice of quality control, in addition to detecting a process change quickly, it

is also critical to diagnose the change and to identify which parameter or parameters

in a profile have shifted after an out-of-control signal occurs. Such diagnosis is

particularly important in general profile monitoring, where there are more process

parameters involved. A diagnostic aid to locate the change point in the process and

to isolate the type of parameter change in a profile will help an engineer to identify

and eliminate the root cause of a problem quickly and easily. In this section, we

discuss the diagnosis of a general linear profile and provide a systematic diagnostic

approach to identify the location of the change and which parameters in the profile

have changed.

8.1 Estimate of the Change Point in Profile Monitoring

To identify the location of a change point in profile monitoring, a maximum like-

lihood estimator of the change-point statistic is used. We assume that an out-of-

control signal is triggered at subgroup k by the MEWMA chart. Our suggested

estimator of the change-point, τ , of a step shift is given by

τ̂ = arg
0≤t<k

max{lr(tn, kn)}, (10)

where lr(tn, kn) is the generalized likelihood ratio statistic. The expressions of

lr(tn, kn) and the involved deductions are given in Appendix. This estimator has

been used for off-line non-sequential change-point detection in linear models in the
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literature (see Chapter 3 of Csorgo and Horvath (1997) for more details). In this

paper, we utilize it in an on-line SPC application. Zou et al. (2006) recently sug-

gested a similar estimator, using a standardized generalized likelihood ratio statistic

instead, when the true parameters of the linear profile are unknown. It should be

noted that Nishina (1992) proposed an estimator for the process change point when

a traditional EWMA control chart sends out a signal. Pignatiello and Samuel (2001)

showed that the MLE method performs much better than the method proposed by

Nishina (1992) for a conventional process change. We think that this result should

be valid for the linear profile model as well, so we do not investigate Nishina’s (1992)

method further in this paper.

Here, we conduct simulations to evaluate the effectiveness of the estimator (10).

In the simulations, the change-point τ = 100 is used. Fifty thousand independent

series are generated in the simulations. Note that any series in which a signal

occurs before the τ + 1 product observations is discarded. In Table 7, we tabulate

the average (AVE) and standard deviation (SD) of the estimate τ̂ for the shift in

intercept and variance under model (3). Also, the observed frequencies with which

the estimator are within a given number of samples around the actual τ , i.e., the

probabilities Pr(τ̂ = τ), Pr(|τ̂ − τ | ≤ 1), Pr(|τ̂ − τ | ≤ 3) and Pr(|τ̂ − τ | ≤

5) (denoted by P0, P1, P3 and P5 in Table 7, respectively) are presented. These

probabilities may provide certain indications of the precision of the estimator.

Table 7 shows that the proposed estimator performs well from the viewpoint

of the average for any shift size. We can also see that τ̂ has better precision as

the magnitude of the shift increases. These findings about the MLE estimator for

profile monitoring are consistent with Pignatiello and Samuel’s (2001) conclusion

about conventional non-profile monitoring.

Table 7 The average, standard deviation and precision of
change point estimates for the proposed method

B0 σ
δ1 AVE SD P0 P1 P3 P5 δ1 AVE SD P0 P1 P3 P5

0.4 102.6 13.3 0.13 0.27 0.45 0.58 1.4 100.5 10.5 0.20 0.39 0.60 0.73
0.8 99.6 7.0 0.40 0.63 0.83 0.91 1.8 99.6 6.2 0.45 0.69 0.87 0.93
1.2 99.6 4.7 0.63 0.83 0.94 0.97 2.2 99.6 4.9 0.61 0.83 0.94 0.97
1.6 99.8 2.6 0.79 0.94 0.98 0.99 2.6 99.7 3.5 0.72 0.90 0.97 0.98
2.0 99.8 2.3 0.89 0.97 0.98 0.99 3.0 99.8 2.6 0.79 0.94 0.98 0.99
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8.2 Identification of the Out-of-Control Profile Parameters

After locating the change point in a profile, it is also critical to identify the specific

parameter in the profile that has changed. In Kim et al. (2003), since their pro-

posed chart is the combination of three EWMA charts and each chart detects the

corresponding parameter, the diagnosis of any process change is easier than that of

omnibus methods of Kang and Albin (2000). However, there is also a drawback in

using the combination of charts to determine which parameter has changed. When

one of the charts has signaled, engineers usually will only go after that specific chart-

ing parameter and ignore the possibility that there may be other parameters that

have changed as well. In addition, using combination schemes such as the KMW

chart to diagnose a special cause may not be appropriate for a general linear profile

because the components of β̂ are usually correlated except in a simple linear profile.

At first glance, our proposed method based on a single chart seems not to be

able to diagnose which parameter has changed. However, as Reynolds and Stoumbos

(2005) pointed out, the control charts used as diagnostic aids do not necessarily have

to be the same control charts used to determine when to signal. Similar arguments

can also been found in Hawkins and Zamba (2005), where two parametric tests are

used to determine if the shift comes from the mean or the variance. Thus, in this

paper, we propose using a parametric test method as an auxiliary tool to determine

which parameters in a profile have changed after the chart has triggered a signal.

Denote

β̃t,k =
1

(k − t)
(XτX)−1Xτ

k∑

j=t+1

Yj (11)

σ̃2
t,k =

1

(k − t)n − p

k∑

j=t+1

(Yj −Xβ̃t,k)
τ (Yj − Xβ̃t,k). (12)

Assume that the MEWMA chart signaled at kth sample, after obtaining the change-

point estimator τ̂ using (10). The tests for the Y -intercept, standard deviation, and

regression coefficients are given as follows: we use the t-test for a Y -intercept change

using (k − τ̂ )n − p degrees of freedom and the test statistic

Ttest =

√
(k − τ̂ )n(β̃

(1)bτ ,k − β(1))

σ̃bτ ,k

, (13)
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where β̃
(1)bτ ,k denotes the first component of the p-dimensional vector, β̃bτ ,k. Also, the

χ2-test is used for a standard deviation change using (k− τ̂ )n−p degrees of freedom

and the test statistic

χ2
test =

[(k − τ̂ )n − p]σ̃2bτ ,k

σ2
. (14)

For the rest of the p − 1 profile parameters (β(2), · · · , β(p)), by considering the

correlations between their estimators, we follow the work of Jensen et al. (1984)

and use the following test with a reject region:

F
(i)
test : (k − τ̂ )

(
β̃

(i)bτ ,k − β(i)
)2

/miiσ̃
2bτ ,k > Fα(p − 1, (k − τ̂)n − p,R) (15)

for each i = 2, · · · , p, where miis are diagonal elements of M = (XτX)−1, R =

diag{m
− 1

2

11 , · · · , m
− 1

2

pp }Mdiag{m
− 1

2

11 , · · · , m
− 1

2

pp }, is the correlation matrix for β̂, and

Fα(p−1, (k− τ̂)n−p,R) is the upper α percentile of the multivariate F distribution

with parameters (p−1, (k−τ̂ )n−p,R) (see Kotz, Balakrishnan and Johnson (2000)).

Here, we compare the diagnostic ability of indicating out-of-control parameters

between the above hypothesis test method with α = 0.05 and the KMW chart under

a simple linear model (3). The simulation results are tabulated in Table 8.

In this table, these three digits in the first row present various combinations of

parameter changes in the Y -intercept, slope and standard deviation. For example,

the three digits in ”100” correspond to the Y -intercept, slope and standard devi-

ation, respectively, in which the first digit ”1” means a change in the Y -intercept

while the second and third digits ”00” means no shift in the other two parameters.

The simulated estimates of the probabilities of events occurring at “100”, “010”,

etc for various shift patterns are presented, where the upper and lower entries are

obtained by the KMW chart and the parametric tests. These probabilities indicate

the accuracies of the diagnosis approaches, with the larger value indicating a higher

diagnostic accuracy.

From Table 8, we may observe that for a single shift in the standard deviation,

our proposed parametric test method is more effective, but for a single shift in

the intercept or slope, the KMW chart actually performs better than our method.

However, our proposed approach has much better performance than the KMW chart

in identifying the special cause when there are simultaneous shifts in the intercept
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and slope, no matter what the shift sizes are. In summary, using the hypothesis

test method may alleviate the problem of the KMW chart in identifying multiple

parameter changes, but at the expense of the accuracy to some extent when indeed

only a single parameter (either Y -intercept or the slope) has shifted.

Table 8 A comparisons of diagnostic abilities of the method using
KMW chart and parametric test for

shift in B0,B1 and standard deviation in model (3)
δI δS δσ 100 010 001 110 101 011 111
0.4 0.0 1.0 0.942 0.029 0.027 0.001 0.002 0.000 0.001

0.652 0.024 0.020 0.136 0.081 0.005 0.062
0.8 0.00 1.0 0.979 0.011 0.008 0.002 0.001 0.000 0.000

0.746 0.008 0.013 0.105 0.069 0.001 0.039
0.0 0.10 1.0 0.079 0.839 0.079 0.001 0.001 0.001 0.001

0.045 0.559 0.032 0.151 0.014 0.092 0.084
0.0 0.15 1.0 0.037 0.928 0.033 0.001 0.001 0.002 0.000

0.026 0.631 0.021 0.134 0.008 0.090 0.068
0.0 0.0 0.1 − − − − − − −

0.002 0.001 0.879 0.001 0.049 0.053 0.015
0.0 0.0 0.4 − − − − − − −

0.002 0.001 0.811 0.001 0.077 0.075 0.031
0.0 0.0 1.6 0.154 0.149 0.653 0.005 0.018 0.020 0.000

0.057 0.062 0.720 0.030 0.046 0.046 0.005
0.0 0.0 2.8 0.138 0.145 0.522 0.020 0.079 0.083 0.013

0.033 0.032 0.810 0.021 0.026 0.029 0.003
0.2 0.1 1.0 0.408 0.532 0.050 0.009 0.001 0.001 0.000

0.162 0.219 0.026 0.395 0.034 0.040 0.100
0.4 0.15 1.0 0.589 0.365 0.019 0.026 0.001 0.000 0.000

0.255 0.144 0.020 0.421 0.030 0.019 0.087
0.6 0.15 1.0 0.812 0.149 0.011 0.027 0.001 0.000 0.000

0.415 0.061 0.016 0.366 0.045 0.007 0.068
0.8 0.20 1.0 0.817 0.123 0.007 0.051 0.001 0.000 0.000

0.412 0.044 0.016 0.405 0.035 0.004 0.060

9 Constructing the Proposed Chart when the Pa-

rameters are Estimated

So far, we have assumed that the profile parameters of the process are known in

Phase II. However, in the early stages of process improvement, the process parame-

ters, the intercept, slope and standard deviation may not be known exactly, as they

are usually just estimated by m IC trial samples of size n.

Some authors have recommended using 20 to 30 samples of size 4 or 5 to estimate

the process parameters for the traditional control charts (see Montgomery (2004)).

Also, several authors have investigated the effect of the estimated parameters on the
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performance of traditional control charts, such as Quesenberry (1993), Jones, Champ

and Rigdon (2001, 2004), etc. They all indicated that when the number of reference

samples is small, the control charts with estimated parameters may produce rather

large bias in the IC ARL from the nominal value and reduce the sensitivity of the

chart in detecting process changes. To attain a similar performance as the chart with

known parameters, 20 or 30 historical samples seem too small. For example, for the

traditional EWMA chart with λ = 0.2, 300 samples of five observations are required

to achieve the desired level of IC performance (Jones et al. (2001)). However, in

most cases, it may not be feasible to wait for the accumulation of sufficient large

subgroups, because the users usually want to monitor the process at the start-up

stage. The situation may be more serious for general profile monitoring, where there

are even larger trail samples required to have an accurate estimate of all the profile

parameters.

Hence, many authors had investigated design procedures for traditional con-

trol charts with estimated parameters, including Nedumaran and Pignatiello (2001)

and Jones (2002). Self-starting methods that update the parameter estimates with

new observations and simultaneously check for the OC conditions are developed for

situations when sufficient trial samples are unavailable. In the works by Hawkins

(1987), Hawkins and Olwell (1998), Quesenberry (1991, 1995), and Sullivan and

Jones (2002). Here we propose a self-starting enhancement of the MEWMA control

scheme to monitor general linear profiles when the nominal values of the process

parameters are not exactly known.

Suppose there are m IC historical samples of size n (as in Phase I analysis).

After we obtain t = m + 1, m + 2, · · · , (including m historical samples and t − m

future samples) samples, we have the following statistics

zt(β) =

√
t − 1

t
(XτX)

1

2 (β̂t − β̃0,t−1)/σ̃0,t−1

zt(σ) = σ̂2
t /σ̃

2
0,t−1,

where β̂t and σ̂2
t are defined in Section 3, and β̃0,t−1 and σ̃0,t−1 are defined in (11)

and (12) respectively.
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After that, we define the following vector

Zt =

(
Zt(β)
Zt(σ)

)
=

(
Φ−1{f2[zt(β); (t− 1)n − p]}

Φ−1{f3[zt(σ); n − p; (t − 1)n − p]}

)

where f2(; ν) is the cumulative distribution function of the student-t distribution

with ν degrees of freedom and f3(; ν1; ν2) is the cumulative distribution function of

the F distribution with ν1 and ν2 degrees of freedom. When the process is in control,

it can be shown that Zt is a multivariate normal random vector with a zero mean

and an approximate identity covariance matrix. Using a lemma by Basu (Lehmann

(1991)), we can show that the sequences of Zts are statistically independent. The

Zt is similar to Q-statistics in Quesenberry (1991) (see also Hawkins (1987) and

Hawkins and Olwell (1998)). We can then construct a revised MEWMA chart

based on the Zt that can update the parameter estimates with new samples and

detect the change of parameters simultaneously.

Note that the covariance matrix of the multivariate distribution, Zt, is not ex-

actly an identity matrix. However, as t increases, this covariance matrix quickly

converges to an identity matrix. Hence, we suggest still using the same control lim-

its, L, from the design of the MEWMA chart when the parameters are known to

construct such a self-starting chart. Based on an extensive simulation study, we ob-

serve that the run-length performance of the proposed self-starting scheme is fairly

close to that of the known parameter case. Also, as tabulated in Table 9, the ARL

and SDRL performances are rather indifferent to various values of m.

Table 9. The ARL and SDRL of the self-starting
MEWMA chart for m = 10(20)70

L=11.87 L=13.34
m m

10 30 50 70 10 30 50 70
ARL 202.1 201.6 201.4 200.7 374.1 373.5 373.1 371.4
SDRL 200.8 199.4 199.8 199.2 370.2 370.1 369.5 370.5

The performance of the proposed self-starting chart for monitoring model (2) is

demonstrated in Table 10. The case of m = 30 IC historical samples and n = 4 is

considered. Assume that the shift occurs at t = 30, 50, 100 and 200 so that the per-

formance assessment can have a broad representation. In total, 50,000 independent

series are generated for simulations. Note that any series for which a signal occurs
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before sample (t+1) is discarded. L = 11.87 are chosen so that the IC ARL is about

200. In Table 10, we notice that the proposed chart performs almost equally well for

all values of t when detecting a large shift. The OC ARL is naturally improved as

the amount of reference samples increases. However, such an improvement is much

more obvious in the case of detecting a small or moderate shift than when detecting

a large shift.

Table 10. The ARL performance of the self-
starting MEWMA chart for m = 30

δ1 t = 30 t = 50 t = 100 t = 200
0.2 164.0 141.4 114.8 89.1
0.4 80.9 47.8 26.9 20.1
0.6 22.1 12.2 9.3 8.7

A0 0.8 7.8 6.1 5.6 5.4
+ 1.0 4.9 4.3 4.1 4.0
δ1σ 1.2 3.7 3.4 3.3 3.2

1.4 3.1 2.8 2.7 2.7
1.6 2.7 2.4 2.4 2.4
1.8 2.4 2.2 2.1 2.1
2.0 2.2 2.0 1.9 1.9

0.025 182.6 168.2 151.2 133.7
0.050 134.2 104.0 70.6 49.5
0.075 76.2 43.3 24.9 18.9
0.100 33.0 16.3 11.3 10.3
0.125 13.7 8.3 7.2 7.0

A1 0.150 7.2 5.8 5.4 5.2
+ 0.175 5.2 4.6 4.3 4.3
δ1σ 0.200 4.2 3.8 3.6 3.6

0.225 3.6 3.3 3.2 3.1
0.250 3.2 2.9 2.8 2.8
1.2 111.9 84.6 58.9 42.9
1.4 44.8 24.3 15.3 12.7
1.6 17.0 9.6 7.3 7.0
1.8 8.0 5.6 4.9 4.8
2.0 5.2 4.1 3.7 3.6

δ1σ 2.2 3.9 3.3 3.0 3.0
2.4 3.2 2.7 2.6 2.5
2.6 2.7 2.4 2.3 2.2
2.8 2.4 2.1 2.0 2.0
3.0 2.1 1.9 1.9 1.8
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10 An Illustration of the Implementation Steps:

The DRIE Monitoring Case Revisited

Here, we revisit the DRIE profile monitoring case presented in Section 2 and use

that example to demonstrate how to implement the proposed scheme step by step

in practice.

We obtain the sample profile data of the DRIE thread, where the (x, y) values are

the coordinates obtained from the scanning electron microscope (SEM). After ap-

propriate transformation, we obtain the following quadratic model that can describe

the DRIE thread profile:

yij = ax2
i + εij i = 1, · · · , n, (16)

where n = 11 and xi, i = 1, · · · , 11 are fixed as equally spaced values, −2.5, (0.5), 2.5.

Based on the reference sample, the process parameter can be estimated and given

by a = 0.62 and σ = 0.4. This model is in the same form as model (1) with

β =
(
β(1), β(2), β(3)

)
= (1.55, 0.0, 0.62). We then apply the proposed MEWMA

scheme to monitor the quadratic profile and to detect whether there is any deviation

in the process parameters. Detailed implementation steps are as follows.

Step 1. Choose the desired IC ARL and the smoothing constant, λ. Determine

the control limit, L, based on p, IC ARL and λ. Here L = 15.41 given that p = 3,

ARL=370 and λ = 0.2. Consequently, L λ
2−λ

will be 1.71. Then, we can construct

the MEWMA control chart as in Figure 2.

Step 2. Start monitoring the process and obtain product observations yij at

fixed values of xi for i = 1, · · · , 11, sequentially. Whenever obtaining a new sample,

compute Wj . Consequently, compute the plot statistic, Uj , in (8) and compare

it with control limit L λ
2−λ

. In this example, in order to illustrate our proposed

diagnostic method more clearly, we assume that τ = 5 and β(3) shifts from 0.62 to

0.67 after the fifth sample. The simulated yij and corresponding Uj for j = 1, · · · , 14

are tabulated in Table 11. From Table 11 and Figure 2, we can see that the MEWMA

chart quickly signals a shift at the 14th sample.

Step 3. Then, by looking at the values of lr(jn, 14n) for j = 0, 1, · · · , 13,

tabulated in the last column of Table 11, we can find that its maximum occurs at
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Figure 2. MEWMA chart for the example.

j = 5 with lr(5n, 14n) = 17.78. This maximum indicates precisely the change-point

location, τ , of the shift.

Step 4. Finally, by computing the test statistics, Ttest, χ2
test and F

(i)
test for i = 2, 3

given in (13), (14) and (15), respectively, we obtain Ttest = −0.427, χ2
test = 115.3,

F
(2)
test = 0.19 and F

(3)
test = 13.4. Considering a significant level, α = 0.05, it follows

that |Ttest| < |t(0.025; 9n − 3)| = 1.985 and 70.8 = χ2(0.025; 9n − 3) < χ2
test <

χ2(0.975; 9n− 3) = 125.0, F
(2)
test < F0.95(2, 9n− 3,R) = 3.94 and F

(3)
test > F0.95(2, 9n−

3,R) = 3.94, where t(α; ν) and χ2(α; ν) are the lower percentiles of the Student-t

distribution and the χ2 distribution with ν degrees of freedom, respectively. Hence,

our diagnosis concludes that there is a positive shift in the β(3) parameter (i.e., a in

(16)) after sample 5. Such an increase in the second-order coefficient of the profile

indicates an unacceptable positive trench, which may be due to under-etching and

the machine settings and conditions need to be re-examined.

Step 5. After correctly identifying the out-of-control parameters and fixing the

problem, we will then go back to Step 1 to revise the design of the chart and re-start

the monitoring procedure.
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11 Conclusions

In this paper, we propose a complete solution to monitor a general linear profile that

includes both a polynomial regression and a multiple linear regression model and

that can represent many industrial processes. We apply an MEWMA scheme to the

transformations of estimated profile parameters as a single chart to monitor both

the coefficients and variance of a general linear profile. The proposed scheme can be

designed and constructed easily and it has rather satisfactory performance. In par-

ticular, three additional features: 1) the variable sampling interval, 2) self-starting

function, and 3) parametric diagnostic approach, are provided to enhance the effi-

ciency and effectiveness of the proposed profile monitoring scheme. As demonstrated

by the semiconductor DRIE case, the proposed monitoring scheme may be imple-

mented in industrial practice as long as the quality of a process can be characterized

by a general linear profile.

Table 11 Data for example with a shift in β(3)

after the fifth sample.
j yij Uj lr
0 10.59
1 2.64 2.70 2.10 0.35 0.32 0.35 0.94 0.31 1.15 2.70 4.09 0.29 13.15
2 4.60 2.51 1.28 0.94 -0.09 -0.29 0.96 0.82 1.38 1.66 3.57 0.33 14.43
3 4.21 2.09 1.36 1.18 0.34 -0.67 0.54 -0.03 1.51 2.82 3.70 0.33 14.92
4 3.11 2.46 1.59 0.46 -0.45 0.44 0.05 0.49 1.71 2.79 4.06 0.19 17.07
5 4.14 2.19 1.08 0.47 0.29 -0.08 0.00 0.80 1.05 3.02 4.00 0.08 17.78

6 3.64 2.87 0.25 0.51 0.24 0.37 -0.53 0.61 1.40 2.35 4.31 0.27 17.65
7 4.40 2.58 1.25 0.41 0.13 0.19 -0.31 -0.09 1.15 3.42 4.07 0.46 14.09
8 3.92 2.78 1.74 0.10 0.61 -0.99 -0.02 0.30 2.05 2.56 3.61 0.62 13.03
9 4.66 2.97 1.50 1.06 0.12 -0.48 -0.54 0.48 1.21 3.01 3.73 0.93 9.15

10 4.34 2.27 1.31 0.52 0.19 -0.10 0.14 1.07 1.04 3.02 3.86 0.76 11.11
11 3.89 1.82 1.31 0.08 -0.11 0.49 -0.18 -0.28 1.68 2.62 4.12 0.80 11.12
12 4.52 2.43 1.50 0.46 -0.38 -0.61 0.01 1.32 1.20 2.71 4.42 1.38 9.67
13 3.53 2.59 2.57 0.26 0.01 0.13 0.12 0.43 2.02 2.39 4.20 1.07 14.15
14 4.42 3.02 1.93 -0.37 0.30 -0.95 -0.65 1.14 0.76 1.55 3.93 2.00

Appendix

The expression of lr(tn, kn)
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Based on the change-point model, Mahmoud et al. (2005) gave a likelihood ratio
test (LRT) statistic for linear profiles in Phase I. This LRT statistic is similar to
that of Quandt (1958) and is derived under the assumption that the parameters
of the null hypothesis are unknown. Thus, it is not appropriate in Phase II that
the in-control parameters are assumed to be known. After k samples have been
collected, the logarithm of the likelihood function for them is given by

−
1

2

k∑

j=1

[
n ln(2πσ2

j ) +
1

σ2
j

(Yj − Xβj)
τ (Yj − Xβj)

]
.

If the data are collected under in-control conditions, i.e. under the null hypothesis,
the value of the logarithm of the likelihood function is

l0 = −
1

2

k∑

j=1

[
n ln(2πσ2) +

1

σ2
(Yj − Xβ)τ (Yj −Xβ)

]
.

Assuming a shift occurs after t, then the corresponding maximum value of the
logarithm of likelihood is

l1 = −
1

2

t∑

j=1

[
n ln(2πσ2) +

1

σ2
(Yj −Xβ)τ (Yj − Xβ)

]

−
(k − t)n

2
ln

(
2πσ̃2

(t,k)

)
−

(k − t)n

2
,

where σ̃2
(t,k) = (k−t)n−p

(k−t)n
σ̃2

t,k and σ̃2
t,k is defined in (12). Then, the generalized likeli-

hood ratio statistic is given by

lr(tn, kn) = −2(l0 − l1)

=

k∑

j=t+1

1

σ2
(Yj − Xβ)τ (Yj − Xβ) − (k − t)n

[
ln

( σ̃2
(t,k)

σ2

)
+ 1

]
.
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