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Abstract—This paper studies the relaying strategies and the
approximate capacity of the classic three-node Gaussian lay
channel, but where the noises at the relay and at the desti-
nation are correlated. It is shown that the capacity of such
a relay channel can be achieved to within a constant gap of
%log23 = 0.7925 bits using a modified version of the noisy
network coding strategy, where the quantization level at tle relay
is set in a correlation dependent way. As a corollary, this rsult X
establishes that the conventional compress-and-forwardcheme
also achieves to within a constant gap to the capacity. In cdrast, Fig. 1. Three-node Gaussian relay channel with correlatésen
the decode-and-forward and the single-tap amplify-and-fovard
relaying strategies can have an infinite gap to capacity in ta

regime where the noises at the relay and at the destination ar . . . y
highly correlated, and the gain of the relay-to-destinatio link noises. However, unlike the existing schemes|of [1] and [3],

goes to infinity. this paper shows that the relay quantization level need®to b
modified to be noise-correlation dependent in the corréfate
noise case. As a corollary, this paper also establishes that
the conventional compress-and-forward schehie [6] achieve
to within constant bits of the capacity for the Gaussianyrela

. INTRODUCTION channel in the correlated-noise case as well. Finally, irtrest

The relay channel models a communication scenario whé?ethe case with uncorrelated noises, the decode-and-fdrwa

an intermediate relay is deployed to assist the direct comnfd the single-tap amplify-and-forward strategies carefav

nication between a source and the destination. Although t'l%Inlte gap to capacity, when the noise correlation goesIo

capacity of the relay channel is still not known exactly eve"r]'llnd the gain of the relay-to-destination link goes to infinit
for the Gaussian case, much progress has been made recently
in the characterization of its approximate capadity [1]-[3 Il. CHANNEL MODEL

In the classic Gaussian relay channel, the noises at the
relay and at the destination are independent. In many peacti T his paper considers a real-valued discrete-time threno
systems, however, the noises at the relay and at the déstinafaussian relay channel as depicted in Eig. 1, which consists
may becorrelated. This may arise, for example, due to thét sourceX, a destinatiort’, and a relay. The relay observes a
presence of a common interference, which in a practicapise-corrupted version of the source signal, denoted’jy
system is often treated as a part of the background noise, gpe transmits i to the destination. The source-to-destination
nevertheless contributes to the correlation between tigeso channelis denotells p, the relay-to-destination chanriekp,

The Gaussian relay channel with correlated noises haRd the source-to-relay channfelz. The additive Gaussian
been studied in[]4], where relaying strategies such as tA@iSes at the relay and at the destination are denotedras
decode-and-forward and the compress-and-forward scherfB8 Z respectively. Mathematically, the channel model is:
are studied in full-duplex or half-duplex modes. Likewise,
the effect of noise correlation for the single-tap ampliyd- Yp = hspX + Zg, @)
forward scheme has been studied for the diamond network Y = hspX+hrpXr+Z. (2)
and the two-hop parallel relay network in [5]. In both papers ) .
noise correlation has been found to be beneficial. Neiffer [#/thout loss of generality, the power constraints at ;heru
nor [5], however, addresses the question of whether theicla"d at tth relay can both be normalized to one, EpX°] < 1
relaying strategies are able to achieve to within constitat b1d E[X 7] < 1, and so can the noise variances, £z ~

of the capacity for the relay channel with correlated noises? (0> 1) andZ ~ N'(0, 1). Different from most of the literature

Inspired by the recent work[1] and[3], where the quantizélat assumes independence betweékn and Z, this paper

map-and-forward and the noisy network coding strategi¢is wintroduces a correlation between the two noises

D—N

Y

Index Terms—Relay channel, approximate capacity, noise cor-
relation, noisy network coding.

fixed quantization level at the relays are shown to achiege th A E[ZrZ]
capacity of arbitrary Gaussian relay networks with uncorre Pz = E[ZzPIE[|Z)?] (3)

lated noises to within a constant gap, this paper shows that
such strategies are also capable of approximating the itgpablote thatZ and Zy are both i.i.d. in time. Further, the relay
of the three-node Gaussian relay channel with correlatederation is causal.
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Il. WITHIN CONSTANT BITS OF THECAPACITY and

I(X;Y,YR|XR)

To approach capacity, the relaying strategy must take advdre
tage of the noise correlation. Consider the limiting scenaf
p. — =£1. The relay’s observation becomes more and more

—
S
Naod

1
B log(1 + h%D)

useful to the destination in this case, thus an increasifigéy 1 q+ a,%SRXJrZRMSDXJFZ
guantization resolution at the relay is required — the fixed +5lo _ 2
e T 2 a+1—p2
guantization strategy of [1] and![3] would result in sigrsitt 9 )
inefficiency. The main contribution of this paper is to ituze _ 1 log (1 LAt (a+ Dhgp + Mg = 2pzh5Dh5R)
a correlation-aware quantization strategy at the relay, which 2 1—p2

better exploits the noise correlation and achieves to withi _110 144 @)
3 log, 3 bits of the capacity of the Gaussian relay channel 2 0% 1-p2)°
with correlated noises.

where in (a) the conditional variance oisgpX + Zr given
Theorem 1. The capacity of the three-node Gaussian relay hgpX + Z is calculated as
channel with correlated noises, as shown in Fig. [l can be
achieved to within %1og23 bits to capacity using a noisy U;%SRXJFZRWSDXJFZ
network coding strategy with independent Gaussian inputs o [E[(hsrX + Zr)(hspX + 2)]|?
X ~ N(0,1), Xg ~ N(0,1) and Gaussian quantization at = E[lhspX + Zg[7] ~ E[hspX + Z|2]
the relay with quantization variance q* = 2(1 — p?).

1-— pz + h%R + h%D - 2pthRhSD.

: . : = 8
Proof: First, the capacity of the relay channel is upper 1+ h%, (®)
bounded by the cut-set bound, i.e., .
y ComparingR; and the upper boun®; 5, we have
6 = pglfi);)min{l(XaXR;Y)al(X;KYRlXR)} RUBI _Rl
1
1 — - 2 2
_ H})axmm {5 log(1+ K2 + hp + 2pehsnha), 5 log(1+hsp + hrp + 2hsphrp) 2
- 1 1 1—p?
Lo (1 A=)+ W 2pzh5DhSR>)} 5 1o8(1+ hsp + hp) + 5 log (1 +— )
—_ p2
2 \ 1—p: _ 1y, (1+h§D+h%D+2hSDhRD)
< min{glog(l—i—h%D—|—h?%D+2hSDhRD), 2 2+ 2h3, + 203,
1 1—p? 1
llog 1+h§D+h§R—2pthDhSR +5 log (1+ q )+§
= min{RUBl,RUBQ}, (4) < 5 lOg (1 + TZ> + 5 (9)
wherep,, is the correlation betweeX and Xrg. ComparingR, and the upper boun®; 52, we have
The achievable rate by noisy network coding or compress-
and-forward with joint decoding can be readily obtainedrfro Rupz — Ry ) )
[7, Proposition 2] and |3, Theorem 1]: _ llog (1 n hp +hsp — 2pthDhSR)
2 1—p2
R = min{I(X,Xg;Y)—I(Yr;Yr|X, XR,Y), 1 log (1 Lot DA%y + hip — 2pthDhSR>
I(X;Y,Yr|XR)} 1—p?
2 1- Pz
for any distribution 1
y < Slog <1+1_qp2). (10)

p(z, 2R, yr, §r) = p(@)p(xr)P(YR|Z, 2R)P(IRITR, YR). _ .
The gap between the cut-set boufidcand the achievable rate

Substitute independent Gaussian distributions~ A(0,1) £t is then upper bounded by the maximum[df (9) &nd (10), i.e.
and X ~ N(0,1) into (B), and set’z = Yr + ¢, where the

quantization noise ~ N(0, q) is independent with everything C-R < min{Ryp, Rypz} — min{Ry, Rp}
else, we have < max{Ryp1 — R1, Rups — Ra}
1 1-p2\ 1
Ry = I(X, Xp:Y) = I(Y; Y| X, Xp, Y) - o {5 tos (1 A ) Ty
= Liog(1 482, + 12 )—llog(1+1_pg> (6) 11og<1+ d )} (11)
2 SD T TRDI q )’ 2 1—p2



The first term above monotonically decreases wgthwhile A. Decode-and-Forward
the second term monotonically increases wgtifo minimize

g Consider a decode-and-forward strategy as described in [1,
the maximum of the two terms, we set

Appendix A], in which when the source-to-relay link is weake
1—p? 1 1 q* than the source-to-destination link, i.egr < hsp, the relay
q° 5= 9 log {1+ 1—p2)° (12) is simply ignored, otherwise the relay decodes and forwards

2 z
) ] ) o ) bin index to the destination as in the original scheme_of [6].
which results ing* = 2(1 — p). Substitutingg™ into (L1), we  The following rate is achievable:
haveC — R < }log, 3 = 0.7925. m

In addition, it can be shown that the conventional compress-R, = max{l log(1 + h%p),
and-forward rate is also within the same constant gap to 2

capacity. To prove this directly would have been quite imedl min 4 X loe(1 4R L oe(1 L R2 4R }} 15
(see [[2] for the computation of the gap for the case of 2 8l sr) 2 &l 5D wp) (19)
p- = 0). Instead, we obtain the result as a direct consequenféne extreme scenario whepe = 1 and

of Theoren1L.

1
ilog <1+

2 2 2
Corollary 1. Thefollowing rate, which is achieved by the clas- Php > hsg > hisp > 1, (16)

sic compress-and-forward strategy on the three-node Gaussian  the above decode-and-forward rdte] (15) becomes
relay channel with correlated noises shown in Fig.

1
Rpr = =log(1+ hg). 17
RCF:llOg (1—|—h2 +M) ( PE=—3 & sr) (17)
2 * L=pi+a 7 Meanwhile, wherp, = 1, the cut-set bound4) becomes
where o
C = —log(1 + h%p + h%p + 2hsphrp). 18
o (LAt hEp) + (hsn = pehsn) g 1081 +hep + hip +2hspheo).  (18)

Comparing [(ZI7) with[{18), we observe that
14+ h3p, +hip + 2hSDhRD)

2
Proof: The rate expressioR¢r for the correlated-noise ) L+ hgp
Gaussian relay channel has been obtained_in [4, Proposi- 1 Mo
) SeTE ) — glog| 5=, (19)
tion 5]. The derivation is based on the classic compress- 2 h3r

and-forward rate for the relay channel by Cover and Elhich is unbounded in the asymptotic regirfiel (16). This is not
Gamal [6, Theorem 6], which iftcr = I(X;Yr,Y[Xr) ynexpected, because the decoding at the relay eliminages th
subject tol(Xp;Y) > I(Yr; Yr|Xr,Y) for some joint dis- ngise. Therefore, noise correlation is not exploited.
tributionp(z)p(xr)p(yr|z, 2r)P(Jr|TR, yR). USing the same
signaling scheme as in Theordrh 1, i.&, ~ A/(0,1) and ) )
Xgr ~ N(0,1) are independent, antlz = Yx + e, where B Single-Tap Amplify-and-Forward
e ~ N(0,q.) is chosen to satisfy the relay-destination rate In the single-tap amplify-and-forward, the relay scales th
constraint, we obtair (13). current observation and forwards to the destination in # n

In the following, we prove the constant gap resulime instance, i.e.,
for the compress-and-forward rate by showing thatr
in ([@3) is greater than the noisy network coding rate,
e, Recp > min(Ry, Ry), where Ry and R, are as wherea < —L_ is chosen to satisfy the power constraint
in @ and [T) respectively. Substituting. in (I4) as hir , ] ,
q in Ry and Ro, it is easy to verify thatRi(q.) — at the relay. Sinc&’[i]| = hspX[i] + hrpXg[i] + Z]i], the

Rs(q.) = Rep. Since R, increases withg and R. de- _rela); channeIIiSsInO\r/]v con\I/.erted into a single-tap inter-syimb
creases withq, we have Rerp = min{Ri(q.), R2(qc)} = interference (ISI) channel:
maxq min{R;(q), Rz(q)} = min{Ri(q"), R2(q")} for any y[;] = hop X[i]+ahrphsrX[i—1]+Z[i]+ ahrpZrli—1].

2
hRD

is within 1 log, 3 bits to the capacity.

— 1
C—RDF = §10g<

Xgli] = alhseX[i— 1]+ Zgli— 1), (20)

q* and in particular fog* = 2(1—p?). Since it has been show (21)
in Theorentll thatin{R:(q*), R2(q*)} is within 5 log 3 bits  The capacity of the Gaussian ISI channel is given by
of the cut-set upper bound, so & F. ] ) )
1 ™1 H
Rap = max—/ ~ log (1 + S(w)' @)l ) dw, (22)
IV. SUBOPTIMALITY OF DECODE-AND-FORWARD AND Sw) 2m Jo 2 N(w)
SINGLE-TAP AMPLIFY-AND-FORWARD subject to
The decode-and-forward and the single-tap amplify—and—1 2
forward strategies have been shown to achieve to within S(w)dw <1, and S(w) >0, 0<w<2m, (23)
constant gap to the capacity of the Gaussian relay channél™ /¢
with uncorrelated noise51[1].][2]. In this section, we shbatt where N(w) = 1 + o?h%p + 2p.ahgrpcos(w) is the

this is no longer the case when noises are correlated. power spectrum density of the noise, aftlw) = hsp +



Comparison of Different Relaying Schemes

ahrphgre’ is the Fourier transform of the channel coeffi- 10 ‘ ‘ ‘ ‘ ‘ .
cients, andS(w) = ()\ - %)Jr is the water-filling power 5| Cut-Set Upper Bound
allocation over the frequencies. . +gzzir’zz:”‘;’nkdcz‘o"“”faz‘“q |
Consider again the case of = 1 and the asymptotic |} |- becode-and-Forward I
regime of [I16), i.eh?,, > hip > hEp > 1. In this high 85| —0— Ampiiy-and-Forward f

signal-to-noise ratio regime, it is easy to verify that thatev-
filling power spectrum converges to an equal power allooatio
ie, S(w) =1, 0 <w < 27 SubstitutingN (w), H(w) and
S(w) = 1 into (22) and using table of integrals, after some
algebra, it is possible to show that

Gap (bits)

1
Rur < 3 log(2 + h&g + hap)-

Comparing the above with the cut-set bound, we see that S o os o4 s g P ST RS e—
— 1 1+ h%, + h%p + 2hsph ‘
C - RAF > a5 log 5D 2RD 2 SDTRD . . . .
2 24+ hgp + hip Fig. 2. Comparison of different relaying schemesdr,, = 20dB, h% , =
1 2 40dB andh?,, = 60dB
— —log (—§D> (24)
2 hSR Comparison of Different Relaying Schemes

in the asymptotic regime of {16), which is unbounded. * T

Cut-Set Upper Bound
24r

=©— Noisy Network Coding with q*

V. NUMERICAL SIMULATION

This section numerically compares the cut-set upper bound ,,
and the achievable rates of different relaying schemese,Her
the noisy network coding rate is computed with= 2(1—p?).

We consider two examples: Figl 2 shows the caserfgy =
20dB, h%, = 40dB andh%,, = 60dB, corresponding to an
extreme scenario of%, > h%y > hi, > 1. Fig.[3 shows
the case forh, = 5dB, h%, = 10dB, andh%, = 10dB.

It is clear that in both cases, compress-and-forward isyawa
better than the noisy network coding scheme with the specific
q*, and both are within a constant gap to the cut-set upper ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
bound for all values op.. oo e e g

The decode-and-forward rate is always independent.of _ _ _

In the asymptotic regime as shown in Fig. 2, the single-t&%ﬂ' 3. Comparison of different relaying schemes &, = 5B, h%p, =
. . . 10dB, andh = 10dB

amplify-and-forward rate is almost independenpgfas well, RD

and it coincides with the decode-and-forward rate. Both can

have an unbounded gap to the cut-set bounfefgs — oo and

p. — +1. Compress-and-forward, on the other hand, closel _ o . _ .

tracks the cut-set bound. (Note that the above observatié sﬁ' Avestimehr, S. Diggavi, and D. Tse, “Wireless netwamformation

. . . .~ flow: a deterministic approach/EEE Trans. Inf. Theory, vol. 57, no. 4,
are not true in the non-asymptotic SNR regime as shown in pp. 1872-1905, Apr. 2011.
Fig. [3.) The noisy-network-coding scheme, although not & W. Chang, S.-Y. Chung, and Y. H. Lee, “Gaussian relay cean

_ _ ; " capacity to within a fixed number of bits,” 2010. [Online]. &élable:
good as compress-and-forward, nevertheless is alwaysnwith http:/arxiv. org/abs/ 10115065

a CO'_"St.am gap to the cut-set bound. _ _ [3] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisyetwork
It is interesting to see that the noisy-network-coding rate coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132-3152, May

-~ 011.
resembles the shape of the cut-set upper bound as sh . Zhang, J. Jiang, A. J. Goldsmith, and S. Cui, “Study afigsian relay

in both Fig.[2 and Fig[13. It is also interesting to note that' channels with correlated noise$EEE Trans. Commun., vol. 59, no. 3,
the decode-and-forward curve touches the cut-set bound at app. 863-876, Mar. 2011.

; i ; [5] K. S. Gomadam and S. A. Jafar, “The effect of noise coti@iain
partICUIar value Ofoz. This is because at this value p)j, the amplify-and-forward relay networksJEEE Trans. Inf. Theory, vol. 55,

Compress—and-Forward
= = Decode-and-Forward

—O— Amplify-and-Forward

N}

Gap (bits)

1.8<
1.

14r
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