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ABSTRACT 
Taking aspects as incremental modifications to their base classes, 
this paper presents an incremental approach to testing whether or 
not aspect-oriented programs and their base classes conform to 
their respective behavior models. We exploit a rigorous aspect-
oriented extension to state models for capturing the impact of 
aspects on the state transitions of base class objects as well as an 
explicit weaving mechanism for composing aspects into their base 
models. We generate abstract tests for base classes and aspect-
oriented programs from their state models. As base class tests are  
not necessarily valid for aspect-oriented programs, we identify 
several rules for maximizing reuse of concrete base class tests for 
aspects according to the state-based impact of aspects on their 
base classes. To illustrate our approach, we use two examples that 
indicate distinctive types of aspect-oriented applications and 
exhibit fundamental features in complex applications: aspects 
removing state transitions from base classes and aspects adding 
and modifying state transitions in base classes. Our results show 
that majority of base class tests can be reused for aspects, but 
subtle modifications to some of them are necessary. In particular, 
positive (or negative) base class tests can become negative (or 
positive) aspect tests. We also discuss how several types of 
aspect-specific faults can be revealed by the state-based testing.  

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging - Testing 
tools (e.g., data generators, coverage testing) 

General Terms 
Algorithms, Verification, Design 

Keywords 
Aspect-oriented programming, model-based testing, incremental 
testing, state model, aspect-oriented state model. 

1. INTRODUCTION 
While aspects in aspect-oriented programming (AOP) offer an 
effective way for modularizing separate concerns, the new 
programming constructs of AOP languages introduce numerous 
opportunities for programmers to bring various potential faults 

with respect to aspects [3]. Generally, an aspect-oriented program 
consists of aspects and their base classes (or components) that can 
be woven into an executable whole [14][15]. The base classes in 
an aspect-oriented program can also be executed independently. 
From the system architecture perspective, aspects often crosscut 
multiple base classes. From the base class perspective, however, 
aspects are essentially incremental modifications to base classes 
with additional operations and constraints for separate concerns. 
They provide a paradigm of ‘programming by difference’, 
constructing new components by specifying how they differ from 
the existing components [19]. The incremental modifications of 
aspects to base classes can impose a significant impact on the 
object states of base classes. Although aspects in AOP add more 
code to their base classes, they can not only introduce new object 
states and transitions, but also remove and update state transitions. 
As such, aspects may lead to subtle differences in the sequence of 
messages that can be accepted by the base class objects. In 
particular, aspect-specific faults likely result in unexpected object 
states and transitions  
To reveal aspect-specific faults, we are motivated to investigate 
model-based testing, i.e. testing whether or not aspect-oriented 
programs and their base classes conform to their respective 
behavior models. Model-based testing is appealing because of 
several benefits [9][21]: (1) the modeling activity helps clarify 
requirements and enhance communication between developers 
and testers; (2) design models, if available, can be reused for 
testing purposes; (3) model-based testing process can also be 
(partially) automated; and (4) more importantly, model-based 
testing can improve error detection capability and reduce testing 
cost by automatically generating and executing many test cases. 
Pretschner et al. demonstrated that, for the case study of an 
automotive network controller, a six-fold increase in the number 
of model-based tests has led to 11% increase in detected errors 
[22]. Dalah et al. reported an empirical study on four large-scale 
applications, in which model-based test generation revealed 
numerous defects that were not exposed by traditional approaches 
[8]. Using model-based testing methods and tools, Blackburn et 
al. were able to identify the software error of the Mars Polar 
Lander (MPL) that is believed to cause the MPL to crash to the 
Mars surface on December 3, 1999 [5]. 
In this paper, we present a state-based approach to the incremental 
testing of aspect-oriented programs, which addresses the 
following research issues: 

• How to specify the expected impact of aspects on object 
states for test generation purposes?  

• To what extent can base class tests be reused for testing 
aspects? Base class tests are not necessarily valid for 
testing aspect-oriented programs as aspects likely 
change transitions of object states.   
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• How to determine that a programming fault actually 
has to do with aspects rather than base classes? 

To capture the expected impact of aspects on the states of base 
class objects, we exploit aspect-oriented state models, an aspect-
oriented extension to state models with testability, for specifying 
base classes as well as aspects. We compose state models of 
aspects and base classes by an explicit weaving mechanism and 
generate abstract test cases from state models for an aspect-
oriented program and the corresponding base program. Taking 
aspects as incremental modifications to their base classes, we 
identify how to reuse the concrete base class tests for testing 
aspect-oriented programs according to aspect–oriented state 
models. Such an incremental approach to testing aspect-oriented 
programs can significantly reduce testing cost for two reasons: (1) 
it reuses test cases, the development of which is often an 
expensive investment; and (2) it helps localize programming 
problems by identifying aspect-specific faults. For instance, if the 
base classes of an aspect-oriented program pass all of the state-
based tests but the aspect-oriented program as a whole fail some 
of the tests, the failure would have to do with aspects.  
The rest of this paper is organized as follows. Section 2 reviews 
related work. Section 3 formalizes aspect-oriented state models as 
well as the weaving mechanism for integrating aspects into base 
models. Section 4 describes how base class tests can be reused to 
test aspect-oriented programs. Section 5 discusses how aspect-
specific faults may affect object states and state transitions and 
how they are detected by the state-based incremental testing 
approach. Section 6 concludes this paper. 

2. RELATED WORK 
2.1 Testing of Aspect-Oriented Programs 
While AOP provides a flexible mechanism for modularizing 
crosscutting concerns, it raises new challenges for testing aspect-
oriented programs. Alexander et al. have proposed a fault model 
for aspect-oriented programming, which includes six types of 
faults: incorrect strength in pointcut patterns, incorrect aspect 
precedence, failure to establish postconditions, failure to preserve 
state invariants, incorrect focus of control flow, and incorrect 
changes in control dependencies [3]. This fault model has not yet 
constituted a fully-developed testing approach. McEachen and 
Alexander have explored some of the long-term maintenance 
issues that can occur with AspectJ [16]. 
Zhao has proposed a data flow based approach to unit testing of 
aspect-oriented programs [31]. For each aspect or class, the 
approach performs testing at the intra-module, inter-module, and 
intra-aspect/intra-class levels. Zhao and Rinard have also 
exploited system dependence graphs to capture the additional 
structures in aspect-oriented features such as join points, advice, 
aspects, and interactions between aspects and classes [30]. 
Control flow graphs were constructed at system and module 
levels, and then test suites were derived from control flow graphs. 
The work did not target specific models of most likely faults. To 
reduce testing cost, Zhou et al. have introduced an algorithm 
based on control flow analysis for selecting relevant test cases 
[32]. It evaluated test coverage and selected relevant test cases 
when existing tests could not satisfactorily cover the aspects 
under test. Xie et al. have proposed a framework for generating 
test inputs for AspectJ programs, where a wrapper class was 
created for each base class under test [26]. The above work has 

primarily focused on generation of unit and integration tests from 
aspect-oriented programs, whereas our research focuses on 
whether or not aspect-oriented programs conforms to their 
behavior models. In [29], we used aspect-oriented UML models 
to generate tests for exercising aspect-oriented programs. In [28], 
we presented an approach to state-based test generation for 
aspect-oriented programs, where aspect-oriented state models 
were defined in an ad hoc manner and the testing process was not 
incremental per se. In a recent technical report [27], we 
formalized an aspect-oriented extension to state models and 
discussed test generation for aspects-oriented programs. This 
work was restrictive as it did not associate guard conditions with 
transitions in state models. In this paper, we have significantly 
extended our previous work from several perspectives: (1) 
generalization and formalization of aspect-oriented state models; 
(2) incremental style of testing that reuses base class tests for 
aspect-oriented programs; and (3) investigation of how aspect-
specific faults would affect object states and state transitions.   

2.2 Aspect-Oriented Modeling 
With the development of AOP applications, there is an increasing 
need for addressing crosscutting concerns in the early phases of 
software development. Aspect-oriented modeling (AOM) is 
therefore of great interest. AOM involves identifying, analyzing, 
managing, and representing crosscutting concerns. It targets a 
simplified, abstract description of an aspect-oriented design. An 
aspect-oriented modeling method requires three types of 
constructs for modeling base elements, crosscutting elements, and 
crosscutting relationships, respectively. UML, as the de facto 
standard for object-oriented modeling, has been a dominant 
language for specifying base elements of an aspect-oriented 
model. Recently, extensions to UML have been investigated for 
modeling such crosscutting elements and relationships as join 
points, pointcuts, advices, aspects, and inter-type declarations [2] 
[10][13][24][25]. 
Modeling, however, is a broad notion that can be involved in 
various perspectives of software development, such as design 
specification, code generation, testing, and reverse engineering. 
Models from different perspectives require different level of 
details although their structures may appear to be similar [20]. For 
example, a traditional state model for design specification does 
not carry sufficient information for test generation. The testable 
FREE state model resulted from enhancing a traditional state 
model with regular expressions [4]. The existing aspect-oriented 
extensions to state models [1][10] and UML (e.g. [2] [13] [24] 
[25]) are primarily for the purposes of design specification. 
Groher and Schulze have investigated AOM for code generation 
[12]. For program understanding, Coelho and Murphy have 
developed a tool for presenting crosscutting structures in AspectJ 
programs [7]. In this paper, we explore aspect-oriented state 
models for testable specification and test generation of aspect-
oriented programs. Our approach is different from other aspect-
oriented extensions to state models [1][10]. The latter specifies 
base state models and aspect state models as different regions of a 
statechart, where aspects first intercept events sent to base state 
models and then broadcast the events to base state models. It 
relies on a specific naming convention as the weaving mechanism 
is implicit. In comparison, our approach allows to capture the 
incremental modification nature of aspects and to explicitly 
specify state and event pointcuts with the support of an explicit 
weaving mechanism.  
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3. ASPECT-ORIENTED STATE MODELS 
In this section, we first formally define extended state models as a 
basis for class and aspect specification, and then describe aspect-
oriented state models and the weaving mechanism.   

3.1 State Models 
Objects are encapsulated entities of data and operations that can 
receive messages from and send messages to other objects [18]. 
Constraints often exist on the sequence of messages that can be 
accepted by objects. As these constraints are typically related to 
object states, state models are a common approach for capturing 
object behaviors, especially intra-class behaviors. In the 
following, we extend traditional finite state models as a basis for 
aspect-oriented state models.  
Definition 1 (State Model). A state model M is a 4-tuple (S, E, V, 
T), where:  
(1) S is a finite set of states; 
(2) E is a finite set of actions (or events);  
(3) V is a finite set of variables;  

(4) T ⊆ S×E×Φ×S is a set of transitions, where Φ is a set of 
regular logic formula in some language1.  (si, e, φ, sj) ∈ T 
means that action e∈E transforms state si∈ S to state sj∈ S 
under condition φ∈Φ. φ is called the guard condition of the 
transition. 

For consistency, if (s1, e, φ1, s2) ∈ T and (s1, e, φ2, s2) ∈ T, then φ1 
=φ2. In other words, we do not allow multiple transitions from s1 
to s2 by the same action e. If action e does transform s1 to s2 under 
different conditions, say, φ1 and φ2, then the transitions can be 
merged into one with a compound guard condition φ1 or φ2. For a 
state model, we may also specify an initial state s0∈ S. Definition 
1 does not include initial state as part of a state model because 
state models will also be used to specify aspects. As will be 
discussed later, the state model for an aspect does not need an 
initial state. As an aspect-oriented program has a number of state 
models, we denote the component X ∈{S, E, V, T} of state model 
M as M.X. It is worth pointing out that a state model can be 
specified in a table, where each entry (i,j) contains the 
corresponding action and condition (e and φ), if any, that 
transform state si in row i, to state sj in column j. This makes it 
convenient to put state models into practice. 
In a state model M for class C, events and transitions are related 
to methods of class C. Specifically, we interpret each transition 
(si, e, φ, sj)∈ M.T as follows:  

• si and sj  are abstract states of objects of class C; 

• e is corresponding to a method, say m(τ1 v1, τ2  v2,…, τk  
vk), in the specification of class C, where τi (1≤i≤k) is 
the type of parameter vi. τi can be a fundamental data 
type or an object type (i.e. class).   

• φ is a logical condition constructed by using constants, 
instance fields of class C, or explicit parameters vi 
(1≤i≤k) of method m. If τi is an object type and f is a 

                                                                 
1 As our focus is testing, this paper uses a programming language, 

e.g. Java, rather than a formal language.   

public function (method with a return value) of τi, then 
function call vi.f is allowed to occur in logical formulas.  

• (si, e, φ, sj) is a call to method m under state si that 
satisfies guard condition φ and achieves state sj.  

In addition, a special transition (, new, φ0 , s0) refers to the 
construction of an object under condition φ0 (φ0 is optional), 
which results in initial state s0. Transition (si, e, , sj), where φ is 
omitted, means that the transition is unconditional: any event e (or 
call to method m) under state si results in state sj. We denote the 
sequence of transitions (, new, φ0 , s0),(so, e1, φ1, s1), (s1, e2, φ2, 
s2),…,(sn-1, en, φn, sn) by <new[φ0], s0,, e1[φ1], s1 , e2[φ2], 
s2,…,en[φn], sn> or <new[φ0], e1[φ1], e2[φ2],…, en[φn] >. Such a 
sequence is called an abstract test case because the parameters of 
constructor and method calls are not yet assigned specific values. 
According to the above interpretation, the specification of object 
behaviors of a class in our approach actually relies on both the 
state model and the public interface of the class. The public 
interface of a class includes complete signatures of the methods. 
Although instance fields are seldom part of public interfaces, they 
are often indicated by public get methods. For convenience, we 
allow use of instance fields in state models. This does not lose 
generality. Note that the state model here is similar to the FREE 
model [4] except that the guard conditions are explicitly defined 
with respect to class interfaces.  
For example, Fig.1 and Listing 1 show the state model and public 
interface of the BankAccount class, respectively. For clarity, we 
use b to denote the instance field balance and assume that 
amt>=0 is a precondition for methods deposit(amt) and withdraw 
(amt). Transition (Open, withdraw, b-amt>=0, Open) means that 
method call withdraw(amt) with condition b-amt>=0 under state 
Open does not change the state. 

 

close  

freeze 

withdraw 
 [b-amt>=0] 

new 

deposit 

getBalance 

Frozen

Closed 

Open 
unfreeze 

getBalance 

 
Figure 1.  The state model of class BankAccount 

public class BankAccount { 
  // constructor, or the new operator 
  public BankAccount(double amt);   
  // indicating instance field balance - b for short 
  public double getBalance();   
  public void deposit(double amt); 
  public void withdraw(double amt); 
  public void freeze(); 
  public unfreeze(); 
  public void close(); 
} 

Listing 1. The interface of class BankAccount 
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3.2 Aspect-Oriented State Models 
We incorporate aspect-orientation into state models by following 
the fundamental concepts of AOP, such as aspects, join points, 
pointcuts, and advices. In our approach, join points can be states, 
events, or variables in a state model; a pointcut picks out a group 
of join points; advices are specified as a state model; and an 
aspect is an encapsulated entity of pointcuts and advice model.  
Definition 2 (Pointcut). Pointcuts are defined as follows: 
(1) state pointcut <cutname>:<base>.<state>{, <base>.<state>}; 
(2) event pointcut <cutname>: <base>.<event(paras)> {,<base>. 

<event(paras)>}; 
(3) variable pointcut <cutname>: <base>.<variable> {,<base>. 

<variable>}; 
where <cutname> identifies a state, event, or variable pointcut; 
<base> means the state model of a base class; <base>.<state>, 
<base>.<event(paras)> and <base>. <variable> refers to a state, 
event, or variable in the base state model, respectively. For 
convenience, we also reference a pointcut by its name.  

Definition 3 (Aspect Model). An aspect model A is a 4-tuple (SP, 
EP, VP, AM), where SP is a set of state pointcuts, EP is a set of 
event pointcuts, VP is a set of variable pointcuts, AM = (S, E, V, 
T) is a state model (called advice state model or simply advice 
model), AM.S subsumes all state pointcut names in SP, AM.E 
subsumes all event pointcut names in EP, and AM.V includes all 
variable pointcut names in VP and all variables in the parameters 
of event pointcuts in EP. 
We build a model for each aspect. Fig.2 shows the aspect model 
Overdraft that enforces a new banking policy for the base class 
BankAccount in Fig.1. Although it can crosscut other account 
(e.g. credit card) classes, for simplicity, we specify it only with 
respect to BankAccount. The Overdraft aspect allows one 
overdraft as long as the balance is not less than -1000. In the 
aspect, the states are Open (a different name can be used, though) 
and Overdrawn, where Open is corresponding to the Open state in 
the base model and Overdrawn is a new state. The events are 
credit, debit and get, which are corresponding to deposit, 
withdraw, and getBalance in the base model, respectively. The 
variables used to represent guard conditions are x and b, which 
are corresponding to amt and b in the base model, respectively. 
Note that the aspect is an addition to the base model as all the 
transitions from Open to Open in the base model remain 
unchanged. 

 
Figure 2. The Overdraft aspect 

Definition 4. (Aspect-Oriented State Model) An aspect-oriented 
state model for a system design with m classes and n aspects is 
defined by ({(BMi, S0i)}, {Aj}) where S0i is the initial state of 
base model BMi and Aj is a state-based aspect model, 1≤i≤m and 
1≤j≤n.  

3.3 The Weaving Mechanism 
The semantics of an aspect-oriented state model essentially 
depends on the weaving mechanism that composes aspect models 
into base models. As incremental modification to base models, an 
aspect may affect the base models in various ways, such as:  

• adding new transitions among existing states to the base 
models;  

• introducing new states and thus new transitions to the 
base models;  

• removing transitions from the base models;  
• modifying guard conditions of transitions in the base 

models; and 
• introducing new events (similar to introductions in 

AspectJ) to the base models.    
For example, the Overdraft aspect in Fig. 2 introduces the new 
state Overdrawn and four new transitions. From the base class 
perspective, the semantics of an aspect model is that the advice 
model of the aspect overrides the corresponding part in the base 
model in terms of state, event and variable pointcut specifications. 
As illustrated in Fig.3, the advice model of Overdraft intends to 
override the transitions associated with the Open state in the state 
model of BankAccount with respect to the pointcut specifications. 
The dashed arrows indicate mappings from states, events and 
variables in Overdraft to those in BankAccount. For clarity, not all 
such mappings are shown. For example, all the three credit events 
in Overdraft should be mapped to the same deposit event in 
BankAccount. For a transition in the base model, if at most one of 
the two states in the transition is picked out by some state pointcut 
in the aspect, then the transition remains unchanged. Examples 
are (Open, freeze, , Frozen), (Frozen, unfreeze, , Open) and 
(Open, close, , Closed).  Fig. 4 shows the woven model of 
Overdraft and BankAccount. 
Consider another example, FooBar, which was discussed publicly 
at aspectprogrammer.org (the AspectJ program can be found in a 
poster entitled “Aspects as Automaton” at: http://www. 
aspectprogrammer.org/blogs/adrian/2005/04/aspects_as_auto.html
). It is a nice demonstration of AspectJ features. Here we make a 
change by using states in the base class FooBar as well. Fig. 5(a) 
and Listing 2 are the state model and public interface of FooBar. 
The state model indicates that there is no constraint on the order 
in which methods foo and bar are called.   
Now we use an aspect to enforce the policy that foo always comes 
before bar: every call to bar must be preceded by at least one call 
to foo. After any call to bar, foo must be called at least once 
before bar can be called again. Fig. 5(b) shows the Ordering 
aspect for the base class FooBar. In the advice model, there is no 
transition from state S (i.e. START in FooBar) to state B (i.e. BAR 
in FooBar), and no transition from B (BAR in FooBar) to B. This 
implies that the state BAR in FooBar can only result from a call to 
the method bar from the state FOO. As shown in Fig. 5, states S 
and B in Ordering are mapped to states START and BAR in 
FooBar, respectively; event get in Ordering is mapped to event 
getS in FooBar; transitions (START, foo, ,FOO), (FOO, bar, 

aspect Overdraft 
state pointcut Open: BankAccount.Open 
event pointcut get: BankAccount.getBalance 
event pointcut debit(x): BankAccount.withdraw(amt) 
event pointcut credit(x): BankAccount.deposit(amt) 
variable pointcut b: BankAccount.b  

get 

debit 

 [b-x>=0] 

credit 

Open 

debit [b-x<0 and  

b-x>=-1000] 

credit[b+x>=0] 

get 

credit  [b+x<0] 

Over 

drawn 
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,BAR), (BAR, foo, ,FOO), (FOO, foo, ,FOO), and (FOO, getS, 
,FOO) are not affected by the aspect. Fig. 6 shows the woven 
model of Ordering and FooBar, where the transition from state 
START (or BAR) to state BAR through event bar no long exists. In 
this example, the Ordering aspect only removes state transitions 
from the base model FooBar. 

 
Figure 3. The impact of Overdraft on BankAccount 

 

close 

freeze 

withdraw 
 [b-amt>=0] 

new 

deposit 
 

getBalance 

Frozen

Closed 

Open 
unfreeze 

getBalance 

Over 
drawn 

withdraw  
[b-amt<0 and 

 b-amt>=-1000] 

deposit 
 [b+amt>=0] 

getBalance 

deposit [b+amt<0] 
 

Figure 4. The woven model of Overdraft and BankAccount 
 
 
 
 
 
 
 
 
 
 

Figure 5. Impact of the Ordering aspect on FooBar 

public class FooBar 
{     // states: START=0; FOO=1; BAR=2; 
  public FooBar();   // constructor 
  public void foo();  // set state to FOO 
  public void bar();  // set state to BAR 
  public int getS(); // return current state 
} 

Listing 2. The interface of class FooBar 

 
Figure 6. The woven model of Ordering and FooBar 

Now, we formally define the general weaving mechanism for 
applying an aspect to a base model. 
Definition 5 (Weaving Mechanism). Given base model BM and 
aspect model A = (SP, EP, VP, AM), the woven state model, WM, 
of weaving aspect A into base model BM results from the 
following procedure: 
(1) WM := BM; 
(2) WM.T := WM.T – { (si, e, φ, sj): (si, e, φ, sj)∈ BM.T, si∈ A.SP 

and sj∈ A.SP }; 
(3) WM.S := WM.S ∪{s: s∈AM.S and s is a new state};  
(4) WM.S := WM.S ∪{e: e∈AM.E and e is a new event };  
(5) WM.T := WM.T ∪ {(si, e, φ, sj): for any (si′, ep′, φ′, sj′)∈ 

AM.T, pointcuts si′, ep′, sj′ in A picks out si, e, sj in BM, 
respectively, φ results from φ′ by substituting variables in φ′ 
for corresponding variables in BM.V, where si′, sj′ ∈A.SP, 
ep′∈A.EP, si, sj ∈BM.S, e∈BM.E}; 

(6) The initial state of WM is the same as that of BM. 
In Definition 5, “:=” refers to the assignment operator. Step (2) 
says that transition (si, e, φ, sj) will not appear in the woven model 
if both si and sj are included in state pointcuts unless the transition 
is redefined in the advice model and added by step (5). Steps (3) 
and (4) add new states and new events in the advice model into 
the woven net. Step (5) adds all transitions in the advice model to 
the woven model with corresponding variable substitutions. For 
other aspects defined on BM, we can further apply the weaving 
process to compose them into the current woven model WM. We 
assume that the order in which aspects are applied is not 
significant. For an aspect-oriented model ({(BMi, S0i)}, {Aj}), we 
can apply all aspects {Aj} to each of the base model BMi. As such, 
the whole model of an aspect-oriented system consists of a set of 
state models {(WMi, S0i)}.  

3.4 Discussion 
As shown in the Ordering aspect of Fig. 5(b), states in an advice 
model do not need to be strongly connected because an aspect 
only reflects the incremental modification to its base models. An 
extreme impact of aspects on base models is that a state in a base 
model may no longer be reachable – no transition in the woven 
model can transform any other state into this state. In this case, 

foo 

foo bar 

getS 

getS 

getS 
new 

FOO 

BAR 

START 

debit 

 [b-x>=0] 

credit 

Open 

get 

debit [b-x<0 and  

b-x>=-1000] 

credit[b+x>=0] 

get 

credit  [b+x<0] 

close  

freeze 
new 

deposit 

getBalance 

Frozen 

Closed 

Open 
unfreeze 

getBalance 

withdraw 

 [b-amt>=0] 

Base class BankAccount 

Aspect Overdraft 

Over 

drawn 

foo 

foo 

foo 

bar 

bar 

bar 

getS 

getS 

getS 
aspect Ordering 
state pointcut S: FooBar.START 
state pointcut B: FooBar.BAR 
event pointcut get():FooBar.getS()

get 

get 

(a) Base model FooBar 

new 
FOO 

BAR 

START 

B 

S 

(b) Aspect Ordering 
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we may keep such disconnected states in the woven model. 
Negative tests with respect to these states are useful for verifying 
whether or not an aspect-oriented program would reach these 
states unexpectedly. This will help reveal those aspect-related 
defects that cause illegal object states.   
The weaving mechanism in Definition 5 indicates that both 
object-oriented and aspect-oriented systems can be specified by 
state models. As state-based testing is essentially a black-box 
technique, it does not care whether the implementation under test 
is an aspect-oriented or object-oriented program. One could argue 
that the state model of an aspect-oriented program can be 
specified without using aspects, i.e., the resulting woven model in 
Definition 5 can be defined from scratch. In some sense, the 
advantages of the AOP’s ability to handle crosscutting concerns 
are not straightforward from the perspective of black-box testing. 
An aspect-oriented state model, however, can result from aspect-
oriented system design that provides guidelines for system 
implementation. Therefore we can reuse aspect-oriented design 
models for testing purposes. In addition, aspects in an aspect-
oriented state model make explicit the modification to the base 
state models. This facilitates testing of separate concerns and 
incremental modification, which are also essential to the aspect-
oriented paradigm. As will be discussed later, a test suite for an 
aspect-oriented program is essentially incremental modification to 
the test suite for the corresponding base program. This offers a 
potential of incremental testing – the base classes can be tested 
before the aspect-oriented version as a whole is available. This 
also helps localize programming faults by focusing on the base 
classes first and then on the aspects.  
While the aspect-oriented state models in this paper have 
followed the fundamental concepts of AOP, such as join points, 
pointcuts, and advices, they represent these concepts in a different 
way because of the different level of abstraction. In fact, it is not 
easy to tell from an aspect-oriented state model what the aspect 
code would look like. State, event, and variable pointcuts do not 
necessarily have counterparts in AOP programs. Some methods in 
base classes that are corresponding to event pointcuts are possibly 
involved in aspect implementation, though. In short, aspect-
oriented state models provide a higher level of abstraction than 
AOP programming, which is desirable for aspect-oriented design. 

4. INCREMENTAL TESTING 
This section introduces the process of incremental testing, briefly 
describes test generation from state models, and discusses how to 
reuse base class tests for aspect-oriented programs as a whole. 

4.1 Incremental Testing Process 
The general process of our approach to incremental testing of an 
aspect-oriented program is as follows: (1) build the state models 
of the base classes; (2) generate abstract test cases from the base 
models; (3) instantiate the abstract test cases to form concrete test 
suites for the base classes; (4) test the base classes; (5) build 
aspect models and weave them into the base models; (6) generate 
abstract test cases from the woven state models; (7) generate test 
suites for the aspect-oriented program as a whole by reusing, 
modifying, and extending concrete base class test cases and 
instantiate new abstract test cases; and (8) test the aspect-oriented 
program. Of course, we can combine step (5) into step (1), that is, 
build complete aspect-oriented models before testing base classes. 

4.2 Test Generation from State Models 
In our approach, the method for test generation from state models 
is similar to the modal class test design pattern for object-oriented 
programs [4], which derives a test suite by transforming a state 
model to a transition tree and identifying sneak paths with illegal 
state transitions. The test cases in such a transition tree 2  are 
primary for the purposes of testing if a program does what it is 
supposed to do (i.e. positive tests), whereas the test cases 
represented by sneak paths are for testing if a program does not 
do what it is not supposed to do (i.e. negative or dirty tests). As 
this method is in essence a black box technique, it is applicable to 
test generation from state models of aspect-oriented programs. 
We slightly enhance this method by integrating sneak paths into 
conditional transition trees. Given a state model M = (S, E, V, T), 
with initial state s0, we transform state model M into a transition 
tree with sneak paths as follows: 
(1) The root node of the transition tree is s0, the initial state of 

the state model. We also associate the new event and its 
guard condition with s0 and mark the root as non-terminal.  

(2) For each non-terminal leaf node (say state s1) in the 
transition tree, draw a new edge and new node for each event 
e ∈M.E.  

• If there exists state s2∈M.S such that event e transforms 
s1 to s2 under condition φ, i.e. (s1, e, φ, s2)∈M.T, then 
the new node represents state s2. Label the new edge 
with e as well as φ, if any. If state s2 already appears in 
the path, mark the new node as terminal, otherwise non-
terminal (the new node will be expanded).  

• otherwise e is an illegal event at state s1, label the new 
edge with e, and assign state s1 to the new node, and 
mark it as terminal and negative (i.e. the state remains 
unchanged if an illegal event happens. This does not 
mean that event e transforms state s1 to state s1).    

(3) Repeat (2) until all leaf nodes are terminal; 
(4) Expand the transition tree using branch coverage for the 

guard conditions. For each path from the root to a leaf, <s0, 
e1[φ1], s1, e2[φ2], s2,…, en[φn], sn>, start from the root and 
repeat “finding next conditional transition, say (si, ei, φi, si+1), 
and creating a new sneak (negative test)  path <s0, e1[φ1], s1, 
…, si, ei[not φi], si> until there is not conditional transition in 
the path.  

Each path from the root to a leaf in a transition tree is an abstract 
test case.  It can be instantiated to derive a number of concrete test 
cases by assigning constructor and method parameters, if any, 
specific values that satisfy the guard conditions along the path and 
by defining the expected outcome. Different traditional test design 
techniques, e.g. boundary value analysis, can be used for this 
purpose. For a compound condition in an abstract test, different 
combinations of truth values for the sub-conditions may be 
considered (similar to the multi-condition coverage). A 
preliminary discussion on automated generation of test input for 
restrictive programs can be found in [28]. As the focus of this 
paper is on the relations between the state-based test suites of an 
aspect-oriented program and its base program, the instantiation of 

                                                                 
2 Except for those derived from the extensions of guard conditions, i.e. 

step (4) in the subsequent algorithm.  
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abstract tests primarily relies on manual design of test input for 
each object construction and method call, except for the situations 
of test reuse.  
Fig. 7 shows the transition tree for the woven model of Ordering 
and FooBar in Fig. 6. Each path without (or with) dashed edge 
and node indicates a positive (or negative) test case. The sequence 
of events in each path is essentially a sequence of object 
construction and method calls. For example, the path <new, 
START, foo, FOO, foo, FOO> indicates <new, foo, foo>. As the 
transitions in this example have no guard conditions (foo and bar 
have no parameters), the test cases derived from all the paths in 
the tree are actually concrete test cases. They form a test suite for 
the base class FooBar. It is worth pointing out that the two 
negative test cases for the woven model are as follows: 

<new, START, bar, START>  
<new, START, foo, FOO, bar, BAR, bar, BAR>.  

The event sequences are <new, bar> and <new, foo, bar, bar>. 
These negative cases are critical for detecting the faults in a 
program that does not enforce the policy that foo must come 
before bar.  

 
Figure 7. The transition tree for the state model in Fig. 6 

To facilitate our discussion on reuse of base class tests, Fig. 8 and 
Fig. 9 show the transition trees for the base model and woven 
model of the BankAccount example. To save space, ‘Part A’ in 
Fig. 9 is corresponding to that in Fig. 8. Also we use ‘*’ to denote 
all the events that have not appeared in the sibling nodes. For 
instance, ‘*’ in the negative test path <Open, freeze, Frozen, *, 
Frozen> in Fig. 8 refers to a number of branches for events freeze, 
close, withdraw, and deposit, respectively. As an example, 
<new(500), withdraw(200)> is a concrete case of the abstract test 
<new, Open, withdraw[b-amt>=0], Open>.  A subtlety here is 
that the conditional event withdraw[b-amt<0] in the negative 
path <Open, withdraw[b-amt<0], Open> in Fig. 8 is split into 
withdraw[b-amt<-1000] and withdraw[b-amt<0 and b-amt>=-
1000] in Fig. 9.   
Suppose the number of abstract states and the number of events in 
a state model are m and n, respectively, the complexity of the 
transition tree is O(m×n). We can further reduce it by removing 
the accessor methods (events) from state models before 
generating transition trees. As the implementation of an accessor 
method is often straightforward, it is easy to test it separately. For 
instance, getS in the above example simply returns the current 
state. If we are confident in the implementation of getS, we can 
reduce the transition tree in Fig. 7 by removing all the paths that 
involve gets.  

4.3 Reuse of Base Class Tests for Aspects 
Let us first compare the transition trees of the base model and 
woven model for the FooBar example. They have almost the 
same paths except for the two negative tests mentioned earlier. 
These negative tests are actually corresponding to the following 
positive tests for the base model in Fig. 5(a): 

<new, START, bar, BAR> and 

<new, START, foo, FOO, bar, BAR, bar, BAR>  
Their event sequences, <new, bar> and <new, foo, bar, bar>, are 
the same as those of the negative tests for the woven model. The 
positive tests for the base model becomes negative ones for the 
woven model because the aspect has disabled the state-transitions 
(START, bar, BAR), and (BAR, bar, BAR). This reflects a close 
relationship between the test suites for aspect-oriented programs 
and for their base programs. In other words, testing an aspect-
oriented program may make substantial reuse of the state-based 
test cases of its base classes.  

 
Figure 8. The base model transition tree of BankAccount 

 
Figure 9. The woven model transition tree of BankAccount 

Our approach is motivated to maximize reuse of concrete base 
class tests for aspects. Given base state model BM=(S, E, V, T) 
and aspect A=(SP, EP, VP, AM), WM is the woven model of BM 
and A. Let Tree(BM) and Tree(WM) be the abstract test suites for 
the base model and the woven model, respectively. In the 
following, we present several rules for reusing base class tests.   
Rule 1 (Full reuse of positive tests): For a given positive abstract 
test <new[φ0], s0, e1[φ1], s1… sn-1, en[φn], sn> in Tree(BM), if (si-1, 
ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈ WM.T and φi→φi′  for any i 
(0<i≤n), then any concrete test of <new[φ0], s0,, e1[φ1], s1… sn-1, 
en[φn], sn> for the base class remains as a positive test for the 
aspect-oriented program.  

In Rule 1, if an aspect does not modify the guard condition φi of 
any event ei in the path, then φi′ = φi and φi→φi′ holds. In this 
case, the aspect-oriented program simply inherits the abstract and 
concrete tests from the base classes. Even if an aspect modifies 
the guard condition φi of some event ei to φi′ such that φi→φi′, it 
would not affect reuse of the tests. For a concrete positive test 
<new[φ0], s0, e1[φ1], s1… sn-1, en[φn], sn> of base classes where 
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method parameters are bound to specific values, even if φi→φi′ 
does not hold in general, it can still be reused as long as φi′ is true 
with respect to the given variable bindings. This is similar for 
other rules. In the following discussion, we focus on reuse of 
abstract tests, which also applies to reuse of concrete tests. As an 
aspect may introduce new events to base models, an abstract base 
class test may be just part of a complete path in the transition tree 
of the woven model. In this case, the base class test can still be 
fully used for expansion. For the FooBar example, Rule 1 applies 
to 5 out of 7 positive abstract tests. For the BankAccount example, 
Rule 1 applies to all the 6 positive abstract tests.  
Rule 2 (Full reuse of negative tests): For a given negative abstract 
test <new[φ0], s0, e1[φ1], s1… sn-1, en[not φn], sn> in Tree(BM), if: 

(1) for any i (0<i≤n-1), (si-1, ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈ 
WM.T, and not φi→ not φi′  (simply φi′→φi), and  

(2) there does not exist s∈WM.S such that (sn-1, en, φ, s)∈ WM.T, 
or there exists (sn-1, en, φ, s) ∈ WM.T such that not φn→ not φ. 

then any concrete negative test of <new[φ0], s0, e1[φ1], s1… sn-1, 
en[not φn], sn> remains as a negative test for the aspect-oriented 
program. 

A special situation in Rule 2 is that <sn-1, en, ,sn>∈ BM.T, i.e. [not 
φn] does not occur. Then not φn→ not φ is equivalent to not φ. For 
the BankAccount example, Rule 2 applies to all of the negative 
base class tests except for those concrete tests of <new, Open, 
withdraw[b-amt<0], Open> such that b-amt>=-1000. If b-amt<-
1000, then the concrete test <new, Open, withdraw[b-amt<0], 
Open> remain as a negative aspect test of <new, Open, 
withdraw[b-amt<-1000], Open>. 
Rule 3 (Modified reuse of positive base class tests as negative 
aspect tests). For a given positive abstract test <new[φ0], s0, 
e1[φ1], s1… sn-1, en[φn], sn> in Tree(BM), if there exists i (0<i≤n) 
such that:  

(1) for any j (0<j≤i-1), (si-1, ei, φi, si) ∈ BM.T and (si-1, ei, φi′, si) 
∈ WM.T and φi→φi′, and 

(2) (si-1,ei, φi, si)∈ BM.T and (si-1, ei, φ, si)∉WM.T, or there exists 
(si-1, ei, φ, si)∈WM.T and φi→ not φ,  

then any concrete test of <new[φ0], s0, e1[φ1], s1… sn-1, en[φn], 
sn> will no longer be a positive test for the woven program. 
Instead, <new[φ0], s0, e1[φ1], s1… si-1, ei[not φi], si-1> is a 
negative test for the aspect-oriented program. Note that the 
resulting state of the negative test is si-1, not si. 
In Rule 3, to what extent the test can be reused depends on i/n:  if 
i is closer to n, more reuse is possible. If i is close to 1 and n is far 
greater than 1(n>>1), then the test is hardly reused. In FooBar, 
Rule 3 applies to the positive base class tests <new, START, bar, 
BAR> and <new, START, foo, FOO, bar, BAR, bar, BAR>. They 
become the negative aspect tests <new, START, bar, START> and 
<new, START, foo, FOO, bar, BAR, bar, BAR>, respectively 
because transitions <START, bar, ,BAR>and <BAR, bar, , BAR> 
no longer exists in the woven model.  
Rule 4. (Reuse for expansion). For a given negative test 
<new[φ0], s0, e1[φ1], s1… sn-1, en[not φn], sn> in Tree(BM), if:  

(1) for any i (0<i≤n-1), (si-1, ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈ 
WM.T and φi→φi′, and  

(2) there exists s∈WM.S such that (sn-1, en, φ, s)∈ WM.T,  

then the test is no longer valid in Tree(WM). However, <new[φ0], 
s0, e1[φ1], s1… sn-1> can be further expanded to either positive or 
negative tests for the aspect-oriented program according to the 
transitions that transform s to other states.   
As mentioned earlier, for the BankAccount example, a concrete 
negative base class test of <new, Open, withdraw[b-amt<0], 
Open>, where b-amt<-1000 also holds, remain as a negative 
aspect test of <new, Open, withdraw[b-amt<-1000], Open>. For 
a concrete test of <new, Open, withdraw[b-amt<0], Open> 
where b-amt>=-1000, however, it can be expanded to derive 
those negative or positive aspect tests that start with <new, Open, 
withdraw[b-amt>=0 and b-amt<-1000], Overdrawn> (refer to 
the right-hand side of Fig. 9). In Rule 4, another special situation 
is that s already occurs earlier in the path, which means 
<new[φ0], s0, e1[φ1], s1… sn-1 , en [φ], s> is a complete test path in 
the transition tree of the woven model. If it is a positive aspect 
test, then the negative base class test can be reused with a little 
additional effort to make the new concrete test satisfy φ.   
Due to limited space, we will not prove the correctness of the 
above rules. It can be done by reasoning about aspect-oriented 
state models and the algorithm of transition tree generation. The 
rules are useful although, due to the low complexity of the 
transition tree generation, the transition tree of an aspect-oriented 
model is constructed from the woven model, rather than obtained 
by modifying the transition tree of the base model. There are 
several reasons. Firstly, as the test input and expected outcome of 
a concrete base class test is provided by testers, rather than 
automatically generated, we must make best reuse of the concrete 
tests, which are often an expensive investment. Secondly, the 
fully reused base class tests, e.g. in Rules 1 and 2, are necessary 
for regression testing of aspect-oriented programs because aspects 
are incremental modifications to base classes. There is no 
guarantee that their implementation will not behave unexpectedly. 
Thirdly, reuse of base class tests helps localize potential faults. If 
the base classes do not pass a test, then we can focus on the base 
classes. If the base classes pass the tests but the aspect-oriented 
program fails some fully reused tests, then we can focus on the 
aspects. Fourthly, the above rules can be automated by checking 
aspect-oriented state models and their transitions trees so as to 
significantly reduce the testing workload. In addition, it is also 
possible to reuse concrete base class tests that are not derived 
from the transition trees of state models. Such tests must have 
followed inadvertently some path in the transition trees provided 
the system model is sound and complete. 
In summary, the state-based test suite of an aspect-oriented 
program is incremental to that of the base program. Majority of 
the base class tests can be reused for aspect testing. However, 
subtle modifications to some of them are required. As in the 
FooBar example, positive base class tests may become negative 
aspect tests. As in the BankAccount example, negative tests may 
become (part of) positive aspect tests. 

5. DETECTING ASPECT FAULTS  
A great variety of aspect-specific faults may exist in aspect-
oriented programs [3]. Examples include pointcut expressions 
picking out extra join points, pointcut expressions missing certain 
join points, incorrect advice types, and incorrect advice 
implementation. In this section, we discuss how these faults 
would affect object states and how they can be revealed by the 
state-based testing approach. While we use the FooBar example 
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for illustration, the situations are similar for the BankAccount 
example. For reference purposes, Listing 3 shows an AspectJ 
implementation of the Ordering aspect.  

public aspect Ordering { 
    pointcut barcut(FooBar fb):  
                 execution(void FooBar.bar(..)) && target(fb); 
    void around(FooBar fb): barcut(fb) { 
         if (fb.getS() != FooBar.FOO) { 
             System.out.println("bar without foo - illegal");  
         } 
         else  
            proceed(fb); 
    } 
} 
Listing 3. Sample AspectJ code for the Ordering aspect 

We also reduce the getS method from the transition tree in Fig. 7. 
So we have the following tests for the aspect-oriented FooBar 
program. 

NTC1: new START bar START 
NTC2: new START foo FOO bar BAR bar BAR 
PTC3: new START foo FOO bar BAR foo FOO 
PTC4: new START foo FOO foo FOO 

where NTC and PTC stand for negative test cases and positive 
test cases, respectively. 
(1) Pointcut expressions picking out extra join points 
One of the common aspect-specific faults has to do with incorrect 
point expressions that pick out extra join points. A major cause is 
the inappropriate use of wildcards in pointcut expressions. For the 
Ordering aspect, one might code the following pointcut: 
         pointcut cut(FooBar fb): 

execution(public void FooBar.*(..)) && target(fb); 
This pointcut will pick out two join points: execution(public 
void FooBar.foo(..)) and execution(public void FooBar.bar 
(..)). The first join point is unexpected. An aspect with such a 
pointcut will not enforce the ordering policy correctly even if the 
advice is the same as that in Listing 3. Actually, the above 
pointcut imposes additional impact on the object states: it requires 
that both foo and bar be applied under state FOO. Exercising the 
aspect-oriented program with either PTC3 or PTC4 would reveal 
this fault.  
 (2) Pointcut expressions missing join points 
A pointcut expression may miss expected join points. For 
example, the following pointcut expression does not pick out the 
expected join point execution(public void FooBar.bar(..)).  

pointcut cut(FooBar fb): 
        execution(public int FooBar.*(..)) && target(fb); 

This faulty pointcut will not achieve the expected effect on the 
object states. The fault can be detected by either negative test case 
NTC1 or NTC2. 
 (3) Incorrect advice types 
Even if pointcuts are specified correctly, a wrong advice type will 
not lead to the expected results. For example, an after (or before) 
type may be mistaken as a before (or after) type. For around type 
advices, proceed() is often used. If an around advice with 
proceed() is mistaken as a before or after type, it would result in 
a compilation error. However, proceed() is not always used. For 
example, the advice in Listing 3 can be implemented in such a 

way that proceed() is not used at all. In this case, a wrong advice 
type may have an unexpected impact on the object states. It thus 
can be detected by the state-based approach.  
(4) Incorrect advice implementation 
Advice implementation may fail to realize the design in the way 
much like a traditional program does. For example, the following 
is a possible fault with respect to the if statement in Listing 3:  
 if (fb.getS()==FooBar.BAR)  
Obviously, fb.getS()==FooBar.BAR is different from fb.getS() 
!= FooBar.FOO due to the fact that an object can be in the 
START state. The faulty condition would allow a transition from 
state START to state BAR by a call to method bar. This is an 
unexpected transition. This fault can be revealed by the negative 
test case NTC1. Of course, there are other possible faults, such as 
(fb.getS()!=FooBar.BAR) and (fb.getS()==FooBar.FOO), etc. 
If a fault results in an unexpected object state like these faults do, 
exercising the aspect-oriented program with the state-based test 
cases will reveal it.  

6. CONCLUSIONS 
We have presented the state-based approach to incremental 
testing of aspect-oriented programs, which takes aspects as 
incremental modifications to their base classes. The contribution 
of this paper is twofold: (1) the rigorous aspect-oriented extension 
to state models, which facilitates specification of the impact of 
aspects on the states and transitions of base class objects and 
generation of abstract test cases, and (2) the investigation of 
reusing base class tests for conformance testing of aspect-oriented 
programs. Our work shows that majority of base class tests can be 
reused for aspects, but subtle modifications to some of them are 
necessary. In particular, positive (or negative) base class tests can 
become (part of) negative (or positive) aspect tests. The two 
examples, FooBar and BankAccount, indicate two distinctive 
types of aspect-oriented applications: aspects removing state 
transitions from base classes and aspects adding and modifying 
state transitions from base classes. They feature the fundamental 
impacts that aspects in complex aspect-oriented applications may 
impose on the states of base class objects. 
The incremental testing approach is similar to traditional 
regression testing. The essential difference is that, aspects as a 
structured way to specify modifications make it feasible to 
investigate systematic reuse and modification of the existing tests. 
Our approach can be adapted to the UML class diagrams and 
startcharts by using class interfaces, flattening startchart diagrams, 
and following the convention of guard conditions.  
Concerning the future work, we plan to address the following 
open issues: (1) what kind of base class tests are less likely 
helpful for revealing aspect faults? (2) how to prioritize the test 
cases to be reused? (3) how to model and test interference of 
multiple interacting aspects? 
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