

State-Based Incremental Testing of Aspect-Oriented Programs
Dianxiang Xu

Department of Computer Science
North Dakota State University

Fargo, ND 58105, U.S.A
dianxiang.xu@ndsu.edu

Weifeng Xu
Department of Computer Science

North Dakota State University
Fargo, ND 58105, U.S.A
weifeng.xu@ndsu.edu

ABSTRACT
Taking aspects as incremental modifications to their base classes,
this paper presents an incremental approach to testing whether or
not aspect-oriented programs and their base classes conform to
their respective behavior models. We exploit a rigorous aspect-
oriented extension to state models for capturing the impact of
aspects on the state transitions of base class objects as well as an
explicit weaving mechanism for composing aspects into their base
models. We generate abstract tests for base classes and aspect-
oriented programs from their state models. As base class tests are
not necessarily valid for aspect-oriented programs, we identify
several rules for maximizing reuse of concrete base class tests for
aspects according to the state-based impact of aspects on their
base classes. To illustrate our approach, we use two examples that
indicate distinctive types of aspect-oriented applications and
exhibit fundamental features in complex applications: aspects
removing state transitions from base classes and aspects adding
and modifying state transitions in base classes. Our results show
that majority of base class tests can be reused for aspects, but
subtle modifications to some of them are necessary. In particular,
positive (or negative) base class tests can become negative (or
positive) aspect tests. We also discuss how several types of
aspect-specific faults can be revealed by the state-based testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging - Testing
tools (e.g., data generators, coverage testing)

General Terms
Algorithms, Verification, Design

Keywords
Aspect-oriented programming, model-based testing, incremental
testing, state model, aspect-oriented state model.

1. INTRODUCTION
While aspects in aspect-oriented programming (AOP) offer an
effective way for modularizing separate concerns, the new
programming constructs of AOP languages introduce numerous
opportunities for programmers to bring various potential faults

with respect to aspects [3]. Generally, an aspect-oriented program
consists of aspects and their base classes (or components) that can
be woven into an executable whole [14][15]. The base classes in
an aspect-oriented program can also be executed independently.
From the system architecture perspective, aspects often crosscut
multiple base classes. From the base class perspective, however,
aspects are essentially incremental modifications to base classes
with additional operations and constraints for separate concerns.
They provide a paradigm of ‘programming by difference’,
constructing new components by specifying how they differ from
the existing components [19]. The incremental modifications of
aspects to base classes can impose a significant impact on the
object states of base classes. Although aspects in AOP add more
code to their base classes, they can not only introduce new object
states and transitions, but also remove and update state transitions.
As such, aspects may lead to subtle differences in the sequence of
messages that can be accepted by the base class objects. In
particular, aspect-specific faults likely result in unexpected object
states and transitions
To reveal aspect-specific faults, we are motivated to investigate
model-based testing, i.e. testing whether or not aspect-oriented
programs and their base classes conform to their respective
behavior models. Model-based testing is appealing because of
several benefits [9][21]: (1) the modeling activity helps clarify
requirements and enhance communication between developers
and testers; (2) design models, if available, can be reused for
testing purposes; (3) model-based testing process can also be
(partially) automated; and (4) more importantly, model-based
testing can improve error detection capability and reduce testing
cost by automatically generating and executing many test cases.
Pretschner et al. demonstrated that, for the case study of an
automotive network controller, a six-fold increase in the number
of model-based tests has led to 11% increase in detected errors
[22]. Dalah et al. reported an empirical study on four large-scale
applications, in which model-based test generation revealed
numerous defects that were not exposed by traditional approaches
[8]. Using model-based testing methods and tools, Blackburn et
al. were able to identify the software error of the Mars Polar
Lander (MPL) that is believed to cause the MPL to crash to the
Mars surface on December 3, 1999 [5].
In this paper, we present a state-based approach to the incremental
testing of aspect-oriented programs, which addresses the
following research issues:

• How to specify the expected impact of aspects on object
states for test generation purposes?

• To what extent can base class tests be reused for testing
aspects? Base class tests are not necessarily valid for
testing aspect-oriented programs as aspects likely
change transitions of object states.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD’06, March 20-24, 2006 Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03... $5.00.

180

• How to determine that a programming fault actually
has to do with aspects rather than base classes?

To capture the expected impact of aspects on the states of base
class objects, we exploit aspect-oriented state models, an aspect-
oriented extension to state models with testability, for specifying
base classes as well as aspects. We compose state models of
aspects and base classes by an explicit weaving mechanism and
generate abstract test cases from state models for an aspect-
oriented program and the corresponding base program. Taking
aspects as incremental modifications to their base classes, we
identify how to reuse the concrete base class tests for testing
aspect-oriented programs according to aspect–oriented state
models. Such an incremental approach to testing aspect-oriented
programs can significantly reduce testing cost for two reasons: (1)
it reuses test cases, the development of which is often an
expensive investment; and (2) it helps localize programming
problems by identifying aspect-specific faults. For instance, if the
base classes of an aspect-oriented program pass all of the state-
based tests but the aspect-oriented program as a whole fail some
of the tests, the failure would have to do with aspects.
The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 formalizes aspect-oriented state models as
well as the weaving mechanism for integrating aspects into base
models. Section 4 describes how base class tests can be reused to
test aspect-oriented programs. Section 5 discusses how aspect-
specific faults may affect object states and state transitions and
how they are detected by the state-based incremental testing
approach. Section 6 concludes this paper.

2. RELATED WORK
2.1 Testing of Aspect-Oriented Programs
While AOP provides a flexible mechanism for modularizing
crosscutting concerns, it raises new challenges for testing aspect-
oriented programs. Alexander et al. have proposed a fault model
for aspect-oriented programming, which includes six types of
faults: incorrect strength in pointcut patterns, incorrect aspect
precedence, failure to establish postconditions, failure to preserve
state invariants, incorrect focus of control flow, and incorrect
changes in control dependencies [3]. This fault model has not yet
constituted a fully-developed testing approach. McEachen and
Alexander have explored some of the long-term maintenance
issues that can occur with AspectJ [16].
Zhao has proposed a data flow based approach to unit testing of
aspect-oriented programs [31]. For each aspect or class, the
approach performs testing at the intra-module, inter-module, and
intra-aspect/intra-class levels. Zhao and Rinard have also
exploited system dependence graphs to capture the additional
structures in aspect-oriented features such as join points, advice,
aspects, and interactions between aspects and classes [30].
Control flow graphs were constructed at system and module
levels, and then test suites were derived from control flow graphs.
The work did not target specific models of most likely faults. To
reduce testing cost, Zhou et al. have introduced an algorithm
based on control flow analysis for selecting relevant test cases
[32]. It evaluated test coverage and selected relevant test cases
when existing tests could not satisfactorily cover the aspects
under test. Xie et al. have proposed a framework for generating
test inputs for AspectJ programs, where a wrapper class was
created for each base class under test [26]. The above work has

primarily focused on generation of unit and integration tests from
aspect-oriented programs, whereas our research focuses on
whether or not aspect-oriented programs conforms to their
behavior models. In [29], we used aspect-oriented UML models
to generate tests for exercising aspect-oriented programs. In [28],
we presented an approach to state-based test generation for
aspect-oriented programs, where aspect-oriented state models
were defined in an ad hoc manner and the testing process was not
incremental per se. In a recent technical report [27], we
formalized an aspect-oriented extension to state models and
discussed test generation for aspects-oriented programs. This
work was restrictive as it did not associate guard conditions with
transitions in state models. In this paper, we have significantly
extended our previous work from several perspectives: (1)
generalization and formalization of aspect-oriented state models;
(2) incremental style of testing that reuses base class tests for
aspect-oriented programs; and (3) investigation of how aspect-
specific faults would affect object states and state transitions.

2.2 Aspect-Oriented Modeling
With the development of AOP applications, there is an increasing
need for addressing crosscutting concerns in the early phases of
software development. Aspect-oriented modeling (AOM) is
therefore of great interest. AOM involves identifying, analyzing,
managing, and representing crosscutting concerns. It targets a
simplified, abstract description of an aspect-oriented design. An
aspect-oriented modeling method requires three types of
constructs for modeling base elements, crosscutting elements, and
crosscutting relationships, respectively. UML, as the de facto
standard for object-oriented modeling, has been a dominant
language for specifying base elements of an aspect-oriented
model. Recently, extensions to UML have been investigated for
modeling such crosscutting elements and relationships as join
points, pointcuts, advices, aspects, and inter-type declarations [2]
[10][13][24][25].
Modeling, however, is a broad notion that can be involved in
various perspectives of software development, such as design
specification, code generation, testing, and reverse engineering.
Models from different perspectives require different level of
details although their structures may appear to be similar [20]. For
example, a traditional state model for design specification does
not carry sufficient information for test generation. The testable
FREE state model resulted from enhancing a traditional state
model with regular expressions [4]. The existing aspect-oriented
extensions to state models [1][10] and UML (e.g. [2] [13] [24]
[25]) are primarily for the purposes of design specification.
Groher and Schulze have investigated AOM for code generation
[12]. For program understanding, Coelho and Murphy have
developed a tool for presenting crosscutting structures in AspectJ
programs [7]. In this paper, we explore aspect-oriented state
models for testable specification and test generation of aspect-
oriented programs. Our approach is different from other aspect-
oriented extensions to state models [1][10]. The latter specifies
base state models and aspect state models as different regions of a
statechart, where aspects first intercept events sent to base state
models and then broadcast the events to base state models. It
relies on a specific naming convention as the weaving mechanism
is implicit. In comparison, our approach allows to capture the
incremental modification nature of aspects and to explicitly
specify state and event pointcuts with the support of an explicit
weaving mechanism.

181

3. ASPECT-ORIENTED STATE MODELS
In this section, we first formally define extended state models as a
basis for class and aspect specification, and then describe aspect-
oriented state models and the weaving mechanism.

3.1 State Models
Objects are encapsulated entities of data and operations that can
receive messages from and send messages to other objects [18].
Constraints often exist on the sequence of messages that can be
accepted by objects. As these constraints are typically related to
object states, state models are a common approach for capturing
object behaviors, especially intra-class behaviors. In the
following, we extend traditional finite state models as a basis for
aspect-oriented state models.
Definition 1 (State Model). A state model M is a 4-tuple (S, E, V,
T), where:
(1) S is a finite set of states;
(2) E is a finite set of actions (or events);
(3) V is a finite set of variables;

(4) T ⊆ S×E×Φ×S is a set of transitions, where Φ is a set of
regular logic formula in some language1. (si, e, φ, sj) ∈ T
means that action e∈E transforms state si∈ S to state sj∈ S
under condition φ∈Φ. φ is called the guard condition of the
transition.

For consistency, if (s1, e, φ1, s2) ∈ T and (s1, e, φ2, s2) ∈ T, then φ1
=φ2. In other words, we do not allow multiple transitions from s1
to s2 by the same action e. If action e does transform s1 to s2 under
different conditions, say, φ1 and φ2, then the transitions can be
merged into one with a compound guard condition φ1 or φ2. For a
state model, we may also specify an initial state s0∈ S. Definition
1 does not include initial state as part of a state model because
state models will also be used to specify aspects. As will be
discussed later, the state model for an aspect does not need an
initial state. As an aspect-oriented program has a number of state
models, we denote the component X ∈{S, E, V, T} of state model
M as M.X. It is worth pointing out that a state model can be
specified in a table, where each entry (i,j) contains the
corresponding action and condition (e and φ), if any, that
transform state si in row i, to state sj in column j. This makes it
convenient to put state models into practice.
In a state model M for class C, events and transitions are related
to methods of class C. Specifically, we interpret each transition
(si, e, φ, sj)∈ M.T as follows:

• si and sj are abstract states of objects of class C;

• e is corresponding to a method, say m(τ1 v1, τ2 v2,…, τk
vk), in the specification of class C, where τi (1≤i≤k) is
the type of parameter vi. τi can be a fundamental data
type or an object type (i.e. class).

• φ is a logical condition constructed by using constants,
instance fields of class C, or explicit parameters vi
(1≤i≤k) of method m. If τi is an object type and f is a

1 As our focus is testing, this paper uses a programming language,

e.g. Java, rather than a formal language.

public function (method with a return value) of τi, then
function call vi.f is allowed to occur in logical formulas.

• (si, e, φ, sj) is a call to method m under state si that
satisfies guard condition φ and achieves state sj.

In addition, a special transition (, new, φ0 , s0) refers to the
construction of an object under condition φ0 (φ0 is optional),
which results in initial state s0. Transition (si, e, , sj), where φ is
omitted, means that the transition is unconditional: any event e (or
call to method m) under state si results in state sj. We denote the
sequence of transitions (, new, φ0 , s0),(so, e1, φ1, s1), (s1, e2, φ2,
s2),…,(sn-1, en, φn, sn) by <new[φ0], s0,, e1[φ1], s1 , e2[φ2],
s2,…,en[φn], sn> or <new[φ0], e1[φ1], e2[φ2],…, en[φn] >. Such a
sequence is called an abstract test case because the parameters of
constructor and method calls are not yet assigned specific values.
According to the above interpretation, the specification of object
behaviors of a class in our approach actually relies on both the
state model and the public interface of the class. The public
interface of a class includes complete signatures of the methods.
Although instance fields are seldom part of public interfaces, they
are often indicated by public get methods. For convenience, we
allow use of instance fields in state models. This does not lose
generality. Note that the state model here is similar to the FREE
model [4] except that the guard conditions are explicitly defined
with respect to class interfaces.
For example, Fig.1 and Listing 1 show the state model and public
interface of the BankAccount class, respectively. For clarity, we
use b to denote the instance field balance and assume that
amt>=0 is a precondition for methods deposit(amt) and withdraw
(amt). Transition (Open, withdraw, b-amt>=0, Open) means that
method call withdraw(amt) with condition b-amt>=0 under state
Open does not change the state.

close

freeze

withdraw
 [b-amt>=0]

new

deposit

getBalance

Frozen

Closed

Open
unfreeze

getBalance

Figure 1. The state model of class BankAccount

public class BankAccount {
 // constructor, or the new operator
 public BankAccount(double amt);
 // indicating instance field balance - b for short
 public double getBalance();
 public void deposit(double amt);
 public void withdraw(double amt);
 public void freeze();
 public unfreeze();
 public void close();
}

Listing 1. The interface of class BankAccount

182

3.2 Aspect-Oriented State Models
We incorporate aspect-orientation into state models by following
the fundamental concepts of AOP, such as aspects, join points,
pointcuts, and advices. In our approach, join points can be states,
events, or variables in a state model; a pointcut picks out a group
of join points; advices are specified as a state model; and an
aspect is an encapsulated entity of pointcuts and advice model.
Definition 2 (Pointcut). Pointcuts are defined as follows:
(1) state pointcut <cutname>:<base>.<state>{, <base>.<state>};
(2) event pointcut <cutname>: <base>.<event(paras)> {,<base>.

<event(paras)>};
(3) variable pointcut <cutname>: <base>.<variable> {,<base>.

<variable>};
where <cutname> identifies a state, event, or variable pointcut;
<base> means the state model of a base class; <base>.<state>,
<base>.<event(paras)> and <base>. <variable> refers to a state,
event, or variable in the base state model, respectively. For
convenience, we also reference a pointcut by its name.

Definition 3 (Aspect Model). An aspect model A is a 4-tuple (SP,
EP, VP, AM), where SP is a set of state pointcuts, EP is a set of
event pointcuts, VP is a set of variable pointcuts, AM = (S, E, V,
T) is a state model (called advice state model or simply advice
model), AM.S subsumes all state pointcut names in SP, AM.E
subsumes all event pointcut names in EP, and AM.V includes all
variable pointcut names in VP and all variables in the parameters
of event pointcuts in EP.
We build a model for each aspect. Fig.2 shows the aspect model
Overdraft that enforces a new banking policy for the base class
BankAccount in Fig.1. Although it can crosscut other account
(e.g. credit card) classes, for simplicity, we specify it only with
respect to BankAccount. The Overdraft aspect allows one
overdraft as long as the balance is not less than -1000. In the
aspect, the states are Open (a different name can be used, though)
and Overdrawn, where Open is corresponding to the Open state in
the base model and Overdrawn is a new state. The events are
credit, debit and get, which are corresponding to deposit,
withdraw, and getBalance in the base model, respectively. The
variables used to represent guard conditions are x and b, which
are corresponding to amt and b in the base model, respectively.
Note that the aspect is an addition to the base model as all the
transitions from Open to Open in the base model remain
unchanged.

Figure 2. The Overdraft aspect

Definition 4. (Aspect-Oriented State Model) An aspect-oriented
state model for a system design with m classes and n aspects is
defined by ({(BMi, S0i)}, {Aj}) where S0i is the initial state of
base model BMi and Aj is a state-based aspect model, 1≤i≤m and
1≤j≤n.

3.3 The Weaving Mechanism
The semantics of an aspect-oriented state model essentially
depends on the weaving mechanism that composes aspect models
into base models. As incremental modification to base models, an
aspect may affect the base models in various ways, such as:

• adding new transitions among existing states to the base
models;

• introducing new states and thus new transitions to the
base models;

• removing transitions from the base models;
• modifying guard conditions of transitions in the base

models; and
• introducing new events (similar to introductions in

AspectJ) to the base models.
For example, the Overdraft aspect in Fig. 2 introduces the new
state Overdrawn and four new transitions. From the base class
perspective, the semantics of an aspect model is that the advice
model of the aspect overrides the corresponding part in the base
model in terms of state, event and variable pointcut specifications.
As illustrated in Fig.3, the advice model of Overdraft intends to
override the transitions associated with the Open state in the state
model of BankAccount with respect to the pointcut specifications.
The dashed arrows indicate mappings from states, events and
variables in Overdraft to those in BankAccount. For clarity, not all
such mappings are shown. For example, all the three credit events
in Overdraft should be mapped to the same deposit event in
BankAccount. For a transition in the base model, if at most one of
the two states in the transition is picked out by some state pointcut
in the aspect, then the transition remains unchanged. Examples
are (Open, freeze, , Frozen), (Frozen, unfreeze, , Open) and
(Open, close, , Closed). Fig. 4 shows the woven model of
Overdraft and BankAccount.
Consider another example, FooBar, which was discussed publicly
at aspectprogrammer.org (the AspectJ program can be found in a
poster entitled “Aspects as Automaton” at: http://www.
aspectprogrammer.org/blogs/adrian/2005/04/aspects_as_auto.html
). It is a nice demonstration of AspectJ features. Here we make a
change by using states in the base class FooBar as well. Fig. 5(a)
and Listing 2 are the state model and public interface of FooBar.
The state model indicates that there is no constraint on the order
in which methods foo and bar are called.
Now we use an aspect to enforce the policy that foo always comes
before bar: every call to bar must be preceded by at least one call
to foo. After any call to bar, foo must be called at least once
before bar can be called again. Fig. 5(b) shows the Ordering
aspect for the base class FooBar. In the advice model, there is no
transition from state S (i.e. START in FooBar) to state B (i.e. BAR
in FooBar), and no transition from B (BAR in FooBar) to B. This
implies that the state BAR in FooBar can only result from a call to
the method bar from the state FOO. As shown in Fig. 5, states S
and B in Ordering are mapped to states START and BAR in
FooBar, respectively; event get in Ordering is mapped to event
getS in FooBar; transitions (START, foo, ,FOO), (FOO, bar,

aspect Overdraft
state pointcut Open: BankAccount.Open
event pointcut get: BankAccount.getBalance
event pointcut debit(x): BankAccount.withdraw(amt)
event pointcut credit(x): BankAccount.deposit(amt)
variable pointcut b: BankAccount.b

get

debit

 [b-x>=0]

credit

Open

debit [b-x<0 and

b-x>=-1000]

credit[b+x>=0]

get

credit [b+x<0]

Over

drawn

183

,BAR), (BAR, foo, ,FOO), (FOO, foo, ,FOO), and (FOO, getS,
,FOO) are not affected by the aspect. Fig. 6 shows the woven
model of Ordering and FooBar, where the transition from state
START (or BAR) to state BAR through event bar no long exists. In
this example, the Ordering aspect only removes state transitions
from the base model FooBar.

Figure 3. The impact of Overdraft on BankAccount

close

freeze

withdraw
 [b-amt>=0]

new

deposit

getBalance

Frozen

Closed

Open
unfreeze

getBalance

Over
drawn

withdraw
[b-amt<0 and

 b-amt>=-1000]

deposit
 [b+amt>=0]

getBalance

deposit [b+amt<0]

Figure 4. The woven model of Overdraft and BankAccount

Figure 5. Impact of the Ordering aspect on FooBar

public class FooBar
{ // states: START=0; FOO=1; BAR=2;
 public FooBar(); // constructor
 public void foo(); // set state to FOO
 public void bar(); // set state to BAR
 public int getS(); // return current state
}

Listing 2. The interface of class FooBar

Figure 6. The woven model of Ordering and FooBar

Now, we formally define the general weaving mechanism for
applying an aspect to a base model.
Definition 5 (Weaving Mechanism). Given base model BM and
aspect model A = (SP, EP, VP, AM), the woven state model, WM,
of weaving aspect A into base model BM results from the
following procedure:
(1) WM := BM;
(2) WM.T := WM.T – { (si, e, φ, sj): (si, e, φ, sj)∈ BM.T, si∈ A.SP

and sj∈ A.SP };
(3) WM.S := WM.S ∪{s: s∈AM.S and s is a new state};
(4) WM.S := WM.S ∪{e: e∈AM.E and e is a new event };
(5) WM.T := WM.T ∪ {(si, e, φ, sj): for any (si′, ep′, φ′, sj′)∈

AM.T, pointcuts si′, ep′, sj′ in A picks out si, e, sj in BM,
respectively, φ results from φ′ by substituting variables in φ′
for corresponding variables in BM.V, where si′, sj′ ∈A.SP,
ep′∈A.EP, si, sj ∈BM.S, e∈BM.E};

(6) The initial state of WM is the same as that of BM.
In Definition 5, “:=” refers to the assignment operator. Step (2)
says that transition (si, e, φ, sj) will not appear in the woven model
if both si and sj are included in state pointcuts unless the transition
is redefined in the advice model and added by step (5). Steps (3)
and (4) add new states and new events in the advice model into
the woven net. Step (5) adds all transitions in the advice model to
the woven model with corresponding variable substitutions. For
other aspects defined on BM, we can further apply the weaving
process to compose them into the current woven model WM. We
assume that the order in which aspects are applied is not
significant. For an aspect-oriented model ({(BMi, S0i)}, {Aj}), we
can apply all aspects {Aj} to each of the base model BMi. As such,
the whole model of an aspect-oriented system consists of a set of
state models {(WMi, S0i)}.

3.4 Discussion
As shown in the Ordering aspect of Fig. 5(b), states in an advice
model do not need to be strongly connected because an aspect
only reflects the incremental modification to its base models. An
extreme impact of aspects on base models is that a state in a base
model may no longer be reachable – no transition in the woven
model can transform any other state into this state. In this case,

foo

foo bar

getS

getS

getS
new

FOO

BAR

START

debit

 [b-x>=0]

credit

Open

get

debit [b-x<0 and

b-x>=-1000]

credit[b+x>=0]

get

credit [b+x<0]

close

freeze
new

deposit

getBalance

Frozen

Closed

Open
unfreeze

getBalance

withdraw

 [b-amt>=0]

Base class BankAccount

Aspect Overdraft

Over

drawn

foo

foo

foo

bar

bar

bar

getS

getS

getS
aspect Ordering
state pointcut S: FooBar.START
state pointcut B: FooBar.BAR
event pointcut get():FooBar.getS()

get

get

(a) Base model FooBar

new
FOO

BAR

START

B

S

(b) Aspect Ordering

184

we may keep such disconnected states in the woven model.
Negative tests with respect to these states are useful for verifying
whether or not an aspect-oriented program would reach these
states unexpectedly. This will help reveal those aspect-related
defects that cause illegal object states.
The weaving mechanism in Definition 5 indicates that both
object-oriented and aspect-oriented systems can be specified by
state models. As state-based testing is essentially a black-box
technique, it does not care whether the implementation under test
is an aspect-oriented or object-oriented program. One could argue
that the state model of an aspect-oriented program can be
specified without using aspects, i.e., the resulting woven model in
Definition 5 can be defined from scratch. In some sense, the
advantages of the AOP’s ability to handle crosscutting concerns
are not straightforward from the perspective of black-box testing.
An aspect-oriented state model, however, can result from aspect-
oriented system design that provides guidelines for system
implementation. Therefore we can reuse aspect-oriented design
models for testing purposes. In addition, aspects in an aspect-
oriented state model make explicit the modification to the base
state models. This facilitates testing of separate concerns and
incremental modification, which are also essential to the aspect-
oriented paradigm. As will be discussed later, a test suite for an
aspect-oriented program is essentially incremental modification to
the test suite for the corresponding base program. This offers a
potential of incremental testing – the base classes can be tested
before the aspect-oriented version as a whole is available. This
also helps localize programming faults by focusing on the base
classes first and then on the aspects.
While the aspect-oriented state models in this paper have
followed the fundamental concepts of AOP, such as join points,
pointcuts, and advices, they represent these concepts in a different
way because of the different level of abstraction. In fact, it is not
easy to tell from an aspect-oriented state model what the aspect
code would look like. State, event, and variable pointcuts do not
necessarily have counterparts in AOP programs. Some methods in
base classes that are corresponding to event pointcuts are possibly
involved in aspect implementation, though. In short, aspect-
oriented state models provide a higher level of abstraction than
AOP programming, which is desirable for aspect-oriented design.

4. INCREMENTAL TESTING
This section introduces the process of incremental testing, briefly
describes test generation from state models, and discusses how to
reuse base class tests for aspect-oriented programs as a whole.

4.1 Incremental Testing Process
The general process of our approach to incremental testing of an
aspect-oriented program is as follows: (1) build the state models
of the base classes; (2) generate abstract test cases from the base
models; (3) instantiate the abstract test cases to form concrete test
suites for the base classes; (4) test the base classes; (5) build
aspect models and weave them into the base models; (6) generate
abstract test cases from the woven state models; (7) generate test
suites for the aspect-oriented program as a whole by reusing,
modifying, and extending concrete base class test cases and
instantiate new abstract test cases; and (8) test the aspect-oriented
program. Of course, we can combine step (5) into step (1), that is,
build complete aspect-oriented models before testing base classes.

4.2 Test Generation from State Models
In our approach, the method for test generation from state models
is similar to the modal class test design pattern for object-oriented
programs [4], which derives a test suite by transforming a state
model to a transition tree and identifying sneak paths with illegal
state transitions. The test cases in such a transition tree 2 are
primary for the purposes of testing if a program does what it is
supposed to do (i.e. positive tests), whereas the test cases
represented by sneak paths are for testing if a program does not
do what it is not supposed to do (i.e. negative or dirty tests). As
this method is in essence a black box technique, it is applicable to
test generation from state models of aspect-oriented programs.
We slightly enhance this method by integrating sneak paths into
conditional transition trees. Given a state model M = (S, E, V, T),
with initial state s0, we transform state model M into a transition
tree with sneak paths as follows:
(1) The root node of the transition tree is s0, the initial state of

the state model. We also associate the new event and its
guard condition with s0 and mark the root as non-terminal.

(2) For each non-terminal leaf node (say state s1) in the
transition tree, draw a new edge and new node for each event
e ∈M.E.

• If there exists state s2∈M.S such that event e transforms
s1 to s2 under condition φ, i.e. (s1, e, φ, s2)∈M.T, then
the new node represents state s2. Label the new edge
with e as well as φ, if any. If state s2 already appears in
the path, mark the new node as terminal, otherwise non-
terminal (the new node will be expanded).

• otherwise e is an illegal event at state s1, label the new
edge with e, and assign state s1 to the new node, and
mark it as terminal and negative (i.e. the state remains
unchanged if an illegal event happens. This does not
mean that event e transforms state s1 to state s1).

(3) Repeat (2) until all leaf nodes are terminal;
(4) Expand the transition tree using branch coverage for the

guard conditions. For each path from the root to a leaf, <s0,
e1[φ1], s1, e2[φ2], s2,…, en[φn], sn>, start from the root and
repeat “finding next conditional transition, say (si, ei, φi, si+1),
and creating a new sneak (negative test) path <s0, e1[φ1], s1,
…, si, ei[not φi], si> until there is not conditional transition in
the path.

Each path from the root to a leaf in a transition tree is an abstract
test case. It can be instantiated to derive a number of concrete test
cases by assigning constructor and method parameters, if any,
specific values that satisfy the guard conditions along the path and
by defining the expected outcome. Different traditional test design
techniques, e.g. boundary value analysis, can be used for this
purpose. For a compound condition in an abstract test, different
combinations of truth values for the sub-conditions may be
considered (similar to the multi-condition coverage). A
preliminary discussion on automated generation of test input for
restrictive programs can be found in [28]. As the focus of this
paper is on the relations between the state-based test suites of an
aspect-oriented program and its base program, the instantiation of

2 Except for those derived from the extensions of guard conditions, i.e.

step (4) in the subsequent algorithm.

185

abstract tests primarily relies on manual design of test input for
each object construction and method call, except for the situations
of test reuse.
Fig. 7 shows the transition tree for the woven model of Ordering
and FooBar in Fig. 6. Each path without (or with) dashed edge
and node indicates a positive (or negative) test case. The sequence
of events in each path is essentially a sequence of object
construction and method calls. For example, the path <new,
START, foo, FOO, foo, FOO> indicates <new, foo, foo>. As the
transitions in this example have no guard conditions (foo and bar
have no parameters), the test cases derived from all the paths in
the tree are actually concrete test cases. They form a test suite for
the base class FooBar. It is worth pointing out that the two
negative test cases for the woven model are as follows:

<new, START, bar, START>
<new, START, foo, FOO, bar, BAR, bar, BAR>.

The event sequences are <new, bar> and <new, foo, bar, bar>.
These negative cases are critical for detecting the faults in a
program that does not enforce the policy that foo must come
before bar.

Figure 7. The transition tree for the state model in Fig. 6

To facilitate our discussion on reuse of base class tests, Fig. 8 and
Fig. 9 show the transition trees for the base model and woven
model of the BankAccount example. To save space, ‘Part A’ in
Fig. 9 is corresponding to that in Fig. 8. Also we use ‘*’ to denote
all the events that have not appeared in the sibling nodes. For
instance, ‘*’ in the negative test path <Open, freeze, Frozen, *,
Frozen> in Fig. 8 refers to a number of branches for events freeze,
close, withdraw, and deposit, respectively. As an example,
<new(500), withdraw(200)> is a concrete case of the abstract test
<new, Open, withdraw[b-amt>=0], Open>. A subtlety here is
that the conditional event withdraw[b-amt<0] in the negative
path <Open, withdraw[b-amt<0], Open> in Fig. 8 is split into
withdraw[b-amt<-1000] and withdraw[b-amt<0 and b-amt>=-
1000] in Fig. 9.
Suppose the number of abstract states and the number of events in
a state model are m and n, respectively, the complexity of the
transition tree is O(m×n). We can further reduce it by removing
the accessor methods (events) from state models before
generating transition trees. As the implementation of an accessor
method is often straightforward, it is easy to test it separately. For
instance, getS in the above example simply returns the current
state. If we are confident in the implementation of getS, we can
reduce the transition tree in Fig. 7 by removing all the paths that
involve gets.

4.3 Reuse of Base Class Tests for Aspects
Let us first compare the transition trees of the base model and
woven model for the FooBar example. They have almost the
same paths except for the two negative tests mentioned earlier.
These negative tests are actually corresponding to the following
positive tests for the base model in Fig. 5(a):

<new, START, bar, BAR> and

<new, START, foo, FOO, bar, BAR, bar, BAR>
Their event sequences, <new, bar> and <new, foo, bar, bar>, are
the same as those of the negative tests for the woven model. The
positive tests for the base model becomes negative ones for the
woven model because the aspect has disabled the state-transitions
(START, bar, BAR), and (BAR, bar, BAR). This reflects a close
relationship between the test suites for aspect-oriented programs
and for their base programs. In other words, testing an aspect-
oriented program may make substantial reuse of the state-based
test cases of its base classes.

Figure 8. The base model transition tree of BankAccount

Figure 9. The woven model transition tree of BankAccount

Our approach is motivated to maximize reuse of concrete base
class tests for aspects. Given base state model BM=(S, E, V, T)
and aspect A=(SP, EP, VP, AM), WM is the woven model of BM
and A. Let Tree(BM) and Tree(WM) be the abstract test suites for
the base model and the woven model, respectively. In the
following, we present several rules for reusing base class tests.
Rule 1 (Full reuse of positive tests): For a given positive abstract
test <new[φ0], s0, e1[φ1], s1… sn-1, en[φn], sn> in Tree(BM), if (si-1,
ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈ WM.T and φi→φi′ for any i
(0<i≤n), then any concrete test of <new[φ0], s0,, e1[φ1], s1… sn-1,
en[φn], sn> for the base class remains as a positive test for the
aspect-oriented program.

In Rule 1, if an aspect does not modify the guard condition φi of
any event ei in the path, then φi′ = φi and φi→φi′ holds. In this
case, the aspect-oriented program simply inherits the abstract and
concrete tests from the base classes. Even if an aspect modifies
the guard condition φi of some event ei to φi′ such that φi→φi′, it
would not affect reuse of the tests. For a concrete positive test
<new[φ0], s0, e1[φ1], s1… sn-1, en[φn], sn> of base classes where

Open

Open

Overdrawn

withdraw[b-amt<0

and b-amt>=-1000]

Open
deposit[b+amt>=0]

deposit[b+amt<0]
Overdrawn

Overdrawn

getBalance

*

withdraw
Overdrawn

Overdrawn

withdraw[b-amt<-1000]

Part A

Open Frozen Open

Closed

Open

Open

Frozen

Frozen

Closed

freeze unfreeze

getBalance

*

close

getBalance

deposit

withdraw[b-amt>=0]
Open

*

Open
*

Open
withdraw[b-amt<0]

Part A

bar

START FOO

START

START
foo

getS
FOO

BAR

FOO

FOO
BAR

BAR

bar bar

foo
foo

getS
getS

new

186

method parameters are bound to specific values, even if φi→φi′
does not hold in general, it can still be reused as long as φi′ is true
with respect to the given variable bindings. This is similar for
other rules. In the following discussion, we focus on reuse of
abstract tests, which also applies to reuse of concrete tests. As an
aspect may introduce new events to base models, an abstract base
class test may be just part of a complete path in the transition tree
of the woven model. In this case, the base class test can still be
fully used for expansion. For the FooBar example, Rule 1 applies
to 5 out of 7 positive abstract tests. For the BankAccount example,
Rule 1 applies to all the 6 positive abstract tests.
Rule 2 (Full reuse of negative tests): For a given negative abstract
test <new[φ0], s0, e1[φ1], s1… sn-1, en[not φn], sn> in Tree(BM), if:

(1) for any i (0<i≤n-1), (si-1, ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈
WM.T, and not φi→ not φi′ (simply φi′→φi), and

(2) there does not exist s∈WM.S such that (sn-1, en, φ, s)∈ WM.T,
or there exists (sn-1, en, φ, s) ∈ WM.T such that not φn→ not φ.

then any concrete negative test of <new[φ0], s0, e1[φ1], s1… sn-1,
en[not φn], sn> remains as a negative test for the aspect-oriented
program.

A special situation in Rule 2 is that <sn-1, en, ,sn>∈ BM.T, i.e. [not
φn] does not occur. Then not φn→ not φ is equivalent to not φ. For
the BankAccount example, Rule 2 applies to all of the negative
base class tests except for those concrete tests of <new, Open,
withdraw[b-amt<0], Open> such that b-amt>=-1000. If b-amt<-
1000, then the concrete test <new, Open, withdraw[b-amt<0],
Open> remain as a negative aspect test of <new, Open,
withdraw[b-amt<-1000], Open>.
Rule 3 (Modified reuse of positive base class tests as negative
aspect tests). For a given positive abstract test <new[φ0], s0,
e1[φ1], s1… sn-1, en[φn], sn> in Tree(BM), if there exists i (0<i≤n)
such that:

(1) for any j (0<j≤i-1), (si-1, ei, φi, si) ∈ BM.T and (si-1, ei, φi′, si)
∈ WM.T and φi→φi′, and

(2) (si-1,ei, φi, si)∈ BM.T and (si-1, ei, φ, si)∉WM.T, or there exists
(si-1, ei, φ, si)∈WM.T and φi→ not φ,

then any concrete test of <new[φ0], s0, e1[φ1], s1… sn-1, en[φn],
sn> will no longer be a positive test for the woven program.
Instead, <new[φ0], s0, e1[φ1], s1… si-1, ei[not φi], si-1> is a
negative test for the aspect-oriented program. Note that the
resulting state of the negative test is si-1, not si.
In Rule 3, to what extent the test can be reused depends on i/n: if
i is closer to n, more reuse is possible. If i is close to 1 and n is far
greater than 1(n>>1), then the test is hardly reused. In FooBar,
Rule 3 applies to the positive base class tests <new, START, bar,
BAR> and <new, START, foo, FOO, bar, BAR, bar, BAR>. They
become the negative aspect tests <new, START, bar, START> and
<new, START, foo, FOO, bar, BAR, bar, BAR>, respectively
because transitions <START, bar, ,BAR>and <BAR, bar, , BAR>
no longer exists in the woven model.
Rule 4. (Reuse for expansion). For a given negative test
<new[φ0], s0, e1[φ1], s1… sn-1, en[not φn], sn> in Tree(BM), if:

(1) for any i (0<i≤n-1), (si-1, ei, φi, si) ∈ BM.T, (si-1, ei, φi′, si) ∈
WM.T and φi→φi′, and

(2) there exists s∈WM.S such that (sn-1, en, φ, s)∈ WM.T,

then the test is no longer valid in Tree(WM). However, <new[φ0],
s0, e1[φ1], s1… sn-1> can be further expanded to either positive or
negative tests for the aspect-oriented program according to the
transitions that transform s to other states.
As mentioned earlier, for the BankAccount example, a concrete
negative base class test of <new, Open, withdraw[b-amt<0],
Open>, where b-amt<-1000 also holds, remain as a negative
aspect test of <new, Open, withdraw[b-amt<-1000], Open>. For
a concrete test of <new, Open, withdraw[b-amt<0], Open>
where b-amt>=-1000, however, it can be expanded to derive
those negative or positive aspect tests that start with <new, Open,
withdraw[b-amt>=0 and b-amt<-1000], Overdrawn> (refer to
the right-hand side of Fig. 9). In Rule 4, another special situation
is that s already occurs earlier in the path, which means
<new[φ0], s0, e1[φ1], s1… sn-1 , en [φ], s> is a complete test path in
the transition tree of the woven model. If it is a positive aspect
test, then the negative base class test can be reused with a little
additional effort to make the new concrete test satisfy φ.
Due to limited space, we will not prove the correctness of the
above rules. It can be done by reasoning about aspect-oriented
state models and the algorithm of transition tree generation. The
rules are useful although, due to the low complexity of the
transition tree generation, the transition tree of an aspect-oriented
model is constructed from the woven model, rather than obtained
by modifying the transition tree of the base model. There are
several reasons. Firstly, as the test input and expected outcome of
a concrete base class test is provided by testers, rather than
automatically generated, we must make best reuse of the concrete
tests, which are often an expensive investment. Secondly, the
fully reused base class tests, e.g. in Rules 1 and 2, are necessary
for regression testing of aspect-oriented programs because aspects
are incremental modifications to base classes. There is no
guarantee that their implementation will not behave unexpectedly.
Thirdly, reuse of base class tests helps localize potential faults. If
the base classes do not pass a test, then we can focus on the base
classes. If the base classes pass the tests but the aspect-oriented
program fails some fully reused tests, then we can focus on the
aspects. Fourthly, the above rules can be automated by checking
aspect-oriented state models and their transitions trees so as to
significantly reduce the testing workload. In addition, it is also
possible to reuse concrete base class tests that are not derived
from the transition trees of state models. Such tests must have
followed inadvertently some path in the transition trees provided
the system model is sound and complete.
In summary, the state-based test suite of an aspect-oriented
program is incremental to that of the base program. Majority of
the base class tests can be reused for aspect testing. However,
subtle modifications to some of them are required. As in the
FooBar example, positive base class tests may become negative
aspect tests. As in the BankAccount example, negative tests may
become (part of) positive aspect tests.

5. DETECTING ASPECT FAULTS
A great variety of aspect-specific faults may exist in aspect-
oriented programs [3]. Examples include pointcut expressions
picking out extra join points, pointcut expressions missing certain
join points, incorrect advice types, and incorrect advice
implementation. In this section, we discuss how these faults
would affect object states and how they can be revealed by the
state-based testing approach. While we use the FooBar example

187

for illustration, the situations are similar for the BankAccount
example. For reference purposes, Listing 3 shows an AspectJ
implementation of the Ordering aspect.

public aspect Ordering {
 pointcut barcut(FooBar fb):
 execution(void FooBar.bar(..)) && target(fb);
 void around(FooBar fb): barcut(fb) {
 if (fb.getS() != FooBar.FOO) {
 System.out.println("bar without foo - illegal");
 }
 else
 proceed(fb);
 }
}
Listing 3. Sample AspectJ code for the Ordering aspect

We also reduce the getS method from the transition tree in Fig. 7.
So we have the following tests for the aspect-oriented FooBar
program.

NTC1: new START bar START
NTC2: new START foo FOO bar BAR bar BAR
PTC3: new START foo FOO bar BAR foo FOO
PTC4: new START foo FOO foo FOO

where NTC and PTC stand for negative test cases and positive
test cases, respectively.
(1) Pointcut expressions picking out extra join points
One of the common aspect-specific faults has to do with incorrect
point expressions that pick out extra join points. A major cause is
the inappropriate use of wildcards in pointcut expressions. For the
Ordering aspect, one might code the following pointcut:
 pointcut cut(FooBar fb):

execution(public void FooBar.*(..)) && target(fb);
This pointcut will pick out two join points: execution(public
void FooBar.foo(..)) and execution(public void FooBar.bar
(..)). The first join point is unexpected. An aspect with such a
pointcut will not enforce the ordering policy correctly even if the
advice is the same as that in Listing 3. Actually, the above
pointcut imposes additional impact on the object states: it requires
that both foo and bar be applied under state FOO. Exercising the
aspect-oriented program with either PTC3 or PTC4 would reveal
this fault.
 (2) Pointcut expressions missing join points
A pointcut expression may miss expected join points. For
example, the following pointcut expression does not pick out the
expected join point execution(public void FooBar.bar(..)).

pointcut cut(FooBar fb):
 execution(public int FooBar.*(..)) && target(fb);

This faulty pointcut will not achieve the expected effect on the
object states. The fault can be detected by either negative test case
NTC1 or NTC2.
 (3) Incorrect advice types
Even if pointcuts are specified correctly, a wrong advice type will
not lead to the expected results. For example, an after (or before)
type may be mistaken as a before (or after) type. For around type
advices, proceed() is often used. If an around advice with
proceed() is mistaken as a before or after type, it would result in
a compilation error. However, proceed() is not always used. For
example, the advice in Listing 3 can be implemented in such a

way that proceed() is not used at all. In this case, a wrong advice
type may have an unexpected impact on the object states. It thus
can be detected by the state-based approach.
(4) Incorrect advice implementation
Advice implementation may fail to realize the design in the way
much like a traditional program does. For example, the following
is a possible fault with respect to the if statement in Listing 3:
 if (fb.getS()==FooBar.BAR)
Obviously, fb.getS()==FooBar.BAR is different from fb.getS()
!= FooBar.FOO due to the fact that an object can be in the
START state. The faulty condition would allow a transition from
state START to state BAR by a call to method bar. This is an
unexpected transition. This fault can be revealed by the negative
test case NTC1. Of course, there are other possible faults, such as
(fb.getS()!=FooBar.BAR) and (fb.getS()==FooBar.FOO), etc.
If a fault results in an unexpected object state like these faults do,
exercising the aspect-oriented program with the state-based test
cases will reveal it.

6. CONCLUSIONS
We have presented the state-based approach to incremental
testing of aspect-oriented programs, which takes aspects as
incremental modifications to their base classes. The contribution
of this paper is twofold: (1) the rigorous aspect-oriented extension
to state models, which facilitates specification of the impact of
aspects on the states and transitions of base class objects and
generation of abstract test cases, and (2) the investigation of
reusing base class tests for conformance testing of aspect-oriented
programs. Our work shows that majority of base class tests can be
reused for aspects, but subtle modifications to some of them are
necessary. In particular, positive (or negative) base class tests can
become (part of) negative (or positive) aspect tests. The two
examples, FooBar and BankAccount, indicate two distinctive
types of aspect-oriented applications: aspects removing state
transitions from base classes and aspects adding and modifying
state transitions from base classes. They feature the fundamental
impacts that aspects in complex aspect-oriented applications may
impose on the states of base class objects.
The incremental testing approach is similar to traditional
regression testing. The essential difference is that, aspects as a
structured way to specify modifications make it feasible to
investigate systematic reuse and modification of the existing tests.
Our approach can be adapted to the UML class diagrams and
startcharts by using class interfaces, flattening startchart diagrams,
and following the convention of guard conditions.
Concerning the future work, we plan to address the following
open issues: (1) what kind of base class tests are less likely
helpful for revealing aspect faults? (2) how to prioritize the test
cases to be reused? (3) how to model and test interference of
multiple interacting aspects?

7. REFERENCES
[1] Aldawud, O., Bader, F., and Elrad, T. Weaving with

Statecharts. The Second International Workshop on Aspect
Oriented Modeling. 2002.

[2] Aldawud, T. and Bader, A. UML profile for aspect-oriented
software development, The Third International Workshop on
Aspect Oriented Modeling, 2003.

188

[3] Alexander, R. T., Bieman, J. M., and Andrews, A.A.
Towards the systematic testing of aspect-oriented programs,
Technical Report, Colorado State University. http://www.
cs.colostate.edu/~rta/publications/CS-04-105.pdf.

[4] Binder, R. V. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 2000.

[5] Blackburn, M, Busser, R., Nauman, A., Knickerbocker, R.,
and Kasuda, R. Mars Polar Lander fault identification using
model-based testing. In Proc. of the Eighth International
Conference on Engineering of Complex Computer Systems,
2002.

[6] Chavez, C. and Lucena, C. A Metamodel for aspect-oriented
modeling, The Workshop on Aspect-Oriented Modeling with
UML, 2002.

[7] Coelho, W. and Murphy, G.C. ActiveAspect: Presenting
crosscutting structure. ICSE First International Workshop on
the Modeling and Analysis of Concerns in Software. 2005.

[8] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C.
M., Patton, G. C., and Horowitz, B. M. Model-based testing
in practice. In Proc. of the 21st International Conf. on
Software Engineering (ICSE'99), 1999.

[9] El-Far, I. K. and Whittaker, J.A. Model-based software
testing. In Encyclopedia on Software Engineering (edited by
Marciniak), Wiley, 2001.

[10] Elrad, T., Aldawud, O., and Bader, A. Expressing aspects
using UML behavior and structural diagrams. In Aspect-
Oriented Software Development (edited by Filman, R.E. et
al.). Addison-Wesley, 2005.

[11] Gradecki, J. and Lesiecki, N. Mastering AspectJ: Aspect-
Oriented Programming in Java. Wiley, 2003.

[12] Groher, I. and Schulze, S. Generating aspect code from UML
models. The Third International Workshop on Aspect-
Oriented Modeling. 2003.

[13] Han, Y., Kniesel, G., and Cremers, A. B. A meta model and
modeling notation for AspectJ, The 5th AOSD Modeling with
UML Workshop, 2004.

[14] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G., An overview of AspectJ. In Proc. of
ECOOP’01, pp. 327-353, 2001.

[15] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J. M. and Irwin, J., Aspect-oriented
programming. In Proc. of ECOOP’97, LNCS 1241, pp. 220-
242, 1997.

[16] McEachen, N. and Alexander, R.T. Distributing classes with
woven concerns: an exploration of potential fault scenario. In
Proc. of the Fourth International Conference on Aspect-
Oriented Software Development (AOSD’05). pp. 192-200,
2005.

[17] Mellor, S. J. A framework for aspect-oriented modeling. The
4th AOSD Modeling With UML Workshop, 2003.

[18] Meyer, B. Object-Oriented Software Construction.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

[19] Orleans, D. Incremental programming with extensible
decisions, In Proceedings of the 1st International Conference
on Aspect-Oriented Software Development, April 2002, The
Netherlands.

[20] Prenninger, W. and Pretschner, A. Abstractions for model-
based testing. In Proc. of the 2nd Intl. Workshop on Test and
Analysis of Component Based Systems (TACoS'04),
Electronic Notes in Theoretical Computer Science 116:59-
71, 2005.

[21] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,
Baumgartner, M., Sostawa, B., Zölch, R., and Stauner, T.
One evaluation of model-based testing and its automation. In
Proc. of the 27th International Conf. on Software
Engineering (ICSE'05), 2005.

[22] Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel, S.
Model-based testing for real - The inhouse card case study.
J. Software Tools for Technology Transfer 5(2-3):140-157,
2004.

[23] Ray, I., France, R., Li, N., and Georg, G. An aspect-based
approach to modeling access control concerns. Information
and Software Technology, vol. 46, no.9, pp. 575-587, 2004.

[24] Stein, D., Hanenberg, S., and Unland, R. An UML-based
aspect-oriented design notation for AspectJ. In Proceedings
of the First International Conference on Aspect-Oriented
Software Development, pp. 106–112. ACM Press, 2002.

[25] Tkatchenko, M. and Kiczales, G. Uniform support for
modeling crosscutting structure. The 6th International
Workshop on Aspect-Oriented Modeling (AOM'05). 2005.

[26] Xie, T., Zhao, J., Marinov, D., and Notkin, D. Automated
test generation for AspectJ programs, AOSD 2005 Workshop
on Testing Aspect-Oriented Programs, Chicago, 2005.

[27] Xu, D. Test generation from aspect-oriented state models.
Technical Report, NDSU-CS-TR-XU02, North Dakota State
University Department of Computer Science, Sept. 2005.

[28] Xu, D., Xu, W., and Nygard, K. A state-based approach to
testing aspect-oriented programs. In Proc. of the 17th
International Conference on Software Engineering and
Knowledge Engineering (SEKE'05), July 14-16, Taiwan.

[29] Xu, W. and Xu, D. A model-based approach to test
generation for aspect-oriented programs. AOSD 2005
Workshop on Testing Aspect-Oriented Programs, Chicago,
March 2005.

[30] Zhao, J. and Rinard, M., System dependence graph
construction for aspect-oriented programs, MIT-LCS-TR-891,
Laboratory for Computer Science, MIT, 2003.

[31] Zhao, J. Data-flow-based unit testing of aspect-oriented
programs, In Proc of the 27th Annual IEEE International
Computer Software and Applications Conference
(COMPSAC'03), pp.188-197, 2003.

[32] Zhou, Y., Richardson, D., and Ziv, H. Towards a practical
approach to test aspect-oriented software. In Proc. the 2004
Workshop on Testing Component-Based Systems (TECOS),
Sept. 2004.

189

