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Abstract—This paper is concerned with the reliable state
feedback control synthesis for T-S fuzzy systems with sensor
multiplicative faults. By considering the influences of sensor
faults on both the system states and premise variables of fuzzy
controllers, a class of new convex reliable stabilization conditions
are proposed for T-S fuzzy systems through using the properties
of fuzzy product inference engines. Furthermore, the obtained
result is extended to the H∞ reliable control case. The resulting
controllers are reliable in that they provide guaranteed asymptot-
ic stability and H∞ performance when all sensors are operational
as well as when some sensor experiences failures. Different from
the proposed approach, the influence of sensor faults on premise
variables is not considered in the existing results, then it might
not guarantee the stability and control performance for T-S fuzzy
systems with premise variables dependent on the system states.
A numerical example is given to illustrate the effectiveness of the
proposed method.

Index Terms—T-S fuzzy control systems, reliable control,
sensor fault, linear matrix inequalities (LMIs).

I. INTRODUCTION

IN many engineering control systems, the control system
is often required with high reliability, especially for safety-

critical systems, such as aircraft systems and medical systems.
In general, control of any plant depends on the availability
and quality of sensor measurements, then the performance
of the system relies heavily on the quality of the sensor for
feedback [1]. In some feedback control applications, sudden
environmental disturbances, broken or bad communication,
or malfunction of some hardware or software often corrupt
the measurements of the sensors, then sensor characteristics
may change over time, so that it may be partial or complete
failure [2], [3], which can degrade performance or even destroy
the stability of the overall systems. Therefore, to increase
control system reliability, reliable control for sensor failures
is of both theoretical and practical importance. Thus, various
reliable control techniques are developed [4], [5], [6], [7], [8],
[9], [10], [11] such as by modelling sensor characteristics as
parametrizable uncertain functions, an adaptive compensator
is proposed for overcome the effects of sensor uncertainties in
[1]. A multisensor switching control scheme is presented in
[12]. Design of tolerant sensor networks is studied by the aid
of decomposition technique in [13]. A multisensor fusion fault
tolerant control system with fault detection and identification
via set separation is presented in [14].

The authors are with the College of Information Science and Engi-
neering, Northeastern University, Shenyang, 110819, China. They are al-
so with State Key Laboratory of Synthetical Automation of Process In-
dustries(Northeastern University), Shenyang, 110819, China(e-mail: dongji-
uxiang@ise.neu.edu.cn;yangguanghong@ise.neu.edu.cn). Corresponding au-
thor: Prof. Jiuxiang Dong.

The above mentioned work mainly focuses on the reli-
able control problems of linear systems. But many practical
engineering systems are nonlinear, the resulted controllers
for linear operation points often might not guarantee the
performance, even stability of the original nonlinear systems.
Therefore, some reliable control approaches for nonlinear sys-
tems are proposed in past several decades, see [15], [16], [17],
[18], [19], [20] and the references therein. In nonlinear control
theory, an important approach is to model the considered
nonlinear systems as Takagi and Sugeno (T-S) fuzzy systems,
which are locally linear time-invariant systems connected by
IF-THEN rules [21]. As a result, the conventional linear
system theory can be applied for analysis and synthesis of
the nonlinear control systems [22], [23], [24], [25], [26], [27],
[28], [29], [30]. In particular, reliable control synthesis for
nonlinear systems based on T-S fuzzy models received consid-
erable attentions in recent years[17], [31], [32], such as reliable
mixed L2/H∞ fuzzy static output feedback control is studied
for T-S fuzzy systems with sensor faults by using multiple
Lyapunov functions in [33]. For stochastic fuzzy systems,
a new descriptor fuzzy sliding mode observer approach is
proposed against simultaneous sensor and actuator faults in
[3]. On the other hand, based on T-S fuzzy system models,
reliable control methods of wind energy conversion systems
and automatic control system of aircraft during landing are
respectively proposed in [34] and [35]. Moreover,H∞ tracking
control and fault detection are respectively considered in [36]
and [37], [38]. The above mentioned results have given many
effective methods for designing fuzzy reliable controllers, but
the influences of sensor faults on the premise variables of
fuzzy controllers aren’t considered. Note that the premise vari-
ables are often dependent on states in many T-S fuzzy systems.
If the sensor for measuring some state occur fault, then the
premise variables dependent on the state in fuzzy controllers
also become unprecise, which might degrade performance or
even destroy the stability of the overall systems. Motivated
by this, for the T-S fuzzy systems with the premise variables
dependent on the system states, the paper will develop a type
of new reliable control conditions by using the properties
of the fuzzy product inference engine and considering the
influences of sensor faults on the system states and premise
variables, such that the resulting controllers are reliable in
that they provide guaranteed asymptotic stability and H∞
performance when all sensors are operational as well as when
some sensor experiences failures. Different from the new
approach, the influence of sensor faults on premise variables
is not considered in the existing results, then it might not
guarantee the stability and control performance for T-S fuzzy
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systems with premise variables dependent on the system states
and a numerical example will be given to illustrate the fact.

The paper is organized as follows. Section II presents sys-
tem description and some notations. A class of new conditions
for designing reliable controllers are proposed and extended
to H∞ reliable control in Section III. A numerical example
is given to illustrate the effectiveness of the new proposed
methods in Section IV. Concluding remarks are given in
Section V.

II. SYSTEM DESCRIPTION

A. T-S fuzzy control system and fuzzy controller

The nonlinear system under consideration is described by
the following fuzzy system model:

Plant Rule (i1i2 · · · ip):
IF v1(t) is M1i1 and v2(t) is M2i2 , · · · , vp(t) is Mpip

THEN

ẋ(t) = Ai1i2···ipx(t) +Bwi1i2···ipw(t) +Bui1i2···ipu(t)
z(t) = Ci1i2···ipx(t) +Di1i2···ipu(t) (1)

x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu is the control input
vector, w(t) ∈ R

nw is the disturbance input, z(t) ∈ R
nz is the

controlled output, v(t) = [v1(t) v2(t) · · · vp(t) ]T ∈ R
p, vi(t),

i = 1, · · · , p are the premise variables, Mjij , j = 1, · · · , p,
ij = 1, · · · , rj denotes an vj(t)-based fuzzy set and they are
linguistic terms characterized by fuzzy membership functions
Mjij (vj(t)), where rj be the number of vj(t)-based fuzzy

sets. Then, the fuzzy rule base consists of r =
p∏

i=1

ri IF-THEN

rules.
By using the fuzzy inference method with a singleton

fuzzifier, product inference, and center average defuzzifiers,
then the T-S fuzzy model is obtained as (2).

Let

μjij (vj(t)) =
Mjij (vj(t))

rj∑
lj=1

Mjlj (vj(t))

, for 1 ≤ j ≤ p, 1 ≤ ij ≤ rj

(3)

The fuzzy system from (2) and (3) can be written as follows:

ẋ(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

⎛
⎝ p∏

j=1

μjij (vj(t))

⎞
⎠×

(
Ai1i2···ipx(t) +Bwi1i2···ipw(t) +Bui1i2···ipu(t)

)

z(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

⎛
⎝ p∏

j=1

μjij (vj(t))

⎞
⎠×

(
Ci1i2···ipx(t) +Di1i2···ipu(t)

)
(4)

From (3), it is resulted that
rj∑

ij=1

μjij (vj(t)) = 1, for 1 ≤ j ≤ p (5)

In the existing literature, there are many fuzzy control
schemes for T-S fuzzy systems, for example, the parallel
distributed compensation (PDC) control scheme [21], non-
PDC control scheme [39], switched constant gain control
scheme [23], switched PDC control scheme [40], dominant
dependent fuzzy control scheme [41] and so on, where the
PDC control scheme is widely used and it is also adopted in
this paper as follows:

Control Rule (i1i2 · · · ip):
IF v1(t) is M1i1 and v2(t) is M2i2 , · · · , vp(t) is Mpip

THEN u(t) = Ki1i2···ipx(t) (6)

Then the final output of fuzzy controller is obtained as:

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

p∏
j=1

μjij (vj(t))Ki1i2···ipx(t) (7)

Combining (7) and (4), then the closed-loop system is obtained
as follows:

ẋ(t) =
r1∑

i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

r1∑
l1=1

· · ·
rp∑

lp=1

p∏
j=1

μjij (vj(t))

p∏
j=1

μjlj (vj(t))

×
(
(Ai1i2···ip +Bui1i2···ipKl1l2···lp)x(t) +Bwi1i2···ipw(t)

)

=

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

r1∑
l1=1

· · ·
rp∑

lp=1

p∏
j=1

μjij (vj(t))μjlj (vj(t))

×
(
(Ai1i2···ip +Bui1i2···ipKl1l2···lp)x(t) +Bwi1i2···ipw(t)

)
z(t) =
r1∑

i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

r1∑
l1=1

r2∑
l2=1

· · ·
rp∑

lp=1

p∏
j=1

μjij (vj(t))μjlj (vj(t))

× (Ci1i2···ip +Di1i2···ipKl1l2···lp)x(t) (8)

In order to give the conditions for designing reliable controller-
s, a class of new descriptions based on set theory for T-S fuzzy
systems are proposed.
Let sets

Si = {1, 2, · · · , ri} i = 1, 2 · · · , p (9)

The product of the sets Si, i = 1, 2, · · · , p is described as

S1 × S2 × · · · × Sp

=

p∏
i=1

Si = {i1i2 · · · ip : i1 ∈ S1, i2 ∈ S2, · · · , ip ∈ Sp}

Then the closed-loop system (8) can be rewritten as the
following compact form:

ẋ(t)

=
∑

τ∈∏p
i=1 Si

∑
σ∈∏p

i=1 Si

μτμσ

(
(Aτ +BuτKσ)x(t) +Bwτw(t)

)

z(t)

=
∑

τ∈∏p
i=1 Si

∑
σ∈∏p

i=1 Si

μτμσ(Cτ +DτKσ)x(t) (10)
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ẋ(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

(
p∏

j=1
Mjij (vj(t))

)(
Ai1i2···ipx(t) + Bwi1i2···ipw(t) +Bui1i2···ipu(t)

)
r1∑

i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

p∏
j=1

Mjij (vj(t))

z(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

(
p∏

j=1
Mjij (vj(t))

)(
Ci1i2···ipx(t) +Di1i2···ipu(t)

)
r1∑

i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

p∏
j=1

Mjij (vj(t))

(2)

where

μτ =

p∏
j=1

μjτ〈j](vj(t)), τ = τ〈1]τ〈2] · · · τ〈p], τ ∈
p∏

i=1

Si

μσ =

p∏
j=1

μjσ〈j] (vj(t)), σ = σ〈1]σ〈2] · · ·σ〈p], σ ∈
p∏

i=1

Si (11)

Remark 1: Note that the new description is based on the
index set of membership functions and it is equivalent to
the conversional description, which is shown in Appendix. In
fuzzy control systems, one premise variable might be depen-
dent on several system states, and several premise variables
might be dependent on the same system state. In order to apply
the relations between premise variables and system states for
designing reliable controllers, the description for T-S fuzzy
systems in (4) is used in this paper.

B. Sensor fault

In this paper, multiplicative sensor faults are considered, the
definition of which is given as follows:

Definition 1: [33] (Sensor multiplicative fault) The sensor
for measuring system variable ξ(t) ∈ R is said to have fault
at time Tf > 0, if the output of the sensor

ξF (t) = f(t)ξ(t), 0 ≤ f(t) < 1, ∀t > Tf (12)

C. Fuzzy controller under sensor failures

For the fuzzy controller (7), its input can artificially be
divided into two parts, they are respectively the local feedback
states and the premise variables, then

• Case I: All premise variables in the controller (7) are
independent on the states. If one sensor for measuring
some state fails, then the disabled sensor only results in
an unprecise measurement state. Other feedback states
and all premise variables of the fuzzy controller are
not corrupted due to the sensor fault. For example, the
sensor for measuring state xm occur fault, then the fuzzy
controller with the sensor fault is

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

p∏
j=1

μjij (vj(t))Ki1i2···ipFmx(t)

(13)

where

Fm = diag
[
1, · · · , 1, fm, 1, · · · , 1]

nx×nx
, 0 ≤ fm ≤ 1

(14)

• Case II: All premise variables in the controller (7) are
independent on the state variables, then the measurement
values of the premise variables are used in the fuzzy
controller. If one sensor for measuring some premise
variable fails, then the disabled sensor will result in an
unprecise measurement of the premise variable. Other
premise variables and the states aren’t corrupted due to
the sensor fault. For example, the sensor for measuring
vm(t) fails, the fuzzy controller with the sensor fault is

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

⎛
⎝ p∏

j=1,j �=m

μjij (vj(t))

⎞
⎠×

μmim(vFm(t))Ki1i2···ipx(t) (15)

where vFm(t) denotes the corrupted premise variable in
the fuzzy controller.

• Case (III): Some premise variables in the controller
(7) are dependent on the states. When one sensor for
measuring some state is failed, the premise variables
dependent on the state and the state itself, which are used
in the fuzzy controller, are both unprecise. For example,
if some sensor fault leads to the feedback state xq and
the premise variables vm1 , vm2 , · · · , vms of the fuzzy
controller being unprecise (These premise variables are
all dependent on the state xq), then the fuzzy controller
with the sensor fault is

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

(
p∏

j=1,j �=m1,··· ,ms

μjij (vj(t))

)
×

(
μm1im1

(vFm1
(t)) · · ·μmsims

(vFms
(t))

)
Ki1i2···ipFqx(t)

(16)

where Fq is the same as in (14), vFm1
(t), · · · , vFms

(t)
denote the corrupted premise variables in the fuzzy con-
troller.

D. Disadvantages of the existing approaches

For the case (I), many effective methods for fuzzy reliable
control have been proposed and the controllers obtained by
these approaches achieve good control effects when sensors
occur faults, see the references [33], [42], [3], [34] and the
reference therein. To our knowledge, the cases (II) and (III)
are scarcely considered in the existing literature. However,
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the faults in cases (II) and (III) might occur in many T-S
fuzzy control systems, especially, those models are derived
from given nonlinear system equations based on the idea of
using sector nonlinearity in [21], where premise variables are
dependent on system states. For the two cases, the existing
results might become invalid. Motivated by this, the approach
for designing reliable controllers for the case (III) (the obtained
approach can also be applied to the cases (I) and (II)) is
exploited.

III. MAIN RESULT

In this section, a class of new reliable control conditions
are proposed for T-S fuzzy systems with sensor faults. First,
the relations between premise variables and states are char-
acterized by some sets. Second, the reliable control condition
is proposed by using these relations and the properties of the
structure of product inference engine. Last, an H∞ reliable
control condition is given by extending the acquired results.

A. Description of the relations between premise variables and
states

Define the following sets about the subcripts of all premise
variables.
Λ: The subcripts of all premise variables are collected

as set Λ = {1, 2, · · · , p};
Λi: The subcripts of the premise variables dependent on

xi(t) are collected as set Λi, i = 1, · · · , nx.
For example, a T-S fuzzy system with 3 premise variables is
given as follows:

Plant Rule (i1i2i3):

IF v1(t) is M1i1 and v2(t) is M2i2 and v3(t) is M3i3

THEN ẋ(t) = Ai1i2i3x(t) +Bui1i2i3u(t) +Bwi1i2i3w(t)
(17)

where x(t) = [x1(t), x2(t), x3(t), x4(t)], v1(t) = x1(t),
v2(t) = x2(t), v3(t) = sin(x3(t)−x2(t)). Then Λ = {1, 2, 3},
Λ1 = {1}, Λ2 = {2, 3}, Λ3 = {3}. Λ4 = {}. If the sensor
for measuring x1(t) occurs fault, the corrupted measurement
is denoted as xF

1 (t) = f1x1(t), 0 ≤ f1 ≤ 1. Because
v1(t) = x1(t), then the premise variable v1(t) used in the
controller is also corrupted as vF1 (t) = xF

1 (t) = f1x1(t).
Therefore the fuzzy controller with the sensor fault is

u(t) =

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

μ1i1 (v
F
1 (t))μ2i2 (v2(t))μ3i3 (v3(t))

×Ki1i2i3F1x(t)

where F1 = diag
[
f1, 1, 1

]
, 0 ≤ f1 ≤ 1.

For more general fuzzy systems (1) with p premise vari-
ables, if only the sensor for measuring xq occurs fault, then
all precise premise variables in the fuzzy controller are vi(t),
i ∈ Λ−Λq, those unprecise premise variables are vi(t), i ∈ Λq.
Therefore, the fuzzy controller with the sensor variable fault
is given as follows:

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

( ∏
j∈Λ−Λq

μjij (vj(t))

)
×

( ∏
j∈Λq

μjij (v
F
j (t))

)
Ki1i2···ipFqx(t)

=
∑

σ∈∏p
i=1 Si

( ∏
j∈Λ−Λq

μjσ〈j] (vj(t))

)
×

( ∏
j∈Λq

μjσ〈j] (v
F
j (t))

)
KσFqx(t)

Moreover, the following binary relation on S
2
i (where Si is the

same as in (9)) is useful.

Ri ={(i1i2, j1j2) : (i1 = j1 and i2 = j2),

or (i1 = j2 and i2 = j1), i1i2, j1j2 ∈ S
2
i } (18)

It is easily shown that the relation Ri is an equivalence relation
on the set S2i , then by set theory, the set S2i /Ri = {�x�R : x ∈
S
2
i } is a partition of S2i .

B. Reliable stabilization

In this subsection, the relations between premise variables
and the states, the properties of the structure of product
inference engine and the equivalence class of set are applied
for designing reliable controllers in the special description
(10) based on set. Assume w(t) ≡ 0, then a stabilization
condition for T-S fuzzy systems with a sensor fault is proposed
as follows:

Theorem 1: If there exist symmetric matrices Qq > 0, 1 ≤
q ≤ nx and matrices Lτ , τ ∈ S, a scalar ε > 0, such that the
following inequalities hold

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Φτσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (19)∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Φ̄τσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (20)

where

Φτσq =

[
He(AτQq +BuτLσ) ∗
Qq −G+ εLT

σB
T
uτ −εG− εGT

]
,

Φ̄τσq =

[
He(AτQq +BuτLσ) ∗
F̄qQq −G+ εLT

σB
T
uτ −εG− εGT

]
,

F̄q =
[
1, · · · , 1, 0, 1, · · · , 1] ,

then the state feedback controller of the form (6) with the gain
Kτ = LτG

−1, τ ∈ S renders the system (4) in the normal
case and only one sensor failure cases asymptotically stable.

Proof: If only the sensor for measuring the state xq(t) is
failed, then

• The feedback state xq(t) is unprecise, which is denoted
as xF

q (t), and others states are precise.
• The premise variables vi, i ∈ Λq as the input of the

controller (6) are also unprecise due to the sensor fault,
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which are denoted as vFi , i ∈ Λq and the other premise
variables of the controller (6) vi, i ∈ Λ−Λq are precise.

Therefore, the output of the fuzzy controller (7) with the sensor
fault is the following form.

u(t) =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

⎛
⎝ ∏

j∈Λ−Λq

μjij (vj(t))

⎞
⎠×

⎛
⎝∏

j∈Λq

μjij (v
F
j (t))

⎞
⎠Ki1i2···ipFqx(t)

i.e.,

u(t) =
∑
σ∈S

⎛
⎝ ∏

j∈Λ−Λq

μjσ〈j] (vj(t))

⎞
⎠×

⎛
⎝∏

j∈Λq

μjσ〈j] (v
F
j (t))

⎞
⎠KσFqx(t)

where the definitions of σ〈·] and Fq are given in (11) and (14),
respectively.

Combining it and the fuzzy system (4), then the closed-loop
system with the sensor fault is obtained as follows:

ẋ(t) =
∑

τ∈∏p
i=1 Si

∑
σ∈∏p

i=1 Si

⎛
⎝∏

j∈Λ

μjτ〈j](vj(t))

⎞
⎠×

⎛
⎝ ∏

j∈Λ−Λq

μjσ〈j] (vj(t))

⎞
⎠
⎛
⎝∏

j∈Λq

μjσ〈j] (v
F
j (t))

⎞
⎠×

(
Aτ +BuτKσFq

)
x(t) (21)

Let Pq = Q−1
q , q = 1, · · · , p, then Pq > 0, q = 1, · · · , p,

choose Lyapunov function V (t) = xT (t)Pqx(t), then

V̇ (t) =2xT (t)

[ ∑
τ∈∏p

i=1 Si

∑
σ∈∏p

i=1 Si

⎛
⎝∏

j∈Λ

μjτ〈j](vj(t))

⎞
⎠×

⎛
⎝ ∏

j∈Λ−Λq

μjσ〈j] (vj(t))

⎞
⎠
⎛
⎝∏

j∈Λq

μjσ〈j] (v
F
j (t))

⎞
⎠×

(
PqAτ + PqBuτKσFq

)]
x(t)

=2xT (t)

[ ∑
τ∈∏p

i=1 Si

∑
σ∈∏p

i=1 Si⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j] (vj(t))μjσ〈j] (vj(t))

⎞
⎠×

⎛
⎝∏

j∈Λq

μjτ〈j](vj(t))μjσ〈j] (v
F
j (t))

⎞
⎠×

(
PqAτ + PqBuτKσFq

)]
x(t)

In order to give a compact description, μjτ〈j] (vj(t)) and
μjσ〈j] (v

F
j (t)) are respectively denoted as μjτ〈j] and μF

jσ〈j] ,
then it follows from the above inequality that

V̇ (t) =2xT (t)

[ ∑
τ∈∏p

i=1 Si

∑
σ∈∏p

i=1 Si

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

⎞
⎠

×
⎛
⎝∏

j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠(PqAτ + PqBuτKσFq

)]
x(t)

=2xT (t)
(
PqA(μ) + PqBu(μ)K(μ, μF )Fq

)
x(t) (22)

where

A(μ) =
∑

τ∈∏p
i=1 Si

∏
j∈Λ

μjτ〈j]Aτ =
∑

τ∈∏p
i=1 Si

p∏
j=1

μjτ〈j]Aτ

=
∑

τ∈∏p
i=1 Si

μτAτ

Bu(μ) =
∑

τ∈∏p
i=1 Si

∏
j∈Λ

μjτ〈j]Buτ =
∑

τ∈∏p
i=1 Si

p∏
j=1

μjτ〈j]Buτ

=
∑

τ∈∏p
i=1 Si

μτBuτ ,

K(μ, μF ) =
∑

σ∈∏p
i=1 Si

∏
j∈Λ−Λq

μjσ〈j]

∏
j∈Λq

μF
jσ〈j]Kσ (23)

On the other hand, from (19) and (20), we have that

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Φτσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (24)

where Φτσq =

[
He(AτQq +BuτLσ) ∗
FqQq −G+ εLT

σB
T
uτ −εG− εGT

]
, Fq is

the same as in (14).
For Xi ∈ S

2
i /Ri, i ∈ Λ−Λq, let τ̄〈i]σ̄〈i] ∈ Xi, and satisfying

τ〈i] ≤ τ̄〈i] and σ〈i] ≤ σ̄〈i] for all τ〈i]σ〈i] ∈ Xi. According to
the definition (18) of the binary relation Ri, it follows that
μτ〈i]μσ〈i] = μτ̄〈i]μσ̄〈i] for all τ〈i]σ〈i] ∈ Xi, i ∈ Λ − Λq.
Therefore, ⎛

⎝ ∏
j∈Λ−Λq

μjτ̄〈j]μjσ̄〈j]

⎞
⎠ ∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Φτσq

=
∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ̄〈j]μjσ̄〈j]

⎞
⎠Φτσq

=
∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

⎞
⎠Φτσq

Combining it and (24), we have that

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

⎞
⎠Φτσq < 0, for
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τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,Xp ∈ S

2
p/Rp, 1 ≤ q ≤ nx

Then⎛
⎝∏

j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠ ∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

⎞
⎠Φτσq

=
∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

⎞
⎠
⎛
⎝∏

j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠×

Φτσq < 0,

for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,Xp ∈ S

2
p/Rp, 1 ≤ q ≤ nx

Further, we have

∑
τ〈i]σ〈i]∈S

2
i

i∈Λq

∑
Xi∈S

2
i/Ri

i∈Λ−Λq

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j] ×

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠Φτσq

=
∑

τ〈i]σ〈i]∈S
2
i

i∈Λq

∑
τ〈i]σ〈i]∈S

2
i

i∈Λ−Λq

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠

× Φτσq

=
∑

τ〈i]σ〈i]∈S
2
i

i∈Λ

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠Φτσq

=
∑

τ〈i]∈Si

i∈Λ

∑
σ〈i]∈Si

i∈Λ

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠Φτσq

=
∑

τ∈∏p
i=1 Si

∑
σ∈∏p

i=1 Si

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠

× Φτσq

=
∑

τ∈∏p
i=1 Si

∑
σ∈∏p

i=1 Si

⎛
⎝ ∏

j∈Λ−Λq

μjτ〈j]μjσ〈j]

∏
j∈Λq

μjτ〈j]μ
F
jσ〈j]

⎞
⎠

×
[

He(AτQq +BuτLσ) ∗
FqQq −G+ εLT

σB
T
uτ −εG− εGT

]
<0

Consider the gain Kσ = LσG
−1, σ ∈ S, then substituting Lσ

by KσG in the above inequality, it yields that[
He(A(μ)Qq +Bu(μ)K(μ, μF )G) ∗
FqQq −G+ εGTKT (μ, μF )BT

u (μ) −εG− εGT

]
< 0

(25)

where A(μ), Bu(μ), K(μ, μF ) are the same as in (23).
Let vectors x(t) and x̄(t) satisfy

x̄(t) = Q−1
q x(t) = Pqx(t) (26)

For x(t) �= 0, it follows that x̄(t) �= 0. Pre- and post-
multiplying (25) with[

x̄T (t) x̄T (t)Bu(μ)K(μ, μF )
]

and its transpose, then it follows that

2x̄T (t)
(
A(μ)Qq +Bu(μ)K(μ, μF )FqQq

)
x̄(t) < 0

i.e.,

2xT (t)
(
PqA(μ) + PqBu(μ)K(μ, μF )Fq

)
x(t) < 0

which implies that V̇ (t) < 0 from (22). Therefore, the
system is asymptotically stable with the controller (6) for
the error measurement state vector xF (t) = Fqx(t), Fq =
diag

[
1, · · · , 1, fq, 1, · · · , 1

]
nx×nx

, 0 ≤ fq ≤ 1. For all
q ∈ {1, 2, · · · , nx}, it is easily proved from the above discuss
that the closed-loop system is asymptotically stable with the
error measurement of the state xq(t), if the conditions (19)
and (20) hold. Therefore, the state feedback controller of the
form (6) renders the system (4) in the normal case and only
one sensor failure cases asymptotically stable. Thus, the proof
is complete.

Remark 2: A new reliable control synthesis condition is
obtained in Theorem 1 by using the properties of fuzzy product
inference engine and the equivalence class in set theory. The
new methods are applicable for the fuzzy systems, the premise
variables of which are dependent on the states, therefore, it
can guarantee the stability for T-S fuzzy systems with fault
case (III) (see Definition 1). However, the existing approaches
only consider the fault case (I), i.e., the premise variables are
independent on the states, then they might be ineffective for
T-S fuzzy systems with fault case (III). In next section, a
numerical example will be given to show the advantage of
the new method.

Remark 3: Note that the condition of Theorem 1 is a
set of LMIs with a line search over a scalar variable ε,
then Theorem 1 is no longer convex. Because ε is a scalar
variable, a constructive numerical procedure can be given. The
procedure always achieves a reasonable solution provided ε
is initialized with a sufficiently large value and the search is
carefully performed (for instance with small enough steps near
the optimum). Some methods for a line search can be found
in [43], [44].

C. H∞ reliable control

Consider the T-S control system (8) with sensor fault (12)
and affected by unknown disturbance w(t). In order to guaran-
tee a good disturbance attenuation property, when the sensors
occur faults, H∞ reliable control methods will be proposed in
this subsection. Firstly, H∞ performance definition is given as
follows:

Definition 2: [45], [46] Let γ > 0 be a constant. If (8) is
asymptotically stable, and for any w(t) ∈ L2[0,∞) (the space
of square integrable functions) and x(0) = 0, the following
inequality holds:∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

wT (t)w(t)dt (27)
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then the system (8) is said to be with an H∞-norm less than
or equal to γ.
Based on the description (10) and adopting the similar tech-
nique in the above subsection, a new H∞ reliable control
synthesis condition is given as follows:

Theorem 2: If there exist symmetric matrices Qq > 0, 1 ≤
q ≤ nx and matrices G, Lτ , τ ∈ S, a scalar ε > 0 satisfying

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Ψτσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (28)∑

τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Ψ̄τσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (29)

where

Ψτσq =⎡
⎢⎢⎣

He
(
Āτ Q̄q + B̄uτLσ[I 0]

) ∗ ∗ ∗
[I 0]Q̄q −G[I 0] + εLT

σ B̄
T
uτ −εG− εGT ∗ ∗

B̄T
wτ 0 −γ2I ∗

C̄τ Q̄q 0 0 −I

⎤
⎥⎥⎦

Ψ̄τσq =⎡
⎢⎢⎣

He
(
Āτ Q̄q + B̄uτLσ[I 0]

) ∗ ∗ ∗
[F̄q 0]Q̄q −G[I 0] + εLT

σ B̄
T
uτ −εG− εGT ∗ ∗

B̄T
wτ 0 −γ2I ∗

C̄τ Q̄q 0 0 −I

⎤
⎥⎥⎦

Āτ =

[
Aτ 0
0 − 1

2I

]
, B̄uτ =

[
Buτ

Dτ

]
, C̄τ =

[
Cτ 0

]
,

B̄wτ =

[
Bwτ

0

]
, Q̄q =

[
Qq 0
0 I

]

then the state feedback controller of the form (6) with the gain
Kτ = LτG

−1, τ ∈ S renders the system (4) in the normal
case and only one sensor failure cases asymptotically stable,
and H∞-norm less than or equal to γ.

Proof: From (14) and (29), we have that

∑
τ〈i]σ〈i]∈Xi

i∈Λ−Λq

Ψτσq < 0, for τ, σ ∈
p∏

j=1

Sj ,X1 ∈ S
2
1/R1, · · · ,

Xp ∈ S
2
p/Rp, 1 ≤ q ≤ nx (30)

where

Ψτσq =⎡
⎢⎢⎣

He
(
Āτ Q̄q + B̄uτLσ[I 0]

) ∗ ∗ ∗
[Fq 0]Q̄q −G[I 0] + εLT

σ B̄
T
uτ −εG− εGT ∗ ∗

B̄T
wτ 0 −γ2I ∗

C̄τ Q̄q 0 0 −I

⎤
⎥⎥⎦

(31)

and Fq is the same as in (14).

Adopting the same technique from (24) to (25), then it
follows from (31) that⎡
⎢⎢⎣

He
(
Ā(μ)Q̄q + B̄u(μ)K(μ, μF )G[I 0]

) ∗
[Fq 0]Q̄q −G[I 0] + εGTKT (μ, μF )B̄T

u (μ) −εG− εGT

B̄T
w(μ) 0

C̄(μ)Q̄q 0

∗ ∗
∗ ∗

−γ2I ∗
0 −I

⎤
⎥⎥⎦ < 0

where

Ā(μ) =
∑

τ∈∏p
i=1 Si

μτ Āτ , B̄u(μ) =
∑

τ∈∏p
i=1 Si

μτ B̄uτ ,

B̄w(μ) =
∑

τ∈∏p
i=1 Si

μτ B̄wτ , C̄(μ) =
∑

τ∈∏p
i=1 Si

μτ C̄τ ,

K(μ, μF ) =
∑

σ∈∈∏p
i=1 Si

⎛
⎝ ∏

j∈Λ−Λq

μjσ〈j]

⎞
⎠
⎛
⎝∏

j∈Λq

μF
jσ〈j]

⎞
⎠Kσ

Applying Schur complement lemma to the above inequality,
then we have⎡
⎣He

(
Ā(μ)Q̄q + B̄u(μ)K(μ, μF )G[I 0]

)
+ Q̄qC̄

T (μ)C̄(μ)Q̄q

[Fq 0]Q̄q −G[I 0] + εGTKT (μ, μF )B̄T
u (μ)

B̄T
w(μ)

∗ ∗
−εG− εGT ∗

0 −γ2I

⎤
⎦ < 0 (32)

For x̄(t) �= 0, pre- and post-multiplying the above inequality
with

[
x̄T (t) x̄T (t)B̄u(μ)K(μ, μF ) wT (t)

]
and its trans-

pose, it yields that

2x̄T
(
Ā(μ)Q̄q + B̄u(μ)K

T (μ, μF )G[I 0]
)
x̄

+ x̄T Q̄qC̄
T (μ)C̄(μ)Q̄qx̄+ 2x̄T B̄u(μ)K(μ, μF )[Fq 0]Q̄qx̄

− 2x̄T B̄u(μ)K(μ, μF )G[I 0]x̄

+ 2εx̄T B̄u(μ)K(μ, μF )GTKT (μ, μF )B̄T
u (μ)x̄

− 2εx̄T B̄u(μ)K(μ, μF )GTKT (μ, μF )B̄T
u (μ)x̄

+ 2wT B̄T
w(μ)x̄ − γ2wTw

=2x̄T Ā(μ)Q̄qx̄+ x̄T Q̄qC̄
T (μ)C̄(μ)Q̄qx̄+ 2x̄T B̄w(μ)w

+ 2x̄T B̄u(μ)K(μ, μF )[Fq 0]Q̄qx̄− γ2wTw

<0

Since Qq > 0, it is invertible, let

P̄q = (Q̄q)
−1

Therefore, the above inequality can be rewritten as follows:

x̃T (t)

(
P̄q

(
Ā(μ) + B̄u(μ)K(μ, μF )[Fq 0]

)
+
(
Ā(μ)+

B̄u(μ)K(μ, μF )[Fq 0]
)T

P̄q + C̄T (μ)C̄(μ)

)
x̃(t)

+ x̃T P̄qB̄w(μ)w + wT B̄T
w(μ)P̄q x̃− γ2wTw < 0 (33)
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where

x̃(t) = Q̄qx̄(t) (34)

(33) is equivalent to[
He
(
P̄q

(
Ā(μ) + B̄u(μ)K(μ, μF )[Fq 0]

))
+ C̄T (μ)C̄(μ)

B̄T
w(μ)P̄q

∗
−γ2I

]
< 0

which can be rewritten as follows:⎡
⎣He

(
PqA(μ) + PqBu(μ)K(μ, μF )Fq

)
+ CT (μ)C(μ)

D(μ)K(μ, μF )Fq

BT
w(μ)Pq

FqK
T (μ, μF )DT (μ) PqBw(μ)

−I 0
0 −γ2I

⎤
⎦ < 0

Applying Schur complement to the above inequality, then we
can obtain [

Ξ11 PqBw(μ)
BT

w(μ)Pq −γ2I

]
< 0

where Ξ11 = He
(
PqA(μ) + PqBu(μ)K(μ, μF )Fq

)
+

CT (μ)C(μ) + FqK
T (μ, μF )DT (μ)D(μ)K(μ, μF )Fq . Com-

bining the above inequality and CT (μ)D(μ) = 0, yields[
Ξ̄11 PqBw(μ)

BT
w(μ)Pq −γ2I

]
< 0

where Ξ̄11 = He
(
PqA(μ)+PqBu(μ)K(μ, μF )Fq

)
+
(
C(μ)+

D(μ)K(μ, μF )Fq

)T(
C(μ) + D(μ)K(μ, μF )Fq

)
. Pre- and

post-multiplying the above inequality with
[
xT (t) wT (t)

]
and its transpose, then we have

2xT (t)Pq

(
A(μ) + Bu(μ)K(μ, μF )Fq

)
x(t) + xT (t)×(

C(μ) +D(μ)K(μ, μF )Fq

)T (
C(μ) +D(μ)K(μ, μF )Fq

)×
x(t) + 2xT (t)PqBw(μ)w(t) − γ2wT (t)w(t) < 0 (35)

Choose Lyapunov function V (t) = xT (t)Pqx(t) for the case
that only the sensor for measuring the state xq(t) is failed,
then (35) can be rewritten as follows:

V̇ (t) + zT (t)z(t)− γ2wT (t)w(t) < 0 (36)

Integrating both sides of this inequality yields∫ ∞

0

V̇ (t) +

∫ ∞

0

zT (t)z(t)− γ2

∫ ∞

0

wT (t)w(t)

=V (∞)− V (0) +

∫ ∞

0

zT (t)z(t)− γ2

∫ ∞

0

wT (t)w(t)

<0

Using the fact that x(0) = 0 and V (∞) ≥ 0, we obtain∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

wT (t)w(t)dt

Hence, (27) holds and the H∞ performance is fulfilled.
If the disturbancew(t) = 0, then from (36), we have V̇ (t) < 0.
Hence, the system (1) with sensor faults by the controller (16)
is asymptotically stable. Thus, the proof is complete.

IV. EXAMPLE

In this section, an example is given to illustrate the effective-
ness of the proposed method. Consider the following nonlinear
system.

ẋ1(t) =x2(t)− 3x3(t) + w(t)

ẋ2(t) =− x1(t)− 0.2x2(t)− x3(t) + 0.5 sin(x2(t))x2(t)

− u(t)

ẋ3(t) =2x1(t) + x2(t)− 3x3(t) + 1.6 sin(x1(t))x3(t) + u(t)

z1(t) =x3(t)

z2(t) =u(t)

Choose premise variables x1(t), x2(t) and use the modelling
method in [21], then we have that the nonlinear system can
be exactly represented by the following the T-S fuzzy model:

Plant Rule (i1i2):

IF v1(t) is M1i1 and v2(t) is M2i2

THEN ẋ(t) = Ai1i2x(t) +Bwi1i2w(t) +Bui1i2u(t)

z(t) = Ci1i2x(t) +Di1i2u(t)

where

A11 =

⎡
⎣ 0 1 −3
−1 −0.7 −1
2 1 −4.6

⎤
⎦ , A12 =

⎡
⎣ 0 1 −3
−1 0.3 −1
2 1 −4.6

⎤
⎦ ,

A21 =

⎡
⎣ 0 1 −3
−1 −0.7 −1
2 1 −1.4

⎤
⎦ , A22 =

⎡
⎣ 0 1 −3
−1 0.3 −1
2 1 −1.4

⎤
⎦

Bw11 = Bw12 = Bw21 = Bw22 =
[
1 0 0

]T
,

Bu11 = Bu12 = Bu21 = Bu22 =
[
0 −1 1

]T
C11 = C12 = C21 = C22 =

[
0 0 1
0 0 0

]
,

D11 = D12 = D21 = D22 =

[
0
0.1

]

and the fuzzy membership functions are μ11(x1(t)) =
1−sin(x1(t))

2 , μ12(x1(t)) = 1+sin(x1(t))
2 , μ21(x2(t)) =

1−sin(x2(t))
2 , μ22(x2(t)) = 1+sin(x2(t))

2 . By using the prod-
uct inference engine [21], the weights of the fuzzy rules
(11), (12), (21), (22) are obtained as μ11(x1)μ21(x2),
μ11(x1)μ22(x2), μ12(x1)μ21(x2) and μ12(x1)μ22(x2). More-
over, by the mapping in Appendix, the fuzzy model can also
be rewritten as follows:

Plant Rule i:

IF v1(t) is M1i and v2(t) is M2i

THEN ẋ(t) = Aix(t) +Bwiw(t) +Buiu(t)

z(t) = Cix(t) +Diu(t)

where

A1 = A11, A2 = A12, A3 = A21, A4 = A22, Bu1 = Bu11,

Bu2 = Bu12, Bu3 = Bu21, Bu4 = Bu22, Bw1 = Bw11,

Bw2 = Bw12, Bw3 = Bw21, Bw4 = Bw22, C1 = C11,

C2 = C12, C3 = C21, C4 = C22, D1 = D11, D2 = D12,
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2

Sensor fault case

(a)

(b)

Fig. 1: The relation of xF
2 and x2 of the second state for the

fault-free and fault cases

D3 = D21, D4 = D22,

and the fuzzy rule weights of the corresponding conventional
fuzzy model are α1(v(t)) = μ11(x1)μ21(x2), α2(v(t)) =
μ11(x1)μ22(x2), α3(v(t)) = μ12(x1)μ21(x2), α4(v(t)) =
μ12(x1)μ22(x2). Note that each one of the weights αi(v(t)),
i = 1, ·, 4 is dependent on x1 and x2, then there are influences
on all fuzzy rule weights if one sensor for measuring some
state is failure.

First, assume the disturbance w(t) ≡ 0 and use different
methods to design fuzzy controllers for guaranteeing the
stability of the system with sensor faults. The methods in [33],
[47] and Theorem 1 are adopted inhere and the computational
results are given in Table I. Assume that the sensor for mea-
suring state x2 is outage and no fault in the other sensors, then
the second state, which is used in the fuzzy controller, is 0, i.e.,
xF
2 = 0. The membership functions μ21(x

F
2 ) =

1−sin(xF
2 )

2 =

0.5, μ22(x
F
2 ) =

1+sin(xF
2 )

2 = 0.5 in the fuzzy controller (16)
are different from μ21(x2) =

1−sin(x2)
2 , μ22(x2) =

1+sin(x2)
2

in the fuzzy system (1), and the fuzzy controller with the
sensor fault can be written as follows:

u(t)

=(μ11(x1)μ21(x
F
2 )K11 + μ11(x1)μ22(x

F
2 )K12 + μ12(x1)

× μ21(x
F
2 )K21 + μ12(x1)μ22(x

F
2 )K22)

[
x1 xF

2 x3

]T
=(μ11(x1)μ21(x

F
2 )K11 + μ11(x1)μ22(x

F
2 )K12

+ μ12(x1)μ21(x
F
2 )K21 + μ12(x1)μ22(x

F
2 )K22)F2x(t)

In order to illustrate the influences of the sensor fault on the
states and membership functions, the relations of xF

2 , μ21(x
F
2 ),

μ21(x
F
2 ) μ22(x2), μ22(x

F
2 ) and x2 are given in Figs. 1-3, from

which, it can be seen that the fault has much of impact on
the membership functions of the fuzzy controller (16). The
simulations are done and the corresponding state responds are
shown in Figs. 4-6.

From Figs. 4-6, it can be seen that the existing methods
in [47] and [33] cannot guarantee the stability of the resulted
closed-loop system and the new proposed method (Theorem
1) presents an effective reliable controller. In particular, the

0

1

0.5
μ21(x

F
2 )

x2(t)

0

1

0.5

μ21(x2)

x2(t)
Fault-free case

Sensor fault case

(a)

(b)

Fig. 2: The relations of μ21(x2), μ21(x
F
2 ) and x2 for the fault-

free and fault cases

0

1

0.5
μ22(x

F
2 )

x2(t)

0

1

0.5

μ22(x2)

x2(t)
Fault-free case

Sensor fault case

(a)

(b)

Fig. 3: The relations of μ22(x2), μ22(x
F
2 ) and x2 for the fault-

free and fault cases
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Fig. 4: The state responds by using the controller obtained
based on Theorem 1
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TABLE I: Controller gains

Theorem 1 with ε = 0.6 The method in [33] with λ = 50 The method in [47]
K11 = [−0.8144 1.7659 0.2007]
K12 = [−0.8359 2.0636 0.1525]
K21 = [−0.8240 1.8171 0.3148]
K22 = [−0.8347 1.9621 0.2789]

K1 = [−0.8149 10.8548 − 2.4226]
K2 = [−0.9587 6.5834 0.8549]
K3 = [−0.7797 4.2596 − 2.3550]
K4 = [−0.9486 1.7885 0.1064]

K1 = [1.4306 6.5104 7.3707]
K2 = [1.5732 8.0527 8.3183]
K3 = [0.9513 3.0071 2.5858]
K4 = [1.0939 4.5494 3.5334]
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Fig. 5: The state responds by using the controller obtained
based on the method in [47]
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Fig. 6: The state responds by using the controller obtained
based on the method in [33]

method in [33] is for designing reliable controllers, but it is
only applicable for the fuzzy system with the premise variables
independent on the states, then it is failed for the example.

Assume the disturbance

w(t) =

{
1, 6 ≤ t ≤ 15
0, others

and the initial condition x(0) = 0. Theorem 2 and the method
in [33] are used for designing H∞ controllers, the obtained
H∞ performance indices are respectively 9.98 and 2.80. Note
that the obtained index by the method in [33] is smaller.
However, it is not the actual bound of the H∞ performance,
because the all premise variables are assumed to be reliable
in the method of [33]. Moreover, the obtained gains by these
methods are given in the following Table II.

The simulations are done with the sensor for measuring state

TABLE II: Controller gains

Theorem 2 with ε = 0.4 The method in [33] with λ = 1.7
K11 = [−0.9006 2.5372 0.0802]
K12 = [−0.9007 2.5374 0.0803]
K21 = [−0.9154 2.6312 0.1725]
K22 = [−0.9154 2.6313 0.1725]

K1 = [−0.9362 7.0083 − 2.1257]
K2 = [−0.9931 4.0159 0.4995]
K3 = [−0.9463 2.5456 − 1.9976]
K4 = [−1.0026 0.9888 0.0933]
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Theorem 2
The method in  Wu and Zhang, 2005

Fig. 7: The responds of the controlled output z1(t)

x2 being outage. The responds of the controlled output z(t) are
given in Fig. 7. It can be seen that the controller obtained by
Theorem 2 achieve a better H∞ performance, which illustrates
the effectiveness of the new method.

V. CONCLUSION

The reliable control problem for T-S fuzzy control systems
with sensor multiplicative faults has been investigated in this
paper. By using the properties of fuzzy product inference
engine, a class of new reliable fuzzy control techniques are
proposed for T-S fuzzy systems with sensor faults. In the new
conditions, we consider the influences of sensor faults on both
the system states and premise variables of fuzzy controllers,
then the proposed controllers can maintain the stability and
the control performance when all sensors are operational as
well as when some sensor experiences failures. A numerical
example has been given to illustrate the effectiveness of the
new approach. The influences of sensor faults on both the
premise variables and system states have been considered
in this paper, then the proposed methods are valuable in
practical use for guaranteeing the performance of T-S fuzzy
control systems against sensor faults. Planned future work by
the authors will be directed at reliable control problems via
dynamic output feedback for T-S fuzzy systems.
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APPENDIX

Relations between the new description and the existing
descriptions of T-S fuzzy systems:

Note that the set
∏p

i=1 Si is with r =
∏p

i=1 ri elements,
then a 1− 1 mapping can be defined as follows:

q :

p∏
i=1

Si −→ {1, 2, · · · , r} (37)

where

q(τ) =τ〈p] + (τ〈p−1] − 1)rp + (τ〈p−2] − 1)rprp−1+

(τ〈p−3] − 1)rprp−1rp−2 + · · ·+ (τ〈1] − 1)

p−1∏
j=1

rp+1−j

=τ〈p] +
p∑

i=2

i−1∏
j=1

rp+1−j(τ〈i] − 1)

i.e.,

q : τ〈1]τ〈2] · · · τ〈p] �−→ τ〈p] +
p∑

i=2

i−1∏
j=1

rp+1−j(τ〈i] − 1) (38)

Let

αq(τ)(v(t)) = μτ =

p∏
j=1

μjτ〈j](vj(t)), Āq(τ) = Aτ ,

B̄q(τ) = Buτ , K̄q(τ) = Kτ (39)

where v(t) = [v1(t) v2(t) · · · vp(t)]
T .

Then (8) can be rewritten as follows:

ẋ(t) =
∑

τ∈∏p
i=1 Si

αq(τ)(v(t))(Āq(τ)x(t) + B̄q(τ)u(t))

which is equivalent to

ẋ(t) =

r∑
i=1

αi(v(t))(Āix(t) + B̄iu(t)) (40)

Further, the fuzzy controller (7) can be rewritten as follows:

u(t) =

r∑
i=1

αi(v(t))K̄iy(t) (41)

Moreover, we can easily obtain
∑r

i=1 αi(v(t)) = 1. Then the
fuzzy system description (40) with (41) is widely used in the
existing literature [21], [23], [25], [29], [32], [39].
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