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A Wavelet-Based Joint Estimator of the
Parameters of Long-Range Dependence

Darryl Veitch and Patrice Abry

Abstract—A joint estimator is presented for the two parame- The Long-Range Dependence PhenomeAocommon de-
ters that define the long-range dependence phenomenon in thefinition of long-range dependence is the slow, power-law-
simplest case. The estimator is based on the coefficients of ke decrease at large lag of the autocovariance function

discrete wavelet decomposition, improving a recently proposed . . .
wavelet-based estimator of the scaling parameter [4], as well of a stationary stochastic procegs;} given by v, (k) ~

as extending it to include the associated power parameter. An & [k|==%), a € (0, 1). Equivalently, it can be defined as
important feature is its conceptual and practical simplicity, con- the power-law divergence at the origin of its spectrum:
sisting essentially in measuring the slope and the intercept of a

linear fit after a discrete wavelet transform is performed, a very fo(¥) ~cplv|77, |v| =0 (1)
fast (O(n)) operation. Under well-justified technical idealizations

the estimator is shown to be unbiased and of minimum or close where f,.(») satisfies, in the case of discrete time processes
to minimum variance for the scale parameter, and asymptoti-

cally unbiased and efficient for the second parameter. Through ) 1/2
theoretical arguments and numerical simulations it is shown that 12(0) =0 = / fx(v) dv
in practice, even for small data sets, the bias is very small and -1/2

the variance close to optimal for both parameters. Closed-form . .

expressions are given for the covariance matrix of the estimator 7= P€ing the variance (or power) of,.

as a function of data length, and are shown by simulation to ~ Each of these definitions includes two parametéss:c. )
be very accurate even when the technical idealizations are not or («, cs), respectively, which are equivalent as
satisfied. Comparisons are made against two maximum-likelihood

estimators. In terms of robustness and computational cost the o . (1—-a)m

wavelet estimator is found to be clearly superior and statistically cf = 2(2m)""cy[(e) sin 9

its performance is comparable. We apply the tool to the analysis

of E_thernet teletraffic data, completing an earlier study on the \whereT is the Euler function. In each paity is the most
scaling parameter alone. important, as it defines the existence of the phenomenon itself,
Index Terms—Hurst parameter, long-range dependence, pack- and governs the characteristic scaling behavior of an LRD
et traffic, parameter estimation, telecommunications networks, process as well as statistics derived from it. Consequently,
time-scale analysis, wavelet decomposition. the emphasis has traditionally been on the estimation of
or equivalently of the Hurst parametdi = (1 + «)/2,
I. INTRODUCTION together with the range of lags or frequencies where the

i power-law relation holds. The second parametgr,or cy,
HE phenomenon ofong-range dependenc.RD) has or other equivalent choices, is an independent quantitative

recently attracted strong interest in telecommunications

. . halp {hrameter with the dimensions of variance which has received
with the discovery of self-similar and Iongjrange_-dependeﬁ r less attention, and its estimation and importance have been
properties in data and communications traffic of diverse typiagsr elv ne Iected’ This is unfortunate because in apolications
[19], [20], [23]. The investigation of the impact of this on gely neg - hisisu u use In apphicatl

telecommunication network performance (i.e., [9], [13], [21]ihe second parameter plays a major role in fixing the absolute

o i eof LRD-generated effects, the genechlaracterof which
has highlighted the need for accurate and computationally &f- ; L ; .
. S . IS determined byH. Estimatingc., is therefore an issue of
fective estimation methods for LRD parameters. Both real-time N . : L
ipportance for quantitative analysis, and yet is nontrivial,

estimation from limited measurements and off-line analysis Bein fraught with the same statistical difficulties intrinsic to
enormous data sets are aspects which call in particular ﬁf g fraug . .
estimation. We emphasize that the second parameter is an

computationally efficient techniques. : . .
P Y q independent parameter that must be estimated. It is not related

. . , to the variance ofc(¢) except in a rigid parametric context.
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p. 160]). Since the variance is proportional dg, it follows ¢; = o2(2x)~%, a relatively simple function. The discrete
immediately that the confidence intervals about sample meafhittle estimator offers a joint estimation dfH, o2/2r),
estimates are essentially proportional \j@,. The value of so we take the opportunity to compare the wavelet estimator
the second parameter is therefore critical even for the simplagfinst one based on the discrete Whittle in this context. An-
practical estimation issues for LRD processes. other reason to compare against the discrete Whittle estimator

In application areas such as telecommunications the secamthat it has been widely used in the analysis of network traffic.
parameter also plays an important role, over and above théThe Wavelet EstimatorA semiparametric wavelet-based
obvious importance of reliable mean estimates. It appeastimator for the Hurst parameter with excellent statistical,
directly in expressions for metrics measuring performancemputational, and robustness properties has already been
in queues with LRD input, which have recently attracteteported in [3] and [4] (see also [6]). The joint estimator
considerable attention. For example, in both [9] and [2Hescribed here is based on the same approach, where several
storage models are considered with stationary LRD inpytroperties of the wavelet decomposition combine to reduce
resulting in Weibullian-like tails for the stationary queud.RD in the time domain to short-range dependence (SRD) in
content distribution’. More precisely the wavelet representation. Key properties are the bandpass

PV >v)=0 (exp(_KQ)\gHUQ(l,H)/ZEQ)) natqre of the analyzing wa\_/elets, th.e fact that the analyzing

family of wavelets (and scaling functions) are generated from

where X is related to the utilization of the system, andhe change of scale operator which matches the power-law
x = H™H(1 — H)"~! is an almost constant function ofform of LRD spectra, and the fact that the number of vanishing
H = (a+ 1)/2. The variance of the work¥ (¢) arriving “moments” of the wavelets can be controlled.
in the interval [0, ¢] behaves asvar (W (t)) ~ =%**#, and  In this paper we improve upon the estimator for the scaling
it is not difficult to show that the constaft? is generically exponenta reported in [3], [4], and [6], and extend it to the
related to the:, of the LRD input ast? = ¢, /(H(2H — 1)). joint case(«, ;). Under reasonable additional technical ideal-
Thus the term in the exponential is inversely proportional f9ations, we first show that the related joint estimator c;C)
¢y (Or ¢s), sO an increase im; at constantd increased the js unbiased and asymptotically efficient, and give explicit
mass in the tail. Thus increasesdpincrease queuing delays,formulas for the covariance matrix and Cramer—-Rao bound.
consistent with the interpretation of the former as a measyfgs shown that the bound is very close to being attained in all
of the size of LRD effects. known cases. Based on the results far ¢;C), approximate

The above examples illustrate that the availability of gyrmuylas for the expectation and covariance matrixdf ¢ ;)
reliable estimate of; is crucial in the theoretical and practicalare presented as well as theoretical arguments indicating that
study of LRD phenomena. ¢; is asymptotically unbiased and efficient. Simulation results

Choice of the Second Parametefo the choices of the sec- gre presented confirming the accuracy of the approximations
ond parameter defined above itis natural to add the normalizggy the virtual lack of bias even for data of moderate length.
forms ¢, = ¢,/o} and ¢; = cs/o} which characterize The covariance of the estimators, however, is negative and
the correlation functiony.(k)/o; and its spectral equivalent, quite large. A preliminary version of this work was presented
respectively. At a theoretical level, all four of these are equiyt GRETSI 1997 [27].
alent choices for the second long-range-dependent parametegecause the discrete wavelet transform can be performed
In practice, however, wheré/ and o7 are not known but ysing the multiresolution analysis algorithm, data can be
must be estimated also, each of these is a separate estima§ji into blocks, analyzed, and recombined, so that memory
problem. In this paper we choose to concentrate on frequengypblems are not encountered in treating data of arbitrary
domain estimation and we considef to be fixed, as we are |ength n. The run-time complexity of the estimator is very
concerned with the parameters of long-range dependence oy, only O (n), making it very suitable for the analysis of
Together these imply; as the choice of second parametefery |arge data sets.

For theoretical reasons we also consider a related quantityrhe estimator inherits the robustness advantages of the
c¢yC, to be defined in the next section. This quantity alsgarlier H estimator, namely insensitivity to the form of the
happens to be that considered in the parametric joint estimafi@fte dimensional distributions, as well as to the presence of
described by Wornell and Oppenheim [29], enabling a veghitrary smooth deterministic trends [4]. This latter advantage
direct comparison. is particularly important in the context of LRD.

There are of course other quantities of interest which aregytline: In Section Il a brief background in relevant
related toc; and which may be more important to estimatgavelet theory is given, followed by the definition of the
directly in other contexts. One example is the variangeof estimators and the derivation of their properties. In Section
the innovations of a linear process, which also correspondsjfo simulation results are presented, while in Section IV
the minimal mean-squared prediction error among all linegpmparisons are made against the performance of the discrete

predictors (see Beran [8]). Since Whittle estimator [8] and the maximum-likelihood wavelet-
1/2 based estimator of Wornell and Oppenheim [29]. In Section
0 = €Xp </ log f(v) dV) V the estimator is applied to large Ethernet data sets,

—1/2 complementing the results reported in [4]. In Section VI we

this is in general quite a different quantity tg; however, conclude the paper with a discussion on outstanding issues.
in the case of the fractional ARIMA process farima0dO [17Finally, in Section VII we provide a compact summary of
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the steps involved in the estimation to assist the reader by the number of vanishing moments and corresponding to

implementing it. short-range dependence. Since by definition dbhtave j =
log,(scale), this impliesexponentiaecay in octavg. In this
Il. THE WAVELET ESTIMATOR paperlog, will denote the logarithm bas2, whereadn will
denote natural logarithms.
A. Foundation of the Method Intuitive Basis of the EstimatorThe starting point for the

Discrete Wavelet Decomposition and LRD Processé& analysis is (2). Rewriting it as

denote byd,(j, k) = (z, %, 1) the coefficients of the dis- logy(Ed, (5, -)2) = jou + logy(csC)

crete or nonredundant wavelet transform of a process or _ _ o

“signal” z. The family of wavelet basis functiong); ,(t) = Strongly suggests a linear regression approach for estimating

279/ 24po(279t — k)}, j =1, ---, J, k € Z is generated from (o, ¢p), where, clearly, the slope of the regression would

the mother wavelety, itself defined via a multiresolution estimatea and the intercept would be relateddp. This idea

framework [11]. of using a log-log plot is an obvious one, and common to
In the analysis of the LRD phenomenon, the following twéany contexts when an exponent is the object of interest. The

features, (F1, F2), of such a family play key roles. real issue is to what extent the promise of this simple linear
form is realized in the resulting estimator, once the inevitable

F1: The basis is constructed from the dilation (Changgomplications are taken into account.

of scale) operatorz; o(t) = 279/2(277t). This means
that the analyzing family exhibits, by construction, a scale- * The first essential complication is of course that
invariance feature. The LRD phenomenon can be understood Ed.(j, -)%, a second-order quantity that can be related to
as the absence of any characteristic frequency (and, therefore, the spectrum ofz, is not known but must be estimated.
scale) in the range of frequencies close to the origin. The In the present context, this is the principal difficulty
LRD property can thus be interpreted as a scale invariance @s it is well known [8] that the estimation of second-

characteristic which is efficiently analyzed by wavelets. order (and other) quantities in a long-range-dependent
context is a delicate task. Here, however, property P2, the

quasidecorrelation of thé,(j, k), allows us to effectively
use the simple “time average”

F2: ¢ has a numberV of zero or vanishing moments
which can be freely chosen providéd > 1. By definition
this means thaff t*vo(¢t)dt =0,k =0, ---, N — 1 (but not
for £ > N), or equivalently, that the Fourier transform 9§ 2
satisfies|¥o ()] = O (J»|V) at the origin. This property can T, Z d,(J; k
be used to control divergences arising with processes having
power-law spectra at the origin. where n; is the number of coefficients at octave
available to be analyzed. This quantity is an unbiased
and efficient estimator oEd, (4, -)? [3], [4]. (Note that
w; is the sample variance of.(j, -), since from F2
the expectation ofl, (7, -) is identically zero for each.
This interesting fact plays no direct role in our analysis

(4)

=t

For a process with a power-law spectrum such as a LRD
process, these features engender the following key properties
of the wavelet coefficientd,.(j, k) over a range of scalex,

4 =71---72, where the power-law scaling holds (see [3], [4],
and [6] for more details).

however.)
P1: Due to F1, the scale invariance (the power-law behav-« The second complication is the nonlinearity introduced
or) is captured exactly by the log,, which biases the estimation. We will see
Ed,(j, )% = QJQCfO ) below how this problem aIsp can _be cirgumvented under
reasonable hypotheses. Simplifying things slightly, we
where confirm that the fundamental approach underlying our
—a 5 estimator is indeed a linear regressionlog,(x;) on
= / V1™ Lo ()" dv. (3) log, (27) = j. A weighted linear regression will be used

This exact recovery of a power-law is not a trivial effect and as the variances of thieg,(:;) vary with j.

results directly from the dilation operator underlying the design Improvement on the Previous Wavelet-Based Estimator of
of the wavelet basis. (Time—frequency or periodogram-based As stated above, a semiparametric wavelet-based estimator
estimates would not exhibit such a feature [1], [3].) for o has recently been proposed in [4]. Here a more detailed

P2: Due to F1 and F2, thel.(j, k) are a collection analysis of the statistics dbg,(;:;) allows us to improve the

. : : estimator in two ways. First, the bias due to the logarithm
of random variables which arguasidecorrelated[15]. | ; . : . -
discussed in the previous paragraph is corrected for explicitly.

particular, the long-range dependence present in the ti
domain representation is completely absent in the Wavg%eef‘cond explicit closed-form solutions for the variances of the
»(p;) have been obtained, and are used in the weighted

coefficient plane{y, k}. regression, rather than asymptotic formulas. These refinements
Property P2 deserves elaboration. It has been shown tregult in an estimator which is strictly unbiased, even for data

correlations in the time-scale plane decay at least hyperbof-small length, rather than only asymptotically unbiased, and

ically in all directions [15], [26] with exponents controlledwhich is of lower variance. Although theoretically important,
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in practice these improvements are small to negligible in mostThe Statistidog,(;+;): Thus far we have indicated that
cases. They are appreciable when the number of availalilg,(s:;) is the variabley; of the desired linear regression
wavelet coefficients:; for each octave in the scaling rangesatisfying Ey; = b + a. Since

is small. In contrast, however, the above refinements have IE logy(14;) # logy(IEp;) = jor 4 logy(cr C)

important implications for the estimation of the second pa- i
rameterc;. in general, this cannot be exactly true, although under the

conditions ID1-1D3 below, and also assuminglarge, it can
be established that

(LA - J+1 2
Linear Regression:We recall some standard results on one- loga (1) ~N(ja +logg ¢, (277 /n In72))
dimensional weighted linear regression of the random va[g], [4], where 4 signifies equality in distribution and

B. Analytic Elements

ablesy; on the deterministic independent variables j = N(y, o2) is a Gaussian random variable. In an LRD context,
Ji---Jj2. Sums will always be taken over this range. however, the large scales are usually the most important to
The fundamental hypothesis of linear regressiolEis = consider, and it is precisely there that thearenotlarge. Here
bz; + a. Define the quantities we remove the condition on; by examining the distribution
) of log,(x;) in more detail.
5= Zl/"j Throughout the analysis it is instructive to bear in mind
S, = ij/ajz that the number of available detail coefficiemts essentially

decreases by half as the scale is doubled, thatis, ~ n,/2,
and, therefore, that; ~ n2~7 wheren is the length of the
Sew =Y _3/07 initial data.
) ) ) ) ) We assume that the following supplementary idealizations
Whereo—f is an arbitrary weight associated wigh. The usual 1514 true.

unbiased estimatofh, &) of (b, a) is

and

ID1: The process;, and hence the processés(j, -), are

o 2 y(Szy — Sm)/ff? _ Gaussian.
rz x ) ID2: For fixed j the processi,(j, -) is independent and
o 22 Yi(Sew — Sexy) /o5 g identically distributed (i.i.d.).
T 8S,, -2 = vy, ©)
e * ID3: The processesl.(j, -) and d.(j, ), § # j', are
where the weightsy; andwv; satisfy independent.
Zw. — Z ju; =0 Idealization ID1 is justified by numerical evidence which
! o shows that the method is very insensitive to the form of the
ijj = Zvj =1 marginal distributions of: [4]. Idealizations ID2 and ID3 are

. ) both well justified by property P2 (they are separated to make
Note that these conditions imply that there are always both.|aarer which properties are needed where).

positiye a“q .negativezj and w;. ) These extra conditions, while appearing very restrictive at
If, in addition, they; are mutually independent then th&;.5; glance, are in fact very reasonable in practical terms,
covariance matrix is given by as borne out in simulations. The reason for this is that the

e 5 S underlying effectiveness of the method is based on P1 and P2,
Var (b) = Z gjwj = 58, — 52 (7) ID1-1D3 being added only to extend the quantitative analysis.
. Sz Let the density of a Chi-squared variatg r‘ixf, be denoted
~ 7 _S’I‘
Cov(a, b) = Z TjWV; = o 52 9)
T ful@) = (1/(27D (v /2)))a? e /2,

r=—5,/v55z (10)

wherer is the correlation coefficient. if; > 0 for eachj itis 1o mean and variance of such a variate arend %,
easy to see that will be negative, and large in magnitude if espectively. Also set; = 2/%¢,C.
x1 is large, as a small change in the slope “to the right” wifl From ID1 and ID2 énd (2) and (4) we have
result in an amplified change of opposite sign in the intercept.

Finally, if we seto? = Var (y;), then(b, &) is the minimum pj ~—= X, (11)
variance unbiased estimator (MVUE) [18] with covariance . ?
matrix as above. wherelEy; = z; asp; is unbiased, and, therefore,

Note that in the gvent of small errors in thg values ofctgne log,(45) 4 log, z; — logy n; + log, X,
and small correlations between the the estimator remains d .
unbiased and its covariance matrix can be accurately estimated ~jatlogy ¢pC —logy nj+In X, /In 2. (12)
by the expressions just given. Thus the study ofog, (41, ) reduces to that of the logarithm of
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a Chi-squared variable. Using the relations The jointunbiasedestimator( &, cTO) is then given by

/ 2" 7e™* In zdr = (1/p) T (W) [y (V) — In 4] a=b (23)

0 c;C =p-2° (24)

Rep > 0, Rev > 0 [16, Paragr. 4.352, eq. (1)], and s

o0 where

/ V"t (In 1)? dr
0 . H (n;/2)
= (/W) () = ) + (2, ) r= TG 0, A2

Rep > 0, Rev > 0[16, Paragr. 4.358, eq. (2)], wheyg») = nJ/Z exp(¢(n;/2)v;)
["(z)/I'(z) is the Psi function and(z, ») a generalized - H T(v; +n;/2)

Riemann Zeta function, it is straightforward to show from the

definition of f, () above that is a bias-correcting factor.

« Define the estimato€’ of the integral

EnX,=¢(/2)+1n2 (13)
Var(ln X,) =((2, v/2). (14) Cla, Vo) = / ||~ Wo (1) ]2 duv
It follows that
as
IE log,(11;) =jo +log, ¢C + g; (15) C(0, ¥y), G<0
Var (logy (11)) =¢(2, n,/2)/1n* 2 (16) G={Cla ¥, oO<a<l (25)

where the term C(l, ¥o), @zl

g; =¥(n;/2)/1In 2 —logy(n; /2) 17) * We can now definéa, é;) as
a negative function of.; only, can be easily calculated for a=h (26)
all values ofn;. & :c/fb/é. 27)

For future reference we record here the asymptotic form for

n; large of the quantities above An example of the regression fit is given in the log-log plot
in Fig. 1, which we term thd.ogscale Diagram The 95%

a; ~ —1 (18) confidence intervals for eagh), shown as vertical lines at each
nj n 2 octavej, are seen to increase with This can be understood
2 i g n2d i
Var(log, (11;)) ~ —. (19) fror_n (19), remembe.rlng thQat] n2 7. T_he mtervals_ are
n; In® 2 derived from the variances; under Gaussian assumptions.
C. Definition of the Estimator(s) D. Summary of the Principal Statistical Properties

In this section we define the LRD estimato#, ¢;) and The main properties of the estimators defined above, under
another, related estimatc(roé,cf/b) We are interested in the ID1-ID3, are summarized here. Proofs and further details,
quan“tycfc because ||ke¥ |ts Sta“s“ca' proper“es are en- |nC|Ud|ng eXpllClt eXpI’eSSIonS fOI’ the COVa”ance mat”ces are
tirely independent of the specific form of the mother wavelegiven in the subsections to follow.
depending only on the general properties P1 and P2. It is,
nonetheless very closely related g, yet has the advantage
of being amenable to a detailed analysis. The studyois
rendered far more complex because of the wavelet dependence,

(&, ch) is unbiasedeven for data of finite size. (ID3 is
not needed in the case of) For c;C the result holds
only for sets of octaves;j} such that

which enters explicitly via the integral’ of (3). 2vi/n; > =1
+ Define the variableg; as is satisfied for eachi within it, wherev, are the regression
coefficients given by (8) (typically this set will be of
= logy (1) — g;- (20) the form (j, j2) for somejs, jz, as generally either all

octaves satisfy the condition, or all but a small contiguous
From the above discussion it is clear that under ID1 and collection of the largest octaves). The estimatiordvdfas

ID2 they obey no such restriction. The estimator is efficient, nondiagonal
with negative correlation, and attains the Cramer—Rao
Ey; =ja+log, ¢;C (21) lower bound in the limitv; /n; — 0 for eachy selected.
_ , 2 A . . -~
Var(y;) =((2, n;/2)/In"2 (22) « C is asymptotically unbiased, and efficient.

and thus satisfy the requirements for a weighted linear® ¢y is asymptotically unbiased, and efficient. The same

regression. conditions on; hold as forc;C. The properties of;
Perform then a weighted regression estimationa) are closely related to those ef,C; for example, the
of y; on j = x, according to (5) and (6), withrf = correlation coefficient ofé, ¢;) is also negative and large

Var (y;). This notation will be fixed in the sequel. in magnitude.
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10 T T T T T T T T T T

y(j) =log2( muj) - g(j) )

0 ! I ] I I 1 1 L
1 2 3 4 5 6 7 8 9 10

Octave j

Fig. 1. Linear regression. An example of the = log,(u;) — g; againsty plot and regression line for a LRD process with strong SRD. The vertical
bars at each octave give 95% confidence intervals foritheThe series is simulated farima(0,d,2) with= 0.25 (o = 0.50) and ¥ = [-2, —1]
implying ¢; = 6.38. Selecting(j1. j2) = (4, 10) identifies the relevant scaling range allowing an accurate estimation despite the strong SRD:
& = 0.53+£0.07, & = 6.0 with 4.5 < & < 7.8.

E. Statistical Performance cﬁ&, 076') _ p-1Iny _ ¢ H X
Throughout the remainder of this section we assume the [12% exp(y(n;/2)v;) Iy’ ’

supplementary idealizations ID1-ID3. As usual, all sums and =c;C- H ”1/2 H v; (28)

products over; are over the rangéji, j»). The basic result 2% (v; +n;/2) "

underlying the close-to-optimal performance of the estimatwere the definition op has been used in the last line, and

is the optimality of the linear regressidh, @), which can be the relationsy” v; = 1, 3" ju; = 0 have been used to show

exploited thanks to the choice @f given by (20), and the that Hz;fj = ¢;C.

fact that the variances? of y; are known. Since under ID3 theu; are mutually independent, the
Bias: Since for both(a ch) and (&, ¢;) the estimator expectation ofch reduces essentially to the product of the

for « is just b, by construction we have expectations of real-valued powers of Chi-squared variables.

The key result is

Fa=a X = [T el o
Since a gstimateslogQ(cf/z‘) without bias, it is natural to 2‘11“ 20 (d+1/2)
suggest2¢ as an estimator for;C, although bias will be 1//2 / S2ato(
introduced by the nonlinearity. We claim that the form of the 4
factor p in the definition Ofcf/b corrects for this bias while - M (29)
simultaneously improving the variance. I'(v/2)
To show this, first rewritei as provided that(2d + ) > 0. It is now immediately clear from
(28) thatc;C is unbiased, provided thatv;/n; > —1 for
o= vy = villogy(i;) — g;) eachj. If this condition fails then the expectation ofC is
v; infinite! This reveals an unexpected but very important aspect
log H“J Z vidi of cf/b namely, that those scales whe¥e;/n; < —1 must

not be included in the analysis. The intuitive reason behind this
is that the estimator involves a raising to a power, which can
blow up if there is too much variance in the intercég8). The

Thus recalling thatX,,; is a Chi-squared variable with;
degrees of freedom

é}‘@ =p2i=p.2” D vigs H e scales at risk are those with the largg¢stlue, where? is the
v; largest. It is difficult, however, to derive an exact formula for
,‘ip . Hz—ng H <7_J> HX:L-J-_ those octaves which satisfy the condition, so in practice each
7y ’ octave needs to be tested for separately. Numerical evidence
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strongly suggests, however, that the “safe” set of octaves takependix B thatp tends to one, which has neutral implications
the form (41, j2) for someyi, j2, and that problems occurwith respect to the variance. In the other case, we now
only when a small number of octaves are included, each wighow thatp can be small, leading to a reduction of variance.
a smalln;. If the test fails, a new set of octaves must b&€ombine the power terms in the product as
chosen and the regression recalculated.

Variance: The variance ofx is that of b and is therefore,
using ID3, given by using (7) with (22).

Now consider the variance a@f;C. From (28) and noting
that lettingd — 2d in (29) yields the second moment af¢,
again using ID3 we have

n']'{'j/g’vj(lfgj) — gujllogy(n;)—(1—g;)]

and assume that; > 2, asn; = 1, 2 are special cases that
pose no difficulties. 1#v;/n; ~ —1 thenwv; < 0 and since it
can be shown thdbg,(n,) — (1 — g;) is positive forn; > 2,

it follows that p is bounded from above by

— I(n,/2) )2
V( C = C 2 —J
() =0 (T gl [T /20w + s /20
2 2
. {]E(HX,”L;) - (]EHX;;) } Clearly, if 4v;/n; =~ —1 thenwv; 4+ n;/2 ~ —v; which can
) be smaller thanl (and often is in practice), in which case
= (¢;0)? <H I'(n;/2) ) the corresponding factor in the bound and thusill also be
f 29I (vj + n;/2) small asI'(-) divergte,iat the origin.
S\2 Covariance of &, ¢C): The calculation of the covariance
2v;\ v ) Of "
’ {H E(X) (H ]Ean) } is slightly more involved. First rewrité as
2 ~
J J
d Z;
N ~ i 1 X —JXn. — q;
225 T(2v; +n;/2) 1] 2 < T g’)
I'(n;/2) =a+ Z wj logy Xp, — Z w;(g; + logy n;) (31)

I'(2u; +n;/2)T(n;/2)
=(¢;0)? {H li(vj Jinj/2)21 —11 30)  where we have used w; =0, > jw,; = 1 in showing that

provided thatdv;/n; > —1 which must be satisfied for each2 i 1082 2 = c. The other main result needed,

J to ensure the existence of the variance (implying that of thexd |, x — EX‘E In Xoary = EXp(d+1/2)+1n 2]
expectation). Y Y Y
To see that the variance is reduced by the introduction igf easily established using (29) and (13) and the discussion

the bias correction factay, recall the expression above the latter. Putting these results together and recalling
thatlog, * = In z/1n 2 we have (32) at the bottom of this
p = [[@C /20 /0w, +n;/2)277079) page.

and consider the two regimes of /n; “small” and v; /n; F. The Cramer—Rao Bound and Asymptoticgdfc;C)

“large,” that is, 4v;/n; ~ —1. In the former case it is The Cramer—Rao Lower Boundfhe bound on the covari-
not difficult to show from the asymptotic relations given irance matrix of an unbiased estimator @k, c;C) under

Cov(@, ¢;C) =TB((¢;C = ¢;0)( - @) = B(e;C(a - a))

:]E(ch(]EHX%)l HX;;; . (Z wy, logy Xy, — Z wi(gr + logs nk))>

—e,0|(BT]x2) BT 3 wetogs X, | = 3 wilon +logs i)
J k

=¢;C (]EHX',’{;)_IIE > [ X0 (00 logy X)) | = 3 wnlgn +logy ma)

k J#k

=¢;C (]Enxg;)_l 3w [T EXEX logy X)) — > wa(th(ni/2) +1)/1n 2

k J#k

5 D wilW(uj +n;/2) = d(n;/2)). (32)

J
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Fig. 2. Variance against CRLBog,(|Cov;; — CRLB;;|/CRLB;;) as a function ofog, (n) with j; = 3 for, from top to bottomVar (&), Var((;b), and
Cov (&, ch) It is clearly seen that the elements of the covariance matrix rapidly converge ¢as'/2 for Var (&) and Cov (&, cyC') and as~ n—2/3
for Var (c;C)) to those of the Cramer—Rao lower bound. The actual variance must therefore be close to that of the MVUE, even for small-size data.

ID1-ID3 is given by (46) of Appendix A given in (47) from Appendix A, and is seen to be nondiagonal
9 I —(¢;O)L (48).. This_asymptqtic_ fortn withi, = 1 is idgntical_to that
m (e OV (¢, OV (33) obtained in [29], indicating that asymptotically, if all the
270 s ! 2 octaves in the data can be (and are) used, our estimator matches
whereI;, = In* 2 Z J nj, E=0,1,2. the performance of a maximum-likelihood estimator. More
The Limitv;/n; — 0: In order to compare this lower details are given in Section IV.
bound with the covariance matrix fofa, ch) whose Finally, away from this limit the Cramer—Rao bound is
elements are given above, it is useful to consider the limit §tearly not attained, and the question of whethér c;C)
n; large in comparison te;. This limit, studied in [3], [4], and remains the MVUE or not is therefore an open one. We can
[6] in the context ofa only, corresponds to the limiting caseNonetheless compare the covariance matrix and the CRLB.
of Gaussian behavior fay;. The limit is interesting becauseFrom Fig. 2 it can be seen that the covariancédfc,C) is
in practice the assumption that; is large is a very good Very close to the bound even When the conditions of the limit
one except, possibly, for the; correspondmg to the largestare not satisfied. Hence even(i, ch) is not the MVUE in
. In Appendix B we show that in this limit the covariancegeneral, its performance is very close to it.
matrix is given by

Var (&, ¢;0) >

Var (&, ¢;C) G. Statistical Performance dfx, ¢5)

Var(b) X (csC) 2111 22' Cov (&, fL) Despite the complex, highly nonlinear nature(af ¢;C),
(eyC)In2-Cov (b, a) (cfC) In” 2- Var (a) due to the special structure of the problem we were able
Note that the correlation coefficient corresponding to tHe determine the expectations and variances exactly in terms
limiting covariance is equal to that @b, a). of known special functions. Fofa, é;) = (&, ch/C) this

Observe that, in view of (19), for large; I, = 25/ In? 2, cannot be done even when using, as we do, the approximation
I, =25,/In 2, andI, = 25,,, where theS, S,, andS,., are Cl(«a) for C(a, ¥y) (see (34) below) to bypass the issue of
defined in Section 1I-B. Using (7)—(9), the limiting covariancevavelet-basis dependence. Because of the small variation of
matrix can therefore be rewritten in terms of theand turns C1(«) over the rangex € [0, 1], however, and the lack of bias
out to be just the right-hand side of (33). Thus in the limiand low variance of, we expect@f to have properties which
wherev; /n; — 0 and largen;, (&, ch) attains the bound essentially mirror those of;C. We now derive expressions
and is therefore the MVUE under ID1-ID3. which support this expectation and which are borne out in

Moreover, in the fully asymptotic case af — oo, where simulations.
we letj, — oo at a rate such that;/n; — 0 for eachj in Approximating the Integral’: The integralC(«, o) is a
71 -+ J2, j1 fixed, an explicit form for the bound can be foundfunction of the (Fourier transform of the) mother wavelet
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The approximation C1{o) to C(c,N)

T T T T T T T T T -
i
.4
1.35F . . . AT,
-------- affine approximation YA
e O A
A
A
------ N=8 Ry
13 | == N=4 e T
______ - N A
N=2 Ny
..... N=1 . AT,
R A
1.25F IR A Va 7
— . AN ,
Z <24 ,
- 7 s .
% //"//'/ 7
2 1.2F Z7, , i
] .
— s 7
Z s ,
3 7 Va
L7
01'15_ P Ne v B
s Y
2 L
2
s . ya
e re
vl nd
1.1+ e e b
7 - R
R A d
Ay N
= Z" - R
A e
1.05- A.-'_4'~_//' 7 B
R ~
. e -
./. -
A -
1 —- T L ] ] 1 ] | 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o

Fig. 3. Accuracy ofC'1(«). It can be seen that the approximati6f(«) (solid line) is rapidly approached by the exact vattiéo, ¥o) = C(a, N)
with increasing N. The lowest curve is forN = 1.

and « only, and can be accurately and rapidly calculated vare others. Although we expeet to lie in the range0, 1],
the multiresolution algorithm, provided is known. In order the estimatora takes real values. Hence the integrﬁl:
to calculate the statistical properties of the estiméte—= C(&, Ug) is not necessarily defined for a given fixéd,
C(&, ¥g), however, we need a simplifying approximatioras & can be too large. Conversely;(&, Wo) approaches
for C(«, Wy). It can be proven from a theorem in [7] thatzero for negative values af, generating very large sample
for interpolating or orthonormal families of wavelet (like thevalues, and hence variance, fér. Indeed, if the affine
Daubechies’s that we generally use here), when the numbefuwriction1+ (2 In 2—1)é& plotted in Fig. 3, a quite acceptable
vanishing momentsV is large one ha$¥o(1/)|> — 1(1/2,1;, approximation forC, were used, the expectation of would
where1 is the indicator function. This convergence impliege infinite! For these reasons the definition @fbounds its
a convergence of the integral since the behavior at the origialues betweer[C(0, ¥y), C(1, ¥()] ~ [1,21n 2], via a

is well behaved forV > 1. Setting|Wo(»)]* = 1j1/2,1) and check oné. Note that each oty, ¢, and Cf/b/Cl(&) are
integrating, we obtain the following approximati@ii(«) for  positive quantities.

C(a, W), N large Our approximation of the properties 6, ¢;) is based on
9 _ 90 the following result [22]. If a functiory(z, y) of the jointly
Cl{a) = o (34) distributed random variabléc, y) is sufficiently smooth near

the joint mean(y.., ), then its mean and variance can be
a positive, monotone increasing function af € IR (the approximated in terms of the mean, variance, and covariance
singularity ate = 1 is removable). It varies so little overof (x, y) as
the domain of interest, mappin@, 1] to [1, 2 ln 2], that it 1/ 52 52
could be well approximated in its turn by the affine function Eg(z, y) ~ g+ = <—‘Za§ + Q_QOW + _52}03) (35)
1+ (21In 2 — 1)a. This observation gives insight into the 2\ 9z dzdy Iy
distribution of C, although it is not useful for the study of Var(g(z, v))
¢s. As can be seen in Fig. 3 the approximati6h(«) is ag\> , dg\ [ dg a9\’>
reasonable even foN = 1 (note the scale) and rapidly ~ <%) aw+2<%> <a_y>a-w+ <8_y> oy (36)
becomes very accurate.

Approximating the Statistical PerformandBy usingC1(«) Whereg and its derivatives are evaluated at v) = (piz, fy)-
to replace C(«, Wy) we bypass several difficulties in the Let h(y) = 1/C1(y) and setg(z, y) = xh(y), where
approximation of the properties df%, ¢;), however there for stylistic clarity we putz = ¢;C, y = & and so
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ép = g(c?@', &) and (pz, p1y) = (c;C, o). The mean and given by the expression at the bottom of this page, whi&e)
variance of the functiog(z, y) will be calculated with respect has been identified witl'1(«). This matrix is a function of
to the joint distribution of(, EJZ*) via the results above. It «, however, using the properties bfand/’ above it is easily
is immediately seen thalg/dx = h(y) and 9%¢g/9z% = 0. seen that the range of thedependence is very small. In fact,
The other derivatives can be easily calculated, and evaluatét)/h(«) ~ —1/3 and a good approximation in thg = 3

at (z, y) = (¢;C, o) to obtain case (for example) is given by
4 1 —3.1c
o aC Vargs. j, —a(&, &) A ——— / 39
ey~ Cl(w) Fas, =38, &) nln? 2 [=3.1c;  10.6¢ 59
1 — with a corresponding correlation coefficientofs —0.95.
+ 5(2h’(a)C0V (&, cyC) + ¢y Ch" (o) Var (&))
Var (&) Var(c?é) H. Asymptotic Distributions and Confidence Intervals
ar (c ~—
! Cl(a)? Distributions of the EstimatorsWe recall the following re-
+ 2¢ 1 () Cov (&, ¢;C) + (¢;O)2 ' (a)*Var & sults valid in the limity;/n; small:
(37) 9; =0
) u 41
where h/(y) and h”/(y) are given by y; — logo(py) ~N <ja +log, ¢;C, ﬁ)
7 1n
dh(y)  2%h(y)In2-1 2
Wy = = . .
(y) Qdy 2 _ 2y Var (yJ) - n; 1112 2
In 2+ 2h/
Wy = ddhgy) oy o) I +y h'(y) p— 1L
Y 2-2 We have restated above that fey large, or more precisely

To estimate the covariance we use (35) wihw, y) = wv;/n; large, the distribution ofj; is approximately normal. It
zh(y)(y — uy), h(y) as above, yielding is worth re-emphasizing that sinegy; ~ n;/2, only those

o octaves corresponding to the largest scales in the system will
Cov (&, &) ~ Cov (&, ¢;C) +¢;CH(a) Var (&). (38) have asmalh;, and therefore a distribution which is markedly
a) non-Gaussian with a corresponding variance which is abnor-

The expressions above for the mean and variance, aind Mally large. Sincet consists of a sum of thg; (5), most of
the covariance can be read as consisting of first-order terigich are approximately Gaussian and weighted according to
corresponding to constar®, plus correction terms. Sincet® (k”QWQ) variances, for the purposes of confidence interval
_h'(y) and h”(y) are both positive, monotone, and almo<gstimation& can pe considered as Gaussian. The same is true
constant over the rangg € [0, 1) with values~ 0.27 and Of ¢ asC(a, W) is well approximated byl + (2 In 2 — 1)«
~ 0.056, respectively, these correction terms are generaf{Pr appropriate wavelet families).
quite small. (Of course, in practice the correction terms cannot¥Ve have shown that it is reasonable to assume dpaind
be calculated exactly but must be estimated because they @ have very similar properties. Far;/n; large we have
themselves functions of the unknown parameters.) p — 1 and soc;C =~ 2% Now the arguments concernirig

These approximations suggest that the statistical propertiegm the previous paragraph apply equallyit@6), so we can
of ¢; are very close to those of C. The numerical simulations conclude that is approximately Gaussian and therefore that
in the next section confirm this expectation. Furthermore, agC' andé; are approximately lognormally distributed.
the elements of the covariance matrix (@, CTO) decrease  Confidence intervals for thg;, &, c¢;C, andéy have been
as1/n for largen, it follows immediately from (37) and (38) calculated using these arguments.
that the same is true dfy, ¢;), and also that in the limit the
expectation of¢; is justcy. That is, the estimatofd, ¢;) is
asymptotically unbiased and efficient

We complete this subsection with an approximation of the Simulation Protocol: The aim of this section is to illus-
fully asymptotic form of the covariance matrix, that is, wheré&rate the accuracy of the theoretical statistical performance of
n, j» — oo, for use in Section IV. Using the asymptotic(c, cf/b) and (&, ¢ér). The bias and covariance matrices are
form for the covariance ofé, ¢;C) of (47) from Appendix examined as functions of the sizeof the data, and compared
A, together with the elements of the approximate covarianegainst the theoretical results. Recall that the theoretical prop-
matrix of (&, é;) given above, an asymptotic approximation igrties were derived under ID1-ID3. In the simulations below

I1l. NUMERICAL SIMULATIONS

Ao M@
1 1 ol 55) :
n ln® 2 21=0 —¢; <(1 +1)In2— 28;) ¢ <(3 +2j1 +47) n* 2 - 2(1 "‘jl)l;((j)) In2+ <};L((CC;))> )
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we retain ID1, that is, we simulate Gaussian time series, ke desired integral defining (3) is estimated by a trape-
test robustness with respect to mild departures from ID2 amdidal method. The divergence of the spectrum at the origin
ID3. An example of the quality of the estimation under morg/|=* is balanced by the smoothness of the Fourier transform
severe departures from ID2 and ID3 is provided in Fig. JWo(v)| = O(|v|") due to theN vanishing moments, so the
Because of the choice of scale issue discussed below, we leitegral is well-behaved and poses no numerical difficulties.

a systematic study of such cases to a future paper [5]. Number of Coefficients at Each Scall:is clear from the
Issues of nonstationarity are not considered here. Robustneatire of the multiresolution algorithm that in theory the
with respect to smooth deterministic trends has already basmber of available detail coefficients decreases by half as the

addressed in [4], and a statistical test for stationarity [28] é&ale is doubled, that i%1;41 = n;/2. In practice, for most
under study. implementations of the discrete wavelet transform (however,
Choice of Scales:Since the definition of LRD in (1) is an see [10]) there are border effects which render this relationship
asymptotic one, the wavelet-based estimators are by natglightly optimistic at each octave. We therefore did not assume
semiparametric, implying the need to choose the scales the above relation in the analysis. In the simulations also
J1 -~ j2 over which the power-law behavior in (1), and morg¢he actual number of wavelet coefficients at each scale are
particularly in (2), holds. In particular the choice ¢f: the taken into account, enabling a correct comparison with the
decision of where short-range dependence “ends” and loRgegretical predictions.
range dependence “begins” is a difficult one and not without aResuilts: The results presented in Figs. 4—6 are derived, for
subjective element, as usual in a semiparametric problem. Td:h, in the rangen = 29, 210, 219, from 500 independent
guestion of how to make a statistically justifiable, automatgg|s of simulated fGn. The parameters values chosen were
choice ofj;, j is the subject of ongoing research [5] and i%a’ cs) = (0.5, 8.5) and we selecteaubechies vavelets,
beyond the scope of this paper. _ that is, with N = 3 vanishing moments. From these we
Nonetheless, we must address the issue of choosing a "SEHSanute that® = 1.1590 and ¢;C = 9.8517.
value o_f J1 In our simulations or no meaningful stati_stical Fig. 4 shows relative biases as functions:of\s predicted,
conclusions can be drawn. In order to do this, we simulaifyse for4 andc,C are very close td, illustrating that the
fractional Gaussian noise (fGn), which, as is well known, ha%imator provides us with close to unbiased estimates even
a spectrum which is a uniform power-law over almost the ful,, very small (n = 2°) sized data. Fog, also, which we
range of frequencies. (Indeed, the spectral synthegls methOdc‘ﬁﬁld only show to be unbiased asymptotically, we see (lowest
use actually attempt_s to make th_e spectrum a uniform poW‘g[Ibplot) that in practice the relative bias is numerically very
law.) Thu“s fof th"e smulgted series we know in ad_vance t.h se to that ofcf’A@ for finite data and, moreover, exhibits
the LRD "begins” aimost immediately. Based on prior s'[Ud'et%e same behavior with respect#o This clearly shows that

of fGn we know that small but significant departures fro . N — R
: ! e biases fo¢,; andc;C are comparable and thaj can be
the power-law scaling can occur fgr = 1, 2. We, therefore, . . i
regarded as unbiased in practice.

choosej; = 3 in all our simulations. . . . .
J1 Fig. 5 compares the variances of the estimates against the

Initialization of the Pyramidal Algorithm:It is well known tual vari f imulati functions. Th
(see, for example, [2]) that the computation of the coefficienfs & variances irom simuiation as function @, n. &y
re seen to be very close even in the case of the variance

d.(j, k) of the wavelet transform from the fast recursivéa]c - where the th tical value i imation. Th
pyramidal algorithm requires the computation of an initia], where [he heoretica) value Is an approximation. They
approximation sequence,(0, k). This initial series is to be |Igstrate pr_glrnc_ularly well ‘hel./@ decrease_m the variances
derived from the full process; itself. In actual data analysisWlth e Wh'c? IIS a kgy, r_10ntr|;/|arlll featL_Jre in thﬁ contixt Orf]
we typically have access only to a digitally sampled versi D. A carefu examlnatlon O_t 1€ variances snows t ,at the
(k) of z;, and the problem arises of how to estimatgo, k) departure from theoretical predictions is larger at smailhis

from it. Very often, one is reduced to the crude simplificatiofi@" Pe understood in terms of the residual correlation of the

a,(0, k) = =(k), resulting in errors in thel,(j, k). vyavelet coefn'cnjznts, i.e., the fact that ID1 and ID2 are not
It is known [1], [15] that initialization errors are significant’igorously satisfied. _ _ _

on the first octaves but quickly decrease with increaging F19- 6 shows the covariances of the estimates as functions

In the LRD context, by its very nature, we are typicaII)Pf log, n. For (&, ¢;C) the agreement with the theoretical

not concerned with smalj, so the initialization issue can value is excellent. The second subplot illustrates again both

be overlooked. For instance, in the analysis of the Etherr{Bg Vvalidity of the approximate calculations presented above

data presented in the next sectign,is always larger thag. for (&, ¢5), and the fact that the statistical performance pf

However, the initialization problem does exist and may requite very close to that ot;C.

care if ever the smallegts are needed (as can be the case for As shown in Appendix B, in the limit of largex the

the fGn, for instance). covariance of &, ¢;C) is controlled by that ofb, &), which
Evaluating the Integral’: It is well known [1], [11] that as shown in Appendix A (48) tells us that the limiting form

the filter-bank-based pyramidal algorithm, which underlieaf the covariance matrix of our estimate is not diagonal.

the reconstruction phase of the wavelet transform algorithiffie correlation coefficient is typically negative and large in

allows an extremely precise approximation of the time-shapgagnitude as seen in the figure.

of the mother wavelef, to be obtained in ordet time. From To give an idea of how the results presented above vary

this we simply compute its fast Fourier transform, and finallyith («, c¢;), in Fig. 7 surface plots are given showing the
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Fig. 4. Relative biases af, éfC, andéy. Relative biases ofy, c;C, andéy are given as functions dbg,(n). Bias is seen to be small in each case

even for smalln (for instance, less than 5% for = 2'%) and decreases rapidly for large The bias of¢; is no worse than that Ozf/j?“ despite its
additional nonlinearity. Empirical 95% confidence intervals have been added.

0 T l T | T T O Numeric. Sim.
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Fig. 5. Variance ofa, cf/E andé¢y. Thelog, of the variances ofy, LT?' and é; are given as functions dbg, (). Agreement between numerical
and theoretical performance is satisfying even for smalFor ¢, the approximate expression is close to the empirical variance. Moreover, the variances

of ¢; and vf,E are very much alike, supporting the idea that the statistical propertiés m‘ndcf,\C can be regarded as equivalent. Finally, all three
variances decrease dgn.

variation of key quantities over a sizable portion of théixed atn = 2! = 32, 768. The relative biases of each
(v, ¢y) plane. Each calculated point on the surface is af & and ¢, are shown in the top row. It is seen that the
average over 500 realizations, with the length of each serapendence oria, ¢;) is weak, an advantageous property.
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Fig. 6. Correlation coefficients fofa, «;EV) and (&, ¢5). The correlation coefficients fof, rf(‘) and (&, ¢y) are given as functions diog,(n).
Agreement between numerical and theoretical performance is satisfying even forssniBlfle correlation in(a, é¢) is hardly stronger than that in
(&, cyC)) despite the appearance 6f in ¢;.
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Fig. 7. Variation with(a, cf). The relative biases ofr and é; in the top row are seen to be quasi-independentaafcy). In line with theoretical
predictions, the standard deviation fér and the relative standard deviation féy have the same property. The surfaces are sampled {c(\tercf)}

with o € {0.10, 0.40, 0.70, 0.90, 0.95}, ¢y € {27%,276,27% 272,270}, each point being obtained from 500 realizations with= 2%
Daubechies 3wavelets were used.

Regarding variances, (39) predicts that under ID1-ID3 thew of the standard deviation @ and therelative standard
variance ofé& is independent of«, ¢;) whereas that of; deviation of¢; show that these idealizations are justified in
is proportional to the square @f;. The plots in the bottom practice.
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Summarizing, we have: 1) excellent agreement between is the need for an analysis phase before the estimation

numerical and theoretical performance fér, CTO), 2) excel- phase: a semiparametric estimator cannot, fortunately, be
lent agreement between numerical and approximate theoretical applied blindly, nor automatically, until after the first
performances fof&, é;), 3) statistical performance ¢f;, ¢;) phase. In the LRD context, the preliminary phase involves
which is very close to that of&, ¢;C), 4) estimators which the examination of the Logscale Diagram (log-log plot)
exhibit very low bias even for very small, 5) variances which in order to choose the scale range where scaling is

decrease a¥/n, 6) limiting forms for the covariance matrices ~ observed to occur. The wavelet-based joint estimator, like
which are not diagonal and basically controlled by those of that for « alone, enjoys significant additional robustness

(b, &), and finally, 7) residual biases which are small and advantages, notably with respect to the elimination of
almost independent ofc, cy). smooth deterministic trends including nondiscontinuous

mean-level changes [4], and variance changes [24].

e Computational ComparisonMaximum-likelihood esti-
mation involves huge computational complexity and sim-
plifications are always needed to make it practical. These

A. Generalities simplifications remain computationally intensive and in-

When evaluating the quality of an estimator both statistical Vvolve minimization procedures with attendant conver-
and computational issues need to be addressed. It is often gence problems. In contrast, for the wavelet-based joint
the case that an estimator has desirable properties in one but estimator, after a discrete wavelet transform is performed
not both of these categories. For example, semiparametric the estimation involves only simple calculations, no min-
or nonparametric estimators of (or equivalently,H) such imization is needed. The transform can be calculated with
as the variogram, the R/S method, and the periodogram the multiresolution (pyramidal) algorithm which has the
are simple conceptually and have desirable computational Very low complexity ofO (n).
properties, but suffer from bias and/or high variance. On  As the wavelet estimator is clearly superior in robust-
the other hand, parametric methods, while offering excellent ness and computational terms, it remains to see how
statistical performance, generally suffer from severe computa- it compares statistically. In the comparisons below we
tional disadvantages, as well as being restricted to particular compare the performance of two MLE estimators under
model classes. The wavelet-based estimatorvohowever, optimal conditions against the performance of the wavelet
presented in [3] and [4], performs well in both the statistical ~€stimator under optimal conditions, assuming that the
and computational sense. These issues are treated in more hypotheses of both are satisfied. We also make comments
detail in [4], and also in [8]. The reader can also find in [25] an ~ for the finite-data case but there we do not have analytic
informative simulation-based study of the finite data statistical ~results for the MLE estimators.
properties of a wide variety of estimators &f.

In this paper we wish to compare against otheint B. Wavelet-Based MLE

estimators, of which few are available. The two selected The parametric Family:In [29] and [30], Wornellet al.
happen to both be based on maximum-likelihood estimatiggnsider processes which satisfy idealizations 1D1-ID3 and

(MLE), the best known fully parametric method. The seconghose wavelet detail coefficients have variance taking the two
of these, the discrete Whittle method, is a pertinent Cho'ﬁ%rameter form

as it has been widely considered in the telecommunications '
literature as the best available. We shall not enter here into Ed,(j, -)* = 27V (40)

a thorough discussion of parametric versus semiparametric

estimation, but make the following points before entering inf9" @ll octaves;. The MLE approach is applied to the joint
the detailed comparisons. estimation of («, V). Such a family is very close to the

fractional Gaussian noise for which the above relation holds

+ Statistical ComparisonA semiparametric estimator can-except at the smallest scales.
not in general outperform a parametric one statistically |t js important to understand that although the estimation of
when the data fits the assumed model class. The most V) is defined and performed in the wavelet domain, and
it can do is equal its performance asymptotically. Apdespite the formal similarity between the two problems in other
proximations to parametric estimators however, such asspects, that the approach of [29] and [30] is very different
those necessary in MLE estimation with large data setg, that from the present paper theoretically, statistically, and
are typically only optimalasymptotically For finite data computationally. For example, although a wavelet transform is
sets the semiparametric estimator may therefore perfoparformed to estimat@y, V), the computational properties of
as well or better, even if the data fits the underlyinghe wavelet-based MLE are determined by the much slower
parametric model. minimization procedure.

» Robustness Compariso# parametric estimator is very Statistical PerformanceThe wavelet-based MLE is shown
tightly tied to the assumed model class, and in general wih be asymptotically unbiased and attains its asymptotic
perform poorly if those assumptions are invalid. Semieramer—Rao bound. The Cramer/—\Rao lower bounghiofl”)
parametric estimators are by definition much more robust clearly the same as that éf, c;C) with j; = 1 and j,
in this respect in general. Inseparable from this robustnebe largest possible. Its asymptotic form is therefore given by

IV. COMPARISON AGAINST OTHER ESTIMATORS
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settingj; = 1 in (47) in Appendix A, namely, In [8], an iterative minimization scheme based on a discretized
e 1 1 ~2¢;,C In 2 form of Whittle’s original approximate MLE approach is
Varas (@, ¢;C) = — 75 —2;C 2 6(c;C)? In?2 applied to the joint estimation df, 6, ).
(41) Statistical Performance:The discrete Whittle MLE estima-
tor of («, 6;1) is shown to be asymptotically unbiased and

as derived_ in [29] by a different method. efficient. The asymptotic covariance matrix is given by [8, p.
Comparison: We assume ID1-ID3 so that the exact resultgy7]

for both estimators hold. Since the Cramer—Rao bounds are the

same, a comparison is particularly meaningful. If fa cf/b) Vare, (& él) _ 1 {24/7@ 02} (43)
we usej; = 1 andj, the largest possible for the given data, ’ n| 0  20]

then asymptotically the performance of the two estimators Asn estimate of; can be based on an initial estimate(of 6;)
the same. For finite data we have shown that ¢;C) is /

. N _ I~ 1—& . . .
unbiased and is close to the bound, which is not the case }g)llowed by setting’y = 6, (2r)"~. Using the approximation

the wavelet-based MLE. <r:hnique (_)f Sgction lI-F, we can derive from the m_atrix a_bove

If we cannot choose the full range of scales then the MLBE' approx.|mat|on to the covariance .matnx of this Whittle-

. . . : ased estimator ofw, cs). The result is
estimator will have a smaller variance asymptotically and for
finite data there will be competition between this fact and the PN

- — Var,s(&, ¢y)

good finite-data performance ¢f, c;C'). ) )

In (40), the quantityy’ has no physical interpretation but s l[ 24/m ) 2_24Cf 111(227r)/7r |-
is simply a model parameter. Our approach identifiesas n [ =2dep W(2n)/a* 2¢ (1412 In*(2m) /%)
¢;C, gives insight into its meaning, and through it allows an (44)
estimation ofcy, a parameter of physical interest. ) S

The wavelet-based MLE has the advantage of being adiBe correlation coefficient is given by~ —0.897.
to include the estimation of additive noise provided, however, Comparison: Although asymptotically both estimators are
that one has a precise stochastic model for it. There is HBPiased and attain their respective Cramer-Rao bounds, the
corresponding ability in our estimator however; as alreadyfoblems are not equivalent statistically so the bounds are not
mentioned, it is robust to the presence of noise via the chofe@ual, resulting in a difference in performance. In addition,

of scalesjy, j» over which the analysis is performed. Outsid&® @Pply the semiparametric wavelet estimator here, a choice
of this rangelEd, (j, -)> may depart very significantly from of j; must be made. Although for farima0OdO the asymptotic
the power-law fofm (see Fig. 1). power-law for the spectrum is attained quickly, cannot be

chosen equal to one. From prior studies we know that 3
C. Frequency-Based MLE (Discrete Whittle) is an acceptable value.
The Parametric Family:In [8], Beran applies a discrete Again for the wavelet-based estimation we assume ID1-1D3

form of the Whittle estimator to Gaussian fractional ARIMAZNd US€ji = 3 with j, the largest possible for the given
processes, which have known parametrized spectral densitféd@- The asymptotic performance in this case is approximately
In general, none of the parameters correspon tgpreclud- given by (39). Comparmg with (44) one sees that the variances
ing a direct comparison. In the case of the two paramefdfcrease asymptotically g in both cases, however, the

farima0d0 process, however, as discussed in the Sectior‘Fq”Sta”tS differ. The discrete Whittle-based estimator has a

a connection ta:; can be made which is not too complex/OWer variance fora: and a much lower variance for;.

Note that the definition of the spectral density of Beran rPecifically, they differ by constant factors given by
not that used here, the relation beirig(v) = 27 f2(2rv). R R
This seemingly innocent scale chan%(e)and reno(rmal)ization Var (&, MLE)/Var (&, Waveley = 6 In® 2/x* ~ 0.29

makes an important difference to the estimation problem, agd

it implies a corresponding change in the definitiongf a Var (é;, MLE)/Var (¢;, Wavele} ~ 0.12.

point ripe for confusion. Beran estimatés, ¢;) based on

fB(w) = 611 — e|7® ~ f1|w|™*, wheref; = o2/27, a Note that if j; = 2 had been used instead the variance
notation we retain to facilitate comparison. In this scenariof the wavelet estimator would have decreased markedly,
the parametef, is none other than thec}” corresponding to at the price of introducing only a small bias. The omission
15 (for farima0d0), and the asymptotic covariance matrix (43)f the first two octaves makes such a significant difference
is diagonal. Based on (1), however, we haye= 6;(2r)'~*, to the variance of the wavelet estimation becayseand

and because of thie dependence the covariance matrix of, have the smallest variances of all thg, and hence the

(&, &), as we saw in Section I, is far from diagonal. In outargest weighting factors in the estimation if included. By
notation the two-parameter family in question is that with the same token, however, it is precisely at these small scales

spectrum of the form below (high frequencies) where in practice the parametric modeling
Folv) = 21 |1 — 2|~ assumptions of_ the MLE estimator are likely to fail. In such a
Y0 ot case, parametric estimators can produce completely erroneous
~"0.(2m) |y results unless the form of the departure is both known, and

= c¢slp|7. (42) taken into account explicitly. In contrast, the wavelet estimator
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TABLE |
JOINT ESTIMATION OF (&, &;) FOR THE pAug TRACE. 6 = 0.0120 s. THE H VALUES ARE
ESSENTIALLY THE SAME AND THOSE FORcy ALSO, EXCEPT FOR A AND S, WHICH ARE HALF As LARGE

I pAug Wi Cs A F S
[ Gui2) (6,14) (7,19) (9,16) (9,16) (9,16)
iig 0.813 0.870 0.839 0.839 0.837
(Hoims Honaa] || [0.796,0.830] | [0.845, 0.895] | [0.814, 0.864] | [0.814, 0.864] | [0.812, 0.862]
g 0.185 0.104 0.051 0.129 0.053
[ermmims 1.maa] || 0-155, 0.219] | [0.077, 0.138] | [0.035, 0.071] | [0.088, 0.183] | [0.039, 0.080]

will provide reliable estimates provided only thatis chosen used, and the scale ranggs, j2) have been more carefully
sufficiently large. A knowledge of the form of the departurehosen.) This is the first time we are aware of that the value
from the asymptotic behavior is not required. of ¢; has been reported in traffic data, and we know of no
Comparing the covariances of (39) and (44) we note thaténpriori argument indicating whether it should be constant
each case the correlation coefficients are negative and lazggeoss different traces or different aspects of the same trace,
in magnitude (48). This suggests that the high correlatiofor even what its order of magnitude could be. As a simple
arising from the wavelet-based estimation is not an undesirableample of the utility of such information, without valueswgf
consequence of the linear regression underlying it, but @Bnfidence intervals for mean estimates cannot be calculated,
inherent feature of the parameters being measured. and therefore questions of stationarity of the mean across the
For finite data we have shown that is unbiased with traces cannot even begin to be addressed. Such issues impact

optimal or close to optimal variance and thigt has a very on stationarity questions in general and therefore on model
small bias and variance. It is known, however, that for finitgngice and validation.

data the discrete Whittle estimator is biased [4]. For finite | thjs section we useH rather thana (recall H =
data there will be competition between the lower asymptot{q + «)/2) as it is more customary in tele-traffic studies.
variance of the discrete Whittle estimator and the very gogd aqgition, as different time series are to be compared, we
finite-data performance dfé, ¢;). present the normalized foray = c; /o2 which characterizes
the correlation function, rather than, wheres?2 denotes the
variance (power) ofz;.
V. APPLICATION TO ETHERNET DATA Description and Modeling of the .DataThe Bellcore Eth-
Background: As discussed in Section |, the presence rnet traces hgve been q§scr|bed in detail elsewhere [4],.[19].
LRD in traffic.data of diverse types is néw well accepte?ach file _consusts pf 1 million rows in two columns. T.he .f|rst
Some of the most detailed evidence comes from the Ethercg{umn gives the timestamp (measyred from the beginning of
: . ) t5e trace) for theend of the frame in seconds. The second
traces of Leylanckt al. described in [19]. It is not the purposecoIumn gives the integer size in bytes of the frame. The
of this paper to present a detailed analysis of real traffic '

however, we give a brief analysis of two of these Ethern%{:t_ual traffic consists therefore of an alternating sequence of

traces, for two reasons. First, the traces in question ha éjomt_ f_rames a_md silent periO(_js. Frames have a _maximum
become in some sensie factostandards in the field of traffic and mufumumdsme., Whéa_reas §I|Iences have a m|r.1|mLc|jm bl;'t
analysis. It is therefore of interest to publish estimates of LREP maximum duration. Since silences are not restricted to be

parameters for them using the wavelet estimator, to seryi/tiPles of bytes, a process general enough to fully capture

as a basis for comparison with other estimators, and a§h§ Ethernet arrival process must be defined in continuous

reference. The second reason is to complement previous whbfRe: We do not do this but consider discretized versions

performed on them. In [4] we presented a thorough analy¥i&i€re the process is averaged within a window of sizéhis

of the structure of selected Ethernet traffic traces with resp&fIPlifying procedure is common practice and was justified
to the measurement of the Hurst parameter, using an earlied4]-

form of the wavelet-based estimator. A main motivation was e analyze five different aspects of the traces, that is, time
the design of compact, highly accurate models for Etherrgries derived from the full arrival process: Ws, Cs, A,
traffic. The central, highly nonobvious finding was that quité’» and S. Each of these are assumed stationary. Although
different aspects of the traces (to be described below) higse series are not unrelated, they are by no means equivalent
the same value of the Hurst parameter, Whea_:;ag’ori most and give information regarding different aspects of the data
of them need not have even been long-range dependentofitinterest from a modeling perspective. The first two are
was in attempting to use this finding to design traffic modef§rectly related to the full process; and are discretized
that it was realized that knowledge of was an essential, versions of underlying continuous time processes. The number
yet neglected, factor, thus motivating the present paper. \8kbytes (work) arriving in subsequent time intervals of width
therefore take the opportunity to return to these traces dodefinesWs, whereasCs counts the number of frames in
complement results off from [4] with measurements af;.  the same interval. The other three are intrinsically discrete
(Note that the values off reported in Table | differ slightly time series indirectly related ta,. They are the lists of
from those in [4] as here the new, more accurate estimatortli® successive interarrival times (the time gap between the
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TABLE I
JOINT ESTIMATION (&, &¢) FOR THE pOCt TRACE. 6 = 0.0067 S. THE H VALUES ARE
ESSENTIALLY UNIFORM ACROSS THE DIFFERENT SERIES AND THOSE FOR¢; ALSO

“ pOct W Cs A F S
[ Gid2) (8,14) (7,14) (6,12) (8,14) (7.14)
i 0.768 0.789 0.774 0.808 0.778
Hvims B 110731, 0.806] | [0.764, 0.814] | [0.758, 0.790] | [0.775, 0.842] | [0.756, 0.800]
c, 0.198 0216 0.148 0.119 0.133
ez mmems &2 maa] | [0-119, 0.310] | [0.160, 0.285] | [0.125, 0.173] | [0.076, 0.179] | [0.102, 0.171]

beginnings of successive frames), frame sizes, and sileticey are stationary and almost independent. The statistical
durations, respectively. In [4);, and a seventh series, a poinperformance of the estimator follows from these two key
process, were also considered. We do not consider these hpoperties and is, as we have shown, comparable to that of
as W representse; adequately, and for point processes thmaximum-likelihood estimators, even when their parametric
interpretation ofc; is problematic. assumptions are fully satisfied. Under departures from the
Discussion of ResultsFor each of the two traces “pAug” parametric model the wavelet-based estimator often performs
and “pOct” the joint estimation was performed on the fiveetter, without the need for knowledge of the form of the
different kinds of series, and the results recorded in Tabldspartures. The wavelet estimator performs well provided only
| and Il. The Daubechies 3vavelet with N = 3 was used, that the data is large enough for the asymptotic behavior to
ensuring the elimination of any linear or quadratic trends, life present across at least three octaves, and that a cuttoff
present (see [4]). It can be seen that for each trace the estimatsse j; is correctly identified. The asymptotic nature of
for H are highly coherent whereas those #grdiffer slightly. approximations to MLE methods such as the discrete Whittle,
It seems that the remarkable equality of behavior across thewever, mean that the parametric-based estimation can at
five different series holds true for LRD properties as a wholémes be poor for smaller data sets.
and not just forH. The only significant exception is that in There are two important areas where more work needs to be
the pAug trace wherel and S have clearly lower values for done. A vital practical aspect of the semiparametric wavelet
¢, with confidence intervals separated from those of the othestimator is the choice of the scales over which the analysis
series. This is significant since it was and A which were is performed. This range of scales, unknoapriori, should
identified as the main series of use in model design, and thearrespond to where the signal exhibits its asymptotic power-

values differ by a factor of two. law behavior, that is, the long-range dependent or scaling
regime. As mentioned earlier, the development of a well-
V1. CONCLUSION founded statistical basis for the automatic selection of the

Because the long-range dependence phenomenon as #caling range is under study [5]. An effective solution to
currently defined consists basically in the power-law behavittis problem is necessary to benefit fully from the inherent
of certain second-order statistics [6], there are a group bustness of the method to departures from the asymptotic
estimation techniques which consist essentially in the mgaewer-law model which can be caused by additive random
surement of the slope in a log-log plot to extract the scal®ise and strong and/or “long” short-range correlations.
parameterca. Such methods have the advantage of being The second area is that of various aspects of nonstationarity.
conceptually simple and practical to implement but general§pecifically, a test for nonstationarity with respect to the LRD
exhibit extremely poor statistical properties [25]. These statisfarameters is lacking and is an important first step. This
cal disadvantages would be inherited in any obvious extensiproblem is currently under study [28], as is robustness with
to the joint case based on the intercept of the said log-logspect to level shifts (sudden changes in the mean) [5], [24].
plots, though such extensions have not been attempted. Ore questions of defining, and then analyzing, detecting, and
the other hand, MLE techniques are characterized by excellestimating possible time variation of the LRD parameters are
statistical performance but involve minimization proceduresdso of importance. Finally, in some situations, long-range
which are computationally complex and slow. The waveletlependencies may appear in processes whose second-order
based joint estimator for the parameters of LRD propossthtistics do not exist. Preliminary studies [12] suggest that
here exhibits the advantages of both categories, but withoa@riations of this estimation tool could be useful in such
their drawbacks. It moreover displays greater robustness pljcumstances.
than either of the two. This results from the matching of the
analyzed phenomenon—LRD is essentially a scale invariance
feature—to the analyzing tool—the wavelet transform is es- The Objective:Let =, be a second-order stationalyng-
sentially a scale-invariant analysis method. More preciselgnge-dependenstochastic process, that is, its spectrum is
two key features of the wavelet analyzing family, namelyyell-defined and reads
its generation from a dilation operator and the existence of
vanishing moments, result in two advantageous properties fo(v) ~eplv|™7, |v| — 0.
enjoyed by the wavelet coefficients of an LRD process: their
variance exactly reproduces the power-law defining LRD, afile wish to jointly estimatex and c;.

VII. SUMMARY
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Definitions: are closely related to those @}7’, for example, the
correlation coefficient of &, ¢¢) is also negative and

* Wavelet coefficients . :
large in magnitude.

d.(j, k) =(z, ¥, &) (there aren;

coefficients at octave) APPENDIX A .
1 =1/n; Z d2(j, k) THE CRAMER-RAO BOUND OF (&, ¢;C)
Recall that by f,(z) = (1/2"/2I'(v/2))z"/? e /2 we
0]2» = Var(log,(p;)) denote the density of a Chi-squared variate, with mean and
— (2, n;/2)/ 102 2 =~ 2/(n; In? 2). variancer and 2v, respectively.
T o ! The Cramer—Rao bound is with respect to the joint density
» Weighted linear regression of the i;, which is just the product of the (rescaled) individual

Chi-squared densities under ID1-ID3. P = ¢;C and
S = Z 1/o3 Sz = Z jlo? Spz = Z j*/oi  define the constants; = n;/z; = (n;277/C;). From (11)

; ; the joint density can be written as
;= (SJ - SJ?)/O—JQ v, = (Sa:ac - JJJ)/UJQ' J y
_ Q2 _ Q2 i
880 — 52 SS8se — 53 fa(@ = [ ) fu, (wj05) (45)
9j = P(n;/2)/In 2 —logy(n;/2)  y; = loga(y) — gy j
b= wy A=) v wherez; is a dummy variable associated with.

« Estimators The Fisher information matrix is

= =

[[(0)]ir = —IE[0? In f2(F; 6)/06,0604)]

G =0
I(n;/2) exp ((n;/2)v;)
:p wherep = H : F(vj+nj/21) : gnd the Cramer—Rao bound is just its inverse [18]. Here
0 = (a, Cp)
/|\I/0 v)|? dv, a<0 Let L = In fz(Z). We have
N /'VI HTo(w)Pdv,  0<a<1 (0L/9a;) = (1/a;)[1 + Gj(z;a;)]
/|V| Yo (0) 2 d, az>1 where G;(z) = xf; (%)/fn,(x). Using the relations
(8a;/0a) = —jln2 - q; and (9a;/0C;) = —a,;/Cy, we
¢y :CfC/C- readily obtain
Statistical Performance:Assume that the scaling range has
been correctly chosen, that is, that a set of octaves, say P = In? 22 ;G 371%)
Jj € [41, j2], have been found such that for eaghthe
spectrum has the power-law form above, and, therefore, that 9?L _In2
Z JxJaJG (zja;)

Ed.(j, -)> = 2/*¢;C in this range. Under the additional  9adC; —
technical idealizations
¢ ID1: The processe, and hence the processés(yj, -), 20, (zj0;) + 14 Gi(z;a,) ] .
are Gaussian. 82Of 02 Z 056505 S
¢ ID2: For fixed j, the processl, (7, -) is i.i.d.

«ID3; The processesd,(j, ) and d,(j', ), j # j, are It is easily verified that?, (x) = n;/2—1—x/2, and, therefore,

that G'(z) = —1/2, andEG;(x;a;) = —1 sinceEx = z;.

independent. The information matrix is therefore given by
We have the following statistical properties of the estimators:
e (&, ¢;0) is unbiasedeven for data of finite size (ID3 is o, Cf) = 1 L C_fll
not needed in the case éf. For c;C the result holds 2 C%Il i 1o

only if 2v;/n; > —1 for eachy. If this condition is not

satisfied, a new set of octaves must be chosen and ttigere 7, = In* 2 >, i*nj, k = 0,1, 2. By inverting we
regression recalculated. The estimatioridias no such optain finally

restriction. The estimator is efficient, nondiagonal with

negative correlation, and attains the Cramer—Rao lowgr . (s ¢ > 2 Io —(c; Oy 46
bound in the limitv, /n; — 0 for each; selected. ré )z (Il — 13) | ~(esC)1 - (csC)Lz | (49)
e (C is asymptotically unbiased, and efficient. It is apparent that the bound is not diagonal, but exhibits

e ¢; is asymptotically unbiased, and efficient. The Samaegatlve correlation. To show this explicitly, assume that
conditions onj hold as forch The properties of; j = ji---j» and thatn; ~ n277, wheren is the size of
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the data, holds exactly. Set = j; — j; + 1, the number of and so
octaves used in the analysis. Using the identities (2 + )0 (2)/T(d + 22 = 1+ &/ + o(1/2).

K
22—’“ =1-27K Continuing from (30), we can therefore write
k=1

Var (¢;C) = (¢;C)? [H F(Ziij(;rj ?i}fQ(;j/Z) B 1}
" e 0[]0+ 202 /my) — 1]
T 0P 1+ 23 oy - 1
=(c;0)* In* 2- Z vio?
[16, egs. (0.113) and (0.194,* after a certain amount of (cyC)? In? 2 Var (a)

algebra the elements of the bound can be written explicitly @$,ore we have used (19) in the second last step and (8) to

Var (&) > (1 —27)/F identify the expression as the variance.
_ Now consider the covariance. Using the expansion

K
Y kek=2-2"N(K +2)
k=1

and

K
> k27 =627 (K? + 4K +6)
k=1

Var (¢;C) > CF In® 2[(3+ 251 +j7) — 277
(P2 201+ 1) + B+ 2+ DN/ ¥(z) ~ oz~ 1/2z, for z — oo (Jarg 2| <)
Cov = _Cf In 2[(1+j1)_2_J(J+1+j1)]/F and

where ln(z+e¢)~lnz+e¢/z, fore/zr -0 z,ec Rt
F=F(n, ji, J) it follows that¢(x + ¢) — 1(x) ~ ¢/x whenz, z/¢ — .
—nln?2xol-a. (1— (J2/2 + 2)2—J + 2—2J), Continuing from (32), we can, therefore, write

We consider two limit cases to understand the behavior, of Cov (&, ¢;C) =¢;C - 1 E wi((vy +n;/2) —P(n; /2))
i i i ln 2
the correlation coefficient corresponding to the bound.

First consider the asymptotic limit af — oo, allowing the T 1 > wfv—’
limit J — oo to be taken simultaneously with fixed. The in 2 i
asymptotic Cramer—Rao bound is simply :cfcﬁ In% 2. Cov(b, &)
Var,s(&, ¢;C) =¢yC In 2- Cov (i), i)
1
2 m using (9) and (19). Collecting these last two results it is seen
. that the limiting covariance matrix is given by
' 1 —(1+51)c;Cln 2 o
—(1471)eCn 2 (34251 + 52)(c;O)? In® 2 /liln . Var (&, ¢;C)
47 v/ . .
47 _ Var (b) (c;C)In2-Cov (b, a) (49)
for which T (¢;C) In2-Cov(b, &) (c;C)? In® 2 - Var (a)
2 1+25 + ji 48) and we observe that the correlation coefficient corresponding

3+ 25 + 2 to (49) is equal to that ofb, @), and therefore negative.

It is clear thatr is typically large in magnitude, independent

of n. For example,j; = 1 givesr =~ —0.81650, and for j;

large |7| ~ 1= 1/J% [1] P. Abry, Ondelettes et Turbulences - Muésolutions, algorithmes de
décompositions, invariance ehelle et signaux de pressionsRaris:

Diderot, Editeur des Sciences et des Arts, 1997, ISBN: 2-84134-064-3.
APPENDIX B [2] P. Abry and P. Flandrin, “On the initialization of the discrete wavelet

PN g transform,”IEEE Signal Processing Lettvol. 1, no. 2, pp. 32—-34, 1994.
LIMITING FORM OF Cov (a, cf) WHEN Yj /n] —0 [3] P. Abry, P. Goralves, and P. Flandrin, “Wavelets, spectrum estimation,

For & there is nothing to show, so consider first the variance 1/f processes,” inVavelets and Statistics, Lecture Notes in Statistics

REFERENCES

= . . vol. 105. Berlin, Germany: Springer-Verlag, 1995, pp. 15-30.
of ¢;C. Using the expansion [4] P. Abry and D. Veitch, “Wavelet analysis of long-range-dependent
traffic,” IEEE Trans. Inform. Theoryol. 44, pp. 2-15, Jan. 1998.
F(z) ~ \/QW@*Z;;Z*U?(l + 1/122) [5] P.Abry, D. Veitch, and M. Tagqu, “On the automatic selection of scaling
range in semiparametric LRD parameter estimation and the detection and
o z d 2 compensation of level shift nonstationarities,” in preparation.
for z — oo (| arg z| < W)’ and (1 + d/z) ~ e (1 —d /2;:), [6] P. AtF))ry, D. Veitch, and P. Flandrin, “Long-range dgpeﬁdence: Revisiting
one can show that aggregation with waveletsJ. Time Series Analvol. 19, no. 3, pp.

253-266, 1998.
F(z + d) ~ \/27re_zzz+d_1/2(1 + 1/12;;(1 + 6d(d — 1))) [7]1 A. Aldroubi and M. Unser, “Families of multiresolution and wavelet
spaces with optimal propertiesNum. Func. Anal. Opt.vol. 14, pp.
INote the error in (0.11%: the n? in the numerator should be?. 417-446, 1993.



VEITCH AND ABRY: A WAVELET-BASED JOINT ESTIMATOR OF THE PARAMETERS OF LONG-RANGE DEPENDENCE 897

(8]
(9]

[10]

[11]

[12]

[13]

[14]
(18]
[16]
(17]
(18]
[19]

J. Beran,Statistics for Long-Memory Processed.ondon, U.K.: Chap-
man & Hall, 1994.
F. Brichet, J. Roberts, A. Simonian, and D. Veitch, “Heavy traffic

analysis of a storage model with long-range dependent on/off sourceFZ”l]

Queuing Syst. their Applicationsol. 23, pp. 197-215, 1996.

A. Cohen, I. Daubechies, and P. Vial, “Wavelets on the interval and faEZ]

wavelet transforms,Appl. Comput. Harmonic Analvol. 1, no. 1, pp.
54-81, 1993.

|. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
1992.

L. Delbeke and P. Abry, “Stochastic integral representation and propge4]

ties of the wavelet coefficients of linear fractional stable moti@tgch.
Processes and Application$997, submitted.

A. Erramilli, O. Narayan, and W. Willinger, “Experimental queuing[
[26]

analysis with long-range dependent packet trafflEEE/ACM Trans.
Networking vol. 4, Apr. 1996.

P. Flandrin, “On the spectrum of fractional Brownian motion&EE
Trans. Inform. Theoryvol. 35, pp. 197-199, 1989.

IEEE Trans. Inform. Theoryol. 38, pp. 910-917, 1992.
I. S. Gradshteyn and I. M. RyzhikTable of Integrals, Series and

Products. New York: Academic, 1980, corrected and enlarged editiorpg;

J. R. M. Hosking, “Fractional differencingBiometrika vol. 68, no. 1,
pp. 165-176, 1981.

S. M. Kay, Fundamentals of Statistical Signal Processingnglewood
Cliffs, NJ: Prentice-Hall, 1993.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self
similar nature of Ethernet traffic (extended versionEEE/ACM Trans.
Networking vol. 2, pp. 1-15, Feb. 1994.

(23]

, “Wavelet analysis and synthesis of fractional Brownian motion,{27]

[29]

(30]

[20] K.S. Meier-Hellstern, P. E. Wirth, Y.-L. Yan, and D. A. Hoeflin, “Traffic

models for ISDN data users: Office automation application,Pioc.
ITC13 (Copenhagen, Denmark, 1991), p. 167.

I. Norros, “A storage model with self-similar inputQueuing Systvol.

16, pp. 387-396, 1994.

A. Papoulis,Probability, Random Variables, and Stochastic Processes,
2nd ed. New York: McGraw-Hill, 1984.

V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson
modeling,” in Proc. SIGCOMM’94 1994.

M. Roughan and D. Veitch, “Measuring long-range dependence under
changing traffic conditions,” innfocom’99 1998.

25] M. S. Taqqu, V. Teverosky, and W. Willinger, “Estimators for long-

range dependence: An empirical studiffactals 1996.

A. H. Tewfik and M. Kim, “Correlation structure of the discrete wavelet
coefficients of fractional Brownian motionJEEE Trans. Inform. The-
ory, vol. 38, pp. 904-909, 1992.

D. Veitch and P. Abry, “Estimation conjointe en ondelette des
parangtres du pBnorméne de @pendance longue,” ih6ieme Colloque
GRETSI(Grenoble, France, Sept. 1997), pp. 1451-1454.

_, “A statistical test for the time constancy of scaling exponents,”
Jan. 1999, submitted for publication..

G. W. Wornell and A. V. Oppenheim, “Estimation of fractal signals from
noisy measurements using waveletifEE Trans. Signal Processing
vol. 40, pp. 611-623, Mar. 1992.

G. W. Wornell, Signal Processing with Fractals—A Wavelet-Based
Approach. Englewood Cliffs, NJ: Prentice-Hall, 1995.



