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A Wavelet-Based Joint Estimator of the
Parameters of Long-Range Dependence

Darryl Veitch and Patrice Abry

Abstract—A joint estimator is presented for the two parame-
ters that define the long-range dependence phenomenon in the
simplest case. The estimator is based on the coefficients of a
discrete wavelet decomposition, improving a recently proposed
wavelet-based estimator of the scaling parameter [4], as well
as extending it to include the associated power parameter. An
important feature is its conceptual and practical simplicity, con-
sisting essentially in measuring the slope and the intercept of a
linear fit after a discrete wavelet transform is performed, a very
fast (O(n)) operation. Under well-justified technical idealizations
the estimator is shown to be unbiased and of minimum or close
to minimum variance for the scale parameter, and asymptoti-
cally unbiased and efficient for the second parameter. Through
theoretical arguments and numerical simulations it is shown that
in practice, even for small data sets, the bias is very small and
the variance close to optimal for both parameters. Closed-form
expressions are given for the covariance matrix of the estimator
as a function of data length, and are shown by simulation to
be very accurate even when the technical idealizations are not
satisfied. Comparisons are made against two maximum-likelihood
estimators. In terms of robustness and computational cost the
wavelet estimator is found to be clearly superior and statistically
its performance is comparable. We apply the tool to the analysis
of Ethernet teletraffic data, completing an earlier study on the
scaling parameter alone.

Index Terms—Hurst parameter, long-range dependence, pack-
et traffic, parameter estimation, telecommunications networks,
time-scale analysis, wavelet decomposition.

I. INTRODUCTION

T HE phenomenon oflong-range dependence(LRD) has
recently attracted strong interest in telecommunications,

with the discovery of self-similar and long-range-dependent
properties in data and communications traffic of diverse types
[19], [20], [23]. The investigation of the impact of this on
telecommunication network performance (i.e., [9], [13], [21])
has highlighted the need for accurate and computationally ef-
fective estimation methods for LRD parameters. Both real-time
estimation from limited measurements and off-line analysis of
enormous data sets are aspects which call in particular for
computationally efficient techniques.
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Télécommunications. The material in this paper was presented in part at
GRETSI 97, Grenoble, France, 1997.

D. Veitch is with the Software Engineering Research Centre, Carlton,
Victoria 3053, Australia (e-mail: darryl@serc.rmit.edu.au).

P. Abry is with CNRS URA 1325, Laboratoire de Physique, Ecole
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The Long-Range Dependence Phenomenon:A common de-
finition of long-range dependence is the slow, power-law-
like decrease at large lag of the autocovariance function
of a stationary stochastic process given by

, . Equivalently, it can be defined as
the power-law divergence at the origin of its spectrum:

(1)

where satisfies, in the case of discrete time processes

being the variance (or power) of .
Each of these definitions includes two parameters:

or , respectively, which are equivalent as

where is the Euler function. In each pair, is the most
important, as it defines the existence of the phenomenon itself,
and governs the characteristic scaling behavior of an LRD
process as well as statistics derived from it. Consequently,
the emphasis has traditionally been on the estimation of
or equivalently of the Hurst parameter ,
together with the range of lags or frequencies where the
power-law relation holds. The second parameter,or ,
or other equivalent choices, is an independent quantitative
parameter with the dimensions of variance which has received
far less attention, and its estimation and importance have been
largely neglected. This is unfortunate because in applications
the second parameter plays a major role in fixing the absolute
sizeof LRD-generated effects, the generalcharacterof which
is determined by . Estimating is therefore an issue of
importance for quantitative analysis, and yet is nontrivial,
being fraught with the same statistical difficulties intrinsic to

estimation. We emphasize that the second parameter is an
independent parameter that must be estimated. It is not related
to the variance of except in a rigid parametric context.
This paper reports on a wavelet-based approach to the joint
estimation of LRD parameters, specifically .

Importance of the Second Parameter:A powerful example
of the importance of the second parameter, valid in any LRD
context, is the role it plays in the elementary problem of
mean estimation. For LRD processes the classical asymptotic
expression for the variance of the sample mean with
sample size is replaced by ([8,
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p. 160]). Since the variance is proportional to, it follows
immediately that the confidence intervals about sample mean
estimates are essentially proportional to . The value of
the second parameter is therefore critical even for the simplest
practical estimation issues for LRD processes.

In application areas such as telecommunications the second
parameter also plays an important role, over and above the
obvious importance of reliable mean estimates. It appears
directly in expressions for metrics measuring performance
in queues with LRD input, which have recently attracted
considerable attention. For example, in both [9] and [21]
storage models are considered with stationary LRD input,
resulting in Weibullian-like tails for the stationary queue
content distribution . More precisely

where is related to the utilization of the system, and
is an almost constant function of

. The variance of the work arriving
in the interval behaves as , and
it is not difficult to show that the constant is generically
related to the of the LRD input as .
Thus the term in the exponential is inversely proportional to

(or ), so an increase in at constant increased the
mass in the tail. Thus increases in increase queuing delays,
consistent with the interpretation of the former as a measure
of the size of LRD effects.

The above examples illustrate that the availability of a
reliable estimate of is crucial in the theoretical and practical
study of LRD phenomena.

Choice of the Second Parameter:To the choices of the sec-
ond parameter defined above it is natural to add the normalized
forms and which characterize
the correlation function and its spectral equivalent,
respectively. At a theoretical level, all four of these are equiv-
alent choices for the second long-range-dependent parameter.
In practice, however, where and are not known but
must be estimated also, each of these is a separate estimation
problem. In this paper we choose to concentrate on frequency-
domain estimation and we consider to be fixed, as we are
concerned with the parameters of long-range dependence only.
Together these imply as the choice of second parameter.
For theoretical reasons we also consider a related quantity

, to be defined in the next section. This quantity also
happens to be that considered in the parametric joint estimator
described by Wornell and Oppenheim [29], enabling a very
direct comparison.

There are of course other quantities of interest which are
related to and which may be more important to estimate
directly in other contexts. One example is the varianceof
the innovations of a linear process, which also corresponds to
the minimal mean-squared prediction error among all linear
predictors (see Beran [8]). Since

this is in general quite a different quantity to ; however,
in the case of the fractional ARIMA process farima0d0 [17]

, a relatively simple function. The discrete
Whittle estimator offers a joint estimation of ,
so we take the opportunity to compare the wavelet estimator
against one based on the discrete Whittle in this context. An-
other reason to compare against the discrete Whittle estimator
is that it has been widely used in the analysis of network traffic.

The Wavelet Estimator:A semiparametric wavelet-based
estimator for the Hurst parameter with excellent statistical,
computational, and robustness properties has already been
reported in [3] and [4] (see also [6]). The joint estimator
described here is based on the same approach, where several
properties of the wavelet decomposition combine to reduce
LRD in the time domain to short-range dependence (SRD) in
the wavelet representation. Key properties are the bandpass
nature of the analyzing wavelets, the fact that the analyzing
family of wavelets (and scaling functions) are generated from
the change of scale operator which matches the power-law
form of LRD spectra, and the fact that the number of vanishing
“moments” of the wavelets can be controlled.

In this paper we improve upon the estimator for the scaling
exponent reported in [3], [4], and [6], and extend it to the
joint case . Under reasonable additional technical ideal-
izations, we first show that the related joint estimator
is unbiased and asymptotically efficient, and give explicit
formulas for the covariance matrix and Cramer–Rao bound.
It is shown that the bound is very close to being attained in all
known cases. Based on the results for , approximate
formulas for the expectation and covariance matrix of
are presented as well as theoretical arguments indicating that

is asymptotically unbiased and efficient. Simulation results
are presented confirming the accuracy of the approximations
and the virtual lack of bias even for data of moderate length.
The covariance of the estimators, however, is negative and
quite large. A preliminary version of this work was presented
at GRETSI 1997 [27].

Because the discrete wavelet transform can be performed
using the multiresolution analysis algorithm, data can be
split into blocks, analyzed, and recombined, so that memory
problems are not encountered in treating data of arbitrary
length . The run-time complexity of the estimator is very
low, only , making it very suitable for the analysis of
very large data sets.

The estimator inherits the robustness advantages of the
earlier estimator, namely insensitivity to the form of the
finite dimensional distributions, as well as to the presence of
arbitrary smooth deterministic trends [4]. This latter advantage
is particularly important in the context of LRD.

Outline: In Section II a brief background in relevant
wavelet theory is given, followed by the definition of the
estimators and the derivation of their properties. In Section
III simulation results are presented, while in Section IV
comparisons are made against the performance of the discrete
Whittle estimator [8] and the maximum-likelihood wavelet-
based estimator of Wornell and Oppenheim [29]. In Section
V the estimator is applied to large Ethernet data sets,
complementing the results reported in [4]. In Section VI we
conclude the paper with a discussion on outstanding issues.
Finally, in Section VII we provide a compact summary of
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the steps involved in the estimation to assist the reader in
implementing it.

II. THE WAVELET ESTIMATOR

A. Foundation of the Method

Discrete Wavelet Decomposition and LRD Processes:We
denote by the coefficients of the dis-
crete or nonredundant wavelet transform of a process or
“signal” . The family of wavelet basis functions

, is generated from
the mother wavelet , itself defined via a multiresolution
framework [11].

In the analysis of the LRD phenomenon, the following two
features, (F1, F2), of such a family play key roles.

F1: The basis is constructed from the dilation (change
of scale) operator: . This means
that the analyzing family exhibits, by construction, a scale-
invariance feature. The LRD phenomenon can be understood
as the absence of any characteristic frequency (and, therefore,
scale) in the range of frequencies close to the origin. The
LRD property can thus be interpreted as a scale invariance
characteristic which is efficiently analyzed by wavelets.

F2: has a number of zero or vanishing moments
which can be freely chosen provided . By definition
this means that , (but not
for ), or equivalently, that the Fourier transform of
satisfies at the origin. This property can
be used to control divergences arising with processes having
power-law spectra at the origin.

For a process with a power-law spectrum such as a LRD
process, these features engender the following key properties
of the wavelet coefficients over a range of scales ,

, where the power-law scaling holds (see [3], [4],
and [6] for more details).

P1: Due to F1, the scale invariance (the power-law behav-
ior) is captured exactly

(2)

where

(3)

This exact recovery of a power-law is not a trivial effect and
results directly from the dilation operator underlying the design
of the wavelet basis. (Time–frequency or periodogram-based
estimates would not exhibit such a feature [1], [3].)

P2: Due to F1 and F2, the are a collection
of random variables which arequasidecorrelated[15]. In
particular, the long-range dependence present in the time-
domain representation is completely absent in the wavelet
coefficient plane .

Property P2 deserves elaboration. It has been shown that
correlations in the time-scale plane decay at least hyperbol-
ically in all directions [15], [26] with exponents controlled

by the number of vanishing moments and corresponding to
short-range dependence. Since by definition theoctave

, this impliesexponentialdecay in octave. In this
paper will denote the logarithm base, whereas will
denote natural logarithms.

Intuitive Basis of the Estimator:The starting point for the
analysis is (2). Rewriting it as

strongly suggests a linear regression approach for estimating
, where, clearly, the slope of the regression would

estimate and the intercept would be related to. This idea
of using a log-log plot is an obvious one, and common to
many contexts when an exponent is the object of interest. The
real issue is to what extent the promise of this simple linear
form is realized in the resulting estimator, once the inevitable
complications are taken into account.

• The first essential complication is of course that
, a second-order quantity that can be related to

the spectrum of , is not known but must be estimated.
In the present context, this is the principal difficulty
as it is well known [8] that the estimation of second-
order (and other) quantities in a long-range-dependent
context is a delicate task. Here, however, property P2, the
quasidecorrelation of the , allows us to effectively
use the simple “time average”

(4)

where is the number of coefficients at octave
available to be analyzed. This quantity is an unbiased
and efficient estimator of [3], [4]. (Note that

is the sample variance of , since from F2
the expectation of is identically zero for each.
This interesting fact plays no direct role in our analysis
however.)

• The second complication is the nonlinearity introduced
by the , which biases the estimation. We will see
below how this problem also can be circumvented under
reasonable hypotheses. Simplifying things slightly, we
confirm that the fundamental approach underlying our
estimator is indeed a linear regression of on

. A weighted linear regression will be used
as the variances of the vary with .

Improvement on the Previous Wavelet-Based Estimator of
: As stated above, a semiparametric wavelet-based estimator

for has recently been proposed in [4]. Here a more detailed
analysis of the statistics of allows us to improve the
estimator in two ways. First, the bias due to the logarithm
discussed in the previous paragraph is corrected for explicitly.
Second, explicit closed-form solutions for the variances of the

have been obtained, and are used in the weighted
regression, rather than asymptotic formulas. These refinements
result in an estimator which is strictly unbiased, even for data
of small length, rather than only asymptotically unbiased, and
which is of lower variance. Although theoretically important,
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in practice these improvements are small to negligible in most
cases. They are appreciable when the number of available
wavelet coefficients for each octave in the scaling range
is small. In contrast, however, the above refinements have
important implications for the estimation of the second pa-
rameter .

B. Analytic Elements

Linear Regression:We recall some standard results on one-
dimensional weighted linear regression of the random vari-
ables on the deterministic independent variables,

. Sums will always be taken over this range.
The fundamental hypothesis of linear regression is

. Define the quantities

and

where is an arbitrary weight associated with. The usual
unbiased estimator of is

(5)

(6)

where the weights and satisfy

Note that these conditions imply that there are always both
positive and negative and .

If, in addition, the are mutually independent then the
covariance matrix is given by

(7)

(8)

(9)

(10)

where is the correlation coefficient. If for each it is
easy to see that will be negative, and large in magnitude if

is large, as a small change in the slope “to the right” will
result in an amplified change of opposite sign in the intercept.

Finally, if we set , then is the minimum
variance unbiased estimator (MVUE) [18] with covariance
matrix as above.

Note that in the event of small errors in the values of the
and small correlations between the, the estimator remains
unbiased and its covariance matrix can be accurately estimated
by the expressions just given.

The Statistic : Thus far we have indicated that
is the variable of the desired linear regression

satisfying . Since

in general, this cannot be exactly true, although under the
conditions ID1–ID3 below, and also assuminglarge, it can
be established that

[3], [4], where signifies equality in distribution and
is a Gaussian random variable. In an LRD context,

however, the large scales are usually the most important to
consider, and it is precisely there that thearenot large. Here
we remove the condition on by examining the distribution
of in more detail.

Throughout the analysis it is instructive to bear in mind
that the number of available detail coefficients essentially
decreases by half as the scale is doubled, that is, ,
and, therefore, that where is the length of the
initial data.

We assume that the following supplementary idealizations
hold true.

ID1: The process , and hence the processes , are
Gaussian.

ID2: For fixed the process is independent and
identically distributed (i.i.d.).

ID3: The processes and , , are
independent.

Idealization ID1 is justified by numerical evidence which
shows that the method is very insensitive to the form of the
marginal distributions of [4]. Idealizations ID2 and ID3 are
both well justified by property P2 (they are separated to make
it clearer which properties are needed where).

These extra conditions, while appearing very restrictive at
first glance, are in fact very reasonable in practical terms,
as borne out in simulations. The reason for this is that the
underlying effectiveness of the method is based on P1 and P2,
ID1–ID3 being added only to extend the quantitative analysis.

Let the density of a Chi-squared variate be denoted
by

The mean and variance of such a variate areand ,
respectively. Also set .

From ID1 and ID2 and (2) and (4) we have

(11)

where as is unbiased, and, therefore,

(12)

Thus the study of reduces to that of the logarithm of
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a Chi-squared variable. Using the relations

, [16, Paragr. 4.352, eq. (1)], and

, [16, Paragr. 4.358, eq. (2)], where
is the Psi function and a generalized

Riemann Zeta function, it is straightforward to show from the
definition of above that

(13)

(14)

It follows that

(15)

(16)

where the term

(17)

a negative function of only, can be easily calculated for
all values of .

For future reference we record here the asymptotic form for
large of the quantities above

(18)

(19)

C. Definition of the Estimator(s)

In this section we define the LRD estimator and
another, related estimator, . We are interested in the
quantity because, like , its statistical properties are en-
tirely independent of the specific form of the mother wavelet,
depending only on the general properties P1 and P2. It is
nonetheless very closely related to, yet has the advantage
of being amenable to a detailed analysis. The study ofis
rendered far more complex because of the wavelet dependence,
which enters explicitly via the integral of (3).

• Define the variables as

(20)

From the above discussion it is clear that under ID1 and
ID2 they obey

(21)

(22)

and thus satisfy the requirements for a weighted linear
regression.

Perform then a weighted regression estimation
of on according to (5) and (6), with

. This notation will be fixed in the sequel.

The jointunbiasedestimator is then given by

(23)

(24)

where

is a bias-correcting factor.

• Define the estimator of the integral

as

(25)

• We can now define as

(26)

(27)

An example of the regression fit is given in the log-log plot
in Fig. 1, which we term theLogscale Diagram. The 95%
confidence intervals for each, shown as vertical lines at each
octave , are seen to increase with. This can be understood
from (19), remembering that . The intervals are
derived from the variances under Gaussian assumptions.

D. Summary of the Principal Statistical Properties

The main properties of the estimators defined above, under
ID1–ID3, are summarized here. Proofs and further details,
including explicit expressions for the covariance matrices, are
given in the subsections to follow.

• is unbiasedeven for data of finite size. (ID3 is
not needed in the case of.) For the result holds
only for sets of octaves such that

is satisfied for each within it, where are the regression
coefficients given by (8) (typically this set will be of
the form for some , , as generally either all
octaves satisfy the condition, or all but a small contiguous
collection of the largest octaves). The estimation ofhas
no such restriction. The estimator is efficient, nondiagonal
with negative correlation, and attains the Cramer–Rao
lower bound in the limit for each selected.

• is asymptotically unbiased, and efficient.

• is asymptotically unbiased, and efficient. The same
conditions on hold as for . The properties of
are closely related to those of ; for example, the
correlation coefficient of is also negative and large
in magnitude.
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Fig. 1. Linear regression. An example of theyj = log
2
(�j) � gj againstj plot and regression line for a LRD process with strong SRD. The vertical

bars at each octave give 95% confidence intervals for theyj . The series is simulated farima(0,d,2) withd = 0:25 (� = 0:50) and 	 = [�2; �1]
implying cf = 6:38. Selecting (j1; j2) = (4; 10) identifies the relevant scaling range allowing an accurate estimation despite the strong SRD:
�̂ = 0:53 � 0:07, ĉf = 6:0 with 4:5 < ĉf < 7:8.

E. Statistical Performance of

Throughout the remainder of this section we assume the
supplementary idealizations ID1–ID3. As usual, all sums and
products over are over the range . The basic result
underlying the close-to-optimal performance of the estimator
is the optimality of the linear regression , which can be
exploited thanks to the choice of given by (20), and the
fact that the variances of are known.

Bias: Since for both and the estimator
for is just , by construction we have

Since estimates without bias, it is natural to
suggest as an estimator for , although bias will be
introduced by the nonlinearity. We claim that the form of the
factor in the definition of corrects for this bias while
simultaneously improving the variance.

To show this, first rewrite as

Thus recalling that is a Chi-squared variable with
degrees of freedom

(28)

where the definition of has been used in the last line, and
the relations , have been used to show
that .

Since under ID3 the are mutually independent, the
expectation of reduces essentially to the product of the
expectations of real-valued powers of Chi-squared variables.
The key result is

(29)

provided that . It is now immediately clear from
(28) that is unbiased, provided that for
each . If this condition fails then the expectation of is
infinite! This reveals an unexpected but very important aspect
of , namely, that those scales where must
not be included in the analysis. The intuitive reason behind this
is that the estimator involves a raising to a power, which can
blow up if there is too much variance in the intercept(8). The
scales at risk are those with the largestvalue, where is the
largest. It is difficult, however, to derive an exact formula for
those octaves which satisfy the condition, so in practice each
octave needs to be tested for separately. Numerical evidence



884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 3, APRIL 1999

strongly suggests, however, that the “safe” set of octaves take
the form for some , , and that problems occur
only when a small number of octaves are included, each with
a small . If the test fails, a new set of octaves must be
chosen and the regression recalculated.

Variance: The variance of is that of and is therefore,
using ID3, given by using (7) with (22).

Now consider the variance of . From (28) and noting
that letting in (29) yields the second moment of ,
again using ID3 we have

(30)

provided that which must be satisfied for each
to ensure the existence of the variance (implying that of the

expectation).
To see that the variance is reduced by the introduction of

the bias correction factor, recall the expression

and consider the two regimes of “small” and
“large,” that is, . In the former case it is
not difficult to show from the asymptotic relations given in

Appendix B that tends to one, which has neutral implications
with respect to the variance. In the other case, we now
show that can be small, leading to a reduction of variance.
Combine the power terms in the product as

and assume that , as are special cases that
pose no difficulties. If then and since it
can be shown that is positive for ,
it follows that is bounded from above by

Clearly, if then which can
be smaller than (and often is in practice), in which case
the corresponding factor in the bound and thuswill also be
small as diverges at the origin.

Covariance of : The calculation of the covariance
is slightly more involved. First rewrite as

(31)

where we have used , in showing that
. The other main result needed,

is easily established using (29) and (13) and the discussion
above the latter. Putting these results together and recalling
that we have (32) at the bottom of this
page.

F. The Cramer–Rao Bound and Asymptotics of

The Cramer–Rao Lower Bound:The bound on the covari-
ance matrix of an unbiased estimator of under

(32)
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Fig. 2. Variance against CRLB.log
2
(jCovij �CRLBij j=CRLBij) as a function oflog

2
(n) with j1 = 3 for, from top to bottom,Var (�̂), Var (cfC), and

Cov (�̂; cfC). It is clearly seen that the elements of the covariance matrix rapidly converge (as� n�1=2 for Var (�̂) andCov (�̂; cfC) and as� n�2=3

for Var (cfC)) to those of the Cramer–Rao lower bound. The actual variance must therefore be close to that of the MVUE, even for small-size data.

ID1–ID3 is given by (46) of Appendix A

(33)

where , .
The Limit : In order to compare this lower

bound with the covariance matrix for whose
elements are given above, it is useful to consider the limit of

large in comparison to . This limit, studied in [3], [4], and
[6] in the context of only, corresponds to the limiting case
of Gaussian behavior for . The limit is interesting because
in practice the assumption that is large is a very good
one except, possibly, for the corresponding to the largest
. In Appendix B we show that in this limit the covariance

matrix is given by

Note that the correlation coefficient corresponding to the
limiting covariance is equal to that of .

Observe that, in view of (19), for large ,
, and , where the , , and are

defined in Section II-B. Using (7)–(9), the limiting covariance
matrix can therefore be rewritten in terms of theand turns
out to be just the right-hand side of (33). Thus in the limit
where and large , attains the bound
and is therefore the MVUE under ID1–ID3.

Moreover, in the fully asymptotic case of , where
we let at a rate such that for each in

, fixed, an explicit form for the bound can be found,

given in (47) from Appendix A, and is seen to be nondiagonal
(48). This asymptotic form with is identical to that
obtained in [29], indicating that asymptotically, if all the
octaves in the data can be (and are) used, our estimator matches
the performance of a maximum-likelihood estimator. More
details are given in Section IV.

Finally, away from this limit the Cramer–Rao bound is
clearly not attained, and the question of whether
remains the MVUE or not is therefore an open one. We can
nonetheless compare the covariance matrix and the CRLB.
From Fig. 2 it can be seen that the covariance of is
very close to the bound even when the conditions of the limit
are not satisfied. Hence even if is not the MVUE in
general, its performance is very close to it.

G. Statistical Performance of

Despite the complex, highly nonlinear nature of ,
due to the special structure of the problem we were able
to determine the expectations and variances exactly in terms
of known special functions. For this
cannot be done even when using, as we do, the approximation

for (see (34) below) to bypass the issue of
wavelet-basis dependence. Because of the small variation of

over the range , however, and the lack of bias
and low variance of , we expect to have properties which
essentially mirror those of . We now derive expressions
which support this expectation and which are borne out in
simulations.

Approximating the Integral : The integral is a
function of the (Fourier transform of the) mother wavelet
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Fig. 3. Accuracy ofC1(�). It can be seen that the approximationC1(�) (solid line) is rapidly approached by the exact valueC(�; 	0) = C(�; N)
with increasingN . The lowest curve is forN = 1.

and only, and can be accurately and rapidly calculated via
the multiresolution algorithm, provided is known. In order
to calculate the statistical properties of the estimate

, however, we need a simplifying approximation
for . It can be proven from a theorem in [7] that,
for interpolating or orthonormal families of wavelet (like the
Daubechies’s that we generally use here), when the number of
vanishing moments is large one has ,
where is the indicator function. This convergence implies
a convergence of the integral since the behavior at the origin
is well behaved for . Setting and
integrating, we obtain the following approximation for

, large

(34)

a positive, monotone increasing function of (the
singularity at is removable). It varies so little over
the domain of interest, mapping to , that it
could be well approximated in its turn by the affine function

. This observation gives insight into the
distribution of , although it is not useful for the study of

. As can be seen in Fig. 3 the approximation is
reasonable even for (note the scale) and rapidly
becomes very accurate.

Approximating the Statistical Performance:By using
to replace we bypass several difficulties in the
approximation of the properties of , however there

are others. Although we expect to lie in the range ,
the estimator takes real values. Hence the integral

is not necessarily defined for a given fixed,
as can be too large. Conversely, approaches
zero for negative values of , generating very large sample
values, and hence variance, for . Indeed, if the affine
function plotted in Fig. 3, a quite acceptable
approximation for , were used, the expectation of would
be infinite! For these reasons the definition ofbounds its
values between , via a
check on . Note that each of , , and are
positive quantities.

Our approximation of the properties of is based on
the following result [22]. If a function of the jointly
distributed random variable is sufficiently smooth near
the joint mean , then its mean and variance can be
approximated in terms of the mean, variance, and covariance
of as

(35)

(36)

where and its derivatives are evaluated at .
Let and set , where

for stylistic clarity we put , , and so
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and . The mean and
variance of the function will be calculated with respect
to the joint distribution of via the results above. It
is immediately seen that and .
The other derivatives can be easily calculated, and evaluated
at to obtain

(37)

where and are given by

To estimate the covariance we use (35) with
, as above, yielding

(38)

The expressions above for the mean and variance ofand
the covariance can be read as consisting of first-order terms
corresponding to constant , plus correction terms. Since

and are both positive, monotone, and almost
constant over the range with values and

, respectively, these correction terms are generally
quite small. (Of course, in practice the correction terms cannot
be calculated exactly but must be estimated because they are
themselves functions of the unknown parameters.)

These approximations suggest that the statistical properties
of are very close to those of . The numerical simulations
in the next section confirm this expectation. Furthermore, as
the elements of the covariance matrix of decrease
as for large , it follows immediately from (37) and (38)
that the same is true of , and also that in the limit the
expectation of is just . That is, the estimator is
asymptotically unbiased and efficient.

We complete this subsection with an approximation of the
fully asymptotic form of the covariance matrix, that is, where

, , for use in Section IV. Using the asymptotic
form for the covariance of of (47) from Appendix
A, together with the elements of the approximate covariance
matrix of given above, an asymptotic approximation is

given by the expression at the bottom of this page, where
has been identified with . This matrix is a function of

, however, using the properties ofand above it is easily
seen that the range of thedependence is very small. In fact,

and a good approximation in the
case (for example) is given by

(39)

with a corresponding correlation coefficient of .

H. Asymptotic Distributions and Confidence Intervals

Distributions of the Estimators:We recall the following re-
sults valid in the limit small:

We have restated above that for large, or more precisely
large, the distribution of is approximately normal. It

is worth re-emphasizing that since , only those
octaves corresponding to the largest scales in the system will
have a small , and therefore a distribution which is markedly
non-Gaussian with a corresponding variance which is abnor-
mally large. Since consists of a sum of the (5), most of
which are approximately Gaussian and weighted according to
the (known) variances, for the purposes of confidence interval
estimation can be considered as Gaussian. The same is true
of as is well approximated by
(for appropriate wavelet families).

We have shown that it is reasonable to assume thatand
have very similar properties. For large we have

and so . Now the arguments concerning
from the previous paragraph apply equally to(6), so we can
conclude that is approximately Gaussian and therefore that

and are approximately lognormally distributed.
Confidence intervals for the , , , and have been

calculated using these arguments.

III. N UMERICAL SIMULATIONS

Simulation Protocol: The aim of this section is to illus-
trate the accuracy of the theoretical statistical performance of

and . The bias and covariance matrices are
examined as functions of the sizeof the data, and compared
against the theoretical results. Recall that the theoretical prop-
erties were derived under ID1–ID3. In the simulations below
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we retain ID1, that is, we simulate Gaussian time series, but
test robustness with respect to mild departures from ID2 and
ID3. An example of the quality of the estimation under more
severe departures from ID2 and ID3 is provided in Fig. 1.
Because of the choice of scale issue discussed below, we leave
a systematic study of such cases to a future paper [5].

Issues of nonstationarity are not considered here. Robustness
with respect to smooth deterministic trends has already been
addressed in [4], and a statistical test for stationarity [28] is
under study.

Choice of Scales:Since the definition of LRD in (1) is an
asymptotic one, the wavelet-based estimators are by nature
semiparametric, implying the need to choose the scales

over which the power-law behavior in (1), and more
particularly in (2), holds. In particular the choice of: the
decision of where short-range dependence “ends” and long-
range dependence “begins” is a difficult one and not without a
subjective element, as usual in a semiparametric problem. The
question of how to make a statistically justifiable, automated
choice of , is the subject of ongoing research [5] and is
beyond the scope of this paper.

Nonetheless, we must address the issue of choosing a “safe”
value of in our simulations or no meaningful statistical
conclusions can be drawn. In order to do this, we simulate
fractional Gaussian noise (fGn), which, as is well known, has
a spectrum which is a uniform power-law over almost the full
range of frequencies. (Indeed, the spectral synthesis method we
use actually attempts to make the spectrum a uniform power-
law.) Thus for the simulated series we know in advance that
the LRD “begins” almost immediately. Based on prior studies
of fGn we know that small but significant departures from
the power-law scaling can occur for . We, therefore,
choose in all our simulations.

Initialization of the Pyramidal Algorithm:It is well known
(see, for example, [2]) that the computation of the coefficients

of the wavelet transform from the fast recursive
pyramidal algorithm requires the computation of an initial
approximation sequence . This initial series is to be
derived from the full process itself. In actual data analysis
we typically have access only to a digitally sampled version

of , and the problem arises of how to estimate
from it. Very often, one is reduced to the crude simplification

, resulting in errors in the .
It is known [1], [15] that initialization errors are significant

on the first octaves but quickly decrease with increasing.
In the LRD context, by its very nature, we are typically
not concerned with small , so the initialization issue can
be overlooked. For instance, in the analysis of the Ethernet
data presented in the next section,is always larger than.
However, the initialization problem does exist and may require
care if ever the smallest’s are needed (as can be the case for
the fGn, for instance).

Evaluating the Integral : It is well known [1], [11] that
the filter-bank-based pyramidal algorithm, which underlies
the reconstruction phase of the wavelet transform algorithm,
allows an extremely precise approximation of the time-shape
of the mother wavelet to be obtained in order time. From
this we simply compute its fast Fourier transform, and finally

the desired integral defining (3) is estimated by a trape-
zoidal method. The divergence of the spectrum at the origin

is balanced by the smoothness of the Fourier transform
due to the vanishing moments, so the

integral is well-behaved and poses no numerical difficulties.
Number of Coefficients at Each Scale:It is clear from the

nature of the multiresolution algorithm that in theory the
number of available detail coefficients decreases by half as the
scale is doubled, that is, . In practice, for most
implementations of the discrete wavelet transform (however,
see [10]) there are border effects which render this relationship
slightly optimistic at each octave. We therefore did not assume
the above relation in the analysis. In the simulations also
the actual number of wavelet coefficients at each scale are
taken into account, enabling a correct comparison with the
theoretical predictions.

Results: The results presented in Figs. 4–6 are derived, for
each in the range , , , from 500 independent
trials of simulated fGn. The parameters values chosen were

and we selectedDaubechies 3wavelets,
that is, with vanishing moments. From these we
compute that and .

Fig. 4 shows relative biases as functions of. As predicted,
those for and are very close to , illustrating that the
estimator provides us with close to unbiased estimates even
for very small sized data. For also, which we
could only show to be unbiased asymptotically, we see (lowest
subplot) that in practice the relative bias is numerically very
close to that of for finite data and, moreover, exhibits
the same behavior with respect to. This clearly shows that
the biases for and are comparable and that can be
regarded as unbiased in practice.

Fig. 5 compares the variances of the estimates against the
actual variances from simulation as functions of . They
are seen to be very close even in the case of the variance
of where the theoretical value is an approximation. They
illustrate particularly well the decrease in the variances
with , which is a key, nontrivial feature in the context of
LRD. A careful examination of the variances shows that the
departure from theoretical predictions is larger at small. This
can be understood in terms of the residual correlation of the
wavelet coefficients, i.e., the fact that ID1 and ID2 are not
rigorously satisfied.

Fig. 6 shows the covariances of the estimates as functions
of . For the agreement with the theoretical
value is excellent. The second subplot illustrates again both
the validity of the approximate calculations presented above
for , and the fact that the statistical performance of
is very close to that of .

As shown in Appendix B, in the limit of large the
covariance of is controlled by that of , which
as shown in Appendix A (48) tells us that the limiting form
of the covariance matrix of our estimate is not diagonal.
The correlation coefficient is typically negative and large in
magnitude as seen in the figure.

To give an idea of how the results presented above vary
with , in Fig. 7 surface plots are given showing the
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Fig. 4. Relative biases of̂�, cfC, and ĉf . Relative biases of�, cfC, and ĉf are given as functions oflog
2
(n). Bias is seen to be small in each case

even for smalln (for instance, less than 5% forn = 210) and decreases rapidly for largen. The bias ofĉf is no worse than that ofcfC despite its
additional nonlinearity. Empirical 95% confidence intervals have been added.

Fig. 5. Variance of�̂, cfC, and ĉf . The log
2

of the variances of̂�, cfC, and ĉf are given as functions oflog
2
(n). Agreement between numerical

and theoretical performance is satisfying even for smalln. For ĉf , the approximate expression is close to the empirical variance. Moreover, the variances
of ĉf and cfC are very much alike, supporting the idea that the statistical properties ofĉf and cfC can be regarded as equivalent. Finally, all three
variances decrease as1=n.

variation of key quantities over a sizable portion of the
plane. Each calculated point on the surface is an

average over 500 realizations, with the length of each series

fixed at . The relative biases of each
of and are shown in the top row. It is seen that the
dependence on is weak, an advantageous property.
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Fig. 6. Correlation coefficients for(�̂; cfC) and (�̂; ĉf ). The correlation coefficients for(�̂; cfC) and (�̂; ĉf ) are given as functions oflog
2
(n).

Agreement between numerical and theoretical performance is satisfying even for smalln. The correlation in(�̂; ĉf ) is hardly stronger than that in
(�̂; cfC) despite the appearance of̂� in ĉf .

Fig. 7. Variation with (�; cf ). The relative biases of̂� and ĉf in the top row are seen to be quasi-independent of(�; cf ). In line with theoretical
predictions, the standard deviation for̂� and the relative standard deviation forĉf have the same property. The surfaces are sampled overf(�; cf )g
with � 2 f0:10; 0:40; 0:70; 0:90; 0:95g, cf 2 f2�8; 2�6; 2�4; 2�2; 2�0g, each point being obtained from 500 realizations withn = 215.
Daubechies 3wavelets were used.

Regarding variances, (39) predicts that under ID1–ID3 the
variance of is independent of whereas that of
is proportional to the square of . The plots in the bottom

row of the standard deviation of and therelative standard
deviation of show that these idealizations are justified in
practice.
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Summarizing, we have: 1) excellent agreement between
numerical and theoretical performance for , 2) excel-
lent agreement between numerical and approximate theoretical
performances for , 3) statistical performance of
which is very close to that of , 4) estimators which
exhibit very low bias even for very small, 5) variances which
decrease as , 6) limiting forms for the covariance matrices
which are not diagonal and basically controlled by those of

, and finally, 7) residual biases which are small and
almost independent of .

IV. COMPARISON AGAINST OTHER ESTIMATORS

A. Generalities

When evaluating the quality of an estimator both statistical
and computational issues need to be addressed. It is often
the case that an estimator has desirable properties in one but
not both of these categories. For example, semiparametric
or nonparametric estimators of (or equivalently, ) such
as the variogram, the R/S method, and the periodogram
are simple conceptually and have desirable computational
properties, but suffer from bias and/or high variance. On
the other hand, parametric methods, while offering excellent
statistical performance, generally suffer from severe computa-
tional disadvantages, as well as being restricted to particular
model classes. The wavelet-based estimator of, however,
presented in [3] and [4], performs well in both the statistical
and computational sense. These issues are treated in more
detail in [4], and also in [8]. The reader can also find in [25] an
informative simulation-based study of the finite data statistical
properties of a wide variety of estimators of.

In this paper we wish to compare against otherjoint
estimators, of which few are available. The two selected
happen to both be based on maximum-likelihood estimation
(MLE), the best known fully parametric method. The second
of these, the discrete Whittle method, is a pertinent choice
as it has been widely considered in the telecommunications
literature as the best available. We shall not enter here into
a thorough discussion of parametric versus semiparametric
estimation, but make the following points before entering into
the detailed comparisons.

• Statistical Comparison:A semiparametric estimator can-
not in general outperform a parametric one statistically
when the data fits the assumed model class. The most
it can do is equal its performance asymptotically. Ap-
proximations to parametric estimators however, such as
those necessary in MLE estimation with large data sets,
are typically only optimalasymptotically. For finite data
sets the semiparametric estimator may therefore perform
as well or better, even if the data fits the underlying
parametric model.

• Robustness Comparison:A parametric estimator is very
tightly tied to the assumed model class, and in general will
perform poorly if those assumptions are invalid. Semi-
parametric estimators are by definition much more robust
in this respect in general. Inseparable from this robustness

is the need for an analysis phase before the estimation
phase: a semiparametric estimator cannot, fortunately, be
applied blindly, nor automatically, until after the first
phase. In the LRD context, the preliminary phase involves
the examination of the Logscale Diagram (log-log plot)
in order to choose the scale range where scaling is
observed to occur. The wavelet-based joint estimator, like
that for alone, enjoys significant additional robustness
advantages, notably with respect to the elimination of
smooth deterministic trends including nondiscontinuous
mean-level changes [4], and variance changes [24].

• Computational Comparison:Maximum-likelihood esti-
mation involves huge computational complexity and sim-
plifications are always needed to make it practical. These
simplifications remain computationally intensive and in-
volve minimization procedures with attendant conver-
gence problems. In contrast, for the wavelet-based joint
estimator, after a discrete wavelet transform is performed
the estimation involves only simple calculations, no min-
imization is needed. The transform can be calculated with
the multiresolution (pyramidal) algorithm which has the
very low complexity of .

As the wavelet estimator is clearly superior in robust-
ness and computational terms, it remains to see how
it compares statistically. In the comparisons below we
compare the performance of two MLE estimators under
optimal conditions against the performance of the wavelet
estimator under optimal conditions, assuming that the
hypotheses of both are satisfied. We also make comments
for the finite-data case but there we do not have analytic
results for the MLE estimators.

B. Wavelet-Based MLE

The Parametric Family:In [29] and [30], Wornellet al.
consider processes which satisfy idealizations ID1–ID3 and
whose wavelet detail coefficients have variance taking the two
parameter form

(40)

for all octaves . The MLE approach is applied to the joint
estimation of . Such a family is very close to the
fractional Gaussian noise for which the above relation holds
except at the smallest scales.

It is important to understand that although the estimation of
is defined and performed in the wavelet domain, and

despite the formal similarity between the two problems in other
respects, that the approach of [29] and [30] is very different
to that from the present paper theoretically, statistically, and
computationally. For example, although a wavelet transform is
performed to estimate , the computational properties of
the wavelet-based MLE are determined by the much slower
minimization procedure.

Statistical Performance:The wavelet-based MLE is shown
to be asymptotically unbiased and attains its asymptotic
Cramer–Rao bound. The Cramer–Rao lower bound of
is clearly the same as that of with and
the largest possible. Its asymptotic form is therefore given by
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setting in (47) in Appendix A, namely,

(41)

as derived in [29] by a different method.
Comparison: We assume ID1–ID3 so that the exact results

for both estimators hold. Since the Cramer–Rao bounds are the
same, a comparison is particularly meaningful. If in
we use and the largest possible for the given data,
then asymptotically the performance of the two estimators is
the same. For finite data we have shown that is
unbiased and is close to the bound, which is not the case for
the wavelet-based MLE.

If we cannot choose the full range of scales then the MLE
estimator will have a smaller variance asymptotically and for
finite data there will be competition between this fact and the
good finite-data performance of .

In (40), the quantity has no physical interpretation but
is simply a model parameter. Our approach identifiesas

, gives insight into its meaning, and through it allows an
estimation of , a parameter of physical interest.

The wavelet-based MLE has the advantage of being able
to include the estimation of additive noise provided, however,
that one has a precise stochastic model for it. There is no
corresponding ability in our estimator however; as already
mentioned, it is robust to the presence of noise via the choice
of scales , over which the analysis is performed. Outside
of this range may depart very significantly from
the power-law form (see Fig. 1).

C. Frequency-Based MLE (Discrete Whittle)

The Parametric Family:In [8], Beran applies a discrete
form of the Whittle estimator to Gaussian fractional ARIMA
processes, which have known parametrized spectral densities.
In general, none of the parameters correspond to, preclud-
ing a direct comparison. In the case of the two parameter
farima0d0 process, however, as discussed in the Section I,
a connection to can be made which is not too complex.
Note that the definition of the spectral density of Beran is
not that used here, the relation being .
This seemingly innocent scale change and renormalization
makes an important difference to the estimation problem, as
it implies a corresponding change in the definition of, a
point ripe for confusion. Beran estimates based on

, where , a
notation we retain to facilitate comparison. In this scenario,
the parameter is none other than the “” corresponding to

(for farima0d0), and the asymptotic covariance matrix (43)
is diagonal. Based on (1), however, we have ,
and because of this dependence the covariance matrix of

, as we saw in Section II, is far from diagonal. In our
notation the two-parameter family in question is that with a
spectrum of the form below

(42)

In [8], an iterative minimization scheme based on a discretized
form of Whittle’s original approximate MLE approach is
applied to the joint estimation of .

Statistical Performance:The discrete Whittle MLE estima-
tor of is shown to be asymptotically unbiased and
efficient. The asymptotic covariance matrix is given by [8, p.
107]

(43)

An estimate of can be based on an initial estimate of
followed by setting . Using the approximation
technique of Section II-F, we can derive from the matrix above
an approximation to the covariance matrix of this Whittle-
based estimator of . The result is

(44)

The correlation coefficient is given by .
Comparison: Although asymptotically both estimators are

unbiased and attain their respective Cramer–Rao bounds, the
problems are not equivalent statistically so the bounds are not
equal, resulting in a difference in performance. In addition,
to apply the semiparametric wavelet estimator here, a choice
of must be made. Although for farima0d0 the asymptotic
power-law for the spectrum is attained quickly, cannot be
chosen equal to one. From prior studies we know that
is an acceptable value.

Again for the wavelet-based estimation we assume ID1–ID3
and use with the largest possible for the given
data. The asymptotic performance in this case is approximately
given by (39). Comparing with (44) one sees that the variances
decrease asymptotically as in both cases, however, the
constants differ. The discrete Whittle-based estimator has a
lower variance for and a much lower variance for .
Specifically, they differ by constant factors given by

MLE Wavelet

and

MLE Wavelet

Note that if had been used instead the variance
of the wavelet estimator would have decreased markedly,
at the price of introducing only a small bias. The omission
of the first two octaves makes such a significant difference
to the variance of the wavelet estimation becauseand

have the smallest variances of all the, and hence the
largest weighting factors in the estimation if included. By
the same token, however, it is precisely at these small scales
(high frequencies) where in practice the parametric modeling
assumptions of the MLE estimator are likely to fail. In such a
case, parametric estimators can produce completely erroneous
results unless the form of the departure is both known, and
taken into account explicitly. In contrast, the wavelet estimator
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TABLE I
JOINT ESTIMATION OF (�̂; ĉf ) FOR THE pAug TRACE. � = 0:0120 s. THE H VALUES ARE

ESSENTIALLY THE SAME AND THOSE FORcf ALSO, EXCEPT FORA AND S, WHICH ARE HALF AS LARGE

will provide reliable estimates provided only that is chosen
sufficiently large. A knowledge of the form of the departure
from the asymptotic behavior is not required.

Comparing the covariances of (39) and (44) we note that in
each case the correlation coefficients are negative and large
in magnitude (48). This suggests that the high correlation
arising from the wavelet-based estimation is not an undesirable
consequence of the linear regression underlying it, but an
inherent feature of the parameters being measured.

For finite data we have shown that is unbiased with
optimal or close to optimal variance and that has a very
small bias and variance. It is known, however, that for finite
data the discrete Whittle estimator is biased [4]. For finite
data there will be competition between the lower asymptotic
variance of the discrete Whittle estimator and the very good
finite-data performance of .

V. APPLICATION TO ETHERNET DATA

Background: As discussed in Section I, the presence of
LRD in traffic data of diverse types is now well accepted.
Some of the most detailed evidence comes from the Ethernet
traces of Leylandet al. described in [19]. It is not the purpose
of this paper to present a detailed analysis of real traffic,
however, we give a brief analysis of two of these Ethernet
traces, for two reasons. First, the traces in question have
become in some sensede factostandards in the field of traffic
analysis. It is therefore of interest to publish estimates of LRD
parameters for them using the wavelet estimator, to serve
as a basis for comparison with other estimators, and as a
reference. The second reason is to complement previous work
performed on them. In [4] we presented a thorough analysis
of the structure of selected Ethernet traffic traces with respect
to the measurement of the Hurst parameter, using an earlier
form of the wavelet-based estimator. A main motivation was
the design of compact, highly accurate models for Ethernet
traffic. The central, highly nonobvious finding was that quite
different aspects of the traces (to be described below) had
the same value of the Hurst parameter, whereasa priori most
of them need not have even been long-range dependent! It
was in attempting to use this finding to design traffic models
that it was realized that knowledge of was an essential,
yet neglected, factor, thus motivating the present paper. We
therefore take the opportunity to return to these traces to
complement results on from [4] with measurements of .
(Note that the values of reported in Table I differ slightly
from those in [4] as here the new, more accurate estimator is

used, and the scale ranges have been more carefully
chosen.) This is the first time we are aware of that the value
of has been reported in traffic data, and we know of no
a priori argument indicating whether it should be constant
across different traces or different aspects of the same trace,
nor even what its order of magnitude could be. As a simple
example of the utility of such information, without values of
confidence intervals for mean estimates cannot be calculated,
and therefore questions of stationarity of the mean across the
traces cannot even begin to be addressed. Such issues impact
on stationarity questions in general and therefore on model
choice and validation.

In this section we use rather than (recall
) as it is more customary in tele-traffic studies.

In addition, as different time series are to be compared, we
present the normalized form which characterizes
the correlation function, rather than, where denotes the
variance (power) of .

Description and Modeling of the Data:The Bellcore Eth-
ernet traces have been described in detail elsewhere [4], [19].
Each file consists of 1 million rows in two columns. The first
column gives the timestamp (measured from the beginning of
the trace) for theend of the frame in seconds. The second
column gives the integer size in bytes of the frame. The
actual traffic consists therefore of an alternating sequence of
disjoint frames and silent periods. Frames have a maximum
and minimum size, whereas silences have a minimum but
no maximum duration. Since silences are not restricted to be
multiples of bytes, a process general enough to fully capture
the Ethernet arrival process must be defined in continuous
time. We do not do this but consider discretized versions
where the process is averaged within a window of size. This
simplifying procedure is common practice and was justified
in [4].

We analyze five different aspects of the traces, that is, time
series derived from the full arrival process: , , ,

, and . Each of these are assumed stationary. Although
these series are not unrelated, they are by no means equivalent
and give information regarding different aspects of the data
of interest from a modeling perspective. The first two are
directly related to the full process and are discretized
versions of underlying continuous time processes. The number
of bytes (work) arriving in subsequent time intervals of width

defines , whereas counts the number of frames in
the same interval. The other three are intrinsically discrete
time series indirectly related to . They are the lists of
the successive interarrival times (the time gap between the
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TABLE II
JOINT ESTIMATION (�̂; ĉf ) FOR THE pOct TRACE. � = 0:0067 s. THE H VALUES ARE

ESSENTIALLY UNIFORM ACROSS THEDIFFERENT SERIES AND THOSE FORcf ALSO

beginnings of successive frames), frame sizes, and silence
durations, respectively. In [4], and a seventh series, a point
process, were also considered. We do not consider these here
as represents adequately, and for point processes the
interpretation of is problematic.

Discussion of Results:For each of the two traces “pAug”
and “pOct” the joint estimation was performed on the five
different kinds of series, and the results recorded in Tables
I and II. The Daubechies 3wavelet with was used,
ensuring the elimination of any linear or quadratic trends, if
present (see [4]). It can be seen that for each trace the estimates
for are highly coherent whereas those fordiffer slightly.
It seems that the remarkable equality of behavior across the
five different series holds true for LRD properties as a whole,
and not just for . The only significant exception is that in
the pAug trace where and have clearly lower values for

with confidence intervals separated from those of the other
series. This is significant since it was and which were
identified as the main series of use in model design, and their
values differ by a factor of two.

VI. CONCLUSION

Because the long-range dependence phenomenon as it is
currently defined consists basically in the power-law behavior
of certain second-order statistics [6], there are a group of
estimation techniques which consist essentially in the mea-
surement of the slope in a log-log plot to extract the scale
parameter . Such methods have the advantage of being
conceptually simple and practical to implement but generally
exhibit extremely poor statistical properties [25]. These statisti-
cal disadvantages would be inherited in any obvious extension
to the joint case based on the intercept of the said log-log
plots, though such extensions have not been attempted. On
the other hand, MLE techniques are characterized by excellent
statistical performance but involve minimization procedures
which are computationally complex and slow. The wavelet-
based joint estimator for the parameters of LRD proposed
here exhibits the advantages of both categories, but without
their drawbacks. It moreover displays greater robustness [4]
than either of the two. This results from the matching of the
analyzed phenomenon—LRD is essentially a scale invariance
feature—to the analyzing tool—the wavelet transform is es-
sentially a scale-invariant analysis method. More precisely
two key features of the wavelet analyzing family, namely,
its generation from a dilation operator and the existence of
vanishing moments, result in two advantageous properties
enjoyed by the wavelet coefficients of an LRD process: their
variance exactly reproduces the power-law defining LRD, and

they are stationary and almost independent. The statistical
performance of the estimator follows from these two key
properties and is, as we have shown, comparable to that of
maximum-likelihood estimators, even when their parametric
assumptions are fully satisfied. Under departures from the
parametric model the wavelet-based estimator often performs
better, without the need for knowledge of the form of the
departures. The wavelet estimator performs well provided only
that the data is large enough for the asymptotic behavior to
be present across at least three octaves, and that a cuttoff
scale is correctly identified. The asymptotic nature of
approximations to MLE methods such as the discrete Whittle,
however, mean that the parametric-based estimation can at
times be poor for smaller data sets.

There are two important areas where more work needs to be
done. A vital practical aspect of the semiparametric wavelet
estimator is the choice of the scales over which the analysis
is performed. This range of scales, unknowna priori, should
correspond to where the signal exhibits its asymptotic power-
law behavior, that is, the long-range dependent or scaling
regime. As mentioned earlier, the development of a well-
founded statistical basis for the automatic selection of the
scaling range is under study [5]. An effective solution to
this problem is necessary to benefit fully from the inherent
robustness of the method to departures from the asymptotic
power-law model which can be caused by additive random
noise and strong and/or “long” short-range correlations.

The second area is that of various aspects of nonstationarity.
Specifically, a test for nonstationarity with respect to the LRD
parameters is lacking and is an important first step. This
problem is currently under study [28], as is robustness with
respect to level shifts (sudden changes in the mean) [5], [24].
The questions of defining, and then analyzing, detecting, and
estimating possible time variation of the LRD parameters are
also of importance. Finally, in some situations, long-range
dependencies may appear in processes whose second-order
statistics do not exist. Preliminary studies [12] suggest that
variations of this estimation tool could be useful in such
circumstances.

VII. SUMMARY

The Objective:Let be a second-order stationarylong-
range-dependentstochastic process, that is, its spectrum is
well-defined and reads

We wish to jointly estimate and .
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Definitions:

• Wavelet coefficients

(there are

coefficients at octave)

• Weighted linear regression

• Estimators

where

Statistical Performance:Assume that the scaling range has
been correctly chosen, that is, that a set of octaves, say

, have been found such that for eachthe
spectrum has the power-law form above, and, therefore, that

in this range. Under the additional
technical idealizations

ID1: The process , and hence the processes ,
are Gaussian.

ID2: For fixed , the process is i.i.d.

ID3: The processes and , , are
independent.

We have the following statistical properties of the estimators:

is unbiasedeven for data of finite size (ID3 is
not needed in the case of). For the result holds
only if for each . If this condition is not
satisfied, a new set of octaves must be chosen and the
regression recalculated. The estimation ofhas no such
restriction. The estimator is efficient, nondiagonal with
negative correlation, and attains the Cramer–Rao lower
bound in the limit for each selected.

is asymptotically unbiased, and efficient.

is asymptotically unbiased, and efficient. The same
conditions on hold as for . The properties of

are closely related to those of , for example, the
correlation coefficient of is also negative and
large in magnitude.

APPENDIX A
THE CRAMER–RAO BOUND OF

Recall that by we
denote the density of a Chi-squared variate, with mean and
variance and , respectively.

The Cramer–Rao bound is with respect to the joint density
of the , which is just the product of the (rescaled) individual
Chi-squared densities under ID1–ID3. Put and
define the constants . From (11)
the joint density can be written as

(45)

where is a dummy variable associated with.
The Fisher information matrix is

and the Cramer–Rao bound is just its inverse [18]. Here
.

Let . We have

where . Using the relations
and , we

readily obtain

It is easily verified that , and, therefore,
that , and since .
The information matrix is therefore given by

where . By inverting we
obtain finally

(46)

It is apparent that the bound is not diagonal, but exhibits
negative correlation. To show this explicitly, assume that

and that , where is the size of
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the data, holds exactly. Set , the number of
octaves used in the analysis. Using the identities

and

[16, eqs. (0.113) and (0.114)],1 after a certain amount of
algebra the elements of the bound can be written explicitly as

where

We consider two limit cases to understand the behavior of,
the correlation coefficient corresponding to the bound.

First consider the asymptotic limit of , allowing the
limit to be taken simultaneously with fixed. The
asymptotic Cramer–Rao bound is simply

(47)

for which

(48)

It is clear that is typically large in magnitude, independent
of . For example, gives , and for
large .

APPENDIX B
LIMITING FORM OF WHEN

For there is nothing to show, so consider first the variance
of . Using the expansion

for , and ,
one can show that

1Note the error in (0.1146): then2 in the numerator should bex2.

and so

Continuing from (30), we can therefore write

where we have used (19) in the second last step and (8) to
identify the expression as the variance.

Now consider the covariance. Using the expansion

for

and

for

it follows that when , .
Continuing from (32), we can, therefore, write

using (9) and (19). Collecting these last two results it is seen
that the limiting covariance matrix is given by

(49)

and we observe that the correlation coefficient corresponding
to (49) is equal to that of , and therefore negative.
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