Fast Generation of Random Permutations via
Networks Simulation*

Artur Czumaj* Przemystawa Kanarek®
Mirostaw Kutylowskii Krzysztof LorysT
Abstract

We consider the problem of generating random permutations with the
uniform distribution. That is, we require that for an arbitrary permuta-
tion = of n elements, with probability 1/n! the machine halts with the
ith output cell containing = (i), for 1 < ¢ < n. We study this problem on
two models of parallel computations: the CREW PRAM and the EREW
PRAM.

The main result of the paper is an algorithm for generating random
permutations that runs in O(loglogn) time and uses O(n**°(")) proces-
sors on the CREW PRAM. This is the first o(log n)-time CREW PRAM
algorithm for this problem.

On the EREW PRAM we present a simple algorithm that generates a
random permutation in time O(log n) using n processors and O(n) space.
This algorithm outperforms each of the previously known algorithms for
the exclusive write PRAMs.

The common and novel feature of both our algorithms is first to design
a suitable random switching network generating a permutation and then
to simulate this network on the PRAM model in a fast way.

Keywords: parallel algorithms, random permutation, uniform distribution,

switching networks, matching, PRAM, CREW, EREW.

*Partially supported by KBN grant 8 S503 002 07, EU ESPRIT Long Term Research
Project 20244 (ALCOM-IT), DFG-Sonderforschungsbereich 376 “Massive Parallelitat”, and
DFG Leibniz Grant Me872/6-1.

tA preliminary version appeared in Proceedings of the 4th Annual European Symposium
on Algorithms (ESA’96), volume 1136 of Lecture Notes in Computer Science, pages 246—260,
Springer-Verlag, Berlin, 1996.

{Heinz Nixdorf Institute and Department of Mathematics & Computer Science, University
of Paderborn, D-33095 Paderborn, Germany, E-mail: artur ,mirekk@uni-paderborn.de.

§Institute of Computer Science, University of Wroclaw, Przesmyckiego 20, PL-51-151
Wroctaw, Poland, E-mail: pka@tcs.uni.wroc.pl.

TDepartment of Computer Science, University of Trier, D-54286 Trier, Germany, and In-
stitute of Computer Science, University of Wroclaw, Przesmyckiego 20, PL-51-151 Wroclaw,
Poland, E-mail: lorys@tcs.uni.wroc.pl.

October 22, 1996, 11:31 2

1 Introduction

Generating permutations is a fundamental problem studied in theoretical and
applied computer science already for few decades. One approach (historically
first) assumed generation of all permutations of n elements (see [8] and [17], and
the references therein). Evidently, the problem is intractable even for very mod-
erate values of n. The next approach, also extensively investigated, is generating
permutations at random. This task can be formally described as follows:

Definition 1 A machine M generates a permutation m of n elements, if, when

halted, the output memory cells 71, ..., Z, store, respectively, n(1),...,7(n).
We say that M generates (uniformly) random permutations of n elements,

if for every permutation 7 of n elements M generates = with probability 1/n!.

Throughout the paper we consider only the problem of generating permu-
tations with the uniform distribution and we skip the word “uniform” while
talking about generating random permutations.

The problem of generating a random permutation has recently received a lot
of attention. The reasons are manifold. One of them is the growing interest in
randomized algorithms (see e.g. [12, 13]). Generating random permutations is
a basic element for a large number of randomized sequential and parallel algo-
rithms. For many deterministic algorithms one may find some malicious input
data for which the algorithm performs poorly, although it works efficiently on
average. Permuting the input randomly may transform a difficult input to a
good one (at least on the average) and make it tolerable. Another field in which
random permutations might be important is cryptography. Random objects
such as permutations are components of a large number of cryptographic al-
gorithms and protocols. Having really random fast and cheap source of these
objects would be crucial for avoiding security gaps and is often assumed by
analysis of cryptographic protocols. Unfortunately, creating such sources is a
challenging problem and currently used techniques generate only pseudorandom
objects (see e.g. [14]). One of many reasons why random permutations are dif-
ficult to generate is the running time involved that is unacceptable for practical
applications. We believe that parallel techniques might be important in this
context.

When we consider generation of a random permutation, we have to assume
that our algorithm uses some random resources. Thereby the algorithm must be
randomized. However, there are many ways of using randomness and a sentence
algorithm A generates a random permutation in time T’ may have many different
meanings. We are interested in algorithms where all bounds are guaranteed in
a strong way:

Definition 2 We say that a machine M generating a random permutation of n
elements in time 7" with p processors and m memory cells 1s strong randomized,

if:

October 22, 1996, 11:31 3

e M always halts after T steps,
e M may use given p processors and m cells,

e cach permutation has equal chance of 1/n! to become the output of M.

In the literature there are many algorithms for generating random permu-
tations that do not satisfy these conditions. In this case we say that the algo-
rithm is weak randomized. This happens if, for instance, an algorithm ensures
the claimed time bound to hold only in the expected case, or to hold with high
probability. For example, a randomized algorithm may generate a permutation
uniformly at random and halt within 7" steps provided that a certain (random-
ized) event & takes place, where Pr(€) > 1 — o(1) and & is independent of the
permutation found.

There are many reasons why permutation generation by strong randomized
algorithms are superior to weak randomized ones. For instance, it may be
difficult to check that the mentioned event £ in the case of a weak algorithm
has really occurred. In this case we cannot guarantee that the algorithm gives
proper answers. When we consider a weak randomized algorithm running with
the failure probability f(n), the permutation chosen by such an algorithm is
uniform with probability 1 — f(n); here f(n) is usually a very small function
of the form f(n) = n=°¢ or f(n) = 27", for constants ¢ > 1 and 0 < ¢ < 1.
Observe that in this situation the probability of a single permutation may differ
from the ideal 1/n! even by f(n). (Note that f(n) is usually an extremely
big value compared with 1/nl.) An approach of this kind may be acceptable
as a component in other randomized algorithms, where such a precision 1s fully
acceptable because it adds only the additive term f(n) to the failure probability.
However, there are some critical application (e.g. in cryptography) where such
a deviation from the uniform distribution might be dangerous.

In this paper we study the permutation generation problem on the Parallel
Random Access Machine (PRAM) model. We focus on PRAMs with exclusive
read exclusive write (EREW) and concurrent read exclusive write (CREW)
access mode to the shared memory. In order to make our model sound we
assume that a cell of an n-processor PRAM may store O(logn) bits.

1.1 Related work

Previous parallel algorithms for generating random permutations have been
based on three basic techniques. The first one, called dart throwing, consists of
two steps. First, the input elements are mapped at random into an array of size
O(n). Their order in the array gives an implicit random permutation. Then,
the elements are compressed into an array of size n. This technique is especially
efficient when used on the CRCW PRAM model, where conflicts during writing
and reading are allowed. There has been a sequence of papers using this tech-
nique [10, 11, 15] culminating in the papers due to Hagerup [7] and Matias and

October 22, 1996, 11:31 4

Vishkin [9], who designed weak randomized algorithms that generate random
permutations in O(log" n) time on the O(n/log™ n)-processor CRCW PRAM,
with high probability.

The second technique is based on integer sorting and it also leads to weak
randomized algorithms. Each element chooses a key uniformly at random from
the set {1,...,n}. Then the elements are sorted according to the keys’ val-
ues, which define the relative order of the elements with different keys. Finally,
the elements with the same key are randomly permuted using a sequential al-
gorithm. This technique was first used by Reif [16], who applied his integer
sorting algorithm to generate random permutations in time O(logn) on the
O(n/logn)-processor CRCW PRAM, with high probability. Hagerup [7] used
this idea to the EREW PRAM model, and showed that, disregarding a small fail-
ure probability, generation of random permutations is reducible to integer sort-
ing. In particular, combining with known integer sorting algorithms, this yields
a weak randomized algorithm that runs in O(logn) time on the n-processor
EREW PRAM, or an algorithm running in time O((logn)®/3(loglogn)*/3) on
the EREW PRAM with O(n/logn) processors. Both these results assume the
space of O(n) size is used.

The third technique is to implement in parallel a basic sequential algorithm,
which we call SHUFFLE, due to Durstenfeld [6] (see also [8, page 139] and [17]):

SHUFFLE:
for ¢ := 1 to ndo 7(¢) := i
for ¢ := 1 to ndo
k := random element from {i,...n}

exchange the values of 7 (¢) and n(&)

It 1s well known that this algorithm returns permutations according to the
uniform distribution. Anderson [1] used this algorithm in a parallel setting and
showed that it can be run efficiently on parallel machines with a small number of
processors communicating through a common bus such as Ethernet. He showed
that the main loop of SHUFFLE can be divided into pieces, each piece executed
by a different processor. The ordering in which the resulting permutations are
composed affects the permutation generated, but not its probability distribution
in a serious way, even if the delivery times of messages sent through the bus are
determined on-line by an adversary controlling the bus. Hagerup [7] later imple-
mented SHUFFLE to run in O(logn) time with n processors and ©(n?) space on
the EREW PRAM. He was able to reduce the space used, sacrificing however the
running time and/or turning from the EREW to the CREW PRAM model. He
presented two algorithms that use O(n!*¢) space for arbitrary fixed € > 0, one
running in O(log? n) time on the O(n/logn)-processor EREW PRAM, and an-
other running in time O(logn logloglogn) on the O(n/logloglog n)-processor
CREW PRAM.

Observe that SHUFFLE has one very important advantage over the first two
techniques: it leads to strong randomized algorithms. Thus up to now, the

October 22, 1996, 11:31 5

fastest strong randomized O(logn)-time algorithm uses n-processors and Q(n?)
space on the EREW PRAM. We are not aware of any better strong randomized
algorithm existing in the literature even on the CRCW PRAM !

1.2 New results

We present two algorithms for generating random permutations, one running
on the EREW PRAM and the other running on the CREW PRAM. Our first

result is an efficient implementation of SHUFFLE.

Theorem 1 There is a strong randomized EREW PRAM algorithm that gen-
erates permutations of n elements uniformly at random in time O(logn) with
n processors and O(n) space.

This algorithm 1s a simple but efficient implementation of SHUFFLE on the
EREW PRAM. Tt uses the minimum number of O(logn!) random bits required
only to define the output permutation. Though the algorithm is simple, 1t im-
proves upon all previously known algorithms for generating random permuta-
tions for the CREW and the EREW PRAMs. Comparing to former results, we
either reduce space used or make the algorithm strong randomized and remove
concurrent reads, while the other parameters are not worsened.

Because even with the use of randomization and unbounded number of pro-
cessors, any CREW PRAM requires ©(log n) time to compute the OR of n bits
[4, 5], any non-trivial problem that can be solved on this model in time o(log n)
is of special interest. There are extremely few such algorithms, perhaps the
most significant so far was the algorithm for merging two ordered sequences of
n elements [2]. Our second and main result is the first permutation generation
algorithm for the CREW PRAM that runs in sub-logarithmic time.

Theorem 2 There is a strong randomized CREW PRAM algorithm that gen-
erates permutations of n elements uniformly at random in time O(loglogn)

. I I S— . o
using O(n +clog1°€n) processors, for arbitrary positive constant c.

The main message of this result is that the generation of random permu-
tations may follow another strategy than the previously known techniques and
lead to possible more efficient algorithms.

Our CREW algorithm uses hypergeometric random number generator. It
would be desirable to achieve the same running time using only the unbiased
coins. However, it is easy to see that then the probability of generating an
arbitrary permutation would be of the form i/27, for some i, j € N. So it cannot
be 1/n! and therefore each strong randomized algorithm has to use something
more than a uniform random bit generator.

While designing our algorithms we introduce a novel technique for generat-
ing permutations that we call networks simulation. We study certain suitably
defined layered networks whose main feature is that each level of the network 1s

October 22, 1996, 11:31 6

designed locally and independently of the other levels. The final permutation
is defined by the paths from the nodes on the first level to the nodes on the
terminal level.

1.3 Basic techniques

It is equivalent to construct a random permutation on n elements or to construct
a random perfect matching between two sets {ai,...,a,} and {by,... b,} of n
elements each. Simply, if 4 is such a perfect matching, then we define 7, (i) = j
if p(a;) = b;. Therefore throughout the rest of the paper we may talk about
perfect matchings instead of permutations.

Our way to obtain a random perfect matching will be through construct-
ing special layered networks, called later matching networks. Such a network
consists of several levels, each containing n nodes. The directed links of the
network form perfect matchings between consecutive levels of the network. Any
matching network defines a perfect matching p between the nodes on the first
and the last levels: for a node C' on the first level, u(C) is the unique node 7
on the last level so that there is a path between ' and Z. Of course choosing
the matchings between the levels must be carefully done in order to get finally
each permutation with the same probability, and simple enough in order to be
easily constructible.

Once we have constructed the network, determining the perfect matching p
can be realized by the pointer jumping technique: after step ¢ every node R in
level j stores a pointer to the single node S on level min{j + 2 last levell}
such that there is a path between R and S. At step i+ 1 the processor attached
to R reads the pointer stored in S and copies it to RB. The new pointer of R
points to a node S on level min{j + 2/+! last level} such that there is a path
between R and S’.

Obviously, the pointer jumping technique can be performed on the EREW
PRAM in time logarithmic in the number of levels. One can implement it so
that the time-processor product equals the number of the nodes in the network.

2 EREW Algorithm

In this section we prove Theorem 1. The algorithm SHUFFLE can be imple-
mented by constructing a so called shuffle network with n levels. The matching
between levels ¢ and ¢ 4+ 1 contains a single switch (4, k;), where k;, i < k; < n,
is chosen uniformly at random and corresponds to the number & chosen during
the ith iteration of the loop of SHUFFLE. The switch (4, k;) connects the node ¢
from level ¢ with node k; from level ¢ + 1, and node k; from level ¢ with node 7
from level ¢ + 1. For j # 4, k;, the node j of level ¢ is connected with node j of
level 2 4+ 1. For examples see Figure 1.

October 22, 1996, 11:31 7

level 1 level 2 level n-1 level n
i e S Ve

.—“\7 . A : switch .(?,5)
S D T —

switch (2,5) —
\)——v——v——v——v——v——v row 2

row 1

Vv

Figure 1: A shuffle network. Edges corresponding to the switches are distin-
guished by the shadowed fields.

To find the permutation defined by a shuffle network we may apply pointer
jumping, but it would require roughly n? processors and space in order to be
run in O(logn) time. We show how to use much less processors and space.

Let the nodes with index ¢ of all levels be called row ¢ of the shuffle network.
Let v; denote the path starting at node ¢ at level 1 (see Figure 2). Our goal is
to find the final node of each path v;. Note that each path v; contains three
types of edges. First two types correspond to edges of switches. An edge of a
switch may climb or fall: We say that v; falls at level j, if at level j path v;
goes through a switch (j, k;) and reaches node j at level j + 1. (It includes the
case when k; = j and the path goes horizontally.) Note that every path falls
exactly once. We say that v; climbs at level j, if at level j path v; goes through
a switch (j, k;) and reaches node k; at level j 4+ 1 with k; > j. The remaining
edges of the path form a number of horizontal subpaths. More precisely, v; has
a horizontal subpath between levels j + 1 and [, if v; climbs or falls at level [
and either j = 0 and ¢ = I, or v; climbs at level j with k; = I. Note that the
number of horizontal subpaths is O(n). Indeed, each horizontal subpath starts
either at the first level or at the node of a switch. There are n switches and
each gives rise to at most two horizontal subpaths. Our construction is based
on contracting horizontal subpaths to a single edges.

In order to find the final nodes of the paths, we generate a directed graph GG

October 22, 1996, 11:31 8

. fall of vy
climb of v, horlzont'TzJ subpath
ANEVARN
' >£ 4 final node of v;
path v,
initial node of Vin,

Figure 2: Path vy in a shuffle network

consisting of O(n) nodes and O(n) edges (see Figure 3). There are n nodes that
correspond to the starting positions at level 1, and we denote them by (7,0, ¢),
for 1 < ¢ < n. The remaining nodes correspond to the switches: two nodes per
switch. The two nodes corresponding to a switch (4, k;), 1 < i < n, are denoted
by (i, 4, k;) and {k;, i, k;) (the first coordinate is the row number, the next two
coordinates correspond to the switch.) There are also n “output” nodes out(s),
for 1 <i<n.

There are three kinds of edges in G. Some edges correspond to the edges in
the shuffle network where the paths climb. Thus for each ¢, 1 < i < n, if k; # 4,
then there is a directed edge from (i, ¢, k;) to (k;, 4, k;). There are O(n) edges
corresponding to the horizontal subpaths. We take a directed edge from (I, 5,)
to ({,1, ki), if a path arriving at row [through switch (j,{) leaves row [through
switch ([, k;), where k; > [(that is, the path further climbs). An important
point is that we may find these edges by lexicographical sorting triplets (s, ¢, j).
The key observation is that if {j, j, k) is the immediate successor of (j, s, j) after
lexicographical sorting, then there i1s a horizontal subpath between levels s + 1
and j inside row j. Using the sorting algorithm due to Cole [3], sorting the
triplets can be performed in O(logn) time on an n processor EREW PRAM
with O(n) memory cells.

There are also n edges corresponding to the paths starting with falling edges

October 22, 1996, 11:31 9

edges Jeoo
corresponding

to horizontal .ﬂfslolsz 777777

subpaths

nodes
corresponding
to inputs

to switches

corresponding
to switches

Figure 3: Edges in graph G corresponding to the paths vy, va, vg, v7

and leading to the output nodes. We find them in the following way: If after
sorting the triplets (s, i, s) is followed by (s, j, s) for some j < s, then G contains
an edge from (s, i, s) to out(yj).

It follows from the construction that the edges in G determine the paths
corresponding to the paths v;: If the last node of a path starting in (s,0,s)
is out(j), then j is the final node of v;. What differs the graph G from the
shuffle network is that G has only O(n) nodes. So performing pointer jumping
on G requires only O(n) processors. Also, since each edge of (¢ corresponds to
a subpath of a path in the shuffle network, each path in GG has length at most
n and pointer jumping takes O(logn) time. a

Observe that our construction reduces permutation generation to stable in-
teger sorting, or alternatively, to sorting distinct integers drawn from the set
{1,...,n3}. Apart from integer sorting all other operations can be performed
in O(logn) time on the O(n/logn)-processor EREW PRAM with O(n) space.
Thus our construction extends a similar reduction for weak randomized permu-
tation generation of Hagerup [7].

October 22, 1996, 11:31 10

3 CREW Algorithm

This section contains a proof of Theorem 2. In our construction we use the
following probability distribution.

Definition 3 We say that a random variable X € {0,1,... {} has hypergeo-
metric probability distribution Hp(l, m) if

(H) (%)
SO

The intuition is that we consider a set A of 2m elements consisting of two parts

Pr(X =4) =

A1, As, of m elements each. Let us choose uniformly at random [elements of
A. Then X denotes the number of elements taken from A;.

Our CREW PRAM algorithm requires that each processor can choose ran-
domly an integer from the set {0,1,...,m}, m < n, with hypergeometric dis-
tribution Hp(,m), { < m, in a single PRAM step.

3.1 Outline of the algorithm

In the following we assume that n is a power of 2, which significantly simplifies
the notation and does not influence the generality of the results obtained. The
algorithm that we present yields a random perfect matching between two sets of
n elements given by constructing a matching network as described in Section 1.3.
The main component of the network is a splitter (see Figure 4):

Definition 4

1. A perfect matching between sequences of nodes A and B is called stable,
if for every i < |A] the ith node of A is matched with the 7th node of B.

2. Let [be an even integer. An l-splitter between sequences of nodes P =

Py,..., Py and R = Ry, ..., Rj—1 is a network which for some increasing
sequence of integers g, ..., %2-1, 0 <o, 5/2_1 <,
e defines a stable perfect matching between nodes P;,,..., P, ,_, and

nodes Ro, ..., Ry/a_1,

e defines a stable perfect matching between the sequences of the re-
maining nodes of P and Ry/s, ..., f_1.

The nodes Py, ..., FP;,,_, € P are called later the chosen nodes of the
splitter. The nodes in P are called input nodes and the nodes in R are

called output nodes.

October 22, 1996, 11:31 11

chosen nodes - in black
nodes not chosen - in white

Figure 4: The matching defined by a stable splitter

In the next subsection we show how to construct a random splitter. “Ran-
dom” means in this context that for a given [and a sequence P’ of I/2 input
nodes, the probability of constructing the [-splitter with the chosen nodes P’

-1
equals (l/lz) . Provided that we can build random splitters, the construction

of the network defining a random perfect matching may be described as follows:

Algorithm 1 Recursive construction of random matching network between se-
quences of nodes P = Py, ..., Pph_1 and R = Ry, ..., Rm_1 (see Figure 5.)

if m =1 then
connect Py to Ry
otherwise
let P/ = P}, ..., P! _, be an additional sequence of nodes.
(1) Splitting phase: Choose uniformly at random an m-splitter with the
input nodes in P and the output nodes in P’.

October 22, 1996, 11:31 12

(2) Recursive call: Construct random matching networks for input nodes
Pt P, and output nodes Ry, ..., R, /21 and, independently,
0 m/2—1 /
for input nodes Pr/n/Z’ ..., P,y and output nodes R, /9, ..., Rpm_1.
(3) Output the composition of networks constructed in (1) and (2).

matching network
nodes P / (constructed in the recursive call)

] \&_ 2-splitters

. le | & —2 g

> SHEE P = oo
o | * A D e\ o
o | — = |lg ' . 1 e o
(@) C— «@ l= N : r —e (@)
c | = le E ® - c
2 e L 2
c] ! TS - - B 5
S T i - o N S = o
apa Hetstt o =3 .
“\ e B I = / o

- ot B

] Jdl = C

X \ ,
splitter matching network
(constructed in (constructed in the recursive call)

the splitting phase)
Figure 5: Structure of the matching network constructed by Algorithm 1

The above construction may be executed so that the splitting phase and the
recursive call are performed in parallel. This rule may be applied to all recursive
calls, so finally the PRAM generates, independently and in parallel, a number
of splitters. Therefore the time of construction does not exceed the time needed
to construct the largest splitter. Moreover, there are logn stages of recursion,
so in order to show that we do not require too many processors it suffices to
show that a splitter can be constructed with few processors.

Proposition 3.1 Algorithm 1 returns each perfect matching with the same
probability.

Proof: We prove by induction on n that the probability that Algorithm 1
constructs a given perfect matching p of n elements equals 1/n!. For n = 1
it is obvious. So let n > 1 be a power of 2. In order to obtain u the
following three events must take place. First, during the splitting phase we

have to choose F; P as exactly these nodes that are to be matched

o3 i

October 22, 1996, 11:31 13

with Ro,..., Rp/2-1 and take a splitter that connects Pj,,..., 0P, ,,_, with
Pj,..., P!

21" Since each splitter is chosen with the same probability, the
probability of this event equals (n72)_1. Second, at Phase 2 we have to match
the nodes Pf, ..., Pr’l/z_1 with Ry, ..., R,/2—1 in a unique way in order to get
#. By the induction hypothesis this happens with probability 1/(n/2)!. Third,
at Phase 2 we have to match the nodes PT/L/Z’ oo Pl with Ry o, Ry

in a unique way, and it happens with probability 1/(n/2)!. Hence we obtain
matching g with probability

1 . 1 . 1 —i
(nr}z) (n/2)! (n/Q)!_n!'

3.2 Construction of a random splitter

For each ¢, 0 < i <logn, let the sets P; ;, 0 < j < 2! partition the set of input
nodes P = {Py, Py, ..., P,_1} into 2! consecutive intervals of length n/2?. That
is, we put P; ; = {Pjpnjo2i, - -, P(j+1).n/21_1}. According to this definition each
set Plogn,; consists of a single input F;.

The idea of the construction of a splitter is that in order to choose n/2
input nodes we determine instead how many elements chosen are inside each
set P; ;. For this purpose we use a tree 7 with the set of vertices {T;; | 0 <
i < logn and 0 < j < 2'}. We adopt the convention that T;; 1s a parent
of Ti11,2; and 141 2541, so 7 is a binary tree of depth logn. Each vertex
T;; € T corresponds to the set P; ; of input nodes. Thus the root of the tree
Ty,0 corresponds to the set of all input nodes. Further, for 7 € 7 the children
of 7 correspond to two “halves”of the set of their parent. Finally, each leaf of
T corresponds to a single input node.

We use a labeling cnt of vertices of 7 such that cnt(7; ;) equals the number
of elements chosen in P; ;. Therefore function cnt has to satisfy the following
conditions:

o cnt(Tpo) = n/2,

)

o cnt(7 ;) = ent(Ti41,25) + ent(Tigr 2j41),
o 0 S Cnt(ﬂ,j) S |7?Z,]|a

for 0 < i < logn and 0 < j < 2. If these properties hold, then (7, cnt) is
called a distribution tree. We say also that a node P; is chosen, if and only if
ent(Tiogn,j) = 1. For an example, see Figure 6.

How to construct uniformly at random a distribution tree without loosing
efficiency will be discussed in the next subsections. At this moment we assume

October 22, 1996, 11:31 14

[0]—=0O nodeschosen
[1]—~e@ bythetree
H.A7

(1] —~e

[0]—0

[0]—0O

[0]—O

cnt(Ty 0)=3 p—

t
(00}

Cnt(TO,O):_

cnt(Ty 1)F5 — \

[0]—=0O nodes not
—=@ chosen by
—~@ thetree

B
E
B
B
B
B
B
E

Figure 6: A distribution tree

we are given some distribution tree (7, cnt) and point how we construct the
corresponding splitter.

The set of chosen elements (and hence the distribution tree) defines a unique
splitting perfect matching pr. Namely, p(P;) = R where

[— | {j|Jj<iand P;is chosen} | if P; is chosen,
“ | 5+ 14{jlj<iand P;isnot chosen} | if P; is not chosen.

Obviously, p has all properties demanded from the matching defined by a
splitter. Hence it remains only to indicate how we generate a splitter realizing
. This network can be described recursively as follows:

Algorithm 2 Recursive description of a splitter from distribution tree (T, cnt)

if n =1 then
connect the output node with the input node
otherwise
let {P},...,P._4} be an additional set of nodes divided into two equal
halves 8" = {P},..., PT/L/Z—l} and S” = {PT/L/Z’ L Pt
(1) Recursive call: (see Figure 7)
Independently do in parallel:

e apply recursively the algorithm to S’, the first n/2 input nodes
and the subtree of the distribution tree with the root in 77 o,

e apply recursively the algorithm to S”, the last n/2 input nodes
and the subtree of the distribution tree with the root in 77 ;.

October 22, 1996, 11:31 15

_o Aoplitter 1\ g gplitter

16-splitter

L
L
L
P
Py
P
Py
P
O
O
O
O
O
O
O
-O

L2000 R R R N O R N R R O O O O B

Figure 7: The recursive structure of a splitter

(2) Distribution phase: (see Figure 8)

e connect the first cnt(7% o) nodes of S’ with the first cnt(77)
output nodes,

e connect the first cnt(77 1) nodes of S with the next cnt(77 1)
output nodes,

e connect the remaining nodes of S* with the next n/2 — cnt(77)
output nodes,

e connect the remaining nodes in S” with the remaining output
nodes the remaining nodes in 5”.
(3) Output the composition of networks constructed in (1) and (2).

We prove by induction on n that the network constructed above defines
matching p. For n = 1 1t 1s obvious, so let us assume that n > 1. By the
construction, for i < cnt(7,0) the 7th chosen input node is connected with

October 22, 1996, 11:31 16

CNt(Ti, 1 25) {
5 cnt(T;;)
Cnt(Ti+1,2j+1) ~ G
s z - —

Figure 8: Matching constructed by the distribution phase

the ¢th node of S’ and therefore with the 7th output node. For ¢ > cnt(T7 o),
the ¢th chosen node is the ¢ — cnt(74 o) chosen node in the second half of the
set of input nodes. Hence it is connected with the node i — cnt(T7 o) of S
So this input node is finally connected with the output node with the index
i — cnt(7,0) + cnt(T31 o) = i. We conclude that the chosen nodes are matched
with the output nodes indicated by p. Similarly we may check that the non-
chosen nodes are connected to the output nodes according to u, too.

In order to generate the splitter described we perform the distribution phase
and the recursive call in parallel. Because the connections generated by both
parts of the algorithm depend on the distribution tree {7, cnt) that is given in
advance, the construction can be done by a CREW PRAM in constant time.

3.3 Random choice of a distribution tree

As we have seen, in order to choose a splitter uniformly at random it suffices to
choose a distribution tree uniformly at random. A straightforward way would
be to construct the tree top-down as follows.

Algorithm 3 Naive method for constructing random distribution tree

ent(Tp 0) n/2
fori=0tologn—1do
for 0 < j < 2 do in parallel
choose cnt(Tj41 2;) as a random number according to probability
distribution Hp(cnt(7T; ;), n/2")
ent(Tig1,2541) < ent (15 5) — ent(Tiy1,25)
endfor

October 22, 1996, 11:31 17

Let us have a closer look at the above algorithm. Given a value cnt(T; ;)
we choose the values cnt(Tjyq 95) and cnt(Z541 2541) so that cnt(Ti4q 25) +
ent(Ti41,2541) = cnt(T; ;), as demanded for function cnt. Given that we have
already set cnt(7; ;) = I, then we know that we choose [nodes in P; ;. Thus we
should choose ent(Ti41 25) = k, cnt(Tit1 2541) = {—k (that is, k chosen elements
from the first half and { — k from the second half) with probability

n/2tt! n/2tt!
)02

n/2¢

(")
That is, we have to choose according to the hypergeometric probability distri-
bution Hp(l,n/2i+1).

Proposition 3.2 When Algorithm 3 starts with cnt(1p,0) = I, each subset of |
nodes is chosen by the distribution tree equiprobably.

Proof: The proof is by induction on n. For n = 1 this is obviously true. Let
us assume that the claim holds for n/2; we check it for n. Consider a set X of
[out of n nodes such that [X NPy o] = k. In order to choose X it is necessary
to decide upon cnt(77 o) = k, ent(7h,1) = { — k. This happens with probability
(”/2) . (”/2) . (”)_1. Function cnt is defined for the ancestors of 77 g so that,

k -k l
by the induction hypothesis, each subset of P; o of k elements is chosen with

the same probability (”42)_1. Similarly, each subset of Py ; of [— k elements

-1
is chosen with probability (7_/5) . The processes of constructing subtrees with
the roots 17 o and 71 ; are independent, so the probability that we obtain X

equals
(") - (22) 1

(-G)
as required. a

Notice that Algorithm 3 runs in O(logn) time and therefore cannot be used
as a subroutine of our algorithm mentioned in Theorem 2. The reason for this
running time is that in order to generate cnt(7;41 ;) and cnt(Ti4q,2541) we have
to wait until cnt(7; ;) is fixed. In the following subsection we show how to elude

this difficulty.

3.4 Fast parallel generation of a distribution tree

In order to speed up the naive algorithm we apply the following trick. We
substitute each T; ; by a set {T;;, |0 <a < n/2'}. By T; ;.o we understand
a copy of T; jwhich assumes that cnt(7; ;) = a. In other words, T; ; . presumes
that a nodes are to be chosen from P; ;. Let 7' = {TO,O,%} U{Ti;a|1<i<
logn,0 < j < 2,0 <a<n/2}. The following algorithm lets each T} ; , choose
at random its children Tjyq 250 and Tj41 2541, so that a = o' + a”.

October 22, 1996, 11:31 18

T1,0,0
T101

Too,n/2

€

Figure 9: The edges chosen by the nodes of 7'. The bold edges correspond to
the distribution tree generated by 7’

Algorithm 4 Generating Step

for each vertex 7 =T ; o € T’ where 1 < logn do in parallel
choose a number r at random according to probability distribution Hp(a, n/2%)
Childiet (7) < Tig1,25»
Chﬂdright(T) — 71i+1,2j+1,a—7‘

Since |7'| =1+2-5+4 -5+ ... =nlogn + 1, Generating Step can be
performed in a constant time with nlogn processors.

Generating Step constructs a graph G with the set of vertices 7’7 and the
edges (7, Childier; (7)) and (7, Childigh: (7)). It is easy to see that the successors
of Tp0,z In G form a complete binary tree of depth logn. Let us call this tree 77
and let us define cnt for each vertex T} ;o of this tree to be a. Then <?, ﬁ> Is a
well defined distribution tree generated according to the probability distribution
defined in the previous subsection.

In order to use tree 77 in our construction of a splitter in Algorithm 2 we still
lack one important thing. The distribution tree is given as a pointer structure

October 22, 1996, 11:31 19

and we do not know how to find the vertices of 7/ without tracing 77/ from
the root. On the other hand, for Algorithm 2 we need to find the labels of the
nodes!

The next algorithm gathers information about all vertices of 77 in the root of
T (and for technical reasons, at some vertices of 77 as long as it is needed.) For
this purpose we use standard doubling technique. For each vertex 7 of G we shall
collect information about the subtree InfoTree(r) rooted at 7 and containing the
successors of 7 in G. Initially, each InfoTree(r) stores the names of the children
of 7. Using the doubling technique it is possible to replace leaves of InfoTree(r)
by subtrees found up to this moment by the vertices corresponding to the leaves
of InfoTree(T):

Algorithm 5 Gathering Step

for each vertex r=1;; , € 7’ do in parallel
if i = logn then
set InfoTree(T) to be the tree with only one vertex r which is both
the root and the leaf
if 0 <i < logn then
set InfoTree(t) to be the tree with root 7 and the leaves
Childyef: (7), Childyigne (7)
repeat loglogn times

for each vertex 7 € 7' do in parallel

if [y, 1o, ..., I, are the leaves of InfoTree(T),
then for 1 < j < r replace the leaf {; in InfoTree(t) by InfoTree(l;)

Proposition 3.3 Gathering Step collects the whole tree T/ in InfoTree(Toyoyg)
in O(loglogn) time using n” processors.

Proof: The repeat loop of the algorithm is executed in a constant time — sim-
ply for each leaf and each value copied there is a separate processor. Therefore
the running time is O(loglogn). The number of the processors used for the
kth iteration does not exceed the total size of all InfoTree’s immediately af-
ter iteration k. Notice that for each T; ; o € 7' the InfoTree consists finally of
2.21987=1_1 vertices. Thus the total number of processors used at any iteration
does not exceed

logn

9. 210gn—z -1 — 9t (Z 1) - (2. 210gn—z -1
>)= X)

Ti,5,a€T!
= 2n—1?4n-(logn+1).

October 22, 1996, 11:31 20

By applying Generating Step and then Gathering Step we would get an al-
gorithm which generates a distribution tree in time O(loglogn) using n? proces-
sors. In the following we show how to combine Gathering Step with Algorithm 3
in order to reduce the number of processors without loosing the execution speed.

The main idea behind our construction is to generate the InfoTree’s till
some depth h is reached. If we stop generating InfoTree’s at the moment when
they have depth h <« logn, then because the size of each tree is small, we use
much less processors than during Gathering Step. Once this is done we shall
determine the distribution tree (77, cnt) sequentially top-down: We start with
the root, then collect information about the nodes of the first h levels (using
the information contained in InfoTree of the root), then about the nodes of the
next h levels (using InfoTree’s of the nodes already informed at level A4 1), and
0 on.

Algorithm 6 Fust parallel method for generating and identification of a distri-
bution tree; parameter h (0 < h < logn) will be used to tune the execution time
and the number of processors used:

(1) execute Generating Step

(2) for each 7 € 7/ do in parallel
perform log h times the loop of Gathering Step, so that InfoTree(r) will
contain a tree of depth h pointing to all successors of 7 in distance at
most h

(3) inform Th0,z that it belongs to T

(4) fori=1,h+1,2h+1,...,logn do
for each 7, a vertex of 7’ of depth ¢ do in parallel

if 7 knows that it belongs to 7/ then
inform all successors of 7 pointed by the vertices of InfoTree(T),

that they belong to 7/

(5) for each 4,j,a
if vertex T; ; o is marked as chosen (and thereby is in 77),
then set cnt(7; ;) = a

Now let us analyze resources necessary to execute Algorithm 6.

Proposition 3.4 For every integer h, 1 < h <logn, Algorithm 6 runs in time
O(logh +logn/h) and uses O(2"nlogn) processors.

Proof: Let us consider each phase of Algorithm 6 separately:

Phase 1: Generating Step takes constant time with nlogn processors.

October 22, 1996, 11:31 21

Phase 2: Each execution of the loop of Gathering Step is performed in a con-
stant time. So together logh executions of the loop take O(logh) time.
As during this step each 7 € 7' collects only information about its suc-
cessors at distance < h, InfoTree’s have depths at most h and thereby at
most 2 - 2" — 1 nodes each. So the total number of processors necessary to
perform this step is bounded by

logn
.on
92.9" _ 1) = 9t (Z (2.90 _
Yooy = Y22
Ti5,€T’ 1=0

< 3.2" .nlogn.

Phase 4: The loop 1s executed l%%ﬂ times and its body is performed in one
parallel step. The number of processors used does not exceed the number
of vertices in 77, that is O(nlogn).

So finally, the total running time of Algorithm 6 is bounded by

O(logh + 10%).

The number of processors used is bounded by

max{nlogn,3-2" -nlogn} =3-2" -nlogn

Concluding we get the following result:

Corollary 3.5 For arbitrary positive constant ¢, the distribution tree can be
generated in time O(cloglogn) using pltl/cloglogn nrocessors.

Proof: Plug h = ﬁ% into the bound from Lemma 3.4. Then Algo-
rithm 6 runs in time O(loglogn) with n- Qﬁm -logn processors. Since for
sufficiently large n, n - 2087/ ((ct1)loglogn) o p = pl+1/((c+1)loglogn) ooy <
plti/eloglogn the bound follows. a

3.5 Properties of the constructions

It is easy to see that the splitter constructed using Algorithm 2 has depth
logn. Hence applying it in Algorithm 1 we get a random matching network A
with O(log® n) levels and O(nlog”n) nodes. By Corollary 3.5, generating A
takes O(cloglogn) time and uses pltl/eloglogn rocessors for arbitrary positive
constant ¢. Performing pointer jumping on A takes O(loglog” n) = O(loglog n)
steps and uses nlog? n processors. Thereby the algorithm designed fulfills the
properties stated in Theorem 2.

October 22, 1996, 11:31 22

4 Conclusions

As we already mentioned, our CREW PRAM algorithm uses hypergeometric
random number generator. It would be interesting to find an o(logn)-time
strong randomized algorithm based on a simple number generator or to provide
an elegant parallel generator for hypergeometric distribution.

Our EREW algorithm can be significantly accelerated, if we remove the as-
sumption that each permutation has to be generated with the same probability.
Simply, in one parallel step one can set randomly the switches of the Benes
network and then determine the permutation defined by the network through
pointer jumping in O(loglogn) steps. However the resulting probability dis-
tribution is far from being uniform. A challenging problem is to establish a
lower bound for running time of uniform permutation generation on the strong

randomized EREW PRAM.

References

[1] R. Anderson, Parallel algorithms for generating random permutations on a
shared memory machine, in Proc. 2nd Annual ACM Symposium on Parallel

Algorithms and Architectures, (ACM Press, New York, 1990), 95-102.

[2] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel
models of computation, J. Comput. System Seci. 30 (1985), 130-145.

[3] R. Cole, Parallel merge sort, STAM J. Comput. 17 (1988), 770-785.
[4] S. Cook, C. Dwork, and R. Reischuk, Upper and lower bounds for parallel

random access machines without simultaneous writes, SIAM J. Comput.

15 (1986), 87-97.

[6] M. Dietzfelbinger, M. Kutylowski, and R. Reischuk, Exact lower time
bounds for computing boolean functions on CREW PRAMs, J. Comput.
System Seci. 48 (1994), 231-254.

[6] R. Durstenfeld, Random permutation (Algorithm 235), Comm. ACM 7
(1964), 420.

[7] T. Hagerup, Fast parallel generation of random permutations, in Proc. 18th
Annual International Colloguium on Automata, Languages and Program-

ming, ICALP’91, (Springer Verlag, LNCS 510, Heidelberg, 1991), 405-416.

[8] D. E. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms, volume 2, Addison-Wesley, Reading, Massachusetts, 2nd edition,
1981.

October 22, 1996, 11:31 23

[9] Y. Matias and U. Vishkin, Converting high probability into nearly-constant
time - with applications to parallel hashing, in Proc. 23rd Annual ACM
Symposium on Theory of Computing, (ACM Press, New York, 1991), 307-
316.

[10] G. L. Miller and J. H. Reif, Parallel tree contraction, in Proc. 26 Symposium
on Foundations of Computer Science, (IEEE, Los Alamitos, 1985), 478-
489.

[11] G.L. Miller and J. H. Reif, Parallel tree contraction, Part 1: Fundamentals,
Adv. in Comput. Res. 5 (1989), 47-72.

[12] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univer-
sity Press, 1995.

[13] K. Mulmuley, Computational Geometry. An Introduction Through Ran-
domized Algorithms, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[14] J. Pieprzyk and B. Sadeghiyan, Design of Hashing Algorithms, Springer
Verlag, Berlin, 1987.

[15] S. Rajasekaran and J. Reif, Optimal and sublogarithmic time randomized
parallel sorting algorithms, STAM J. Comput. 19 (1989), 594-607.

[16] J. Reif, An optimal parallel algorithm for integer sorting, in Proc. 26 Sym-
posium on Foundations of Computer Science, (IEEE, Los Alamitos, 1985),
490-503.

[17] R. Sedgewick, Permutation generation methods, ACM Comput. Surv. 9
(1977), 138-164.

