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October 22, 1996, 11:31 21 IntroductionGenerating permutations is a fundamental problem studied in theoretical andapplied computer science already for few decades. One approach (historically�rst) assumed generation of all permutations of n elements (see [8] and [17], andthe references therein). Evidently, the problem is intractable even for very mod-erate values of n. The next approach, also extensively investigated, is generatingpermutations at random. This task can be formally described as follows:De�nition 1 A machine M generates a permutation � of n elements, if, whenhalted, the output memory cells Z1; : : : ; Zn store, respectively, �(1); : : : ; �(n).We say that M generates (uniformly) random permutations of n elements,if for every permutation � of n elements M generates � with probability 1=n!.Throughout the paper we consider only the problem of generating permu-tations with the uniform distribution and we skip the word \uniform" whiletalking about generating random permutations.The problem of generating a random permutation has recently received a lotof attention. The reasons are manifold. One of them is the growing interest inrandomized algorithms (see e.g. [12, 13]). Generating random permutations isa basic element for a large number of randomized sequential and parallel algo-rithms. For many deterministic algorithms one may �nd some malicious inputdata for which the algorithm performs poorly, although it works e�ciently onaverage. Permuting the input randomly may transform a di�cult input to agood one (at least on the average) and make it tolerable. Another �eld in whichrandom permutations might be important is cryptography. Random objectssuch as permutations are components of a large number of cryptographic al-gorithms and protocols. Having really random fast and cheap source of theseobjects would be crucial for avoiding security gaps and is often assumed byanalysis of cryptographic protocols. Unfortunately, creating such sources is achallenging problem and currently used techniques generate only pseudorandomobjects (see e.g. [14]). One of many reasons why random permutations are dif-�cult to generate is the running time involved that is unacceptable for practicalapplications. We believe that parallel techniques might be important in thiscontext.When we consider generation of a random permutation, we have to assumethat our algorithm uses some random resources. Thereby the algorithm must berandomized. However, there are many ways of using randomness and a sentencealgorithm A generates a random permutation in time T may have many di�erentmeanings. We are interested in algorithms where all bounds are guaranteed ina strong way:De�nition 2 We say that a machine M generating a random permutation of nelements in time T with p processors and m memory cells is strong randomized,if:



October 22, 1996, 11:31 3� M always halts after T steps,� M may use given p processors and m cells,� each permutation has equal chance of 1=n! to become the output of M .In the literature there are many algorithms for generating random permu-tations that do not satisfy these conditions. In this case we say that the algo-rithm is weak randomized. This happens if, for instance, an algorithm ensuresthe claimed time bound to hold only in the expected case, or to hold with highprobability. For example, a randomized algorithm may generate a permutationuniformly at random and halt within T steps provided that a certain (random-ized) event E takes place, where Pr(E) > 1� o(1) and E is independent of thepermutation found.There are many reasons why permutation generation by strong randomizedalgorithms are superior to weak randomized ones. For instance, it may bedi�cult to check that the mentioned event E in the case of a weak algorithmhas really occurred. In this case we cannot guarantee that the algorithm givesproper answers. When we consider a weak randomized algorithm running withthe failure probability f(n), the permutation chosen by such an algorithm isuniform with probability 1 � f(n); here f(n) is usually a very small functionof the form f(n) = n�c or f(n) = 2�"n, for constants c > 1 and 0 < " < 1.Observe that in this situation the probability of a single permutation may di�erfrom the ideal 1=n! even by f(n). (Note that f(n) is usually an extremelybig value compared with 1=n!.) An approach of this kind may be acceptableas a component in other randomized algorithms, where such a precision is fullyacceptable because it adds only the additive term f(n) to the failure probability.However, there are some critical application (e.g. in cryptography) where sucha deviation from the uniform distribution might be dangerous.In this paper we study the permutation generation problem on the ParallelRandom Access Machine (PRAM) model. We focus on PRAMs with exclusiveread exclusive write (EREW) and concurrent read exclusive write (CREW)access mode to the shared memory. In order to make our model sound weassume that a cell of an n-processor PRAM may store O(logn) bits.1.1 Related workPrevious parallel algorithms for generating random permutations have beenbased on three basic techniques. The �rst one, called dart throwing , consists oftwo steps. First, the input elements are mapped at random into an array of sizeO(n). Their order in the array gives an implicit random permutation. Then,the elements are compressed into an array of size n. This technique is especiallye�cient when used on the CRCW PRAM model, where con
icts during writingand reading are allowed. There has been a sequence of papers using this tech-nique [10, 11, 15] culminating in the papers due to Hagerup [7] and Matias and



October 22, 1996, 11:31 4Vishkin [9], who designed weak randomized algorithms that generate randompermutations in O(log� n) time on the O(n= log� n)-processor CRCW PRAM,with high probability.The second technique is based on integer sorting and it also leads to weakrandomized algorithms. Each element chooses a key uniformly at random fromthe set f1; : : : ; ng. Then the elements are sorted according to the keys' val-ues, which de�ne the relative order of the elements with di�erent keys. Finally,the elements with the same key are randomly permuted using a sequential al-gorithm. This technique was �rst used by Reif [16], who applied his integersorting algorithm to generate random permutations in time O(logn) on theO(n= logn)-processor CRCW PRAM, with high probability. Hagerup [7] usedthis idea to the EREW PRAM model, and showed that, disregarding a small fail-ure probability, generation of random permutations is reducible to integer sort-ing. In particular, combining with known integer sorting algorithms, this yieldsa weak randomized algorithm that runs in O(logn) time on the n-processorEREW PRAM, or an algorithm running in time O((logn)5=3(log logn)1=3) onthe EREW PRAM with O(n= logn) processors. Both these results assume thespace of O(n) size is used.The third technique is to implement in parallel a basic sequential algorithm,which we call Shuffle, due to Durstenfeld [6] (see also [8, page 139] and [17]):Shuffle:for i := 1 to n do �(i) := ifor i := 1 to n do� := random element from fi; : : :ngexchange the values of �(i) and �(�)It is well known that this algorithm returns permutations according to theuniform distribution. Anderson [1] used this algorithm in a parallel setting andshowed that it can be run e�ciently on parallel machines with a small number ofprocessors communicating through a common bus such as Ethernet. He showedthat the main loop of Shuffle can be divided into pieces, each piece executedby a di�erent processor. The ordering in which the resulting permutations arecomposed a�ects the permutation generated, but not its probability distributionin a serious way, even if the delivery times of messages sent through the bus aredetermined on-line by an adversary controlling the bus. Hagerup [7] later imple-mented Shuffle to run in O(logn) time with n processors and �(n2) space onthe EREW PRAM. He was able to reduce the space used, sacri�cing however therunning time and/or turning from the EREW to the CREW PRAM model. Hepresented two algorithms that use O(n1+") space for arbitrary �xed " > 0, onerunning in O(log2 n) time on the O(n= logn)-processor EREW PRAM, and an-other running in time O(logn log log logn) on the O(n= log log logn)-processorCREW PRAM.Observe that Shuffle has one very important advantage over the �rst twotechniques: it leads to strong randomized algorithms. Thus up to now, the



October 22, 1996, 11:31 5fastest strong randomized O(logn)-time algorithm uses n-processors and 
(n2)space on the EREW PRAM. We are not aware of any better strong randomizedalgorithm existing in the literature even on the CRCW PRAM !1.2 New resultsWe present two algorithms for generating random permutations, one runningon the EREW PRAM and the other running on the CREW PRAM. Our �rstresult is an e�cient implementation of Shuffle.Theorem 1 There is a strong randomized EREW PRAM algorithm that gen-erates permutations of n elements uniformly at random in time O(logn) withn processors and O(n) space.This algorithm is a simple but e�cient implementation of Shuffle on theEREW PRAM. It uses the minimum number of O(logn!) random bits requiredonly to de�ne the output permutation. Though the algorithm is simple, it im-proves upon all previously known algorithms for generating random permuta-tions for the CREW and the EREW PRAMs. Comparing to former results, weeither reduce space used or make the algorithm strong randomized and removeconcurrent reads, while the other parameters are not worsened.Because even with the use of randomization and unbounded number of pro-cessors, any CREW PRAM requires 
(logn) time to compute the OR of n bits[4, 5], any non-trivial problem that can be solved on this model in time o(logn)is of special interest. There are extremely few such algorithms, perhaps themost signi�cant so far was the algorithm for merging two ordered sequences ofn elements [2]. Our second and main result is the �rst permutation generationalgorithm for the CREW PRAM that runs in sub-logarithmic time.Theorem 2 There is a strong randomized CREW PRAM algorithm that gen-erates permutations of n elements uniformly at random in time O(log logn)using O(n1+ 1c log log n ) processors, for arbitrary positive constant c.The main message of this result is that the generation of random permu-tations may follow another strategy than the previously known techniques andlead to possible more e�cient algorithms.Our CREW algorithm uses hypergeometric random number generator. Itwould be desirable to achieve the same running time using only the unbiasedcoins. However, it is easy to see that then the probability of generating anarbitrary permutation would be of the form i=2j , for some i; j 2 N. So it cannotbe 1=n! and therefore each strong randomized algorithm has to use somethingmore than a uniform random bit generator.While designing our algorithms we introduce a novel technique for generat-ing permutations that we call networks simulation. We study certain suitablyde�ned layered networks whose main feature is that each level of the network is



October 22, 1996, 11:31 6designed locally and independently of the other levels. The �nal permutationis de�ned by the paths from the nodes on the �rst level to the nodes on theterminal level.1.3 Basic techniquesIt is equivalent to construct a random permutation on n elements or to constructa random perfect matching between two sets fa1; : : : ; ang and fb1; : : : ; bng of nelements each. Simply, if � is such a perfect matching, then we de�ne ��(i) = jif �(ai) = bj. Therefore throughout the rest of the paper we may talk aboutperfect matchings instead of permutations.Our way to obtain a random perfect matching will be through construct-ing special layered networks, called later matching networks. Such a networkconsists of several levels, each containing n nodes. The directed links of thenetwork form perfect matchings between consecutive levels of the network. Anymatching network de�nes a perfect matching � between the nodes on the �rstand the last levels: for a node C on the �rst level, �(C) is the unique node Zon the last level so that there is a path between C and Z. Of course choosingthe matchings between the levels must be carefully done in order to get �nallyeach permutation with the same probability, and simple enough in order to beeasily constructible.Once we have constructed the network, determining the perfect matching �can be realized by the pointer jumping technique: after step i every node R inlevel j stores a pointer to the single node S on level minfj + 2i; last levelgsuch that there is a path between R and S. At step i+1 the processor attachedto R reads the pointer stored in S and copies it to R. The new pointer of Rpoints to a node S0 on level minfj + 2i+1; last levelg such that there is a pathbetween R and S0.Obviously, the pointer jumping technique can be performed on the EREWPRAM in time logarithmic in the number of levels. One can implement it sothat the time-processor product equals the number of the nodes in the network.2 EREW AlgorithmIn this section we prove Theorem 1. The algorithm Shuffle can be imple-mented by constructing a so called shu�e network with n levels. The matchingbetween levels i and i + 1 contains a single switch (i; ki), where ki, i � ki � n,is chosen uniformly at random and corresponds to the number � chosen duringthe ith iteration of the loop of Shuffle. The switch (i; ki) connects the node ifrom level i with node ki from level i + 1, and node ki from level i with node ifrom level i + 1. For j 6= i; ki, the node j of level i is connected with node j oflevel i + 1. For examples see Figure 1.
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Figure 1: A shu�e network. Edges corresponding to the switches are distin-guished by the shadowed �elds.To �nd the permutation de�ned by a shu�e network we may apply pointerjumping, but it would require roughly n2 processors and space in order to berun in O(logn) time. We show how to use much less processors and space.Let the nodes with index i of all levels be called row i of the shu�e network.Let vi denote the path starting at node i at level 1 (see Figure 2). Our goal isto �nd the �nal node of each path vi. Note that each path vi contains threetypes of edges. First two types correspond to edges of switches. An edge of aswitch may climb or fall: We say that vi falls at level j, if at level j path vigoes through a switch (j; kj) and reaches node j at level j + 1. (It includes thecase when kj = j and the path goes horizontally.) Note that every path fallsexactly once. We say that vi climbs at level j, if at level j path vi goes througha switch (j; kj) and reaches node kj at level j + 1 with kj > j. The remainingedges of the path form a number of horizontal subpaths. More precisely, vi hasa horizontal subpath between levels j + 1 and l, if vi climbs or falls at level land either j = 0 and i = l, or vi climbs at level j with kj = l. Note that thenumber of horizontal subpaths is O(n). Indeed, each horizontal subpath startseither at the �rst level or at the node of a switch. There are n switches andeach gives rise to at most two horizontal subpaths. Our construction is basedon contracting horizontal subpaths to a single edges.In order to �nd the �nal nodes of the paths, we generate a directed graph G
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Figure 2: Path v1 in a shu�e networkconsisting of O(n) nodes and O(n) edges (see Figure 3). There are n nodes thatcorrespond to the starting positions at level 1, and we denote them by hi; 0; ii,for 1 � i � n. The remaining nodes correspond to the switches: two nodes perswitch. The two nodes corresponding to a switch (i; ki), 1 � i � n, are denotedby hi; i; kii and hki; i; kii (the �rst coordinate is the row number, the next twocoordinates correspond to the switch.) There are also n \output" nodes out(i),for 1 � i � n.There are three kinds of edges in G. Some edges correspond to the edges inthe shu�e network where the paths climb. Thus for each i, 1 � i � n, if ki 6= i,then there is a directed edge from hi; i; kii to hki; i; kii. There are O(n) edgescorresponding to the horizontal subpaths. We take a directed edge from hl; j; lito hl; l; kli, if a path arriving at row l through switch (j; l) leaves row l throughswitch (l; kl), where kl > l (that is, the path further climbs). An importantpoint is that we may �nd these edges by lexicographical sorting triplets hs; i; ji.The key observation is that if hj; j; ki is the immediate successor of hj; s; ji afterlexicographical sorting, then there is a horizontal subpath between levels s + 1and j inside row j. Using the sorting algorithm due to Cole [3], sorting thetriplets can be performed in O(logn) time on an n processor EREW PRAMwith O(n) memory cells.There are also n edges corresponding to the paths starting with falling edges
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Figure 3: Edges in graph G corresponding to the paths v1; v2; v6; v7and leading to the output nodes. We �nd them in the following way: If aftersorting the triplets hs; i; si is followed by hs; j; si for some j � s, then G containsan edge from hs; i; si to out(j).It follows from the construction that the edges in G determine the pathscorresponding to the paths vi: If the last node of a path starting in hs; 0; siis out(j), then j is the �nal node of vs. What di�ers the graph G from theshu�e network is that G has only O(n) nodes. So performing pointer jumpingon G requires only O(n) processors. Also, since each edge of G corresponds toa subpath of a path in the shu�e network, each path in G has length at mostn and pointer jumping takes O(logn) time. 2Observe that our construction reduces permutation generation to stable in-teger sorting, or alternatively, to sorting distinct integers drawn from the setf1; : : : ; n3g. Apart from integer sorting all other operations can be performedin O(logn) time on the O(n= logn)-processor EREW PRAM with O(n) space.Thus our construction extends a similar reduction for weak randomized permu-tation generation of Hagerup [7].



October 22, 1996, 11:31 103 CREW AlgorithmThis section contains a proof of Theorem 2. In our construction we use thefollowing probability distribution.De�nition 3 We say that a random variable X 2 f0; 1; : : : ; lg has hypergeo-metric probability distribution Hp(l;m) ifPr(X = i) = �mi �� ml�i��2ml � :The intuition is that we consider a set A of 2m elements consisting of two partsA1, A2, of m elements each. Let us choose uniformly at random l elements ofA. Then X denotes the number of elements taken from A1.Our CREW PRAM algorithm requires that each processor can choose ran-domly an integer from the set f0; 1; : : :;mg, m � n, with hypergeometric dis-tribution Hp(l;m), l � m, in a single PRAM step.3.1 Outline of the algorithmIn the following we assume that n is a power of 2, which signi�cantly simpli�esthe notation and does not in
uence the generality of the results obtained. Thealgorithm that we present yields a random perfect matching between two sets ofn elements given by constructing a matching network as described in Section 1.3.The main component of the network is a splitter (see Figure 4):De�nition 41. A perfect matching between sequences of nodes A and B is called stable,if for every i � jAj the ith node of A is matched with the ith node of B.2. Let l be an even integer. An l-splitter between sequences of nodes P =P0; : : : ; Pl�1 and R = R0; : : : ; Rl�1 is a network which for some increasingsequence of integers i0; : : : ; il=2�1, 0 � i0, il=2�1 < l,� de�nes a stable perfect matching between nodes Pi0 ; : : : ; Pil=2�1 andnodes R0; : : : ; Rl=2�1,� de�nes a stable perfect matching between the sequences of the re-maining nodes of P and Rl=2; : : : ; Rl�1.The nodes Pi0 ; : : : ; Pil=2�1 2 P are called later the chosen nodes of thesplitter. The nodes in P are called input nodes and the nodes in R arecalled output nodes.
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lFigure 4: The matching de�ned by a stable splitterIn the next subsection we show how to construct a random splitter. \Ran-dom" means in this context that for a given l and a sequence P 0 of l=2 inputnodes, the probability of constructing the l-splitter with the chosen nodes P 0equals � ll=2��1. Provided that we can build random splitters, the constructionof the network de�ning a random perfect matching may be described as follows:Algorithm 1 Recursive construction of random matching network between se-quences of nodes P = P0; : : : ; Pm�1 and R = R0; : : : ; Rm�1 (see Figure 5.)if m = 1 thenconnect P0 to R0otherwiselet P 0 = P 00; : : : ; P 0m�1 be an additional sequence of nodes.(1) Splitting phase: Choose uniformly at random an m-splitter with theinput nodes in P and the output nodes in P 0.



October 22, 1996, 11:31 12(2) Recursive call: Construct random matching networks for input nodesP 00; : : : ; P 0m=2�1 and output nodes R0; : : : ; Rm=2�1 and, independently,for input nodes P 0m=2; : : : ; P 0m�1 and output nodes Rm=2; : : : ; Rm�1.(3) Output the composition of networks constructed in (1) and (2).
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Figure 5: Structure of the matching network constructed by Algorithm 1The above construction may be executed so that the splitting phase and therecursive call are performed in parallel. This rule may be applied to all recursivecalls, so �nally the PRAM generates, independently and in parallel, a numberof splitters. Therefore the time of construction does not exceed the time neededto construct the largest splitter. Moreover, there are logn stages of recursion,so in order to show that we do not require too many processors it su�ces toshow that a splitter can be constructed with few processors.Proposition 3.1 Algorithm 1 returns each perfect matching with the sameprobability.Proof: We prove by induction on n that the probability that Algorithm 1constructs a given perfect matching � of n elements equals 1=n!. For n = 1it is obvious. So let n > 1 be a power of 2. In order to obtain � thefollowing three events must take place. First, during the splitting phase wehave to choose Pi0; : : : ; Pin=2�1 as exactly these nodes that are to be matched



October 22, 1996, 11:31 13with R0; : : : ; Rn=2�1 and take a splitter that connects Pi0 ; : : : ; Pin=2�1 withP 00; : : : ; P 0n=2�1. Since each splitter is chosen with the same probability, theprobability of this event equals � nn=2��1. Second, at Phase 2 we have to matchthe nodes P 00; : : : ; P 0n=2�1 with R0; : : : ; Rn=2�1 in a unique way in order to get�. By the induction hypothesis this happens with probability 1=(n=2)!. Third,at Phase 2 we have to match the nodes P 0n=2; : : : ; P 0n�1 with Rn=2; : : : ; Rn�1in a unique way, and it happens with probability 1=(n=2)!. Hence we obtainmatching � with probability1� nn=2� � 1(n=2)! � 1(n=2)! = 1n! : 23.2 Construction of a random splitterFor each i, 0 � i � logn, let the sets Pi;j, 0 � j < 2i, partition the set of inputnodes P = fP0; P1; : : : ; Pn�1g into 2i consecutive intervals of length n=2i. Thatis, we put Pi;j = fPj�n=2i; : : : ; P(j+1)�n=2i�1g. According to this de�nition eachset Plogn;j consists of a single input Pj.The idea of the construction of a splitter is that in order to choose n=2input nodes we determine instead how many elements chosen are inside eachset Pi;j. For this purpose we use a tree T with the set of vertices fTi;j j 0 �i � logn and 0 � j < 2ig. We adopt the convention that Ti;j is a parentof Ti+1;2j and Ti+1;2j+1, so T is a binary tree of depth logn. Each vertexTi;j 2 T corresponds to the set Pi;j of input nodes. Thus the root of the treeT0;0 corresponds to the set of all input nodes. Further, for � 2 T the childrenof � correspond to two \halves"of the set of their parent. Finally, each leaf ofT corresponds to a single input node.We use a labeling cnt of vertices of T such that cnt(Ti;j) equals the numberof elements chosen in Pi;j. Therefore function cnt has to satisfy the followingconditions:� cnt(T0;0) = n=2,� cnt(Ti;j) = cnt(Ti+1;2j) + cnt(Ti+1;2j+1),� 0 � cnt(Ti;j) � jPi;jj,for 0 � i < logn and 0 � j � 2i. If these properties hold, then hT ; cnti iscalled a distribution tree. We say also that a node Pj is chosen, if and only ifcnt(Tlogn;j) = 1. For an example, see Figure 6.How to construct uniformly at random a distribution tree without loosinge�ciency will be discussed in the next subsections. At this moment we assume
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Figure 7: The recursive structure of a splitter(2) Distribution phase: (see Figure 8)� connect the �rst cnt(T1;0) nodes of S0 with the �rst cnt(T1;0)output nodes,� connect the �rst cnt(T1;1) nodes of S00 with the next cnt(T1;1)output nodes,� connect the remaining nodes of S0 with the next n=2� cnt(T1;0)output nodes,� connect the remaining nodes in S00 with the remaining outputnodes the remaining nodes in S00.(3) Output the composition of networks constructed in (1) and (2).We prove by induction on n that the network constructed above de�nesmatching �. For n = 1 it is obvious, so let us assume that n > 1. By theconstruction, for i � cnt(T1;0) the ith chosen input node is connected with
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Figure 8: Matching constructed by the distribution phasethe ith node of S0 and therefore with the ith output node. For i > cnt(T1;0),the ith chosen node is the i � cnt(T1;0) chosen node in the second half of theset of input nodes. Hence it is connected with the node i � cnt(T1;0) of S00.So this input node is �nally connected with the output node with the indexi � cnt(T1;0) + cnt(T1;0) = i. We conclude that the chosen nodes are matchedwith the output nodes indicated by �. Similarly we may check that the non-chosen nodes are connected to the output nodes according to �, too.In order to generate the splitter described we perform the distribution phaseand the recursive call in parallel. Because the connections generated by bothparts of the algorithm depend on the distribution tree hT ; cnti that is given inadvance, the construction can be done by a CREW PRAM in constant time.3.3 Random choice of a distribution treeAs we have seen, in order to choose a splitter uniformly at random it su�ces tochoose a distribution tree uniformly at random. A straightforward way wouldbe to construct the tree top-down as follows.Algorithm 3 Naive method for constructing random distribution treecnt(T0;0) n=2for i = 0 to logn� 1 dofor 0 � j < 2i do in parallelchoose cnt(Ti+1;2j) as a random number according to probabilitydistribution Hp(cnt(Ti;j); n=2i)cnt(Ti+1;2j+1) cnt(Ti;j)� cnt(Ti+1;2j)endfor



October 22, 1996, 11:31 17Let us have a closer look at the above algorithm. Given a value cnt(Ti;j)we choose the values cnt(Ti+1;2j) and cnt(Ti+1;2j+1) so that cnt(Ti+1;2j) +cnt(Ti+1;2j+1) = cnt(Ti;j), as demanded for function cnt. Given that we havealready set cnt(Ti;j) = l, then we know that we choose l nodes in Pi;j. Thus weshould choose cnt(Ti+1;2j) = k; cnt(Ti+1;2j+1) = l�k (that is, k chosen elementsfrom the �rst half and l � k from the second half) with probability�n=2i+1k � � �n=2i+1l�k ��n=2il � :That is, we have to choose according to the hypergeometric probability distri-bution Hp(l; n=2i+1).Proposition 3.2 When Algorithm 3 starts with cnt(T0;0) = l, each subset of lnodes is chosen by the distribution tree equiprobably.Proof: The proof is by induction on n. For n = 1 this is obviously true. Letus assume that the claim holds for n=2; we check it for n. Consider a set X ofl out of n nodes such that jX \ P1;0j = k. In order to choose X it is necessaryto decide upon cnt(T1;0) = k, cnt(T1;1) = l � k. This happens with probability�n=2k � � �n=2l�k� � �nl��1. Function cnt is de�ned for the ancestors of T1;0 so that,by the induction hypothesis, each subset of P1;0 of k elements is chosen withthe same probability �n=2k ��1. Similarly, each subset of P1;1 of l � k elementsis chosen with probability �n=2l�k��1. The processes of constructing subtrees withthe roots T1;0 and T1;1 are independent, so the probability that we obtain Xequals �n=2k � � �n=2l�k��nl � � �n=2k � � �n=2l�k� = 1�nl � ;as required. 2Notice that Algorithm 3 runs in O(logn) time and therefore cannot be usedas a subroutine of our algorithm mentioned in Theorem 2. The reason for thisrunning time is that in order to generate cnt(Ti+1;2j) and cnt(Ti+1;2j+1) we haveto wait until cnt(Ti;j) is �xed. In the following subsection we show how to eludethis di�culty.3.4 Fast parallel generation of a distribution treeIn order to speed up the naive algorithm we apply the following trick. Wesubstitute each Ti;j by a set fTi;j;a j 0 � a � n=2ig. By Ti;j;a we understanda copy of Ti;jwhich assumes that cnt(Ti;j) = a. In other words, Ti;j;a presumesthat a nodes are to be chosen from Pi;j. Let T 0 = fT0;0;n2 g [ fTi;j;a j 1 � i �logn; 0 � j < 2i; 0 � a � n=2ig. The following algorithm lets each Ti;j;a chooseat random its children Ti+1;2j;a0 and Ti+1;2j+1;a00 so that a = a0 + a00.
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0Figure 9: The edges chosen by the nodes of T 0. The bold edges correspond tothe distribution tree generated by T 0Algorithm 4 Generating Stepfor each vertex � = Ti;j;a 2 T 0 where i < logn do in parallelchoose a number r at random according to probability distribution Hp(a; n=2i)Childleft(� ) Ti+1;2j;rChildright(� ) Ti+1;2j+1;a�rSince jT 0j = 1 + 2 � n2 + 4 � n4 + : : : = n logn + 1, Generating Step can beperformed in a constant time with n logn processors.Generating Step constructs a graph G with the set of vertices T 0 and theedges (�;Childleft(� )) and (�;Childright(� )). It is easy to see that the successorsof T0;0;n2 in G form a complete binary tree of depth logn. Let us call this tree T 0and let us de�ne cnt for each vertex Ti;j;a of this tree to be a. Then hT 0; cnti is awell de�ned distribution tree generated according to the probability distributionde�ned in the previous subsection.In order to use tree T 0 in our construction of a splitter in Algorithm 2 we stilllack one important thing. The distribution tree is given as a pointer structure



October 22, 1996, 11:31 19and we do not know how to �nd the vertices of T 0 without tracing T 0 fromthe root. On the other hand, for Algorithm 2 we need to �nd the labels of thenodes!The next algorithm gathers information about all vertices of T 0 in the root ofT 0 (and for technical reasons, at some vertices of T 0 as long as it is needed.) Forthis purpose we use standard doubling technique. For each vertex � of G we shallcollect information about the subtree InfoTree(� ) rooted at � and containing thesuccessors of � in G. Initially, each InfoTree(� ) stores the names of the childrenof � . Using the doubling technique it is possible to replace leaves of InfoTree(� )by subtrees found up to this moment by the vertices corresponding to the leavesof InfoTree(� ):Algorithm 5 Gathering Stepfor each vertex � = Ti;j;a 2 T 0 do in parallelif i = logn thenset InfoTree(� ) to be the tree with only one vertex � which is boththe root and the leafif 0 � i < logn thenset InfoTree(� ) to be the tree with root � and the leavesChildleft(� );Childright(� )repeat log logn timesfor each vertex � 2 T 0 do in parallelif l1; l2; : : : ; lr are the leaves of InfoTree(� ),then for 1 � j � r replace the leaf lj in InfoTree(� ) by InfoTree(lj)Proposition 3.3 Gathering Step collects the whole tree T 0 in InfoTree(T0;0;n2 )in O(log logn) time using n2 processors.Proof: The repeat loop of the algorithm is executed in a constant time | sim-ply for each leaf and each value copied there is a separate processor. Thereforethe running time is O(log logn). The number of the processors used for thekth iteration does not exceed the total size of all InfoTree's immediately af-ter iteration k. Notice that for each Ti;j;a 2 T 0 the InfoTree consists �nally of2 �2logn�i�1 vertices. Thus the total number of processors used at any iterationdoes not exceedXTi;j;a2T 0(2 � 2logn�i � 1) = lognXi=0 2i � ( n2i + 1) � (2 � 2logn�i � 1)= (2n� 1)2 + n � (logn + 1): 2



October 22, 1996, 11:31 20By applying Generating Step and then Gathering Step we would get an al-gorithm which generates a distribution tree in time O(log logn) using n2 proces-sors. In the following we show how to combine Gathering Step with Algorithm 3in order to reduce the number of processors without loosing the execution speed.The main idea behind our construction is to generate the InfoTree's tillsome depth h is reached. If we stop generating InfoTree's at the moment whenthey have depth h � logn, then because the size of each tree is small, we usemuch less processors than during Gathering Step. Once this is done we shalldetermine the distribution tree hT 0; cnti sequentially top-down: We start withthe root, then collect information about the nodes of the �rst h levels (usingthe information contained in InfoTree of the root), then about the nodes of thenext h levels (using InfoTree's of the nodes already informed at level h+1), andso on.Algorithm 6 Fast parallel method for generating and identi�cation of a distri-bution tree; parameter h (0 < h < logn) will be used to tune the execution timeand the number of processors used:(1) execute Generating Step(2) for each � 2 T 0 do in parallelperform logh times the loop of Gathering Step, so that InfoTree(� ) willcontain a tree of depth h pointing to all successors of � in distance atmost h(3) inform T0;0;n2 that it belongs to T 0(4) for i = 1; h + 1; 2h+ 1; : : : ; logn dofor each � , a vertex of T 0 of depth i do in parallelif � knows that it belongs to T 0 theninform all successors of � pointed by the vertices of InfoTree(� ),that they belong to T 0(5) for each i; j; aif vertex Ti;j;a is marked as chosen (and thereby is in T 0),then set cnt(Ti;j) = aNow let us analyze resources necessary to execute Algorithm 6.Proposition 3.4 For every integer h, 1 � h � logn, Algorithm 6 runs in timeO(logh + logn=h) and uses O(2hn logn) processors.Proof: Let us consider each phase of Algorithm 6 separately:Phase 1: Generating Step takes constant time with n logn processors.



October 22, 1996, 11:31 21Phase 2: Each execution of the loop of Gathering Step is performed in a con-stant time. So together logh executions of the loop take O(logh) time.As during this step each � 2 T 0 collects only information about its suc-cessors at distance � h, InfoTree's have depths at most h and thereby atmost 2 � 2h� 1 nodes each. So the total number of processors necessary toperform this step is bounded byXTi;j;a2T 0(2 � 2h � 1) = lognXi=0 2i � ( n2i + 1) � (2 � 2h � 1)� 3 � 2h � n logn:Phase 4: The loop is executed lognh times and its body is performed in oneparallel step. The number of processors used does not exceed the numberof vertices in T 0, that is O(n logn).So �nally, the total running time of Algorithm 6 is bounded byO(logh + lognh ):The number of processors used is bounded bymaxfn logn; 3 � 2h � n logng = 3 � 2h � n logn 2Concluding we get the following result:Corollary 3.5 For arbitrary positive constant c, the distribution tree can begenerated in time O(c log logn) using n1+1=c log logn processors.Proof: Plug h = logn(c+1) log logn into the bound from Lemma 3.4. Then Algo-rithm 6 runs in time O(log logn) with n �2 log n(c+1) log log n � logn processors. Since forsu�ciently large n, n � 2logn=((c+1) log logn) � logn = n1+1=((c+1) log logn) � logn �n1+1=c log logn, the bound follows. 23.5 Properties of the constructionsIt is easy to see that the splitter constructed using Algorithm 2 has depthlogn. Hence applying it in Algorithm 1 we get a random matching network Nwith O(log2 n) levels and O(n log2 n) nodes. By Corollary 3.5, generating Ntakes O(c log logn) time and uses n1+1=c log logn processors for arbitrary positiveconstant c. Performing pointer jumping on N takes O(log log2 n) = O(log logn)steps and uses n log2 n processors. Thereby the algorithm designed ful�lls theproperties stated in Theorem 2.
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