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Summary

Increases in processor speed and network and device bandwidth have led to
general purpose workstations being called upon to process continuous media data
in real time. Conventional operating systems are unable to cope with the high
loads and strict timing constraints introduced when such applications form part
of a multi-tasking workload. There is a need for the operating system to provide
fine-gained reservation of processor, memory and I/O resources and the ability
to redistribute these resources dynamically. A small group of operating systems
researchers have recently proposed a wvertically-structured architecture where the
operating system kernel provides minimal functionality and the majority of op-
erating system code executes within the application itself. This structure greatly
simplifies the task of accounting for processor usage by applications. The pro-
totype Nemesis operating system embodies these principles and is used as the
platform for this work.

This dissertation extends the provision of Quality of Service guarantees to
the I/O system by presenting an architecture for device drivers which minimises
crosstalk between applications. This is achieved by clearly separating the data-
path operations which require careful accounting and scheduling, and the infre-
quent control-path operations which require protection and concurrency control.
The approach taken is to abstract and multiplex the /O data-path at the low-
est level possible so as to simplify accounting, policing and scheduling of 1/0
resources and enable application-specific use of /O devices.

The architecture is applied to several representative classes of device including
network interfaces, network connected peripherals, disk drives and framestores.
Of these, disks and framestores are of particular interest since they must be shared
at a very fine granularity but have traditionally been presented to the application
via a window system or file-system with a high-level and coarse-grained interface.

A device driver for the framestore is presented which abstracts the device at a
low level and is therefore able to provide each client with guaranteed bandwidth
to the framebuffer. The design and implementation of a novel client-rendering
window system is then presented which uses this driver to enable rendering code
to be safely migrated into a shared library within the client.

A low-level abstraction of a standard disk drive is also described which effi-
ciently supports a wide variety of file systems, and other applications requiring
persistent storage, whilst providing guaranteed rates of /O to individual clients.
An extent based file system is presented which can provide guaranteed rate file
access and enables clients to optimise for application-specific access patterns.



Source: titles.tex DRAFT of 11:06, June 28, 1996

Preface

Except where otherwise stated in the text, this dissertation is the result of
my own work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for a
degree or diploma or any other qualification at any other university.

No part of my dissertation has already been, or is being currently submitted
for any such degree, diploma or other qualification.

This dissertation is copyright [1 1996 Paul Barham.

All trademarks used in this dissertation are hereby acknowledged.



Source: titles.tex DRAFT of 11:06, June 28, 1996

Acknowledgements

I would like to thank my supervisor Derek McAuley for providing invalu-
able encouragement most evenings throughout the duration of this work, and the
entire Systems Research Group for providing both the infrastructure and atmo-
sphere necessary for research of this kind. Particular thanks are due to Richard
Black, Simon Crosby, David Evers, Robin Fairbairns, Mark Hayter, Eoin Hyden,
lan Leslie, Roger Needham and Ian Pratt.

For reading and commenting on drafts of this dissertation, I am indebted to
Richard Black, Simon Crosby, Mark Hayter, lan Leslie, Derek McAuley, Ian Pratt
and Timothy Roscoe. Robin Fairbairns deserves a special mention for invaluable
assistance in mastering the mystic runes of I{TEX, and Martyn Johnson for such
smooth and efficient system management.

I would also like to thank Lance Berc, Mike Burrows, Mark Hayter, Mike
Schroeder, Bob Taylor and numerous other members of staff at Digital Equip-
ment Corporation’s Systems Research Centre, for an extremely enjoyable and
rewarding internship during the Summer of 1994, and the continuous encourage-
ment since.

This work was supported by a grant from the EPSRC (formerly SERC), and a
CASE studentship funded by Olivetti Research Ltd. and Nemesys Research Ltd.

il



Source: titles.tex DRAFT of 11:06, June 28, 1996

Contents

List of Figures
List of Tables

1 Introduction
1.1 Motivation . . . . . . . . ..o
1.2 Background . . . . .. ..o
1.3 Contribution . . . . . . . . ...
1.4 Outline. . . . . . .. ...

2 Background
2.1 Environment . . . . . . ...
2.2 Properties of Continuous Media . . . . . ... ... .. ... ...
2.2.1 Digital Video . . . . .. ... 0oL
2.2.2 Digital Audio . . . ... ...
2.2.3 Video Compression . . . . . . . .. . .. .. ... ..
2.3 Synchronisation and Latency . . . . . . . ... ... ... ...
2.4 Systems for Handling Continuous Media . . . . . . .. .. .. ..
2.4.1 Pandora: A First Generation Multimedia System . . . . .
2.4.2  Second-Generation Multimedia Systems . . . . . ... ..
2.4.3 Discussion . . . . ...
2.5 Operating System Structure . . . . . . . ... ... ...
2.5.1 Monolithic Operating Systems . . . . . . .. .. ... ...
2.5.2  Kernel-Based Operating Systems . . . . . . .. ... ...
2.5.3 Microkernel-Based Operating Systems . . . . . . ... ..
2.5.4 Vertically Structured Operating Systems . . . . . . . . ..
2.6 Quality of Service in Operating Systems . . . . . . . .. ... ..

3 Nemesis
3.1 Introduction . . . . . . . . . .

il

vii

ix

U = W = -

© 00 o 1 O O

11
12
12
14
15
16
16
18
19
20
20

23



Source: titles.tex DRAFT of 11:06, June 28, 1996

3.2 Previous Work . . . . . ... 24
3.3 The Structure of Nemesis. . . . . . . . . ... ... ... ..... 24
3.3.1 Domains . . . . . . ... 26
3.3.2  Nemesis Trusted Supervisor Code (NTSC) . . . . ... .. 26

3.4 Virtual Processor Interface . . . . . . . ... .. .. ... ... .. 27
3.4.1 Activation . . . . . ... 28
3.4.2 Processor Context . . . ... .. .. ... ... ...... 28
3.4.3 Events . . . . . Lo 29

3.5 Inter-Domain Communication (IDC) . ... ... ... ... ... 29
3.5.1 Shared Datastructures . . . . . . . . ... ... ... ... 29
3.5.2  Remote Procedure Call (RPC). . . . ... ... ... ... 30
3.5.3 Rbufs . . ... 30

3.6 Scheduling . . . . .. ..o 32
3.6.1 Inter-Process Scheduling . . . . .. ... ... ... .... 34
3.6.2 Intra-Process Scheduling . . . . .. ... ... ... .... 35

3.7 Device Driver Support . . . . . .. .. ... ... .. 36
3.7.1 Hardware Interrupts . . . . . . ... ... ... ..., .. 37
3.7.2 Kernel Critical Sections . . . . . . ... ... ... .... 38

3.8 Nemesisand I/O . . .. ... .. Lo 38
3.9 Summary . . ... 39
4 Scheduling I/O Resources 40
4.1 Traditional Workstation Architecture . . . . . . . ... ... ... 40
4.1.1 TURBOchannel . . . . . ... ... ... .. ........ 41
4.1.2  Small Computer System Interface (SCSI) . . . . .. .. .. 42

4.2 The Experimental Platform . . .. .. . . ... ... ... .... 43
4.3 Scheduling the Interconnect . . . . . . . ... ... ... ... .. 45
4.3.1 TURBOchannel . . . . . ... ... ... .. ........ 45
4.3.2 SCSI Transactions . . . . . . .. ... ... ... ..... 47
4.3.3 Hierarchical Interconnects . . . . . ... .. .. ... ... 48

4.4 Channel Controllers . . . . . . . . . . ... ... ... ... .... 49
4.5 The Desk Area Network (DAN) . . ... ... ... ... .. ... 50
4.5.1 The Prototype DAN Workstation . . . . .. .. ... ... 52
4.5.2 User-Safe Devices . . . . . . . . ... .. ... ....... 52

4.6 Scheduling an ATM Interconnect . . . . .. .. .. ... .. ... 53
4.7 Summary . ... ..o 54

v



Source: titles.tex DRAFT of 11:06, June 28, 1996

5 Device Driver Architecture 56
5.1 Introduction . . . . . . ... ... 51§)
5.2 Nemesis Device Driver Architecture . . . . . . ... .. ... ... o7

5.2.1 Device Abstraction Module (DAM) . . . . ... ... ... 58
5.2.2  Device Management Module (DMM) . . . ... ... ... 59
5.3 Network Interfaces . . . .. ... ... ... .. .. ... ..., 60
5.3.1 Non-Self-Selecting Interfaces . . . . . . ... .. ... ... 60
5.3.2  Self-Selecting Interfaces . . . . . . . . ... ... ... ... 61
5.3.3 The OTTO ATM Interface . . . . . . . .. ... ... ... 62
5.3.4 DAM: The OTTO Device Driver . . . .. ... ... ... 64
5.4 Network Attached Peripherals . . . . .. ... ... ... ..... 65
5.4.1 AVA-200 Hardware . . . . . . .. .. ... ... ...... 65
5.4.2 DAM: AVA-200 Firmware . . . . . . .. . ... ... ... 66
5.5 Summary ... 68

6 Window System 69
6.1 Introduction . . . . . . . ... ... 69
6.2 Server Rendering . . . . . .. ... oo 70
6.3 Client Rendering . . . . . . . ... .. ... 0. 72
6.4 Framestores . . . . . . . . .. 74

6.4.1 PMAG-BA Hardware . . . . . . . . . ... ... ...... 74
6.5 CALLPRIV Sections . . . . . . . .. ... ... .. .. ..., 75
6.5.1 Discussion . . . . . .. ... 77
6.5.2 Performance . . . . ... ... L Lo 7
6.6 DAM: The Framebuffer Driver . . . . . . . . ... ... ... ... 78
6.6.1 Virtual Windows . . . . . . . .. ... ... ... .. .. 80
6.6.2 Key Based Pixel Protection . . . . . ... ... ... ... 81
6.6.3 Protection Overheads . . . . . . . .. ... ... ...... 81
6.6.4 Quality of Service . . . . . . ... 81
6.6.5 The DAN Framestore (DFS) . . . . . ... ... ... ... 82
6.7 DMM: The WS Window System . . . . . ... ... ... .. .. 83
6.7.1 The WS Server . . . . . . . ... 83
6.7.2 Non-Multimedia Applications . . . . ... ... ... ... 86
6.7.3 Multimedia Applications . . . . . . . .. .. ... 87
6.8 Evaluation of the WS System . . . . . . . ... ... .. ... .. 87
6.8.1 QoS Guarantees . . . . . . . . ... ... 88
6.8.2 QoS Crosstalk . . . ... .. ... ... ... 89
6.9 Summary . . . ... 90



Source: titles.tex DRAFT of 11:06, June 28, 1996

7 File System 92
7.1 Introduction . . . . . . . ... 92
7.2 General Purpose File Systems . . . . . . ... ... ... ... .. 93

7.2.1 Block-Structured File Systems . . . . . . . ... ... ... 94
7.2.2 Log-Structured File Systems . . . . . . .. ... ... ... 95
7.2.3 Extent-Based File Systems . . . . . .. ... ... ... .. 96
7.3 Multimedia File Systems . . . . . . . ... ... 97
7.4 Custom Storage Systems . . . . . . . .. ... L. 98
7.5 Disk Drives . . . . . ... 98
7.5.1 Disk I/O Data-path. . . . . .. ... ... ... ... ... 100
7.5.2 Performance Characterisation . . . . ... ... ... ... 101
7.5.3 Access Time Variations . . . . . . .. .. ... ... .... 101
7.6 DAM: The User-Safe Disk Driver . . . . . . . . .. .. ... ... 104
7.6.1 The RSCAN Algorithm . . . . . . ... ... ... ... ... 106
7.6.2 Evaluation . . . . ... ... ... ... ... 108
7.7 DMM: The £FS File System . . . . . .. .. ... ... ... .. 109
7.7.1 Discussion . . . . . . ... e 112
7.8 Summary . ... ... 112

8 Conclusion 114
8.1 Summary . . . . ... 114
8.2 Further Work . . . . . . .. ... ... .. 117

References 118

vi



Source: titles.tex DRAFT of 11:06, June 28, 1996

List of Figures

2.1 Trace of a motion-JPEG Compressed Video Stream . . . . . . . . 11
2.2 The Pandora Multimedia System . . . . ... .. ... .. .... 13
2.3 Operating System Structure . . . . . . .. ... ... ... ... 17
3.1 The Structure of a Nemesis System . . . . . . . .. .. ... ... 25
3.2 High Volume I/O Using Rbufs . . . . . . . . ... ... ... ... 31
3.3 MippL interface for Rbufs (I0.1f) . . . . . . . .. .. ... ... 33
4.1 SCSI Bus Phase Sequences. . . . . . .. ... ... .. ...... 43
4.2 Block Diagram of DEC 3000/400 AXP (Sandpiper) . . . ... .. 44
4.3 DEC 3000 AXP TURBOchannel DMA Arbitration Logic . . . . . 46
4.4  Use of Channel Controllers Under MVS. . . . . .. .. ... ... 49
4.5 DAN Based Workstation . . . . . . ... ... ... 51
5.1 Nemesis Device Driver Architecture . . . . . . . . . . . ... ... 58
5.2 OTTO Device Driver Structure . . . . . ... ... .. ... ... 63
5.3 AVA-200 Major Data-paths . . . . . ... ... ... ... .... 66
5.4 AVA-200 Video Programming Paradigm. . . . . .. .. .. .. .. 67
6.1 Comparison of Window System Structure . . . . . .. . ... ... 73
6.2 Use of CALLPRIV Sections. . . . . ... .. ... ... ...... 76
6.3 MippL for dev/fb management interface (FB.if). . . . . . . . .. 79
6.4 Virtual Windows and Key Based Protection . . . . . .. ... .. 80
6.5 Timings of dev/fb CALLPRIV Tile Blitting Stub. . . . . . . . .. 82
6.6 The WS Window System . . . . . . .. .. .. ... ... ..., 84
6.7 MippL for WS interface (WS.1f). . . . . . .. ... L. 85
6.8 WS Screendump . . . ... 86
6.9 Example Window System Clients . . . . . . .. .. ... ... .. 87
6.10 Effect of Varying /dev/fb QoS Guarantees . . . . . . . . . . . .. 88
6.11 QoS Crosstalk Between Window System Clients . . . . . . . . .. 89
7.1 uNix File Size Statistics . . . . . . ... 93

vil



Source:

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

titles.tex DRAFT of 11:06, June 28, 1996
Major Disk I/O Data-path Components . . . . ... .. ... .. 99
Typical Activity During SCSI Transactions . . . . . . . . . . . .. 100
Access Times for Digital RZ26 Disk Drive . . . . ... ... ... 102
MipDL for dev/USD interfaces (USDCtl.if and USDCallback.if). 105
RSCAN Scheduling Algorithm . . . . . . . .. ... ... ... ... 107
RSCAN Scheduler Trace . . . . . . . . .. ... ... ... .... 108
The EFS File System . . . . . . . ... ..o 109
MippL for EFS interface (EFSClient.if). . . . . . . . . . .. .. 111

viil



Source: titles.tex DRAFT of 11:06, June 28, 1996

List of Tables

3.1

4.1

6.1
6.2

7.1

Alpha NTSC Call Interface. . . . . . .. .. ... ... ... ... 27
Peak Bandwidth Requirements of TURBOchannel Devices . . . . 44
Average Times for Loads and Stores (in 133MHz cycles) . . . . . 74
Performance of TURBOchannel and PCI Framebuffers. . . . . . . 75
Published Specifications of the Digital RZ26 Disk Drive . . . . . . 101

X



Source: intro.tex DRAFT of 11:06, June 28, 1996

Chapter 1

Introduction

This dissertation presents the design and implementation of an I/O architecture
for the Nemesis multi-service operating system. The architecture supports the
execution of both conventional and multimedia applications by the provision of
guaranteed Qualities of Service (QoS) to individual applications at the lowest
possible level.

1.1 Motivation

The continuing advances in communications network and processor speeds are
enabling interesting new areas of computation hitherto considered infeasible.
General-purpose processing of continuous media (CM) data is perhaps the most
challenging of these areas. CM data differs from conventional data in two impor-
tant respects:

e A CM stream is often tolerant to some degree of information loss. This
property can be exploited by applications when computational and I/0O
resources are scarce.

e The usefulness of CM data is dependent on the timeliness with which it is

delivered.

Applications processing CM data can often produce acceptable results at a num-
ber of different quality levels, however it is usually the case that they will be able
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to perform more effectively if they know in advance what level of system resources
they will have access to. For this reason, the notion of Quality of Service (QoS),
commonly used in the field of networking research, is being extended up into the
operating system.

This dissertation addresses a specific problem which may be characterised as
follows:

e Supporting applications which perform general-purpose computation with
CM data types and high-bandwidth I/O.

e Simultaneous execution of a number of tasks on the same machine, some
of which are highly time-sensitive, some of which require only best-effort

service.

e Applications may be both computationally intensive, and I/O intensive,
and may change their behaviour dynamically, for example in response to
external events or as a result of processing a CM stream.

e Demand for operating system provided resources is far in excess of that
which is available. The machine is invariably running at 100% load.

e Adequate information must be provided to enable application-specific degra-
dation when insufficient resources are available.

The effective support of a number of simultaneous activities on a single machine
relies upon the ability to place resource firewalls between applications. The aim
is to remove QoS crosstalk whereby use of a resource by one client has an adverse
effect on the QoS received by other clients.

General purpose workstations are readily equipped with multimedia periph-
eral devices to provide capture and playback of CM streams. In such a system
it should be possible to build interesting new applications which both store and
process CM data. User interfaces may be extended to include face recognition,
eyeball-tracking and gesture or voice input. Video recording applications may
index features automatically and support searching for particular scenes. These
new applications must peacefully coexist with more conventional workloads such
as interactive text editing and batch computation.
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1.2 Background

Much operating system research has been devoted to supporting the execution of
multimedia applications. Many researchers have taken existing operating systems
as a starting point and attempted to retrofit support for “real-time” activities,
often by extending the CPU scheduler. Resource allocation has traditionally been
performed using a notion of “priority” to determine which task should receive
a given resource. It has been demonstrated that priority based allocation is
unacceptable in a multimedia system, and that schemes are necessary which
determine both the quantity of resource and the time at which it should allocated.

When using a conventional operating system for multimedia, particularly in
the presence of high-bandwidth 1/0O, the majority of resources are consumed by
device drivers, shared server processes and the operating system, rather than
by the application process. A small group of operating system researchers have
recently proposed a radical restructuring of the operating system to migrate func-
tionality into the application itself where resource usage is more easily accounted
- so called vertically-structured operating systems.

To date however, all research in this area has focussed solely on the allo-
cation of CPU resource. Multimedia applications, by definition, perform large
amounts of 1/0 and though guarantees of CPU resource are necessary, they are
not sufficient.

A number of extensions have been made to conventional operating systems
to support end-to-end QoS for network 1/0O. These have typically involved using
real-time threads within the kernel to service individual network connections at
guaranteed rates. These ad-hoc solutions do not fully solve the problem described
above, and are inapplicable in the context of a vertically-structured operating
system.

Until the advent of the personal workstation, it was common practice to imple-
ment resource firewall mechanisms simply by providing separate hardware. For
example, the I/O channels of IBM mainframes effectively isolate the performance
of distinct I/O activities by having all 1/O data-path operations performed by
separate channel controllers. Out-of-band control operations are performed on
the main processor by the operating system. The inflexibility and increased ex-
pense of replicating 1/O hardware makes it an impractical approach for building
a multimedia workstation.
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Contemporary workstation designs do not provide any hardware support for
per-connection control of 1/O resources by the operating system. Whilst pro-
totype workstations have been constructed which address this problem, it may
be some time before they are commonplace. A software solution is therefore
required.

1.3 Contribution

The author has built upon the work described in [Hyden94], [Roscoe95] and
[Black94], investigating the extension of a QoS-based operating system to provide
guarantees of I/O performance which are useful at the application level.

The thesis of this work is that a vertically-structured operating system re-
quires a device driver architecture where I/O resources are:

e Multiplexed only once,

e Multiplexed at the lowest possible level,

e Protected at the lowest possible level, and

e Scheduled at a fine granularity in order to provide QoS guarantees.

and that using these design principles it is possible to implement high-level

functions within the application itself without sacrificing the protection afforded
by traditional server-based approaches.

This dissertation both describes the device driver architecture and demon-
strates its application to a number of representative devices. The effectiveness
of the device abstraction is evaluated by implementation of higher level services
which allow applications to take full advantage of the QoS guarantees provided
by the operating system. In addition, this dissertation also presents:

e Mechanisms for low-level protection of problematic devices which have tra-
ditionally been accessed via servers with high-level interfaces.

e An operating system mechanism for providing applications with protected
and accounted access to devices which do not support DMA.
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e A new disk head scheduling algorithm which delivers guaranteed rate 1/0O
and supports best-effort clients without excessively sacrificing disk perfor-
mance.

The above issues are illustrated by describing a prototype implementation for the
Nemesis multi-service operating system, running on the DEC 3000/400 Sandpiper
workstation. The Nemesis system was developed in Cambridge over a 2 year
period by Timothy Roscoe, David Evers and the author, with significant influence
from the Fawn system written by Richard Black.

1.4 QOutline

Chapter 2 provides background material relevant to this work and describes the
research environment in which it was carried out.

Chapter 3 describes the structure of Nemesis, an operating system structured
so as to support application level Quality of Service. The architectural principles
of the design are presented, and a brief overview of the prototype implementation
is given. The remainder of the chapter considers the areas of Nemesis where
Quality of Service provision has not been addressed, focussing on the problems
presented by multimedia I/O.

Chapter 4 discusses the scheduling of I/O resources. It provides an overview
of the architecture of a contemporary workstation and highlights some of the
design features which present particular problems for a multi-service operating
system.

Chapter 5 presents a generic device driver architecture designed to provide
individual applications with secure, direct access to the underlying hardware
resources with Quality of Service guarantees.

The following two chapters provide an evaluation of the architecture by its
application to two particularly troublesome devices. The abstraction of the frame-
buffer device and a complete implementation of a novel window system are pre-
sented in chapter 6. Chapter 7 describes the abstraction of disk devices and a new
file-system which is able to provide guaranteed qualities of service to its clients.

Finally, chapter 8 summarises the main arguments of the dissertation and
makes some suggestions for further work.
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Chapter 2

Background

2.1 Environment

There has been much previous work in Cambridge in the areas of high-speed
networks, distributed computing and multimedia systems, with a strong tradi-
tion of building and using these systems. Early work on Asynchronous Transfer
Mode (ATM) networks led to deployment of the Cambridge Fast Ring (CFR)
[Temple84] enabling much of the subsequent continuous media research. The
CFR was later supplemented by the Fairisle ATM network [Leslie91]. An im-
portant focus of the ATM research in Cambridge has been the elimination of
layered-multiplexing [Tennenhouse89], especially in the network protocol stack
[McAuley89].

These ATM networks were used to transport digital audio and video for the
Pandora’s Box [Hopper90], a continuous media peripheral providing support for
capture and display of audio and video in a workstation environment. The Pan-
dora system made use of distributed computing technology [Nicolaou90] to pro-
vide applications such as multi-party video conferencing and mail. A continuous
media file-server was also provided [Jardetzky92].

Although highly successful in supporting “first generation” multimedia appli-
cations concerned primarily with presentation and orchestration issues, Pandora
included no support for processing of continuous media data - digital audio and
video could not be accessed by the workstation itself.

With continuing increases in processor and workstation speeds, it quickly
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became possible to provide all of the functionality of a Pandora system in soft-
ware on an ATM-equipped general-purpose workstation [Barham95], although it
rapidly became apparent that the bus-based design of contemporary worksta-
tions forces continuous media data to traverse the bus several times en-route to
its eventual destination. The Desk Area Network project [Hayter91] led to a pro-
totype second generation multimedia workstation which addresses this problem
[Barham95|.

Second generation multimedia applications, where continuous media data is
processed as well as merely being transferred, present enormous problems for
conventional operating systems. The Pegasus project [Leslie93] proposed a com-
pletely new operating system architecture which could support these demanding
applications, and resulted in the prototype Nemesis operating system [Leslie96].

The implementation work in support of the ideas presented in this dissertation
has been performed entirely over Nemesis on a conventional workstation equipped
with a number of multimedia peripherals, many of which were designed and
constructed in the Computer Laboratory.

2.2 Properties of Continuous Media

The desire to perform computation on continuous media data types has dra-
matically changed the demands placed on the operating system and 1/0O system
of workstations. Properties which differentiate these data types from conven-
tional data types include time-sensitivity and susceptibility to quality /correctness
tradeoffs. These are referred to by [Hyden94| as the temporal and informational
properties.

The temporal property of CM data means that the usefulness of the result
of a computation depends on the timeliness with which it is delivered. The
informational property means that is often possible to perform a calculation on
CM data in a number of ways producing results of varying accuracy [Liu91]
and consuming different levels of operating system provided resources. If an
application is provided with a Quality of Service contract by the operating system,
it may maximise the quality of the result obtained for the level of resources
available.

The two most common classes of CM traffic are still digital audio and video,
although streams of sensor readings or location information [Want92| exhibit



Source: bg.tex DRAFT of 11:06, June 28, 1996

some of the same properties. This section briefly discusses some of the issues
relevant to computation with these media types.

2.2.1 Digital Video

Until recently the bandwidth requirements of high quality digital video has made
it fairly uncommon. An uncompressed digital video stream of comparable quality
to a PAL encoded analogue TV broadcast requires about 160Mbps. Consumers
expect video of at least this quality, but this amount of network bandwidth is
still prohibitively expensive.

In order to provide more interactive services, cable television distributors are
becoming increasingly interested in digital video distribution. The intended large
scale deployment of this technology is already having a beneficial effect on the cost
and availability of multimedia peripherals for workstations and home computers.

It is important, however, to bear in mind that the constraints on an interac-
tive video distribution system and a general purpose multimedia workstation are
significantly different and much of the available hardware is not completely suited
to the purposes for which it is required. Section 2.2.3 considers the example of
video compression.

The majority of video standards are designed for eventual presentation to a
human observer - digital video is usually transmitted as a number of sequen-
tial frames, where the frame rate is related to the persistence of human vision.
Most video sources are conventional analogue video cameras and recorders using
one of the broadcast video encoding standards. As computation with CM data
types becomes more common, video may often be “observed” only by computers
working on a time-scale much faster than human perception and so this will not
necessarily remain the case.

2.2.2 Digital Audio

Although audio bandwidths are usually much lower than video, its sensitivity
to loss and jitter is much greater - a 10ms gap in an audio stream is readily
discernible. In these respects, digital audio presents greater challenges to current
multimedia systems than does video.
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Digital audio transmission has been in widespread use over the Synchronous
Transfer Mode (STM) networks of most telephone operators. STM networks pro-
vide reliable transmission, constant bit-rate and effectively zero jitter, and these
properties have strongly influenced the standards used for audio transmission.
For example, compression of audio is usually limited to companding and silence
suppression.

The transmission of audio across wide-area Packet Transfer Mode (PTM) net-
works, in particular the Internet, has caused renewed interest in audio coding for
increased loss-tolerance and to minimise bandwidth and latency. Extremely low
bandwidth, variable-bit-rate compression schemes are becoming more common
and can require significant software processing in the end-points. This process-
ing introduces latency and synchronisation issues which can be critical to the
usability of interactive digital audio systems. Section 2.3 discusses some of these
problems.

2.2.3 Video Compression

Digital video is often compressed in an attempt to reduce the bandwidth, partic-
ularly for transmission across wide-area networks. Whilst compression is a useful
mechanism for reducing the bandwidth of individual streams, it is invariably
used to increase the quality or number of streams which may be simultaneously
handled by a system. Experience has shown that multimedia systems are almost
always run at 100% load. This section examines the characteristics of several pop-
ular video compression schemes including so-called motion-JPEG, MPEG and the
MPEG?2 standards.

JPEG [Wallace91] is a “lossy” compression scheme exploiting the responsive-
ness of the human eye to various spatial frequencies by transforming 8 x 8 pixel
tiles of video data into the frequency domain (using a Discrete Cosine Trans-
form) and then quantising selectively. The amount of information discarded by
this quantisation process can be controlled by a parameter referred to as the
Q-factor. The resulting data is run-length and then Huffman coded. The in-
termediate frequency domain information is often useful for image-processing
computations.

Using JPEG, a typical 24-bit video image can be encoded using approximately
one bit-per-pixel without significant subjective loss. JPEG compression and de-
compression may easily be performed in real-time using relatively inexpensive
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hardware [CCube94|. Software compression and decompression is computation-
ally expensive, but becoming more feasible. Processor designers have even begun
to extend the instruction set of general purpose CPUs to facilitate software de-
compression of JPEG, for example the HP PA-RISC architecture [Hew94].

The JPEG standard was initially designed for compression of still images.
Independent compression of each frame of a video stream using JPEG is usually
referred to as “motion-JPEG” compression. Advantages of this technique over
more sophisticated video compression schemes include comparatively low latency
and higher tolerance to data loss when a stream is carried across an unreliable
network.

The MPEG video compression scheme [LeGall91, ISO93| achieves greater
compression than JPEG by using motion-estimation techniques to take advantage
of inter-frame redundancy in motion video. The compression technique requires
cross-correlation of each frame with adjacent frames and is thus fairly computa-
tionally intensive. Although hardware is available which can perform real-time
MPEG compression, it is expensive. Decompression is roughly comparable in
cost to JPEG. The asymmetry between compression and decompression makes
MPEG more amenable to Video on Demand (VOD) applications where the most
important consideration is to minimise the cost of the decoder in the set-top-box
and the additional latency is not a problem.

MPEG2 [ISO95] is even more asymmetric in this respect than its predecessor.
Real-time MPEG2 encoding is exceptionally expensive even in hardware, whilst
decoders are relatively simple and inexpensive. The standard is primarily aimed
at applications where off-line compression may be used.

The inter-frame dependencies inherent in MPEG and MPEG2 mean that
decompression is less tolerant to data loss. The extra latency and increased
buffering requirements are also disadvantageous. For these reasons, motion-JPEG
is still the preferred technology for live video.

Although compressed video occupies significantly less bandwidth, most schemes
result in a Variable Bit-Rate (VBR) stream encoded in a manner which also makes
it much more difficult to process. Figure 2.1 shows a 3 minute trace of the band-
width requirements of a motion-JPEG compressed video stream.! It can be seen

! This trace was obtained by connecting a VCR, receiving BBC1 TV broadcasts, to an AVA-
200 and capturing a JPEG compressed 384x288 pixel video stream at Q-factor 32, with the
AVA’s cell spacing feature disabled. The resulting ATM stream was passed through a Fairisle
port controller to log cell inter-arrival times.

10
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Figure 2.1: Trace of a motion-JPEG Compressed Video Stream

from the main plot that the peak bandwidth requirement of the stream is sub-
stantially larger than the mean. The discontinuities visible in the expanded plot
are caused by scene changes in the original video. The bandwidth requirements
of each scene are often fairly constant with time.

An interesting possibility is the application of motion-compression techniques
to 3D video streams such as those used by the Cambridge Autostereo Display
[Castle95]. Such streams contain a number of 2D views of the same scene, but
from slightly different viewing angles. A slice taken across all of the views cor-
responds closely to panning the camera. MPEG compression works particularly
well when the images are strongly correlated, although distortions introduced by
the change in viewing angle may cause problems. The high latency and loss sensi-
tivity properties of motion-based compression schemes do not present a problem
when it is used in this way.

2.3 Synchronisation and Latency

Most non-trivial multimedia applications are distributed in nature comprised of
a number of communicating processes on different machines [Nicolaou90]. A
common problem for such multimedia applications is to process a number of CM
streams at various points in the system in a time-synchronised manner.

One of the simplest instances of this problem is that of synchronising the
playout of an audio stream to the display of frames of video in order to achieve
“lip-sync”. This form of synchronisation has relatively loose timing constraints,

11
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requiring an accuracy of only around 20ms, but is often impossible to achieve
over a conventional operating system where processes may not receive the CPU
for periods far in excess of 20ms.

In situations where latency is not an issue (e.g. playback of pre-recorded
video and audio), this particular problem can be alleviated by use of substantial
playout buffers. Synchronising multicast streams for VOD applications could
easily tolerate latencies of a number of seconds. Indeed, most of the distribution
problems in VOD systems would disappear immediately if each “set-top-box”
contained a small hard disk capable of buffering 15 minutes worth of data. Video
and audio conferencing applications are of a more interactive nature and round-
trip times must be kept to a minimum.

Synchronisation of multiple audio streams for the purposes of digital recording
or distributed performance potentially requires much greater accuracy. For these
applications, whilst it is desirable to keep latency to an absolute minimum, the
synchronisation accuracy is of primary importance. For example, musicians who
play in an orchestra are used to audio latencies of 30ms or more, but are not
used to the various sound sources appearing to move relative to each other. The
visual cues of the conductor are used to keep time.

2.4 Systems for Handling Continuous Media

Until quite recently, multimedia systems have been unconcerned with the pro-
cessing of CM data, and have focussed mainly on transport quality of service and
orchestration issues such as synchronisation of a number of continuous media
streams and presentation on suitable output devices [Campbell92]. Much work
has been devoted to architectural support for end-to-end QoS negotiation and
translation of high-level QoS specifications, for example the IMAC [Nicolaou90)]
and QOS-A [Campbell93] architectures. This following sections briefly describe
the evolution of multimedia systems and discuss the new demands which these
system place upon the workstation operating system.

2.4.1 Pandora: A First Generation Multimedia System

The Pandora multimedia system [Hopper90] consisted of a custom multimedia
peripheral, the Pandora’s Box, controlled by a conventional workstation. The

12
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Figure 2.2: The Pandora Multimedia System

box contained, amongst other things, video and audio hardware, a framebuffer,
an ATM network interface and a number of Transputers. The Transputers were
mainly used to move video and audio data between the various devices and the
ATM interface but were also used for resizing video streams. The workstation
directed the actions of the Pandora’s Box via a dedicated Transputer-link serial
interface.

The video output of the workstation passed through the box en-route to the
monitor and an analogue video mixer was used to merge the outputs of the
framebuffer in the box and that in the workstation. The X server running on the
workstation contained a video extension which informed the Pandora’s Box of the
size and positions of video windows, and which regions of the screen were currently
unobscured. The host workstations used a conventional 10Mbps Ethernet for
all low-bandwidth out-of-band communications such as connection setup and
teardown.

Pandora’s Boxes were connected via a 100Mbps CFR which was used to
transport the audio and video streams. Only simple fixed-ratio compression
schemes were used? to simulate the network bandwidth requirements of colour

2Pandora used a form of Differential Pulse Code Modulation (DPCM) which achieved a

13
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video streams using more sophisticated compression techniques. Although an
MPEG-2 compressed colour video stream would require comparable bandwidth
and be approximately Constant Bit-Rate (CBR), the scheme used by Pandora
does not exhibit the high latency and poor loss-tolerance properties.

Pandora’s design was highly successful in separating in-band and out-of-band
I/O operations - by implementing the in-band operations in entirely separate
hardware, and leaving control operations to be performed by the host worksta-
tion. The drawback of this rigid hardware separation was that general purpose
processing of video and audio was impossible since this data could not be passed
through the workstation. This limitation was unimportant at the time since pro-
cessor speeds were such that only very rudimentary calculations could have been
performed.

2.4.2 Second-Generation Multimedia Systems

Modern workstations are now fast enough to implement similar functionality to
Pandora entirely in software and have sufficient resources spare to be able to per-
form processing of the continuous media streams. A software emulation of a Pan-
dora’s Box implemented on a DECStation 5000/25 is described in [Barham95].
Systems which support computation with CM data types have been referred to
as “Second Generation” multimedia systems [Hayter93].

Pandora’s successor, Medusa [Wray94| aims to build a highly distributed mul-
timedia system composed of ATM network-connected multimedia devices such as
the ORL Disk-Brick [Chaney95] and the AVA-200 [Barham94] which are used as
sources and sinks of CM data. In systems such as this, video and audio may
easily be processed by any ATM-equipped workstation.

Several researchers have proposed designs for second generation multimedia
workstations which replace the traditional bus interconnect with a connection-
oriented space-division switch. The Desk Area Network (DAN) [Hayter91] and
the MIT VuNet [Houh95] are the two most prominent examples of this approach.
These systems are equipped with connection-oriented multimedia devices which
such as the DAN Framestore (DFS) [Pratt95] and the MIT Vidboard [Adam93]
supporting peer-to-peer communication of continuous media data. Specialised
processing nodes such as the DAN DSP node [Atkinson93] may also be used to
perform calculations which are not suited to a conventional CPU.

fixed 2:1 compression ratio.

14



Source: bg.tex DRAFT of 11:06, June 28, 1996

Second generation multimedia applications place new demands upon the op-
erating system. Typically the application will be composed of a number of time
sensitive tasks, whose total demand for resources vastly exceeds that which is
available. Due to the properties of CM data, it is often possible for an applica-
tion to provide acceptable results at a lower quality when insufficient resources
are available.

The relative importance of the various multimedia activities on a machine will
potentially change dramatically in response to external events. For example, it
should be possible to write a simple application which, using a small fraction of
the resources of the machine, monitors a low-quality video or audio stream in the
background watching for “interesting” events.®> In response to such an event, the
application may immediately request additional resources to be able to present a
high-quality form of the stream to the user.

The operating system must therefore be able to control the distribution of
resources ensuring that all parts of the system receive that which is currently
deemed necessary.

2.4.3 Discussion

On poorly designed hardware, the majority of the available CPU time is consumed
purely by copying CM data between the various I/O devices. In this situation,
guarantees of CPU QoS may initially appear to be of use in controlling the
distribution of 1/O resources within the system. Device drivers may be provided
with appropriate levels of CPU resource to support all of their clients, but in order
to effectively support more than one multimedia client they must still internally
account and schedule use of these resources.

As workstation technology improves, the burden of high bandwidth 1/O must
be removed from the CPU. In order to build larger and faster machines, scalable
architectures will become more important, supporting peer-to-peer transfers and
minimising the amount of processor interaction required to perform 1/0. Given
such well-designed hardware, first generation multimedia applications tend to be
I/O-bound with small amounts of CPU time being used to orchestrate the times
at which events occur. The CPU QoS guarantees provided to such applications
have limited benefit since the rate of progress is determined almost entirely by
the degree of competition for I/O resources.

3Such as motion in a video stream from a security camera.
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Second generation multimedia systems are designed to allow computations to
be performed on the CM data itself. In this environment, applications may ei-
ther be CPU-bound or I/O-bound, perhaps changing their behaviour in response
to data they receive or an external stimulus. In order for such applications to
perform predictably and be able to produce useful results on systems which are
usually running at 100% load, it is essential that guaranteed levels of 1/O re-
sources can be provided by the underlying operating system and hardware.

2.5 Operating System Structure

The structure of an operating system invariably reflects the workload which it was
designed to handle. As the workload has evolved from off-line batch computation,
to include interactive processing and now time-sensitive continuous media appli-
cations, operating systems have also evolved to meet the significantly differing
resource control requirements.

The majority of operating systems currently running on personal workstations
fall into one of three architectural categories: monolithic, kernel based or micro-
kernel based. Recently a vertically-structured operating system architecture has
been proposed as a means of simplifying resource accounting. The following sec-
tions briefly describe these architectures and discuss their respective suitabilities
for processing continuous media.

2.5.1 Monolithic Operating Systems

Several early personal workstations ran monolithic operating systems where ap-
plications and system code executed in exactly the same environment or protec-
tion domain (figure 2.3a). Cedar [Swinehart86], the Apple Macintosh [Apple85],
MS-DOS and Windows fall into this category.

Monolithic systems are usually assumed to be under the control of a single
user and so a cooperative multi-tasking model is often applied. Invocation of sys-
tem services is often performed using simple indirect procedure calls via vector
tables at well-known locations or by processor trap instructions. Good program-
ming discipline and sophisticated compilers must be relied upon to minimise the
probability of one application interfering with another or even crashing the entire
system.

16
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By avoiding potentially costly changes of protection domain, monolithic oper-
ating systems achieve high performance, but with the disadvantages of no protec-
tion from misbehaving processes, and no effective resource firewall mechanisms
to prevent one application from monopolising system resources.

2.5.2 Kernel-Based Operating Systems

Later workstation operating systems grouped all services and functions into a
single large kernel running at a privileged level, with applications running as un-
privileged processes over the top (figure 2.3b). System calls provide a mechanism
for applications to invoke services within the kernel. Examples include early va-
rieties of UNIX [Ritchie74], VMS [Goldenberg92] and more recently Windows-NT
[Custer93].

This structure allows numerous performance improvements to be obtained by
taking advantage of the tightly coupled nature of the system. Distinct internal
functions of the operating system usually interact with each other using a set
of locking disciplines based around a notion of Interrupt Priority Level (IPL)
[Leffler89] which are difficult to enforce and often result in unexpected deadlock
or even livelock [Mogul95].

Such operating systems were originally designed to allow multiple users to
simultaneously execute computationally intensive tasks. Processes with which
users interacted, usually via an attached terminal, required special treatment in
order to keep down the interactive response time. In a number of varieties of
UNIX, the scheduler identifies interactive processes by the fact that they block
performing I/O and, in order to minimise response times, they are preferentially
given the CPU with the assumption that they will soon block again. This heuris-
tic has disastrous results in the multimedia environment where an application
requires only a small amount of CPU time to cause high volumes of 1/0 to take
place.

In kernel-based systems, the resources consumed by the operating system
kernel whilst performing this high-volume I/O are typically unaccounted, with
the result that in a multimedia system implemented over UNIX, the majority
of CPU time will be spent within the kernel and only a small amount will be
accounted to user applications. For example, in an experiment in which a single
stream of ATM video from an AVA-200 was displayed on a UNIX workstation,
30% of the processor time was accounted to the application, 30% to the X server
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displaying the video, and the remaining time was consumed by the operating
system fielding interrupts from the ATM interface.

2.5.3 Microkernel-Based Operating Systems

Recent operating systems research has caused functionality to be moved out
of monolithic kernels and into server processes, usually for reasons of modular-

ity and maintainability (figure 2.3c).*

Operating systems of this kind are gen-
erally referred to as microkernel-based. Well-known examples include Amoeba
[Tanenbaum81], Mach [Accetta86], Chorus [Rozier90], Plan9 [Pike90] and Spring

[Hamilton93].

The operating system kernel usually provides little more than support for
“kernel-threads” and an Inter-Process Communication (IPC) mechanism such
as the message-passing system of Mach. Microkernel based operating systems
necessarily incur performance penalties due to the increased amount of commu-
nication which must take place. For this reason, several researchers have inves-
tigated mechanisms for migrating functionality back into the kernel [Bricker91].
The SPIN microkernel [Bershad94] provides mechanisms for servers to move spe-
cially verified code sections known as SPINDLEs into client address-spaces and
even into the kernel. A portable hardware abstraction layer provides access to
processor features such as the translation lookaside buffer (TLB) and operating
system datastructures allowing applications to effectively implement their own
communications primitives.

In an operating system designed to support multimedia, moving system pro-
vided services out of the kernel and into servers introduces a complicated account-
ing problem. Resources consumed by an application must be transferred to and
accounted within each server, and each resource must now be multiplexed more
than once. Not only is this an inelegant approach, but in the field of networking,
layered multiplexing has been shown to be harmful to the provision of Quality of
Service [Tennenhouse89].

4 Although some researchers seem to view the minimisation of kernel size as its own justifi-
cation — hence the proliferation of “nano-kernels” and “pico-kernels”.
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2.5.4 Vertically Structured Operating Systems

A large proportion of the code executed on behalf of an application in a tradi-
tional operating system requires no additional privilege and does not therefore
need to execute in a different protection domain. Typically code which must
atomically and securely update important datastructures is rarely executed and
usually associated with out-of-band operations such as opening or closing a file. It
is only this code which must necessarily execute in a different protection domain.

The Nemesis operating system [Leslie96] makes use of these observations, to-
gether with a platform and language independent interface definition language
(IDL), to transparently move the majority of operating system services into the
application itself, leading to a vertically structured operating system (figure 2.3d).
The kernel is still responsible for implementing scheduling and protection of hard-
ware resources, but this functionality is provided at a much lower level of abstrac-
tion. In a multimedia system this also has the advantage of allowing applications
to make their own resource management policy decisions. Nemesis is described
in greater detail in chapter 3.

The design principles used in Nemesis have been parallelled closely by the
MIT Exokernel project [Engler95], although for different reasons. The motivation
for this work, as with SPIN was to improve efficiency, rather than accountabil-
ity, by providing the minimal primitives to support per-process customisation of
the operating system. This led to a design where the Aegis kernel does little
more than virtualise processor features to support multiple “library-operating
systems”. Aegis provides minimalist interrupt and exception dispatching and a
software TLB abstraction. Capability mechanisms are used to implement secure-
bindings for the update of the software TLB. The Ethernet device is abstracted
using low-level packet-filtering [Mogul87] and although discussions of framebuffer
and disk I/O mechanisms are presented, these have not been fully realised.’?

2.6 Quality of Service in Operating Systems

Operating systems QoS research has focussed almost exclusively on scheduling
the processor resource so as to provide support for multimedia applications — so
called “soft-real-time” technology. This has often involved adding a real-time

’For example, Aegis currently runs on DEC5000/125 platforms, yet [Engler95] describes a
Silicon Graphics framebuffer not available for TURBOchannel based machines.
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thread scheduling class to the kernel thread scheduler of an existing microkernel
based operating system [Tokuda93]. Such an extension does not alleviate the
fundamental problem that the majority of system resources consumed by an
application are not accounted to that application and so any QoS guarantee
given to that application is therefore meaningless.

Efforts have been made to provide high-level interfaces to allow applications
to specify their QoS requirements in more meaningful terms [Coulson93]. Whilst
these QoS translation schemes are often useful, defining any high-level QoS ar-
chitecture within the operating system only serves to restrict the classes of ap-
plication which can be supported.

The extension of QoS to I/O within an operating system is discussed in
[Coulson95]. High priority threads within the driver of an ATM network in-
terface are used to demultiplex I/O streams at a low level and perform protocol
processing operations for each connection with some form of timeliness guaran-
tee. Three classes of threads are provided by the system, ranging from best-effort
to guaranteed threads with absolute priority over other classes. Threads of the
latter class are used per-connection to shepherd packets from the device driver up
to applications. The lack of hardware demultiplexing functions in the ATM in-
terface means that a significant fraction of the processing overheads are incurred
by a single “interrupt handler” thread.

The inappropriate structure of microkernel-based operating systems, where
the majority of system services are provided by servers, introduces the need for
complicated resource transfer mechanisms. The Processor Capacity Reserves
scheme [Mercer93] allows processor time originally allocated to an application,

in the form of a reserve to be used by a server when performing an Remote
Procedure Call (RPC).

There is no way to ensure, however, that the processor time is used for the
purposes for which it was originally intended, and for any timeliness guarantees
to be preserved, the server must internally schedule clients’ requests. [Mercer93|
describes the need to modify the X Window System Server to service its clients in
a prioritised fashion to maintain the QoS guarantees of video display applications.

Lottery scheduling [Waldspurger94] shares the processor between a number
of kernel threads using statistical mechanisms. A cheap pseudo-random number
generator selects one of a number of “tickets” and the application currently hold-
ing the ticket is allowed to execute for a fixed quantum of time. Mechanisms for
transferring tickets between clients and servers are also provided. The statistical
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nature of this scheduling technique is only suitable to provision of guarantees
over large time-scales in comparison with the reschedule rate, and unless the
properties of the random-number generator are well understood, it is possible for
processes not to receive their allocated resources.

The later refinement, Stride scheduling [Waldspurger95] uses a deterministic
method to apportion resources with the same ticket-based abstraction. This
technique has also been used to control the rate of transmission of UDP packets
across and Ethernet with some success.

Thread tunnelling/migration has been used to allow a client thread to enter
the protection domain of a server for the duration of an RPC, effectively transfer-
ring the exact amount of resources to allow the call to be performed. Examples
of this include lightweight-RPC [Bershad90], doors in Spring [Hamilton93] and
portals in the Opal system [Chase93]. In general, all of these mechanisms imply
the use of kernel threads, and mean that all scheduling decisions must be taken
by the kernel and/or the server. This both removes thread scheduling policy
from the application, and requires that the application describe its scheduling
requirements to the kernel using a fixed and necessarily restrictive interface.

The approach taken by Nemesis is described in chapter 3.
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Chapter 3

Nemesis

Nemesis is the prototype operating system developed at the University of Cam-
bridge Computer Laboratory as part of the Pegasus Project [Leslie93]. Nemesis
currently runs on a number of platforms including the DEC 3000/AXP series of
workstations [DEC94b], DECchip EB64 Alpha evaluation board [DEC93], DEC
5000/25 (Maxine) [Voth91] and the Fairisle FPC3 Port Controller [Hayter94].!
Several ports to other platforms and architectures are also underway, including
the DECchip EB164 evaluation board [DEC95] and the Intel Pentium processor.
This chapter describes the structure of Nemesis.

3.1 Introduction

The purpose of an operating system is to multiplex shared resources between
applications. Traditional operating systems have presented physical resources
to applications by virtualisation. e.g. UNIX applications run in virtual time on
a virtual processor  most are unaware of the passage of real time and that
they often do not receive the CPU for prolonged periods. The operating system
proffers the illusion that they are exclusive users of the machine.

Multimedia applications tend to be sensitive to the passage of real time. They
need to know when they will have access to a shared resource and for how long.
In the past it has been considered sufficient to implement little more than access-

!Nemesis was written from scratch over a 2 year period by Timothy Roscoe, David Evers
and the author, with significant influence from the Fawn system described in [Black94].
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control on physical resources. It is becoming increasingly important to account,
schedule and police shared resources so as to provide some form of QoS guarantee.

Whilst it is necessary to provide the mechanisms for multiplexing resources,
it is important that the amount of policy hard-wired into the operating system
kernel is kept to an absolute minimum. That is, applications should be free to
make use of system provided resources in the manner which is most appropriate.
At the highest level, a user may wish to impose a globally consistent policy, but
in the Nemesis model this is the job of a QQoS-manager agent acting on the user’s
behalf and under the user’s direction. This is analogous to the use of a “window-
manager” process to allow the user to control the decoration, size and layout of
windows on the screen, but which does not otherwise constrain the behaviour of
each application.

3.2 Previous Work

Previous work in the Pegasus project has restricted attention to the CPU re-
source. |[Hyden94| discusses scheduling mechanisms for soft-real time problems
and demonstrates a system which provides QoS guarantees to applications and

mechanisms which allow applications to degrade gracefully in conditions of high
load.

[Black94] describes the advantages of QoS guarantees and resource account-
ing mechanisms for controlling the behaviour of device-drivers in an high-speed
network environment.

[Roscoe95] addresses the problem of QoS crosstalk in microkernel systems. By
migrating operating system functionality into applications themselves, the use of
servers is minimised. Servers are only required for out-of-band operations and
do not reside on the data path for most operations. This architecture minimises
the problem of QoS crosstalk without having to resort to complicated resource
transfer mechanisms.

3.3 The Structure of Nemesis

Nemesis was designed to provide QoS guarantees to applications. In a microkernel
environment, an application is typically implemented by a number of processes,
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most of which are servers performing work on behalf of more than one client. This
leads to enormous difficulty in accounting resource usage to the application. The
guiding principle in the design of Nemesis was to structure the system in such
a way that the vast majority of functionality comprising an application could
execute in a single process, or domain. As mentioned previously, this leads to a
vertically-structured operating system (figure 3.1).2

The Nemesis kernel consists of a scheduler (less than 250 instructions) and a
small amount of code known as the Nemesis Trusted Supervisor Code (NTSC),
used for Inter-Domain Communication (IDC) and to interact with the scheduler.
The kernel also includes the minimum code necessary to initialise the proces-
sor immediately after booting and handle processor exceptions, memory faults,
unaligned accesses, TLB misses and all other low-level processor features. The
Nemesis kernel bears a striking resemblance to the original concept of an operat-
ing system kernel or nucleus expressed in [Brinch-Hansen70].

The kernel demultiplexes hardware interrupts to the stage where a device
specific first-level interrupt handler may be invoked. First level interrupt handlers
consist of small stubs which may be registered by device-drivers. These stubs are
entered with all interrupts disabled and with the minimal number of registers
saved and usually do little more than send notification to the appropriate device
driver.

2This diagram is derived from a diagram in [Hyden94].
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3.3.1 Domains

The term domain is used within Nemesis to refer to an executing program and
can be thought of as analogous to a UNIX process — i.e. a domain encapsulates
the execution state of a Nemesis application. Each domain has an associated
scheduling domain (determining CPU time allocation) and protection domain
(determining access rights to regions of the virtual address space).

Nemesis is a Single Address Space (SAS) operating system i.e. any accessible
region of physical memory appears at the same virtual address in each protection
domain. Access rights to a region of memory, however need not be the same. The
use of a single address space allows the use of pointers in shared data-structures
and facilitates rich sharing of both program text and data leading to significant
reduction in overall system size.

All operating system interfaces are written using an IDL known as MIDDL
which provides a platform and language independent specification. MIDDL interfaces,?
modules and code-structuring tools are used to support the single address space
and allow operating system code to be migrated into the application. These

techniques are discussed in detail in [Roscoe95].

3.3.2 Nemesis Trusted Supervisor Code (NTSC)

The NTSC is the low level operating system code within the Nemesis kernel
which may be invoked by user domains. Its implementation is potentially ar-
chitecture and platform specific, for example, the NTSC is implemented almost
entirely in PALcode on Alpha platforms [Sites92] whilst on MIPS [Kane88] and
ARM [ARMOI1] platforms, the NTSC is invoked using the standard system call
mechanisms.

The NTSC interface may be divided into two sections - those calls which may
be invoked by any domain, and those which may only be invoked by a privileged
domain. Unprivileged calls are used for interaction with the kernel scheduler and
to send events to other domains. Privileged calls are used to affect the processor
mode and interrupt priority level and to register first level interrupt stubs. As
an example, table 3.1 lists the major NTSC calls for the Alpha architecture.

The N'TSC interacts with domains and the kernel scheduler via a per-domain

3MIDDL interfaces in Nemesis are written in files with a .if suffix, e.g. Activation.if
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Unprivileged Domains

Name Purpose

ntsc_rfa Return from activation.
ntsc_rfa resume | Return from activation, restoring a context.
ntsc_rfa_block | Return from activation and block.

ntsc_block Block awaiting an event.
ntsc_yield Relinquish CPU allocation for this period.
ntsc_send Send an event.

Privileged Domains

Name Purpose
ntsc_swpipl Change interrupt priority level.
ntsc_entkern” Enter kernel mode.

ntsc_leavekern | Leave kernel mode.

ntsc_regstub Register an interrupt stub.
ntsc_kevent Send an event from an interrupt stub.
ntsc_rti Return from an interrupt stub.

“ntsc_entkern is necessarily implemented as an unprivileged PAL-
code call, but which results in an illegal instruction fault for unprivileged
domains.

Table 3.1: Alpha NTSC Call Interface.

area of shared memory known as the Domain Control Block (DCB). Portions of
the DCB are mapped read-write into the domain’s address-space, whilst others
are mapped read-only to prevent modification of privileged state. The read-
only DCB contains scheduling and accounting information used by the kernel,
the domain’s privilege level, read-only datastructures used for implementing IDC
channels and miscellaneous other information. The read-write section of the DCB
contains an array of processor-context save slots and user-writable portions of the
IDC channel datastructures.

3.4 Virtual Processor Interface

Nemesis presents the processor to domains via the Virtual Processor Interface
(VP.if). This interface specifies a platform independent abstraction for managing
the saving and restoring of CPU context, losing and regaining the real processor
and communicating with other domains. It does not however attempt to hide
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the multiplexing of the underlying processor(s). The virtual processor interface
is implemented over the NTSC calls described in section 3.3.2.

3.4.1 Activation

Whenever a domain is given the CPU, it is upcalled via a vector in the DCB
known as the activation handler in a similar manner to Scheduler Activations
[Anderson92]. A flag is set disabling further upcalls until the domain leaves acti-
vation mode allowing code on the activation vector to perform atomic operations
with little or no overheads. Information is made available to the activation han-
dler including an indication of the reason why the domain has been activated,
the time when it last lost the real processor and the current system time. The
purpose of this upcall is to afford QoS-aware applications an opportunity to as-
sess their progress and make application-specific policy decisions so as to make
most efficient usage of the available resources.

When a domain is handed the processor it is informed whether it is currently
running on guaranteed time, or merely being offered use of some of the slack-time
in the system. QoS-aware applications must take account of this before deciding
to adapt to apparent changes in system load. This may be used to prevent
QoS feedback mechanisms from reacting to transient improvements in resource
availability.

3.4.2 Processor Context

When a virtual processor loses the CPU, its context must be saved. The DCB
contains an array of context-save slots for this purpose. Two indices into this
array specify the slots to use when in activation mode and when in normal mode,
based on the current state of the activation flag.

When a domain is preempted it will usually be executing a user-level thread.
The context of this thread is stored in the save slot of the DCB and may be
reloaded by the activation handler of the domain when it is next upcalled. If a
domain is preempted whilst in activation mode, the processor context is saved
in the resume slot and restored transparently when the domain regains the CPU
rather than the usual upcall.
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3.4.3 Events

The only means of communication directly provided by the Nemesis kernel is the
event. Each domain has a number of channel-endpoints which may be used either
to transmit or to receive events. A pair of endpoints may be connected by a third
party known as the Binder, to provide an asynchronous simplex communications
channel.

This channel may be used to transmit a single 64-bit value between two do-
mains. The event mechanism is intended to be used purely as a synchronisation
mechanism for shared memory communication, although several simple protocols
have been implemented which require nothing more than the event channel itself,
e.g the TAP protocol described in [Black94] used for start-of-day communication
with the binder. Unlike message-passing systems such as Mach [Accetta86] or
Chorus [Rozier90], the kernel is not involved in the transfer of bulk data between
two domains.

Nemesis also separates the act of sending an event and that of losing the pro-
cessor. Domains may exploit this feature to send a number of events before being
preempted or voluntarily relinquishing the CPU. For bulk data transports such
as the Rbufs mechanism described in section 3.5.3, pipelined execution is usu-
ally desirable and the overheads of repeatedly blocking and unblocking a domain
may be avoided. For more latency-sensitive client-server style communication a
domain may choose to cause a reschedule immediately in order to give the server
domain a chance to execute.

3.5 Inter-Domain Communication (IDC)

Various forms of IDC have been implemented on top of the Nemesis event mech-
anism. Some of the most commonly used are described below.

3.5.1 Shared Datastructures

Since Nemesis domains share a single address space, the use of shared mem-
ory for communication is relatively straightforward. Datastructures containing
pointers are globally valid and the only further requirement is to provide some
synchronisation mechanism to allow the datastructure to be updated atomically
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and to prevent readers from seeing an inconsistent state. Very lightweight locking
primitives may easily be built on top of the kernel-provided event mechanism.

3.5.2 Remote Procedure Call (RPC)

Same-machine RPC [Birrell84] is widely used within Nemesis. Although the
majority of operating system functionality is implemented within the application,
there are many out-of-band operations which require interaction with a server in
order to update some shared state.

The default RPC transport is based on an area of shared memory and a pair
of event channels between the client and server domains. To make an invocation,
the client marshalls an identifier for the call and the invocation arguments into
the shared memory and sends an event to the server domain. The server domain
receives the event, unmarshalls the arguments and performs the required oper-
ation. The results of the call, or any exception raised are then marshalled into
the shared memory and an event sent back to the client. Marshalling code and
the client and server stubs are generated automatically from the MIDDL interface
definition and loaded as shared libraries.

The average cost of a user-thread to user-thread null-RPC between two Neme-
sis domains using the default machine-generated stubs and the standard user-
level threads package, was measured at just over 30us on the Sandpiper platform
[Roscoe95].

3.5.3 Rbufs

Whilst RPC provides a natural abstraction for out-of-band control operations
and transaction style interactions, it is unsuited to transfer of bulk data. The
mechanism adopted by Nemesis for transfer of high volume packet-based data is
the Rbufs scheme detailed in [Black94]. The transport mechanism is once again
implemented using Nemesis event-channels and shared memory. Three areas of
shared memory are required as shown in figure 3.2. One contains the data to be
transferred and the other two are used as FIFOs to transmit packet descriptors
between the source and sink. The head and tail pointers of these FIFOs are
communicated by Nemesis event-channels.

Packets comprised of one or more fragments in a large pool of shared memory
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Figure 3.2: High Volume I/O Using Rbufs
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are described by a sequence of (base, length) pairs known as iorecs. Figure 3.2a
shows iorecs describing two packets, one with two fragments and the other with
only a single fragment. Rbufs are highly suited to protocol processing operations
since they allow simple addition or removal of both headers and trailers and
facilitate segmentation and reassembly operations.

In receive mode, the sink sends iorecs describing empty buffer space to the
source, which fills the buffers and updates the iorecs accordingly before returning
them to the sink. In transmit mode, the situation is the converse. The closed
loop nature of communication provides back-pressure and feedback to both ends
of the connection when there is a disparity between the rates of progress of the
source and sink.

The intended mode of operation relies on the ability to pipeline the processing
of data in order to amortise the context-switch overheads across a large number
of packets. Sending a packet on an Rbufs connection does not usually cause a
domain to lose the CPU. Figure 3.3 shows the MIDDL interface type for the Rbufs
transport.

3.6 Scheduling

Scheduling can be viewed as the process of multiplexing the CPU resource be-
tween computational tasks. The schedulable entity of an operating system often
places constraints both on the scheduling algorithms which may be employed and
the functionality provided to the application.

The recent gain in popularity of multi-threaded programming due to lan-
guages such as Modula-3 [Nelson91] has led many operating system designers
to provide kernel-level thread support mechanisms [Accetta86, Rozier90]. The
kernel therefore schedules threads rather than processes. Whilst this reduces the
functionality required in applications and usually results in more efficient pro-
cessor context-switches, the necessary thread scheduling policy decisions must
also be migrated into the kernel. As pointed out in section 2.6, this is highly
undesirable.

Attempts to allow applications to communicate thread scheduling policy to
the kernel scheduler [Coulson93, Coulson95] lead to increased complexity of the
kernel and the possibility for uncooperative applications to misrepresent their
needs to the operating system and thereby gain an unfair share of system re-
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I0 : LOCAL INTERFACE =
NEEDS IDC;
BEGIN

-- An "I0" channel has to be one of two kinds, a "Read"er or

-- "Write"r. Readers remove valid packets from the channel with

-- "GetPkt" and send back empty "IO_Rec"s with "PutPkt"; Writers
-- send valid packets with "PutPkt" and acquire empty "IO_Rec"s by
-- calling "GetPkt".

Kind : TYPE = { Read, Write };

-- The values passed through "IO" channels are "IO_Recs",
-- essentially "base" + "length" pairs describing the data.
Rec : TYPE = RECORD [

base : ADDRESS,

len : WORD
1
-- "PutPkt" sends a vector of "IO_Rec"s down the channel. The
-- operation sends '"nrecs" records in a vector starting at "recs" in
-- memory. 0f these, the first "valid_recs" are declared as holding
-- useful data.
PutPkt : PROC [ nrecs : CARDINAL;
recs : REF Rec;
valid_recs : CARDINAL ]
RETURNS [];
-- Send a vector of I/0 records down the channel, or release them
-- at the receiving end.
-- "GetPkt" acquires a maximum of "max_recs" "IO_Rec"s, which are
-- copied into memory at address "recs". At the receive end these
-- typically constitute a packet, which uses the first "valid_recs"
-- for pointing to its data. The total number of records read is
-- returned in "nrecs".
GetPkt : PROC [ max_recs : CARDINAL;
recs : REF Rec;
0UT valid_recs : CARDINAL 1]
RETURNS [ nrecs : CARDINAL 1;
-- Pull a vector of I/0 records out of the channel.
-- "PutPktNoBlock" sends a packet assuming that the client has
-- already determined that "PutPkt" would not block.
PutPktNoBlock : PROC [ nrecs : CARDINAL;
recs : REF Rec;
valid_recs : CARDINAL 1]
RETURNS [];
-- Guaranteed non-blocking "PutPkt".
-- "GetPktNoBlock" checks whether it would block, and returns
-- "False" if this is the case.
GetPktNoBlock : PROC [ max_recs : CARDINAL;
recs : REF Rec;
0UT nrecs : CARDINAL;
0UT valid_recs : CARDINAL 1]
RETURNS [ avail : BOOLEAN 1;

-— As "GetPkt", but fails rather than block.
-- "GetPoolInfo" returns information about the pool used to send
-- data.
GetPoolInfo : PROC [ OUT buf: IDC.Buffer ] RETURNS [];

-- Return the main pool buffer.

Slots : PROC [ ] RETURNS [ ns: CARDINAL 1;
-- Return the number of slots of the tx fifo.

Dispose : PROC [] RETURNS [];

END.

Figure 3.3: MIDDL interface for Rbufs (I0.1if)
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sources. For example, in the above systems user processes are required to commu-
nicate the earliest deadline of any of their threads to the kernel thread scheduler.

Nemesis allows domains to employ a split-level scheduling regime with the
multiplexing mechanisms being implemented at a low level by the kernel, and the
application-specific policy decisions being taken at user-level within the applica-
tion itself. Note that the operating system only multiplexes the CPU resource
once. Most application domains make use of a threads package to control the
internal distribution of CPU resource between a number of cooperating threads
of execution.

3.6.1 Inter-Process Scheduling

Inter-process scheduling in Nemesis is performed by the kernel scheduler. This
scheduler is responsible for controlling the exact proportions of bulk processor
bandwidth allocated to each domain according to a set of QoS parameters in the
DCB. Processor bandwidth requirements are specified using a tuple of the form
(p, s, z,1l) with the following meaning:

p The period of the domain in ns.

s The slice of CPU time allocated to the domain every period in ns.
x A flag indicating willingness to accept eztra CPU time.

[ A latency hint to the kernel scheduler in ns.

The p and s parameters may be used both to control the amount of processor
bandwidth and the smoothness with which is is provided. The latency hint
parameter is used to provide the scheduler with an idea as to how soon the
domain should be rescheduled after unblocking.

The kernel scheduler interacts with the event mechanism allowing domains
to block until they next receive an event, possibly with a timeout. When a
domain blocks it loses any remaining CPU allocation for its current period - it is
therefore in the best interest of a domain to complete as much work as possible
before giving up the processor.

The current kernel scheduler employs a variant of the Earliest Deadline First
(EDF) algorithm [Liu73] where the deadlines are derived from the QoS param-
eters of the domain and are purely internal to the scheduler. The scheduler is
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capable of ensuring that all guarantees are respected provided that

>

Z.pz'

and is described in detail in [Roscoe95]. Despite the internal use of deadlines, this
scheduler avoids the inherent problems of priority or deadline based scheduling
mechanisms which focus on determining who to allocate the entire processor
resource to, and provide no means to control the quantity of resource handed
out.

In order to provide fine-grained timeliness guarantees to applications which
are latency sensitive, higher rates of context-switching are unavoidable. The ef-
fects of context-switches on cache and memory-system performance are analysed
in [Mogul91]. It is shown that a high rate of context switching leads to excessive
numbers of cache and TLB misses reducing the performance of the entire sys-
tem. The use of a single address space in Nemesis removes the need to flush a
virtually addressed cache on a context switch, and the process-1D fields present
in most TLBs can be used to reduce the number of TLB entries which need to be
invalidated. The increased sharing of both code and data in a SAS environment
also helps to reduce the cache-related penalties of context-switches.

3.6.2 Intra-Process Scheduling

Intra-process scheduling in a multimedia environment is an entirely application-
specific area. Nemesis does not have a concept of kernel threads for this reason.
A domain may use a user-level scheduler to internally distribute the CPU time
provided by the kernel scheduler using its own policies. The application specific
code for determining which context to reload is implemented in the domain itself.

The activation mechanism described in section 3.4.1 provides a convenient
method for implementing a preemptive user-level threads package. The current
Nemesis distribution provides both preemptive and non-preemptive threads pack-
ages as shared library code.

The default thread schedulers provide lightweight user-level synchronisation
primitives such as event counts and sequencers [Reed79], and the mutexes and
condition variables of SRC threads [Birrell87]. The implementation of various

sets of synchronisation primitives over the top of event counts and sequencers is
discussed in [Black94].
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It is perfectly possible for a domain to use an application specific threads
package, or even to run without a user-level scheduler. A user-level threads
package based on the ANSAware/RT [ANSA95] concepts of Tasks and Entries
has been developed as part of the DCAN project at the Computer Laboratory.*
The ANSAware/RT model maps naturally onto the Nemesis Virtual Processor
interface.

3.7 Device Driver Support

In order to present shared I/O resources to multiple clients safely, device-drivers
are necessary. The driver is responsible for ensuring that clients are protected
from each other and that the hardware is not programmed incorrectly. This often
involves context-switching the hardware between multiple concurrent activities.
The exact nature of the hardware dictates the methods employed and therefore
the level of abstraction at which a device may be presented to applications.

Device drivers typically require access to hardware registers which can not
safely be made accessible directly to user-level code. This can be achieved by
only mapping the registers into the address space of the device driver domain.

Some hardware registers are inherently shared between multiple device drivers,
e.g. interrupt masks and bus control registers. The operating system must pro-
vide a mechanism for atomic updates to these registers. In kernel-based operating
systems this has traditionally been performed by use of a system of interrupt-
priority levels within the kernel. On most platforms, Nemesis provides similar
functionality via privileged NTSC calls.

In the design of Nemesis it was considered essential that it was possible to
limit the use of system resources by device driver code so that the behaviour of
the system under overload could be controlled. For this reason, Nemesis device
drivers are implemented as privileged domains which are scheduled in exactly the
same way as other domains, but have access to additional NTSC calls.

4This work was performed by Timothy Roscoe and David Evers.
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3.7.1 Hardware Interrupts

The majority of 1/O devices have been designed with the implicit assumption that
they can asynchronously send an interrupt to the operating system which will
cause appropriate device-driver code to be scheduled immediately with absolute
priority over all other tasks. Indeed failure to promptly service interrupt requests
from many devices can result in serious data loss. It is ironic that serial lines,
the lowest bit-rate I/O devices on most workstations, often require the most
timely processing of interrupts due to the minimal amounts of buffering and lack
of flow-control mechanisms in the hardware. Section 4.3.1 describes how this
phenomenon influences DMA arbitration logic on the Sandpiper.

More recently designed devices, particularly those intended for multimedia
activities, are more tolerant to late servicing of interrupts since they usually
have more internal buffering and are expected to cope with transient overload
situations.

In order to effectively deal with both types of device, Nemesis allows drivers
to register small sections of code known as interrupt-stubs to be executed imme-
diately when a hardware interrupt is raised. These sections of code are entered
with a minimal amount of saved context and with all interrupts disabled. They
thus execute atomically. In the common case, an interrupt-stub will do little
more than send an event to the associated driver causing it to be scheduled at
a later date, but for devices which are highly latency sensitive it is possible to
include enough code to prevent error conditions arising. The unblocking latency
hint to the kernel scheduler is also useful for this purpose.

This technique of decoupling interrupt notification from interrupt servicing
is similar to the scheme used in Multics which is described in [Reed76], but the
motivation in Nemesis is to allow effective control of the quantity of resources
consumed by interrupt processing code, rather than for reasons of system struc-
ture. [Dixon92] describes a situation where careful adjustment of the relative
priorities of interrupt processing threads led to increased throughput under high
loads when drivers were effectively polling the hardware and avoiding unnecessary
interrupt overhead. The Nemesis mechanisms are more generic and have been
shown to provide better throughput on the same hardware platform [Black94].
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3.7.2 Kernel Critical Sections

The majority of device-driver code requires no privilege, but small regions of
device driver code often need to execute in kernel mode. For example, performing
[/O on a number of processors requires the use of instructions only accessible
within a privileged processor mode. Nemesis provides a lightweight mechanism
for duly authorised domains to switch between kernel and user mode.”

Although the current implementation requires explicit calls to enter and exit
kernel mode, an alternative would be to register these code sections (ranges of
PC values) in advance and perform the switch to kernel mode when the processor
detects a privilege violation. The PC range tables generated by many compilers
to enable efficient language-level exception mechanisms may be used for this
purpose. Although this support is expected soon, the version of gcc currently in
use does not yet include these features.®

3.8 Nemesis and 1/0

Although Nemesis is intended as an operating system for a personal multimedia
workstation, much of the previous experimental work has been evaluated using
workloads which are unrepresentative of those found in multimedia systems —
i.e. processes which are entirely CPU-bound. The Nemesis approach to QoS
provision has been proven to be highly successful in environments where the
bottleneck resource for all applications is the CPU.

The work described in [Roscoe95] approaches the QoS-crosstalk problem by
migrating operating system code into user domains. Whilst this solution works
well for code which does not require to run with elevated privilege, such as
protocol-processing code, it cannot be used in situations which requires write
access to shared state or access to hardware registers. A multimedia system by
definition deals with a large volume of 1/O which invariably involves privileged
operations at the lowest levels. Since these operations must be therefore be per-
formed by a privileged domain, and Nemesis provides no low-level mechanisms
for resource transfer, some degree of QoS-crosstalk is unavoidable.

The problem of effective control over 1/O resources is tackled more convinc-

5The implementation takes approximately 16 PALcode instructions on the Alpha.
6Version 2.7.2.
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ingly in [Black94|. Although a number of useful mechanisms for streamlining I/O
in a connection-oriented environment are presented, the prototype system known
as Fawn was designed for the port-controller of an ATM switch, and so multime-
dia activities were restricted. The only high-bandwidth I/O device available was
an ATM interface which required use of the CPU on a per-cell basis.

Explicitly scheduling the activities of the ATM device driver as a user-level do-
main, rather than performing the cell-forwarding function in an interrupt handler
with no resource accounting, was demonstrated both to improve overall through-
put and to allow QoS firewalls to be introduced protecting various other activities
such as connection management. This scheduling, however, was only effective due
to the the lack of DMA support causing the CPU resource to be the system bot-
tleneck. Provision of QoS guarantees during concurrent use of the ATM device
by multiple clients was not addressed, but would require high-level QoS man-
agement functions and more sophisticated intra-process scheduling mechanisms
within the device driver.

3.9 Summary

Nemesis as described in [Roscoe95] provides highly effective mechanisms for mul-
tiplexing the CPU resource between a number of concurrent activities according
to QoS contracts negotiated out-of-band with a QoS manager.

For these guarantees to be meaningful, the majority of in-band operations
traditionally performed by the operating system are performed by unprivileged
code in shared libraries forming part of the application. Only infrequent out-of-
band operations are performed by trusted servers required to maintain shared
state in a consistent manner.

The CPU, however, is only one of a number of resources required by a second-
generation multimedia application. Effective partitioning of other system re-
sources, particularly those involved in I/O, has not been previously addressed.

The remainder of this dissertation will address this issue.
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Chapter 4

Scheduling I/0O Resources

If an operating system is to be able to control the distribution of 1/O resources
between competing clients, mechanisms are necessary for scheduling access to
those resources. It must be possible for the operating system to determine both
when each client is handed the resource, and for how long. The effectiveness with
which this can be achieved is determined by the hardware architecture of the
workstation.

4.1 Traditional Workstation Architecture

Most modern workstations are designed around a bus architecture. All /O de-
vices are accessed across a time-division multiplexed bus where I/O transactions
may either be performed using the processor (often called Programmed I/O) or
using some form of bus-mastering or Direct Memory Access (DMA).

In order to achieve reasonable performance and avoid deadlocks, it is essential
that the bus implement some form of scheduling and policing. It is extremely rare,
however, that these functions are under the control of the processor. For example,
DMA controllers often give the programmer the illusion that long transfers from
a device to main memory may be performed uninterrupted, but it is normal
for a bus to provide mechanisms for aborting DMA transfers in order for the
CPU to gain access. It has also been found necessary for buses to provide some
sort of arbitration scheme whereby more important transactions can be given
preferential access to the bus. The policies for these arbitration mechanisms are
usually implemented in hardware and are rarely more sophisticated than simple
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static-priority mechanisms.

Although the bus often has sufficient aggregate bandwidth to support all of
the connected I/O devices, data usually has to travel across the bus more than
once in order to reach its eventual destination. This situation is unavoidable on
buses which support only a single master device, effectively forcing the use of
main memory as one endpoint of each transfer. Despite the fact that recent bus
architectures such as PCI [PCI95] support peer-to-peer transfers, it is rare for
peripheral devices to take advantage of this feature. This is perhaps the main
reason why the I/O bus becomes a bottleneck when a traditional workstation is
used for multimedia activities.

The TURBOchannel and SCSI specifications are considered in slightly more
detail since they are the interconnect technologies found in the experimental
platforms used for this work.

4.1.1 TURBOchannel

The TURBOchannel [DEC90] is a 32-bit wide synchronous, asymmetric 1/0O
channel which can be operated at any fixed frequency between 12.5MHz and
25MHz. TURBOchannel is asymmetric in that it supports one system module
and a number of option modules. The system module usually contains the pro-
cessor and memory system and the option modules are used for connection of
peripheral 1/O devices.

A variety of transactions may be performed on the TURBOchannel falling
into two broad categories:
e Programmed I/O (PIO) Transactions The system module can perform
a read or write to a single option module.
¢ DMA Transactions An option module can read or write to the system
module.
It is impossible for an option module to address another option module on the

TURBOchannel - i.e. peer-to-peer DMA is impossible.

DMA transactions may be of arbitrary length up to a system defined max-
imum which must be at least 64 words. After an initial overhead of 5 cycles
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to transfer the first word, an additional word of data may be transferred per
clock cycle. DMA transactions may not cross 2048-byte page boundaries. The
exact scheme used for DMA request arbitration is implementation specific allow-
ing elaborate fair-service mechanisms - but most implementations currently use
static priority or round-robin arbitration.

Programmed I/O transactions transfer only a single word of data and take 5
clock cycles.! Back-to-back transactions to the same option must be separated
by a special inter-transaction cycle. Some implementations may even require
additional idle cycles between PIO transactions. These factors conspire to make
PIO an excessively costly operation.

4.1.2 Small Computer System Interface (SCSI)

SCSI is a vendor and architecture independent ANSI standard for the connection
of peripheral I/O devices [ANSI86]. The standard covers all layers from the
physical and electrical connection of the devices up to defining several generic
device classes and protocols for communicating with these devices. Non-generic
functionality may still be exploited via vendor-unique fields and commands.

The original SCSI-I standard specified an 8-bit wide bus clocked at 5MHz,
but the newer SCSI-II standard allows 8, 16 or even 32-bit wide buses clocked
at up to 10MHz providing data transfer rates of up to 40MBps. In all cases,
the maximum number of devices which may be connected is eight. These are
assigned unique addresses from 0 to 7 which statically determine their priority
during bus arbitration phases (the higher the numeric value of the address, the
higher the priority).

SCSI transactions take place between an initiator and a target device. Al-
though the standard allows multiple initiators and multiple targets connected to
the same bus it is normal to have a single initiating device (the host computer)
and multiple target devices. It is also possible for a device to function both as
an initiator and as a target, though not simultaneously. In addition to the nor-
mal transfers between the host computer and a single peripheral device, limited
peer-to-peer transfer support is provided.

The SCSI bus allows logical connections to persist between pairs of devices

'"TURBOCchannel also supports a Block I/0 mode for writes only which allows additional
words of data to be transferred as for DMA transactions.
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Figure 4.1: SCSI Bus Phase Sequences.

even while they are physically disconnected from the bus. This allows targets to
free the bus for use by other devices if for some reason the transaction cannot
be completed immediately. This feature is commonly used by disk drives whilst
seeking the head.

A typical SCSI transaction is composed of a number of bus phases, the tim-
ing of which are not always under control of the initiator. Figure 4.1 shows the
sequence of bus phases for a very simple read transaction. For longer transac-
tions, the DATA IN phase shown in the diagram would often be fragmented using
a number of additional disconnections and reselections. The meanings of the
various phases are as follows:

e The ARBITRATION phase determines which of potentially several devices
requiring access to the bus has the highest priority and gives that device
control of the bus.

e The initiator uses a SELECTION phase to select the target of the operation.
This phase establishes a connection between the two devices.

e A RESELECTION phase may be used by a target to re-establish a connection
to an initiator in order to complete an interrupted transaction.

e The data transfer phases (COMMAND, DATA, STATUS and MESSAGE) are
used to move bytes across the bus between the initiator and target. Two
methods of transfer are supported - synchronous and asynchronous. The
faster synchronous mode is only supported during the DATA phase.

4.2 The Experimental Platform

Figure 4.2 shows a block-diagram of the DEC 3000/400 AXP (Sandpiper) work-
station [DEC94b]| upon which most of the work described in this dissertation was
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Figure 4.2: Block Diagram of DEC 3000/400 AXP (Sandpiper)

Device Bandwidth
Dual SCSI ASIC 80 Mbps
OTTO Network Interface 300 Mbps
J300 Video Capture Card! 720 Mbps

PMAG-BA Framestore? 240 Mbps
Ethernet? 10 Mbps
ISDN?3 128 Kbps
Serial, Mouse and Keyboard®| 30 Kbps
Real Time Clock® n/a
Flash EPROM? n/a

1 Bandwidth limited by TURBOchannel DMA.
2 Bandwidth limited by TURBOchannel PIO.

3 These devices are all connected via the IOCTL ASIC and thus
share a single TURBOchannel slot.

Table 4.1: Peak Bandwidth Requirements of TURBOchannel Devices
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performed. The workstation is built around a 22.5MHz TURBOchannel giving
an aggregate bandwidth of 720 Mbps. DMA arbitration is performed in hard-
ware using a round-robin mechanism and the maximum contiguous DMA transfer
length supported is 128 words.

Although the TURBOchannel control ASIC on the DEC 3000 AXP series
workstations decodes 8 option slots, only 5 are used on the Sandpiper. Three of
these slots are used for plugging in expansion cards: the experimental platforms
were equipped with an OTTO ATM interface, a PMAG-BA framestore and a
J300 video capture and JPEG compression card. The remaining two slots are
multiplexed further using ASICs to allow connection of two SCSI controllers and
a variety of miscellaneous low-bandwidth devices including an ISDN device, two

dual UARTs and a Lance Ethernet.

The SCSI buses are attached via NCR53C94 controllers and are clocked at
SMHz giving an aggregate bandwidth of 40Mbps each. The experimental ma-
chines were supplied with a CDROM drive and a Digital RZ26 hard disk sup-
porting a maximum transfer rate of around 26Mbps.

4.3 Scheduling the Interconnect

One possible approach to providing QoS guarantees for I/O transactions would be
to schedule the workstation interconnect since this would effectively schedule the
activity of all devices connected to the interconnect. The feasibility of this tech-
nique clearly depends to a large extent on the type of interconnect around which
the workstation is constructed, and the degree of control which the processor can
exert over access to the interconnect by other devices.

The following sections consider the possibility of scheduling the various inter-
connects found in the experimental platforms available in the Computer Labora-
tory, and also the possibilities where the workstation interconnect is provided by
an ATM switch as in the case of the DAN.

4.3.1 TURBOchannel

The possibility of scheduling the TURBOchannel depends entirely on the exact
implementation of the DMA arbitration mechanism and the ability of the pro-
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cessor to control the background activities of the option modules. This section
examines the possibility of controlling 1/O activities by scheduling the TUR-
BOchannel on the Sandpiper workstation.

A number of option modules, for example network interfaces, perform unso-
licited DMA transactions as a result of external events. As packets arrive on
the network, they must be DMAed into buffers in main memory. Some devices
have only a small amount of internal buffering and, if prompt access to the TUR-
BOchannel is not available, are forced to discard data. Most devices provide a
means for the operating system to disable DMA, but DMA request signals are
not available to the processor.

Unused RQo = I 25%
12.5% Priority Selector
Unused RQL === I
Unused RQ2 L 50%
1/0
Option0 RQ3 =it ) 25% E Lo
. 12.5% [~—u1
Optionl RQ4 10 250 L—
Option2 RQ5 ﬂ/ 50%
SCSI RQ6 226 | 1/0
IOCTL  RO7 Absolute Priority

Figure 4.3: DEC 3000 AXP TURBOchannel DMA Arbitration Logic

The TURBOchannel control ASIC used in the Sandpiper provides a number
of registers for configuring the operational parameters of the bus. Whilst the
ASIC provides control over the types and maximum length of 1/O transactions,
and raises interrupts when error conditions such as I/O timeouts or parity errors
arise, it does not provide any mechanisms for affecting the DMA arbitration or
policing processes. The DMA arbitration mechanism is implemented entirely in
hardware and consists of a binary tree of priority selectors as shown in figure 4.3.
Each priority selector maintains state causing it to give priority to the input
which lost the previous arbitration contest.

Despite the fact that the IOCTL ASIC has very low total bandwidth re-
quirements, it is connected to input 7 of the arbitration logic which has absolute
priority over all other DMA request lines. This is due to the fact that a number of
devices connected to the IOCTL ASIC, notably the Lance Ethernet chip, require
almost immediate access to the TURBOchannel.

It should also be noted that dual SCSI ASIC, connected to input 6 has double
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the normal probability of gaining access to the bus. If request lines 0-6 were
asserted simultaneously, there would be a 25% probability of device 6 obtaining
control of the bus, and 12.5% probability of each other device gaining the bus.
These probabilities are obviously seriously affected by the fact that slots 0-2 are
unused on the Sandpiper and slot 3 contains the PMAG-BA framestore which is
incapable of DMA.

Without a means for the processor, and hence the operating system to deter-
mine when a device requires access to the bus, and without mechanisms either
to prevent all but one device from performing DMA, or to explicitly grant DMA
requests from software, it is impossible to implement any form of scheduling of
the TURBOchannel. This situation is exacerbated on the Sandpiper by the hi-
erarchical nature of the 1/0O system, in particular the two SCSI buses connected
to a single option slot. Section 4.3.2 discusses the additional problems presented

by SCSI.

Even if it were possible for the processor to control the amount of interconnect
bandwidth available to each TURBOchannel option, it would do little to assist the
provision of QoS guarantees to individual applications. Such guarantees would
still require all devices to implement scheduling of requests from distinct clients.

4.3.2 SCSI Transactions

The classes of device usually connected to a SCSI bus (e.g. Disks, CDROMs, tape
drives, etc.) have the common property that the timing of their I/O transactions
is often dictated by mechanical constraints, such as the rotation speed of a disk.
The controller firmware running on the device is usually designed to minimise
this effect, and techniques such as read-ahead and cacheing are common. Despite
these attempts, performance and I/O latency often suffer badly if the device is
not serviced soon after it signals its readiness. The SCSI reselection mechanism
mentioned in section 4.1.2 is indicative of this problem.

Although devices are required to ask the host controller for a reselection when
they are prepared to complete an 1/O transfer, the hardwired bus arbitration
mechanism means that the processor only knows about the highest priority device
requesting reselection, and is unable to preferentially service requests from devices
with a lower numeric device ID. The allocation of SCSI 1Ds can have serious
effects on performance and is usually performed by moving hardware jumpers on
the devices. It is normal for the host controller to be allocated SCSI ID 7 to allow
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it to gain access to the bus with the minimum latency.

The lack of useful information by which the processor could order I/O trans-
actions, and the relatively high latency of sending small messages across the SCSI
bus mean that scheduling of transactions is often better performed by the device
itself. A number of high-performance SCSI-2 devices are prepared to accept mul-
tiple outstanding transactions and service them out of order using information
only available internally to make the best scheduling decisions. These features can
improve performance in a number of cases, but they usually result on policy being
built into the hardware, which can have a catastrophic effect for non-conforming
applications.

4.3.3 Hierarchical Interconnects

For reasons of cost-effectiveness, current workstations are usually constructed us-
ing a hierarchical bus topology. The processor and memory system are connected
using proprietary bus interface designs, and the main I/O bus will usually be a
high-performance industry standard bus, but mass-produced components and pe-
ripherals are attractive due to the low price and usually require connections to
legacy bus architectures, such as the ISA, EISA and VESA buses in the PC mar-
ket. For this reason, most workstations provide support for legacy buses using
bridge chips on the main I/O bus.

Performing 1/0O to a devices may therefore require simultaneous use of all
buses en-route. Scheduling such an I/O interconnect in the generic case becomes a
simultaneous resource scheduling problem akin to the scheduling of data transfers
in parallel computers and communications systems. [Jain92] provides a good
analysis of the issues involved, showing that the general problem is NP complete.
In certain restricted cases an algorithm is presented which leads to an optimal
interconnect schedule for a single bus in O(n*) time. An extension to hierarchical
buses is also described.

In the area of parallel computing, however, the aim of scheduling the inter-
connect is to maximise its utilisation so as to minimise the elapsed execution
time of a large number of communicating parallel computations. The solutions
presented assume a fixed task set with well known communication patterns, and
rely on the off-line computation of a static schedule. These aims and techniques
are at odds with the provision of dynamic Quality of Service guarantees.
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Figure 4.4: Use of Channel Controllers Under MVS.

4.4 Channel Controllers

Mainframes are usually designed to make the most efficient use of the main pro-
cessors in a batch computing environment. /O operations are slow in comparison
and are often performed in the background using channel controllers to allow the
main CPU to be used more productively. Channel controllers serve much the
same role as DMA controllers in a modern workstation, but since the classes of
[/0O device involved generally require less direct interaction they are often almost
entirely autonomous.

A typical mainframe would have several channel controllers providing multiple
concurrent paths to I/O devices such as disks, tape and terminal concentrators
(figure 4.4). The channel controller is responsible for scheduling transactions,
enforcing the necessary protection and allows each I/O resource to be treated
effectively independently.

Under MVS [IBM80], code written dynamically by user processes is down-
loaded into a free channel controller by an I/O scheduler in the operating system
which maintains queues of pending I/O transactions. Simple verification of the
code if performed before it is executed asynchronously by the channel controller.
The channel controller interrupts the operating system when the I/O transaction
has completed and in the case of synchronous I/O the job is restarted. Shared
libraries known as access methods provide standard I/0 functionality hiding the
complexity from the programmer.
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This model of 1/O is highly appropriate both in situations where 1/0O is a
time-consuming operation, and in situations where high volumes of data must
be transferred without intervention by the main CPU. Multimedia workstations
have similar 1/O requirements, yet it is rare for hardware to provide this degree
of unsupervised operation.

4.5 The Desk Area Network (DAN)

Conventional bus-based architectures are already proving inadequate for high-end
workstation designs. For example, in high-end PCI systems [PCI95], the electrical
constraints of running a 64-bit wide bus at 66 MHz or more mean that the number
of devices which may be connected to the bus is limited to 2 or 3 - clearly
inadequate for building a sensibly configured workstation. Many manufacturers
are therefore moving towards switch-based interconnects.

The DAN architecture [Hayter91] is an attempt to make explicit the inherent
multiplexing issues of a workstation interconnect. At the same time it addresses
the scalability problems of contemporary workstation architecture by simplifying
the use of peer-to-peer transfers. The DAN architecture differs from a traditional
workstation in a number of important aspects.

In a DAN-based workstation, all communication across the interconnect is
connection-oriented and is performed using a small fixed-size transfer unit. Al-
though [Hayter91] describes the use of a space-division ATM interconnect, it
should be noted that this does not in any way imply the full complexity of the
emerging ATM networking standards [ATMForum93]. The 100% reliability of
a workstation interconnect allows the use of much simpler protocols. The DAN
approach has a number of important benefits:

e Connection-oriented communication and the fixed-size transfer unit aid ac-
counting for resource usage.

e The implementation of hardware protection mechanisms is much simpler
allowing the design of devices which provide a user-safe interface.

e By supporting peer-to-peer transfers the usual memory bottleneck is re-
moved.
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Figure 4.5: DAN Based Workstation

e The small fixed-size transfer unit permits frequent reassessment of priorities
and provides regular preemption points.

The use of an ATM-based interconnect for user-class I/O devices is also being in-
vestigated by the SUN DeskNet project [Lee95]. DeskNet proposes connection of
a number of devices including the framestore, keyboard, mouse, video and audio
hardware to a conventional workstation using a 1Gbps ATM ring. Other exam-
ples of research in this area include the MIT ViewStation project [Houh95] built
around the VuNet switch fabric, and the Symphony architecture [Bovopoulos93].
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4.5.1 The Prototype DAN Workstation

The prototype DAN multimedia workstation described in [Barham95] uses the
8 x 8 space-division ATM switch fabric developed by the Fairisle project [Leslie91]
as its interconnect. A typical configuration is shown in figure 4.5. One important,
result of enabling simple and efficient peer-to-peer communication is that the
bandwidth required for cache-memory traffic is greatly reduced due to the lack
of data-copying.

The possibility of using this same interconnect for carrying cache-memory
traffic was investigated in [Hayter93]. Despite the relatively dated technology?
used in the implementation of the prototype, the results achieved demonstrated
the feasibility of this approach. Also described was the concept of a stream-
cache whereby continuous media data may be piped through a reserved region
of the CPU cache without having to pass through memory, allowing streamlined
processing of data with spatial but not temporal locality-of-reference.

4.5.2 User-Safe Devices

Although interconnects such as PCI support peer-to-peer transfers, it is rare for
[/O cards to make use of this capability. The traditional model for hardware
devices is one of a relatively simple state machine which is guided through each
transition by a single privileged device driver inside the operating system kernel.
The driver must often execute rapidly in response to interrupts raised by the
device if performance is not to suffer.

This device model relies on the fact that 1/O has always been performed by the
operating system, rather than the application. Quality of Service considerations
within the operating system are beginning to make this model unacceptable - it
is no longer desirable, particularly in a multi-service operating system, that unre-
stricted amounts of system resources be consumed by device-drivers performing
work on behalf of applications.

For peer-to-peer transfers to be used effectively, it is essential that some form
of connection exists between the communicating devices. When an I/O trans-
action is performed, the connection identifier (e.g. the Virtual Circuit Identifier

2The Fairisle switch fabric has an 8-bit wide data path and is clocked at up to 20MHz
compared with the external cache interface of the Sandpiper which is 128 bits wide and can
perform a read or write in 5 cycles at 133MHz giving a cache bandwidth of 427MBps.
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(VCI) in the case of an ATM interconnect) may be used to index into a table
of per-connection state to rapidly determine whether the transaction should be
allowed. Without per-connection state in the device, third party intervention is
required to check the validity of each operation.

With this additional functionality present in device hardware, it becomes
possible to remove the device driver completely from the I/O data-path. The
device driver is still necessary to maintain the per-connection state in a consistent
and secure manner, but data-path operations may easily be made available to
unprivileged processes. This may be achieved by mapping I/O registers into the
virtual address space in multiple places, once for each client, or by extending the
processor context-switch code to update client-ID registers in I/O hardware. A
more sophisticated technique would be for the CPU node to provide a pool of
DMA engines for use by user-level processes. These ideas are more fully treated
in [Pratt96].

A number of devices conforming to this model have been constructed as part
of the DAN Devices project [Barham95], and are referred to as User-Safe Devices.
Sections 5.4.1 and 6.6.5 describe two such devices which have been used for part
of this experimental work.

4.6 Scheduling an ATM Interconnect

Although the use of an ATM interconnect within a workstation is still rare,
switch-based solutions are likely to become more common in the near future.
The use of an ATM switch-fabric enables the interconnect to be scheduled in
terms of individual I/O connections discriminated via the VCI, rather than just
the destination device. Scheduling mechanisms designed for use within Local
Area Network (LAN) switches are potentially applicable.

The Parallel Iterative Matching (PIM) algorithm of the AN2 switch described
in [Anderson93] is designed to approach maximum utilisation of the space-division
interconnect. Rate control for each virtual circuit is imposed in the source host-
interface and cell-by-cell credit-based flow-control is used to prevent cell-loss.

Support for CBR traffic has also been added to the Fairisle network by com-
puting a schedule for the switch fabric. The technique works by reserving an
appropriate number of slots for each CBR connection in a switch-wide framing
structure using a distributed algorithm described in [Khan94]. The short dura-
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tion of individual connections in a DAN, and the extreme burstiness of traffic
present problems for this sort of long-term peak reservation strategy.

The number of concurrent streams within a DAN, however, is likely to be
much smaller than in the case of a LAN switch with each stream consuming a
larger proportion of the aggregate bandwidth. The degree of correlation between
streams is also likely to be much higher. When combined, these two factors mean
that scheduling on an ATM interconnect is almost essential. Unfortunately, the
resulting decrease in potential for “statistical multiplexing” of traffic tends to
make scheduling algorithms designed for LAN switches inappropriate.

DeskNet uses a novel MAC protocol which provides a guaranteed minimum
QoS to each connection in situations of high load but which allows transmission at
a second, higher rate if the interconnect is observed to be idle. The interconnect
scheduling mechanims are designed to be readily implemented in hardware, but
the parameters controlling their behaviour are intended to be under software
control.

The tightly coupled nature of the DAN, and of a workstation interconnect in
general, means that global information is more easily available to the operating
system with which to make scheduling decisions. The time scales over which con-
nections may endure, and the burstiness of traffic require hardware mechanisms
similar to those proposed for DeskNet. It is also likely that close integration of
the CPU scheduler and the interconnect scheduler would be required in such a
machine where the CPU is used more like a stream processing device.

4.7 Summary

Effective control of the distribution of I/O resources requires scheduling of both
the interconnect and the devices, since both are multiplexed. Scheduling the
interconnect alone is not sufficient to provide Quality of Service guarantees to
individual clients of devices.

In conventional workstation designs however, the interconnect is multiplexed
in a fashion which is not amenable to control by the operating system. Many
devices such as disk drives have natural timing constraints which lead to poor
performance if they are not respected. Network devices assume that they can gain
access to the bus rapidly in response to events which are not under the control
of the operating system. In order to support devices of this nature, hardware
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arbitration mechanisms often embody policy decisions which should be under
software control.

Hardware solutions such as channel controllers have been used in the past to
provide effective resource firewalls between competing [/O activities. Although
the abstraction provided is ideally suited to the multimedia environment, these
solutions rely on replication of hardware to eliminate crosstalk and are both
expensive and inflexible.

Bus-based designs are already becoming unsuitable for high-end workstations
and switch-based solutions are starting to appear. It is possible that future inter-
connects will provide connection-oriented I/O and support peer-to-peer transfers
by use of user-safe devices. This will greatly simplify the integration of device
and interconnect scheduling.

In conventional workstations, scheduling of the interconnect by the operating
system is not a feasible approach. Admission-control techniques can be used to
minimise the probability of the interconnect being overloaded, but the hardware
arbitration mechanisms must be relied upon to minimise jitter and latency. Since
the multimedia environment is one where applications can make effective use of
soft-guarantees, uncoordinated software scheduling of each device is sufficient to
provide satisfactory QoS guarantees to individual clients.
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Chapter 5

Device Driver Architecture

The ability of a multimedia application to make efficient use of non-CPU related
resources provided by an operating system is clearly influenced by the manner in
which that operating system abstracts device hardware and 1/0 in general. This
chapter presents an architecture for device drivers, designed specifically for the
Nemesis operating system, which is able to deliver guaranteed performance I/0
to individual applications.

5.1 Introduction

The most important reasons for the existence of device drivers in an operating
system are:

e Safe programming (of hardware). Incorrect programming of hardware
can often result in failure of the system. It invariably results in loss of
service. The driver provides code which is trusted to program the hardware
in a safe manner and cooperate with the operating system as a whole.

e Abstraction (of device interface). Clients of a device do not wish to be
concerned with variations between hardware supplied by different manufac-
turers. The interface provided by the driver should hide these variations.

e Protection. The device driver is responsible for protection of a number
of varieties. Clients should be protected from the actions of each other,
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malicious or otherwise. Suitable protection mechanisms should also be pro-
vided to prevent unprivileged clients from performing privileged operations
or denying the use of the resource completely.

e Multiplexing. The device driver allows simultaneous use of the hardware
by a number of clients. It must maintain a consistent view of the state of
the hardware and perform the necessary context-switches between clients.
It is the device driver which dictates when each client will gain access to
the physical resource.

The above functions are necessary within any environment where a number of
clients share the same resources. The Nemesis environment however places addi-
tional demands on device drivers:

e Drivers must not hide the shared nature of the underlying physical resource
but instead provide explicit control over the multiplexing of that resource.

e Applications need to be aware of the current level of resources to which
they have access. Negotiated QoS-guarantees should be provided to each
client of the driver.

e There should be simple and effective feedback mechanisms to allow an ap-
plication to monitor its progress and adapt its behaviour in light of the rate
at which I/O requests are being serviced.

5.2 Nemesis Device Driver Architecture

This dissertation proposes a new approach to device abstraction which separates
the control- and data-path functions required for I/O in a multi-service operating
system such as Nemesis. The structure of a generic Nemesis device driver is shown
diagrammatically in figure 5.1. As can be seen from the diagram, the functionality
is implemented by two main modules:

e The Device Abstraction Module (DAM)

e The Device Management Module (DMM)

Whilst these two modules may often execute in the same Nemesis domain, for
certain devices the DMM is more logically implemented in a separate domain.
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Figure 5.1: Nemesis Device Driver Architecture

5.2.1 Device Abstraction Module (DAM)

The DAM resides on the /0O data path and is intended to contain the minimal
functionality to provide secure user-level access to the hardware and support QoS
guarantees to clients. The DAM serves three main purposes:

e Translation (of stream addresses). It is highly desirable that the addresses
present in an I/O stream should be independent of the destination of the
stream. This allows a single stream to be multicast efficiently to a number
of destinations, and also to be processed entirely in hardware should the
workstation provide this facility.

e Protection (between clients). The addresses to which each client may
perform I/O are usually different. The DAM should ensure that a client
cannot perform I/0O to addresses for which it does not have suitable access
permissions.

e Multiplexing (of physical resources). The DAM is the single multiplexing
point for a hardware resource. It is responsible not only for providing
shared access to an I/O resource, but also for controlling both the amount
of resource which each client receives and the time at which the client
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receives it. The DAM must provide a scheduler for this purpose. This is
the most fundamental difference between a Nemesis device driver and those
of traditional operating systems, microkernel or otherwise.

Address translation and protection functions are performed individually for each
I/O connection, since all 1/O requests on a particular connection inevitably have
the same source.

Explicit and visible multiplexing is performed at a single point within each
driver. It is at this point where hardware resources are scheduled. With each con-
nection are associated QoS parameters which are used to control the multiplexing.
These parameters are themselves determined by out-of band negotiation between
the client and a QoS-manager domain. The exact scheduling algorithms applied
are likely to be device specific, but in general any algorithm which supports
QoS-guarantees is potentially applicable. Examples include stride-scheduling
[Waldspurger95], Jubilee-scheduling [Black94] and the RSCAN algorithm for disk-
head scheduling presented in section 7.6.1.

The low-latency feedback requirement is provided by use of the asynchronous
Rbufs mechanism described in section 3.5.3. Clients are able to observe both the
length of the queue and the rate at which requests are being serviced and may use
this information to adapt their behaviour. Each connection to the driver has an
independent queue and so the QoS-crosstalk prevalent in first-come, first-served
(FCFS) queueing systems is avoided.

5.2.2 Device Management Module (DMM)

Out-of-band control of the translation, protection and multiplexing functions
of the DAM is performed by a separate management entity known as the De-
vice Management Module (DMM). The DMM communicates with the multiplex-
ing layer of the DAM in order to set up new connections and adjust the QoS-
parameters associated with existing connections. The DMM is never involved
with the in-band operations of the device driver.

The DMM uses high-level descriptions of access-permissions (e.g. file-system
meta-data or window arrangements), together with access-control policies to gen-
erate the low-level protection and translation information required by the DAM.
These low-level permissions are often cached within the DAM’s per-connection
state records to reduce the number of interactions with the device manager. This

29



Source: dev.tex DRAFT of 11:06, June 28, 1996

cache provides conceptually similar functionality to the TLB of modern proces-
SOTS.

5.3 Network Interfaces

Network interfaces are one of the few areas where some attention has recently
been paid to QoS considerations at the hardware level. For this reason, it is to
be expected that the above device model should map most naturally onto the
network interface device.

[Black94] proposes a binary classification of network interfaces based upon
their ability to identify the eventual destination of data, often by some pre-
established connection identifier, and arrange to place data in the correct place
as it is received. Devices which have this property are described as Self-Selecting
interfaces.

The remainder of this section considers the application of the Nemesis 1/0O
model to network interfaces of both classes.

5.3.1 Non-Self-Selecting Interfaces

Perhaps the most common non-self-selecting interface is the Ethernet. The net-
works to which these devices attach are typically connectionless and therefore a
good deal of protocol processing is required to determine the eventual endpoint
of the data. In the majority of operating systems, all protocol processing is per-
formed in the kernel and not accounted to the application for whom the data was
destined.

Packet-filtering techniques [Mogul87] have recently been used in conventional
operating systems to allow protocol processing code to be removed from the kernel
for ease of debugging and to minimise the complexity and size of the kernel. A
suitable privileged process may download a description of “interesting packets”
to the device driver, often in the concise form of a set of masks and comparisons
applied to the protocol headers. Any packets matching this filter are then passed
up to the process in question for further processing. Usually however the protocol
processing is still performed using a single privileged server such as the x-Kernel
[Hutchinson91], rather than by the application.
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In order to remove QoS-Crosstalk completely, it is necessary for the protocol
processing operations of each application to be effectively isolated. For reasons
of security, it is highly undesirable to allow applications to transmit or receive
arbitrary packets across a network. [Black94] describes a mechanism which uses
packet-filtering techniques on both the receive and transmit sides of a network
interface to enforce these security issues. An application may only receive or
transmit packets which match the filters set in place by some trusted server at
connection setup time.

The filters installed in the network interface device driver also allow packets
to be correctly accounted at the lowest level allowing QoS guarantees to be sup-
ported. Similar use of packet-filters is made by the Aegis Exokernel [Engler95]
which provides secure multiplexing of an Ethernet interface by dynamic packet
filter code generation within the kernel, but the motivation in this case was to
allow multiple “library operating-systems” to transparently share the same hard-
ware.

Until recently, non-self-selecting interfaces have been typically low bandwidth
and with modern workstation speeds and efficiently implemented protocol stacks,
their detrimental effect on QoS is minimal. The z-Kernel was ported to Nemesis
in order to provide interim support for interfaces of this kind, and in particular to
provide TCP/IP connectivity over Ethernet enabling inter-operation with UNIX
platforms in the experimental environment.

A disturbing trend for high bandwidth non-self-selecting interfaces is emerg-
ing. Network interfaces for FDDI and the various 100Mbps Ethernet standards
are often designed to appear to the programmer to be exactly like their low-
bandwidth counterparts.! With interfaces such as these, only highly efficient
packet filtering can prevent QoS crosstalk in protocol code, and the resources
expended in data copying operations must be carefully controlled. Since the
underlying networks invariably provide little in the way of QoS support, any
attention to QoS in the endpoint is likely to be of limited use.

5.3.2 Self-Selecting Interfaces

More recent high-speed networks necessarily use protocols which allow signifi-
cant fractions of the protocol processing to be performed in hardware. Most

!Largely due to the widespread use of operating systems such as Windows where third-party
development is difficult and seamless inter-operability is therefore essential.
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notable of these are ATM networks, where all communication is performed over
pre-established virtual circuits allowing the network interface to demultiplex con-
versations at the lowest level. It is common for these networks to support QoS
provision on a per-connection basis. These QoS guarantees are useless however
if the operating system of the destination machine does not deliver the data to
its eventual endpoint in a timely manner [Saltzer84].

Considering the high throughput of these host-interfaces, it is important to
ensure that data is not forced to traverse the workstation bus more often than
absolutely necessary. Protocol stacks in operating systems such as UNIX often
require data to be copied a number of times in addition to the unavoidable copies
between user paged virtual memory and kernel locked-down physical memory.
This can be highly detrimental to performance. Nemesis’ single virtual address
space and Rbufs 1/O transport mechanism address these problems.

5.3.3 The OTTO ATM Interface

The OTTO is a 155Mbps ATM host interface adaptor for either TURBOchannel
or PCI, originally designed for use with the AN2 network [Anderson93].? The
OTTO provides extensive hardware support for the ATM Forum standard AAL5
ATM adaptation layer used by most commercially available equipment.

The OTTO reassembles complete AAL5 PDUs in its internal cell memory.
When a complete PDU has been received and the CRC32 checksum is correct,
the PDU is enqueued for DMA into main memory. A record associated with each
receive VCI contains a pointer to a buffer-ring. Each buffer in the ring consists
of a number of fragments which describe contiguous regions of physical memory.
When a packet DMA has been completed, a timestamped report is written into
a circular buffer, and an interrupt is raised.

The driver removes full buffers from the ring and replaces them with fresh
buffer descriptors. Hardware mechanisms prevent the buffer ring from overflowing
if not serviced promptly.

To transmit an AAL5 PDU, a free transmit buffer is obtained and its frag-
ments made to point to the user data in physical memory. The buffer descriptor
is placed on a per-VCI transmit queue. The packet is eventually DMAed into

2Product versions of the OTTO are now marketed by Digital Equipment Corporation as the
ATMWorks 750 (TURBOchannel) and ATMWorks 350 (PCI) [DEC94a]
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Figure 5.2: OTTO Device Driver Structure

the OTTO and fragmented into cells, computing the CRC32 checksum in the
process. At this point, a report is generated indicating that the buffer in main
memory may safely be freed.

Each transmit VCI may be marked as either scheduled or best-effort. The
OTTO driver computes a cell-by-cell transmit schedule, based on QoS param-
eters, which is downloaded into the hardware. Each position in the schedule
contains a VCI. For each slot in the schedule, the hardware first checks to see if
the named VCI has cells to transmit. If it has, then a cell is sent, otherwise a
cell from a best-effort VCI is sent in its place.

The OTTO also supports a proprietary flow-control mechanism known as
FlowMaster, which is based on per-VCI cell-by-cell credits. This feature is only
useful when talking to an AN2 switch or another OTTO.
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5.3.4 DAM: The OTTO Device Driver

From the above description, it is clear that the OTTO hardware implements
almost the entire functionality of the DAM in hardware. The majority of code in
the driver is concerned with out-of-band operations such as initialising the device
and reconfiguring when connections are set up or torn down. Since the hardware
is relatively complicated, the device driver is certainly non-trivial®> but despite
this, very little software intervention is required on the data-path.

Figure 5.2 shows three clients of the OTTO driver receiving packets on dif-
ferent VCIs. Each client has obtained an Rbufs channel via the RPC interface
exported by the DMM (AAL5Pod.if). Each client sends iorecs describing empty
buffers to the OTTO driver which loads them onto the appropriate receive ring
for the particular VCI. When complete packets are received, the OTTO driver
returns the full buffer descriptors to the client.

In the expected mode of operation, the pipelining available when using Rbufs
allows multiple packets to be transferred at a time without the requirement to
reschedule (e.g. client C1). Clients which process their data too quickly, such
as C2 will block on an empty receive FIFO. In the situation where a client is
unable to keep up (C3), the OTTO driver will not remove full buffers from the
receive ring and the hardware will automatically stop receiving on that VCI
until an empty buffer is available. This mechanism prevents the situation known
as liwelock where so much CPU resource must be expended during an overload
condition that it is impossible to rectify [Mogul95].

Per-packet protocol processing in the OTTO driver is so cheap in comparison
to CPU speeds that, when the system is lightly loaded, the client and driver enter
a state where only one packet is available for processing at a time. The operating
system must therefore context switch between the driver and the client on a per-
packet basis. Although the CPU resource expended per packet is much higher
than the case when the Rbufs pipelining is working efficiently, this situation is
caused by the system being lightly loaded and so neither the total throughput
obtainable nor the latency suffer significantly. The commonly used mechanism
of spinning for a while before leaving the interrupt handler waiting for the next
packet merely reduces the amount of CPU available to other domains. This
is analogous to optimising the behaviour of the whole system during normal
working operation, rather than attempting to optimise unimportant statistics

3 Approximately 3000 lines of C.
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such as “null-RPC times”.

At high loads, the number of packets received per interrupt increases until a
situation is reached where the driver is effectively polling the hardware. Provided
that the driver is scheduled with sufficient regularity, the hardware-maintained
buffer rings will not overflow and no data will be lost.

5.4 Network Attached Peripherals

As device bandwidth requirements increase, and scalability problems of current
interconnects start to impact performance, it is becoming increasingly common
for devices to be designed for connection to a high speed local area network.
Multimedia file servers and peripherals are highly amenable to this approach.
A number of recent proposals for the connection of disk drives, for example
Serial Storage Architecture (SSA) [Deming95], bear a strong resemblance to LAN
technology.

Devices connected in this way must be designed to cope with the higher la-
tency control path. This usually necessitates the clear separation of in-band and
out-of-band functionality of the Nemesis 1/O model. Network attached peripher-
als often provide most of the functionality of the DAM in the remote hardware,
whilst the DMM is intended to be provided by a “manager” process running on
a workstation.

The AVA-200 described in the following section is an example of such a
network-attached peripheral which was designed in the Computer Laboratory.
The firmware resident in the device was written to conform to the Nemesis I/O
model and can effectively support a number of sophisticated higher-level appli-
cations. When video or audio clients are executing on a Nemesis workstation
equipped with an OTTO, QoS guarantees from the AVA-200 and the OTTO
driver may be used in conjunction to ensure that end-to-end quality of service is
provided for each stream.

5.4.1 AVA-200 Hardware

The AVA-200 is a network-connected audio and video capture device derived from
the much simpler ATM Camera originally built for the DAN [Pratt92]. The first

65



Source: dev.tex DRAFT of 11:06, June 28, 1996

8kx8 SRAM
for Tile
Phillips video chip set conversion
r'Y
Composite :: NTSC Yuv Video 24bitRGB 256k video fifo
Video — PAL Resizing frame buffer
Inputs decoding
! 24 bit RGB
80C654 24 bit to
Microcontroller for 24/16/8 bit
. . C-Cube CL550
control / signalling RGB/YUV 3;56
coprocessor
received
. ATM cells 8 bit Microcontroller bus
ATM RX ==mepp| Fifo
1[ 1{8 8 16
Xilinx 3190 5 1'?*;5 . Xilinx 3190
ual Po -
. s | SRAM | s s HiFi e Analogue
ATM Tx h ATM interface ATM Cell Audic je=— Audio
control & AAL-5 (for cell constructor Codec [*— !Inputs
PDU generator assembly)

Figure 5.3: AVA-200 Major Data-paths

ATM camera was a fairly “dumb” device which needed close supervision by a
processor node on the DAN. The AVA-200, however, was designed for connection
to an ATM LAN and therefore needed to be largely autonomous. For this reason,
a limited amount of processing power was included and the device is able to
communicate with a remote manager process using a simple RPC protocol. The
major data-paths within the AVA-200 are shown diagrammatically in figure 5.3.%

5.4.2 DAM: AVA-200 Firmware

The firmware executed by the AVA-200’s microcontroller was designed and writ-
ten by the author to support concurrent use of the device by a number of clients.
Access control and out-of-band QoS negotiation is performed by a more intelligent
and trusted manager process running on a workstation connected to the ATM
network. Due to the obvious timing constraints, all multiplexing of the hardware
must be performed by the device itself. The manager communicates with the
AVA-200 on a notionally secure management VCI and is able to download simple
descriptions of the required video and audio streams.

Since the hardware only contains a single digital video chipset, and a single

4This diagram is derived from a schematic drawn by Ian Pratt.
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audio codec, there are inevitable hardware constraints on the number of audio and
video streams which may be generated. When using gen-locked® video sources,
it is possible to multiplex the video digitising hardware on a per-frame basis.
For audio this is clearly not sensible. The firmware therefore supports multiple
concurrent video streams, but only a single audio stream.

For each video stream it is necessary to download a number of parameters to
the unit. These parameters specify picture sizes and scaling, pixel formats, data
rates, the physical video channel to use and the VPI/VCI for the outgoing video
stream. This information is loaded into a video bucket. Similarly, parameters for
the audio streams including sample rate, format and physical audio input must
be loaded into an audio bucket.

A schedule is then loaded into the AVA-200 which specifies a sequence of video
buckets. This schedule is executed in a round-robin fashion, grabbing a frame
using the parameters specified in the relevant video bucket. The reserved video
bucket index of zero indicates that the unit should idle for a frame. The schedule
also identifies which audio bucket should be used.

Video Schedule

0 1 n-4 n-3 n-2 n-1

E SgZ oéiééaio 0/1]0:2

e

[IoLE || vB1 || vB2 || vB3 || | | |

Video Buckets

Figure 5.4: AVA-200 Video Programming Paradigm.

These datastructures are shown diagrammatically in figure 5.4 which illus-
trates two concurrent streams whose parameters are specified in video buckets
VB1 and VB2. The first stream has been allocated 3 frames out of every n, and
the second 2 frames out of every n. The remaining frames are unallocated and

SPAL encoding follows an 8 frame sequence so resynchronisation between signals which are
not at the same point within the sequence can be expensive.
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are therefore spent idling. Bucket VB3 has been loaded with the parameters for
a third stream in preparation for an atomic change of schedule.

All audio and video streams are transmitted directly to the client across the
network, without any further intervention by the manager process. In addition,
a single synchronisation stream is sent to the manager containing the current
sequence numbers of all audio and video streams. The manager is then able to
forward appropriate synchronisation streams to each client. It is also possible to
enable a credit-based flow control mechanism on a per-stream basis which can be
used to cause the AVA-200 to cease transmission on a particular VCI if the sink
is unable to keep up.

5.5 Summary

A software device-driver architecture has been presented which provides QoS
guarantees to individual clients and minimises (QoS-crosstalk between applica-
tions by clearly separating the control-path and data-path operations necessary
for 1/0.

The Device Abstraction Module resides on the data-path and is responsible
for providing the minimum functionality required to multiplex the hardware be-
tween a number of clients in a safe and effective manner. This involves providing
mechanisms for translation, protection and scheduling of 1/O requests. In order
to simplify the accounting and scheduling of 1/O resources, devices are abstracted
at a low-level using small, fixed-length operations. Visible multiplexing and ef-
fective feedback mechanisms are provided by use of the Rbufs mechanism.

The Device Management Module resides on the control-path and is responsible
for directing the operation of the DAM. Clients communicate with the DMM
using a synchronous RPC interface to create new connections and perform out-
of-band control requests.

Network interfaces and network-connected peripherals often contain hardware
which provides most of the functionality of the DAM. Application of the Nemesis
device driver architecture to these devices has been demonstrated to be straight-
forward and highly effective.
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Chapter 6

Window System

This chapter considers the application of the Nemesis device-driver architecture
presented in the previous chapter to the framebuffer device. This device is of
particular concern in a multimedia system where it must often deal with simul-
taneous high bandwidth I/O from a number of applications. It is also a device
which is particularly difficult to abstract securely at a low level and for this rea-
son the majority of operating systems make do without a device driver at all and
rely on a window system to abstract the device at a much higher level.

6.1 Introduction

The purpose of a window system is to mediate access to shared resources including
the pixels of the framebuffer and a number of input devices. The abstraction
presented to clients is usually that of a virtual framebuffer supporting both read
and write operations. It is the job of the window system to protect clients against
each other. This usually involves preventing one client from updating the pixels
logically owned by another client.

The window system is also responsible for demultiplexing input events from
the various hardware devices to interested clients according to some policy usually
based on the position of a pointer.

In a multi-service environment, it should also be the job of the window system
to support the provision of end-to-end QoS guarantees. Consider a client of a
window system whose purpose is to render an incoming network video stream in
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a window. Any operating system and network provided QoS guarantees become
meaningless if it is impossible for the application to deliver the video data to the
framebuffer in a timely manner.

Window systems can be divided into two broad categories based on the loca-
tion of the actual rendering code:

1. Server Rendering window systems.

2. Client Rendering window systems.

Current window systems fall almost without exception into the first category.

6.2 Server Rendering

In such a system, protection is enforced by having all rendering operations per-
formed by a single centralised server which maintains the state describing which
pixels are owned by which window. Perhaps the best known example of a server
rendering window system is the X Window System [Scheifler86]. Microsoft Win-
dows [Hyman88]| is unusual in that the operating system itself is also the window
system server. Under Windows-NT [Custer93], a separate server process is now
responsible for providing this same interface.

The client communicates rendering requests to the server using some form
of IDC. Due to the relatively large overheads of communication (mainly proces-
sor context-switch overheads) compared with the cost of updating pixels in a
framebuffer most systems use a variant of pipelined RPC or message passing.

The necessity for the window system to support all rendering primitives which
may be required leads to a vast increase of complexity in the server. The client
libraries must also provide RPC marshalling code for all of these operations.
The X Window System supports the X Fxtension mechanism which allows new
proprietary operations to be added to the server. However, since for the majority
of platforms extensions may only be added at server compile time, this does not
help to reduce the size and complexity of the server.

The set of rendering primitives supported are often numerous and relatively
high level in order to amortise the cost of communication. High level primitives
also reduce the cost of checking access permissions to regions of the framebuffer
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before performing updates. Large primitives are recursively subdivided into sub-
tasks which are either wholly permissible or disallowed, enabling the low level
rendering code to bypass additional checks.

Typically there is a single communications channel between each client and
the server which is used for both rendering requests and configuration/control
requests. Since the IDC bandwidth required for communication of high-level ren-
dering primitives is small, and the channel is also used to carry in-band control
requests, a reliable transport mechanism is often employed (e.g. X uses UNIX do-
main sockets for local connections and TCP/IP sockets for remote connections).

Unfortunately, this combination of large-grained rendering primitives and a
single multiplexed connection between each client and server presents a number
of problems for QoS provision:

e A client can cheaply generate rendering requests at a rate much faster than
it is possible for the server to complete them.

e The IDC transport mechanism cannot distinguish between control messages
requiring reliable semantics and rendering requests which potentially do not.

e The service time for requests can vary by several orders of magnitude be-
tween a simple request like “set pixel” and a complicated one like “fill
arbitrarily shaped non-convex polygon”.

e Requests on a connection may not be reordered or discarded since applica-
tions often make use of the reliability and ordering semantics when render-
ing complicated graphics.

e The server itself is often a single threaded application which processes client
requests to completion in some arbitrary order.! This introduces large
amounts of jitter.

In a multimedia environment, support for high bandwidth updates to the
framebuffer and associated QoS guarantees is essential. In server rendering
systems, support for high bandwidth updates has often been added by using
a shared-memory transport for the video data and the standard transport for
sending the update request.

1X uses FIFO queueing on each connection and services clients in a round-robin fashion.
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It is obviously impossible to provide QoS guarantees to an application unless
the server itself has enough aggregate resources to fulfil the guarantees of all of
its clients. It is also necessary that the server respects the QoS guarantees of
each client when performing work on their behalf.

Several mechanisms have been investigated for the transfer of resources and
even threads between clients and servers (processor capacity reserves [Mercer93],
lottery scheduling [Waldspurger94], thread migration [Hamilton93], etc.). In all
of these mechanisms, resources consumed by the server on behalf of each client
must be accounted and the servicing of client requests must be scheduled in some
way. The differences lie solely in the level at which the accounting is performed
and scheduling policy applied.

All of the above methods however require that the server is trusted to use the
client’s resources for performing work on behalf of the client.

6.3 Client Rendering

In a client rendering system, an application typically has direct access to the
framebuffer and is able to perform updates using whatever rendering algorithms
are most suitable. It may choose to render a complicated graphic into cached
main memory and only make updates to the real framebuffer when all rendering
operations have been completed. Alternatively, an incoming video stream may
be written directly into the framebuffer avoiding unnecessary copying operations.

This situation has a number of important advantages:

e An application is not restricted to a standard set of rendering primitives.
e No client-server communications overheads are incurred.
e Resources consumed by the client are naturally accounted to the client and

thus the problem of QoS crosstalk is largely avoided.

Client rendering has been used in the past by the Cedar system [Swinehart86],
early versions of SunView [Sun88|, the Amiga [CBM91] and the Apple Macintosh
[Apple85]. The majority of these systems were intended as single user machines
and so the lack of protection between clients was not seen as a serious problem.
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Figure 6.1: Comparison of Window System Structure

Providing consistent behaviour with respect to window visibility and “decora-
tion” relies on applications using the same library code or following a set of con-
ventions which can not be rigidly enforced. In some systems, a server is retained
for performing out-of-band control operations such as window creation/deletion
and for demultiplexing of input events. This server can also keep clients informed
about the visibility of their windows. However, unless the framebuffer provides
some sort of hardware protection there is usually no way to prevent an application
from updating pixels it does not own.

Malevolent applications, often executing without the knowledge of the user
can easily disregard these conventions, corrupting the output or stealing the input
of other clients. An application which deliberately disrupts the user interface can
be particularly difficult for a user to kill.

Such window systems are therefore becoming increasingly rare.
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6.4 Framestores

Despite the fact that the framebuffer is the eventual destination of the majority of
incoming video streams, most multimedia systems fail to recognise the importance
of QoS issues in this part of the system. Partly responsible for this fact is the
prominence of server-based window systems such as X where the window system
server performs most of the functions traditionally provided by a device driver,
but for reasons of efficiency and network transparency must present a much higher
level interface. When a device driver is provided for the framestore, it usually
does little more than provide a means to map the framebuffer and video control
registers into the address space of the window system server.?

6.4.1 PMAG-BA Hardware

The Sandpiper workstations are equipped with Digital PMAG-BA framestores,
which plug into one of the three available TURBOchannel option slots. The
device provides a memory-mapped 8-bit pseudo-colour framebuffer. Each pixel
may be one of 256 colours selected from a single palette. The device does not

1d1 1dq stl stq
TURBOchannel 142 143 18 36
Memory System 5} 7 1 3

Table 6.1: Average Times for Loads and Stores (in 133MHz cycles)

support DMA of any description and therefore the only method of updating pixels
is via a 32-bit TURBOchannel PIO cycle, although the TURBOchannel ASIC on
the Sandpiper will automatically convert a 64-bit read or write operation into two
consecutive 32-bit PIO cycles. These cycles are expensive in comparison with the
equivalent operations when performed to the memory system. Table 6.1 shows the
average costs of various relevant operations on the Sandpiper workstation when
reading or writing consecutive addresses in the framebuffer and in the memory
system.

Although the theoretical peak bandwidth of the TURBOchannel is 720Mbps,
the maximum sustained PIO write performance to the framebuffer is only around

20On DECStations running Ultrix, this functionality is embarrassingly provided by
/dev/mouse.
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Diamond Digital
x11iperf Test | SRC | DST | Stealth 6/ | PMAG-BA

copypixwin500 | MEM | FB | 127 reps/s | 78 reps/s
copywinpix500 | FB | MEM | 26 reps/s | 26 reps/s
copypixpix500 | MEM | MEM | 597 reps/s | 288 reps/s

Table 6.2: Performance of TURBOchannel and PCI Framebuffers.

240Mbps.? Reading from the framebuffer is extremely expensive since cacheing
is disabled in regions of the physical address space used for 1/O. This feature is
common to a number of interconnects. Table 6.2 shows relevant results from the
X benchmark utility x11perf for a typical PCI framebuffer and for the PMAG-
BA. In both cases the discrepancy between memory speeds and 1/O performance
is clearly visible.

Devices which do not support any form of DMA present a serious problem
for the Nemesis QoS architecture. They introduce a multiple resource schedul-
ing problem since performing I/O to the framebuffer device necessarily consumes
CPU time,* as well as framebuffer bandwidth. For DMA devices, the I/O sched-
uler may initiate a transaction for a client process which is not currently execut-
ing, decoupling the two resources, but any transaction scheduler for a PIO-only
device would have to be closely integrated with the CPU scheduler.

Performing 1/O with these devices not only requires privileged code to be
executed on the control-path, but also on the data path. Ideally, we would like
to be able to execute this code within the protection domain of the appropriate
device driver, but within the scheduling and accounting domain of the client. A
solution to this problem is presented in section 6.5.

6.5 CALLPRIV Sections

A simple extension of the Nemesis PALcode provides a mechanism for privileged
domains to register small sections of code with the NTSC.5 An additional unpriv-

3This figure corresponds to the x11perf -shmput500 performance of the DEC Xserver of
76 reps/sec. (4.75 x 10% PIO cycles/sec. = 28 cycles/write)

4240Mbps consumes the entire CPU resource.

®Currently the privileged PALcode call ntsc_regstub is used for this purpose.
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Figure 6.2: Use of CALLPRIV Sections.

ileged NTSC call® allows clients to invoke these sections of code, with arbitrary
arguments, within the protection domain of the device driver. The intended use
is for performing small, fixed-size PIO operations to dumb devices in situations
where the overheads of using Rbufs would be excessive in comparison to the cost
of the operation.

When control is transferred to the privileged code section, an additional ar-
gument is provided by the kernel indicating the 1D of the domain which invoked
the call (figure 6.2). Given the explicit binding model used in Nemesis, it is im-
possible to invoke a service, or perform I/O without there being an associated
connection. If the connection state, or a closure is passed as one of the user
arguments, then a device driver may use the domain ID to immediately verify
the arguments of the call.

The code sections are invoked with all interrupts except the lowest level timer
interrupt disabled, in a similar manner to interrupt stubs. The reason for this

6The unprivileged PALcode call ntsc_callpriv was added for this purpose
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is to prevent a reschedule from occurring during the call and thus simplify the
implementation and reduce the overheads of the mechanism. The lowest-level
timer continues to run throughout the call and may post a reschedule interrupt,
but the kernel scheduler itself will not be entered until the CALLPRIV completes.

6.5.1 Discussion

It is important to contrast the operation of CALLPRIVs with thread migration
techniques. CALLPRIV stubs execute within an environment which is very differ-
ent from user code. They are entered with the minimal number of registers saved
and with all interrupts disabled. It is not possible for code within a CALLPRIV
section to block, and it is not possible to invoke another CALLPRIV section. The
device driver is expected to ensure that the duration of the CALLPRIV is kept to
a minimum. The mechanism should rather be thought of as a software version of
a channel-controller.

Device drivers are privileged domains and as such must be trusted by the
operating system. Incorrect or malicious code within a driver is clearly capable of
compromising the system. The execution of this code within CALLPRIV sections
invoked by an unprivileged domain therefore introduces no additional danger.

6.5.2 Performance

As can be seen from figure 6.2, the cost of invoking a CALLPRIV section has been
measured at 0.54pus and returning to the calling process takes 0.82us. These over-
heads are small in comparison with the 100us clock granularity of the Sandpiper.
For the purposes of comparison, the cost of using Rbufs for the same purpose
have been measured at 5.2us for the I0$PutPkt operation and 5.4us for the
10$GetPkt operation.’

Time spent within a CALLPRIV section therefore introduces some amount
of jitter into the kernel scheduler. Device drivers, as always, are expected to
minimise the time spent with interrupts disabled. For all devices considered
so far, it has been possible to devise a simple and useful atomic I/O operation
which executes in a time comparable with the granularity of the system clock.

"These are the costs when pipelining is working correctly and no reschedules occur.
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The driver for the PMAG-BA framestore described in section 6.6 uses the update
of a small rectangular tile of pixels as its I/O primitive for this reason.

In order to amortise the overheads of the protection domain switch still fur-
ther, some drivers may allow clients to request fairly long transactions which
may be broken into smaller units if they would take too long to complete. The
remainder of the transaction may be completed using a second CALLPRIV.

6.6 DAM: The Framebuffer Driver

The Nemesis framebuffer driver (dev/fb) implements the DAM for the PMAG-
BA device. As such it is responsible for providing protected access to the pixels
of the framebuffer with guaranteed rates of I/O to each of its clients. As with
all other devices, the operation of these protection and scheduling mechanisms is
directed by the DMM and the driver exports the FB.if interface for this purpose
(figure 6.3). This control interface is used exclusively by the DMM to:

e Create, destroy, move and resize windows.
e Create update streams for a window (using the I0.1if interface).

e Change the update permissions of areas of the framebuffer.

Since the framebuffer is the primary video output device of a multimedia
workstation, the driver is optimised for the display of high bandwidth digital
video streams. The driver is stream oriented in that the only way to update the
pixels in the framebuffer is to send a packet on a pre-established connection to
the driver.

Clients communicate window updates directly to the driver using one of a
number of simple packet based protocols. The driver however supports a single
primitive: the update of a small fixed-size rectangular region know as a tile.®
Packets contain an (z,y) coordinate and a rectangular region of pixels to replace
the pixels in the framebuffer. Even traditional graphics rendering is performed
by sending a video stream to the framestore. In order to minimise bandwidth,
this stream may consist only of the changes since the last time the window was
repainted.

8 A recent experimental version of 8%, the Plan 9 Window System [Pike91] has also adopted
tiles as the single update primitive [Pike94].
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FB

BE

: LOCAL INTERFACE =
NEEDS IDCOffer;
NEEDS Time;

GIN

BadWindow : EXCEPTION [];
Failure : EXCEPTION [];
Unsupported : EXCEPTION [];
NoResources : EXCEPTION [];

WindowID : TYPE
StreamID : TYPE
Protocol : TYPE

LONG CARDINAL;
LONG CARDINAL;
{ Bitmap, AVA, DFS };

QoS : TYPE RECORD [ tiles : CARDINAL,
period : Time.ns ];
CreateWindow : PROC [ x, y : INTEGER,

width, height : CARDINAL,
clip : BOOLEAN ]
RETURNS [ wid : WindowID ]
RAISES Failure;

-- "CreateWindow" creates a window with the specified

-- position and size. If "clip" is "False" then updates
-- to the window do not take account of the clip mask.
-- A "WindowID" is returned.

DestroyWindow : PROC [ wid : WindowID ]
RETURNS [ ]
RAISES BadWindow;

-- "DestroyWindow" frees resources allocated to window "wid".

UpdateStream : PROC [ wid : WindowID,
p : Protocol,
: QoS,
clip : BOOLEAN ]
RETURNS [ s : StreamID,
offer : IREF IDCOffer ]
RAISES BadWindow, Failure, Unsupported;

-- "UpdateStream" returns an IDCOffer for a video
-- updates stream using protocol "p". If "clip" is
-- False then updates to the window do not take account

-- of the clip mask.

MapWindow : PROC [ wid : WindowID ]
RETURNS [ ]
RAISES BadWindow;

-- "MapWindow" causes the window "wid" to become mapped
-- on the framestore device. Updates to the window
-- become possible.

UnMapWindow : PROC [ wid : WindowID ]
RETURNS [ ]
RAISES BadWindow;

-- "UnmapWindow" causes the window "wid" to become
-- unmapped on the framestore device. Updates to the
-- window will be silently discarded.

ExposeWindow : PROC [ wid : WindowID,
x, y : CARDINAL,
width, height : CARDINAL ]
RETURNS [ ]
RAISES BadWindow;

-- "ExposeWindow" causes window "wid" to become visible
-- in the rectangle described. (Coordinates are frame
-- buffer coordinates.)

MoveWindow : PROC [ wid : WindowID,
x, y : INTEGER ]
RETURNS [ ]
RAISES BadWindow;

-- "MoveWindow" ssks for the window "wid" to be moved to
-- position $("x", "y")$§.

ResizeWindow : PROC [ wid : WindowlID,
width, height : CARDINAL ]
RETURNS [ ]
RAISES BadWindow, Failure;

-- "Resize" asks for the window "wid" to be resized to
-- $"width" \cross "height"$.

AdjustQoS : PROC [ sid : StreamID,
q : QoS ]
RETURNS [ ]
RAISES NoResources;
-- Attempts to set the QoS for stream "sid" to "q".

END.

Figure 6.3: MIDDL for dev/fb management interface (FB.if).
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Update streams provide a direct data path between the owner of a window
and the framebuffer driver. Each update stream is associated with a single win-
dow - the per-stream state record identifies the window and also contains QoS
parameters and protocol specific information. In most cases update streams use
Rbufs [Black94] as a highly efficient packet based shared-memory transport, al-
though other experimental transports have been used including the CALLPRIV
mechanism described in section 6.5.

Window3 update request
clipped against Window1 Tagged Pixels

/

Virtual Window

Protection Tag Bounding Box

x1iyliwlihl

x2§y2§w2§ hZ/

2
N— 3 x31y3!wsih3
3
Per-Connection FrameBuffer

State Table

Figure 6.4: Virtual Windows and Key Based Protection

6.6.1 Virtual Windows

The framebuffer driver will usually have a large number of update streams con-
nected to it. When I/O requests arrive at the driver, the connection identifier is
used to index into a table of per-stream state records. The entry in this table
describes a rectangular region of the screen known as a virtual window. The (x,y)
coordinates of each update request are translated by the on-screen coordinates of
the virtual window allowing rendering code and hardware video capture devices
to operate independently of the position of the destination window. Any update
requests which lie outside the virtual window are silently discarded. This trans-
lation mechanism also allows a single video stream to be multicast to a number
of destinations without CPU intervention on the data-path.
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6.6.2 Key Based Pixel Protection

For each pixel in the framebuffer, an additional tag field is stored in a separate
bank of memory. A similar tag is held in the per-stream state record. Reads to
or writes from the framebuffer are only permissible for those pixels whose tags
match the tag of the current stream.

As above, writes to pixels whose tag value does not match are silently dis-
carded. This situation commonly occurs when a client is rendering to a window
which is partially obscured. Reads from pixels whose tag value does not match
return undefined data.

6.6.3 Protection Overheads

The overhead of this software protection is not as large as one would expect since
the cost of a TURBOchannel programmed [/O read or write operation is so large
in comparison with the cost of main memory reads and writes and the necessary
arithmetic operations for comparing tags and masking individual pixels.

Since the 21064 CPU of the Sandpiper has a 4-entry write buffer, it is possible
to execute a large number of arithmetic operations “in the shadow” of writes to
the framebuffer. These may be used to perform the per-pixel clipping operations
effectively with zero cost. Also, the majority of rendering operations supported
by an X server will frequently need to update only a single 8-bit pixel, but since
the TURBOchannel only supports 32 bit reads and writes this will result in two
expensive TURBOchannel PIO operations. Rendering in the cached DRAM of
the main memory system will often prove significantly faster.

6.6.4 Quality of Service

QoS support is provided at the lowest levels in the device driver i.e. at the level
where concrete resources are being consumed. In the case of the PMAG-BA
driver these resources consist of both TURBOchannel I/O bandwidth and CPU
cycles since the card has no DMA support. A scheduler in the driver determines
the order in which to service transactions on the various connections according
to the current QoS parameters. When using the Rbufs transport, CPU resource
expended servicing requests is unavoidably accounted to the driver rather than
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to the clients. Although the scheduler ensures that the QoS guarantees of each
client are respected, it is still necessary for the driver to be provided with enough
bulk CPU resource to service all of its clients. This function must be performed
by the QoS-manager.

140

120
100 |+ |
80 | ,

60 | 1

Time / microseconds

40 + .

0 5 10 15 20 25 30 35 40 45 50
Number of 8x8 Tiles

Figure 6.5: Timings of dev/fb CALLPRIV Tile Blitting Stub.

When using the CALLPRIV mechanism, this resource transfer problem does
not arise. The tile update primitive provided by the driver is ideally suited to
execution within a CALLPRIV section - it is simple to check access permissions
and the primitive is small enough to avoid significant jitter problems. Figure 6.5
shows timings of the tile blitting CALLPR1V for various numbers of 8 x 8 tiles.
The gradient of the graph corresponds to an achieved bandwidth of 202Mbps to
the framebuffer, and the y-intercept shows a total overhead of 3.03us per call.”
For transactions smaller than 48 tiles, the total execution time is less than the
granularity of the system clock.

6.6.5 The DAN Framestore (DFS)

The abstraction provided by dev/fb, even when using a dumb framestore, is
very similar to that provided directly in hardware by the DFS [Pratt95]. In fact,
a large fraction of the code in the driver was used as a software emulation of

91.67us is taken to load information from the per-stream state record, the remainder of this
figure corresponds to the CALLPRIV overheads measured above.
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the DFS written for the DECStation 5000/25 whilst the hardware was being
developed.

A framebuffer driver has also been implemented for the DF'S connected via the
OTTO ATM interface. The level of hardware support provided by the PMAG-
BA and the DFS differ substantially but the drivers export the same interface,
namely FB.if. Naturally, the dev/£fb driver for the DFS is much simpler and does
little more than perform connection setup and provide a higher level mechanism
for updating the protection tag RAM.

When using the DF'S,; dev/FB communicates with the framestore using a sim-
ple single-cell ATM protocol to create virtual windows and update streams on
particular VCIs. The framebuffer driver invokes the OTTO driver to obtain an
IDC offer for an AAL5 connection on the appropriate VCI and with the neces-
sary QoS parameters.'? This offer is handed back to the client which then binds
directly to the OTTO driver.

6.7 DMM: The WS Window System

This section describes a prototype Nemesis window system (WWS) and a number
of simple example applications. The WS window system is an example of a client-
rendered window system. An architectural overview of the system is shown in
figure 6.6(a) together with a description of the various Nemesis domains involved.

6.7.1 The WS Server

The WS server is a Nemesis domain which manages the mouse, keyboard and
framebuffer devices. In the prototype system, the mouse and keyboard drivers
are part of dev/serial and both export the I0.if interface which is used to
transport streams of timestamped mouse and keyboard events. The WS server
demultiplexes these events to the appropriate client event stream (another I0.if
interface) depending on the position of the mouse pointer.

The WS server is also responsible for out of band control operations such

10 ATM signalling software has not yet been ported to Nemesis, so for the moment permanent
virtual circuits are assumed.
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DAM: The serial device driver. This privileged domain provides
access to the keyboard and mouse devices.
DAM: The framebuffer device driver described in section 6.6.

DMM: The WS server.

Window manager domain using an extended interface to the WS

Server.

Client domains using the shared library 1ib/WS to access the

framebuffer.

A client domain using custom rendering code.

as window creation, deletion and reconfiguration.

Figure 6.6: The WS Window System

It exports an RPC control

interface of type WS.if for this purpose (figure 6.7). After applying suitable

argument checking and access control mechanisms, the WS server translates these

requests into invocations on the framebuffer control interface (FB.if). Clients

are unable to bind to the FB.if interface directly.

Note that the WS server is responsible only for out-of-band control operations

which require atomic write access to shared state. It is not involved with the
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WS :

BE

LOCAL INTERFACE =
NEEDS IDCOffer;
NEEDS Time;

NEEDS FB;

GIN

Failure : EXCEPTION [];
BadWindow : EXCEPTION [];

WindowID : TYPE = LONG CARDINAL;

-- A window is an opaque identifier

Button : TYPE = { Left, Middle, Right };

Buttons : TYPE = SET OF Button;

MouseData : TYPE = RECORD [ buttons : Buttons,
x, y : INTEGER 1];

KeySym : TYPE = CARDINAL;
NoData : TYPE = CARDINAL;
Rectangle : TYPE = RECORD [ x1, yi, x2, y2 : CARDINAL ];

ExposeData : TYPE = Rectangle;
EventType : TYPE = {

Mouse, KeyPress, KeyRelease,
EnterNotify, LeaveNotify, Expose, Obscure

};

EventData : TYPE = CHOICE EventType OF {
Mouse => MouseData,
KeyPress => KeySym,

KeyRelease => KeySym,
EnterNotify => NoData,
LeaveNotify => NoData,

Expose => Rectangle,
Obscure => Rectangle
};
Event : TYPE = RECORD [ t : Time.ns,
w : WindowID,

d : EventData ];
-- Events are a discriminated union of all possible event types.
EventStream : PROC [ ]

RETURNS [ evoffer : IREF IDCOffer ]
RAISES Failure;

-- Ask for the WS server to provide an event stream

CreateWindow : PROC [ x, y : INTEGER,
width, height : CARDINAL ]
RETURNS [ w : WindowID ]
RAISES Failure;

-- Create a window with the given position and size. Returns a

-- window identifier "w".

DestroyWindow : PROC [ w : WindowID ]
RETURNS [ ]
RAISES BadWindow, Failure;

UpdateStream : PROC [ w : WindowID,
p : FB.Protocol,
q : FB.QoS,
clip : BOOLEAN ]
RETURNS [ fbid : FB.StreamID,
offer : IREF IDCOffer ]
RAISES BadWindow, Failure;
-- Returns an IDC Offer for an update stream for window "w"
-- using the protocol "p".

MapWindow : PROC [ w : WindowID ] RETURNS [ 1]

RAISES BadWindow, Failure;
-- Causes the window "w" to become mapped on the framestore
-- device. Updates to the window become possible.

UnMapWindow : PROC [ w : WindowID ] RETURNS [ ]
RAISES BadWindow, Failure;

-- Causes the window "w" to become unmapped on the framestore
-- device. Updates to the window will be ignored.

MoveWindow : PROC [ w : WindowID,
x, y : INTEGER ]
RETURNS [ ]
RAISES BadWindow, Failure;

ResizeWindow : PROC [ w : WindowID,
width, height : CARDINAL ]
RETURNS [ ]
RAISES BadWindow, Failure;

END.

Figure 6.7: MIDDL for WS interface (WS.1if).
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Figure 6.8: WS Screendump

data path.

6.7.2 Non-Multimedia Applications

In the WS system, non-multimedia applications usually render their graphics
into a private copy of the window in main memory and when finished flush their
updates to the framebuffer as a stream of tile differences. For many applications
which render complicated user interfaces using “painter’s algorithm” or similar,
the benefits of drawing in fast cached DRAM and copying only the resulting
differences to the slower framebuffer can be significant. [Stratford96] describes a
client-rendering port of 1ibX11 which in most cases performs faster than using
the server.

Although most applications link against a shared library containing a set
of default rendering operations similar to those provided by the X server (fig-
ure 6.9a), it is perfectly possible for an application to supply its own customised
rendering code.
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Figure 6.9: Example Window System Clients
6.7.3 Multimedia Applications

Multimedia applications may often send tile streams directly to the framebuffer
without maintaining a copy of the window in its entirety. Figure 6.9b shows a
multimedia application receiving a live video stream and sending it to the frame-
buffer driver via a second update stream on the same window. This update
stream does not necessarily need to use the same protocol as the conventional
update stream. In particular, it may choose to use an unreliable transport mech-
anism (allowing updates to be discarded if insufficient resources are available)
and a payload format which closely matches the incoming video stream (e.g. the
AVA-200 tiled video format).

6.8 Evaluation of the WS System

In order to evaluate the benefits of the DAM/DMM approach it was considered
necessary to compare the WS system with a traditional server-rendered window
system. Therefore, for the following experiments a server-rendering version of
the WS system was also implemented (WSg) supporting the same programming
interface. As is the case with X, this server implements no internal accounting or
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Figure 6.10: Effect of Varying /dev/fb QoS Guarantees

scheduling of client requests and no resource transfer mechanisms. It therefore
relies solely on the QoS guarantees of its clients.

Two important comparisons will now be made.

6.8.1 QoS Guarantees

The ATM video application described in section 6.7.3 was instrumented to record
the percentage of each video frame which it was able to render to the framebuffer
via the dev/fb driver. The application was provided with an initial QoS guar-
antee of 1% of the framebuffer bandwidth in each 20ms period. The guarantee
was gradually increased by an additional 1% each second as the application pro-
gressed. Figure 6.10 shows the QoS observed by the application.

The graph demonstrates that the QoS guarantee provided by /dev/fb allows
the application to render an increasing proportion of each video frame until, when
provided with 28% of the available bandwidth, the entire frame may comfortably

be rendered.

Whilst this simple video application is able to produce results whose quality
is in some sense proportional to its bandwidth guarantee, many applications will
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Figure 6.11: QoS Crosstalk Between Window System Clients

only have a small number of “sensible” modes of operation. These applications
may not be able to produce acceptable results at all unless they know in advance
the QoS which they will receive.

6.8.2 QoS Crosstalk

In this experiment three clients of the window system compete for resources.
Two of the clients are video display applications receiving almost identical (but
deliberately non-synchronised) video streams from separate AVA-200s at around
40Mbps. One of these video applications (V1) has a QoS guarantee sufficient to
display its entire video stream. The other (V2) has been guaranteed only 30%
as much as V1. A third application (B) uses the CPU to repeatedly generate
bursts of rendered graphics and then sleep for a second. This application has
been guaranteed the remaining resources.

Figure 6.11 shows 30 second traces of the percentage of each frame displayed
by the two video applications V1 and V2 for both the client- and server-rendering
versions of the window system.
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6.8.2.1 Server Rendering (WSp)

In this configuration, the WS server is responsible for performing all rendering
of video and graphics. When the competing process (B) is not running, both video
applications are able to display their entire video streams since the WS g server
has access to the spare resources in the system. When the competing process B
becomes active, however, the additional workload of the server prevents it from
keeping up with the requests from either video application (figure 6.11a).

This QoS crosstalk prevents either video application from performing accept-
ably, irrespective of their individual QoS guarantees.

6.8.2.2 Client Rendering (WS)

When using the client rendering version of the WS server, all framebuffer updates
are sent directly to dev/fb where they are accounted to the appropriate client
application at the lowest level. Requests from each client are scheduled according
to their respective QoS guarantees.

The QoS observed by the video application V1 (with sufficient guaranteed
resources) is unaffected by the activities of competing application B. Video appli-
cation V2, however, is forced to discard a large proportion of its data whenever the
competing process is running since dev/£b no longer has enough spare bandwidth
to service its requests (figure 6.11b).

QoS crosstalk between the various clients of the window system has largely
been eliminated.

6.9 Summary

It has been common practice for a workstation operating system to leave the job
of multiplexing the framebuffer device entirely to the window system. Window
systems have traditionally provided a high-level abstraction to the framebuffer
device both to reduce the number of interactions required between client and
server, and to support remote clients. These high-level primitives are difficult
to account and schedule and are therefore undesirable in an environment where
Quality of Service is an issue.
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In a server-based window system, it is necessary for the server to contain code
for every rendering primitive which could conceivably be required by a client.
This both constrains the range of applications which may be constructed and
leads to “code bloat” in the server. Previous client-rendering window systems do
not suffer from this problem, but have included no protection at the device level
and are thus prone to abuse by uncooperative clients.

The framebuffer device demands sharing and protection at a fine granularity;
protection which is not provided by conventional graphics hardware. A low-
level software protection mechanism has been presented which has a negligible
performance overhead and is readily implemented in hardware at a minimal cost.

Most framebuffer devices support no form of DMA, instead requiring the pro-
cessor to be used to move data. This code must be executed within the protection
domain of the device driver but the processor resource consumed should ideally be
accounted to the client. The CALLPRIV mechanism effectively supports devices
of this nature.

The above two techniques have been combined to produce a Device Abstrac-
tion Module for the framebuffer device which both provides fine-grained protected
access to the framebuffer and accounts for resource usage at the lowest possible
levels. A new client-rendering window system has been presented which makes
use of this low-level device driver to allow migration of rendering code into the
application where it gains the benefit of QoS guarantees provided by the frame-
buffer driver and minimises application QoS crosstalk.

91



Source: fs.tex DRAFT of 11:06, June 28, 1996

Chapter 7

File System

The storage capacities of modern disk drives are starting to approach levels com-
parable to the typical size of an MPEG compressed feature-film. The read and
write performance of drives has also increased to a level in excess of that needed
to handle real-time video streams. For these reasons, disks are increasingly being
required to act as sources or sinks of multimedia data.

This chapter considers the application of the Nemesis device driver archi-
tecture to a standard SCSI disk drive and presents mechanisms for abstracting
the device which effectively support the implementation of a wide variety of file
systems and potentially an application-specific virtual memory system.

7.1 Introduction

A number of operating systems provide an environment where the file system
is used for inter-process communication. For example, the UNIX environment
encourages the composition of a number of simple programs to perform more
complicated tasks, and although it is often possible to use “pipes” between pro-
cesses, many applications require the use of temporary files. In order to achieve
acceptable performance, write-buffering and cacheing in the file system code at-
tempts to prevent this data being written to disk. This additional code is a
significant disadvantage when dealing with high volume CM data.

The majority of information used to direct the course of file system research
is derived from one or two low-level traces obtained from instrumented UNIX file
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systems [Ousterhout85][Baker91]." As expected, these traces show a dispropor-
tionate number of short-lived files written sequentially in their entirety, read once
in their entirety, and then deleted. This observation has led file system designers
to optimise their designs for such behaviour. It is argued that in an operating
system such as Nemesis, this form of inter-process communication should not be

necessary.

7.2 General Purpose File Systems

General purpose workstation file systems can be categorised into 3 broad cate-
gories based on the manner in which they use the underlying physical storage
devices:

e Block-Structured File Systems

e Log-Structured File Systems

e Extent-Based File Systems

Although the functionality provided by all 3 storage schemes is similar, they are
optimised for different usage patterns.
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Figure 7.1: UNix File Size Statistics

!The traces described in Mary Baker et al.’s 1991 SOSP paper are available on-line as
http://now.CS.Berkeley.EDU/Xfs/SpriteTraces/
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7.2.1 Block-Structured File Systems

Block-structured file systems divide the surface of the disk into a large number of
equal sized blocks. This is the unit of disk storage allocation and also the unit of
disk 1/0O. The size of a block is a compromise between the amount of disk space
wasted per-file and the I/O transaction overheads. Block structured file systems
are the most common variety of file system and until recently have been used by
most varieties of UNIX.

Block structured file systems are designed primarily to achieve high space
utilisation; hence the small unit of disk allocation. Since half a disk block, on
average, is wasted per file there is a strong motivation to keep the disk block size
fairly small? if the file system is expected to contain a large number of small files.
The underlying assumptions seems to be that disk space is an expensive resource
and this is currently not the case, although the cost of managing large volumes
of disk space should not be ignored.

Figure 7.1 shows the distribution of file sizes, both in terms of number of files
of a particular size and in terms of the proportion of disk space consumed by
files of various sizes. The graphs are based on a survey of UNIX file size data for
12 million files, residing on 1000 separate file systems, with a total size of 250
gigabytes.®. The first graph shows that the majority of files are small - 90% of
files are less than 16KB in length - whilst the second shows that the majority of
disk space is occupied by files over IMB in length.

Another reason for the popularity of block structured file systems is that they
are easy to integrate with virtual memory systems and buffer caching schemes due
to the fixed-sized unit of 1/O. It is often arranged that the block-size supported
by the file system is the same as the page-size supported by the virtual-memory
system.

Block allocation is necessarily a frequent operation and requires update of
shared state. In a microkernel environment this incurs the cost of communication
with the file-system server. When writing high volume data to disk, as is the case
with CMfiles, it would be preferable to be able to perform disk space allocation
in larger units.

2Most UNIX file systems use a block size of 4096 or 8192 bytes.

3These results come from a number of traces which were co-ordinated and analysed by
Gordon Irlam <gordoni@home.base.com> Further information may be obtained on the World
Wide Web at http://www.base.com/gordoni/ufs93.html
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Another drawback of block-structured file-systems is that, since all disk I/O
requests are single blocks, the disk seek overheads are extremely large in com-
parison with the time taken to transfer the actual data.? This leads to very poor
performance if the pattern of disk I/O requests is essentially random. Even when
using disk-head scheduling techniques in an attempt to reduce the seek over-
heads, disk utilization figures of around 7% are reported in [Gopal86]. By using
very large write buffers capable of dealing with I/O queue lengths of around 1000
transactions it is possible to increase the write utilisation of the disk to around
25% [Seltzer90]. Scheduling algorithms which take into account rotational la-
tency such as the ASATF® algorithm described in [Jacobson91] achieve utilisations
of up to 32%° but suffer from response times of about a second at that load. The
ASATF algorithm even required an explicit special case to prevent infinite service
times!

The vast majority of work in the field of disk and file-system performance is
devoted to increasing total throughput and/or decreasing average response times.
The large variance in service times caused by several head scheduling algorithms
is usually considered as of secondary importance. The multimedia environment
often requires that total throughput of a system is sacrificed in order to maintain
predictable levels of performance on each individual connection.

7.2.2 Log-Structured File Systems

As a result of analysing large traces of UNIX file system activity, the observations
were made that the majority of files are written exactly once in their entirety, and
that most files are fairly short-lived. By implementing a file-system where the only
disk write operation permitted is to append to a log, a large fraction of the seek
overheads of a block-structured file-system may be eliminated [Ousterhout89].

The addition of a cache allows most reads to be serviced from memory and
in addition means than most short-lived temporary files never need to hit the
disk. The log is periodically compacted to remove old and deleted file data by a
background process similar to a garbage-collector.

4The time taken to transfer an 8KB block across a 5MHz SCSI bus is 1.6ms, whilst the
typical access time (comprised of seek time and rotational latency) is around 15ms.

®Aged Shortest Access Time First

6These results were acheived using a software simulator and an unrealistic workload gener-
ated using exponential inter-arrival times and a uniform random distribution of requests across
the disk surface.
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Although log-structured file systems allow disk write throughput to approach
the maximum transfer rate of the device, they require that all file updates are
performed by a single server. This potentially introduces large amounts of QoS
crosstalk. Read performance depends on the amount of fragmentation in the log
and the number of concurrent read requests. Attempting to read a number of
continuous-media files simultaneously will still incur seek penalties.

Examples of log-structured file systems include Sprite LFS [Rosenblum92],
BSD-LFS [Seltzer92] and the Huygens File Server developed as part of the Pega-
sus project [Bosch93].

7.2.3 Extent-Based File Systems

Extent-based file systems are a compromise between the predictability of block-
structured file systems and the throughput achievable using a log-structured file
system. Disk space is allocated as contiguous ranges of blocks called extents. The
number of blocks in an extent is variable and typically dependent on the expected
size of the file.

Allocating disk space in this way cuts down the frequency of operations re-
quiring access to shared state and allows disk throughput to be increased by use
of larger transactions. It also results in less disk fragmentation and therefore an
increased likelihood of consecutive reads and writes. In the case where all ex-
tents are of length one, the data-path performance can be expected to converge
with that of a block-structured file system. In the majority of cases, however, a
significant performance increase should be observed.

File creation and deletion is potentially more expensive than in a block-
structured file system, but this can be amortised using schemes similar to the
Partitioned Datasets of MVS [IBM80] where a number of files owned by the same
user are grouped together into a single dataset stored in preallocated extents on
disk.

Extent-based file systems are becoming popular in situations where time con-
straints are important and the unpredictability of a log-structured file system is
unacceptable. Examples include the QNX file system [Hildebrand92] and CMFS
[Jardetzky92].
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7.3 Multimedia File Systems

In order to more effectively support multimedia file types, a number of researchers
have abandoned conventional file system technology altogether in favour of a
dedicated multimedia file system optimised for large files. Indeed such file servers
are typically constructed as an embedded hard-real time system running on stand-
alone machines connected to a high speed network and so do not experience
contention from other activities on the workstation.

A multimedia file server may make the assumptions that there will only be a
small number of files open at any particular time and that clients will perform
predominantly sequential accesses. The abstraction supported is often closer to
that of a VCR with play, pause and rewind operations [Jardetzky92] implying
that demands for I/O bandwidth are constant for prolonged periods of time. With
these simplified file access patterns it is possible to provide stream-oriented 1/0
at a predetermined rate purely by use of large amounts of read-ahead [Reddy94].
Unfortunately this abstraction is completely unsuited to conventional general-
purpose file access. Random access to files is usually very slow and often not
allowed at all. Where it is allowed, it often causes transient QoS problems for
other streams.

In a multimedia file system, disk layout is optimised for very large files. It is
not uncommon to allocate disk space, and indeed perform I/O in units related
to the physical geometry of the drive, e.g. a cylinder at a time. Often the file
system is assumed to be essentially read-only and its layout optimised off-line.
For example, in a VOD system serving a number of streams from a single disk
it is possible to achieve more predictable average-cost seek times by deliberately
striping file data across the disk.

The Huygens file server [Bosch93] and CMSS [Lougher93] use a log-structured
file system as the underlying storage service. Although a log-structured file sys-
tem is ideally suited to simultaneous recording of a number of continuous media
streams with differing QoS guarantees, simultaneous playback of these streams
suffers unavoidable QoS crosstalk due to the interleaving of file data on the disk
surface and the impossibility of caching large continuous media files. In both of
the above systems, prefetching and request scheduling are used to provide play-
back of a small number of streams at predetermined rates. Knowledge of the
internal structure of files is built into the file server to allow files to be “played
back” at the “correct rate”, and it is not uncommon to support only a predefined
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set of file types. The log-structure of file system provides no significant advantage
over extent-based layouts for this application.

The Multi-Service Storage Architecture (MSSA) [Lo93] separates the func-
tions of data storage and the provision of higher-level file abstractions in a two-
level architecture. At the lowest level, Byte-Segment Custodes (BSC) provide
rate-based access to persistent data, stored in an extent-based fashion, using a
notion of sessions with QoS guarantees. A number of higher level services are
provided including directory services and support for continuous media and struc-
tured typed data. The architecture is primarily intended for a network file server,
but many of its features are equally applicable to this work.

7.4 Custom Storage Systems

There are a number of applications such as persistent programming languages
such as PS-ALGOL [Atkinson83] or Napier88 [Morrison89], and Database Man-
agement Systems (DBMS) [Date90] whose performance is highly dependent on
disk I/O, and which have disk access patterns which differ significantly from
conventional or multimedia file access patterns. A true multi-service operating
system should equally well be able to support applications of this form.

It is common for DBMS software running over a conventional general-purpose
operating system to use a “raw” disk interface, bypassing the file system layer
altogether. The DBMS is allowed to use an entire disk partition in whatever
manner it desires, and using application specific knowledge is able to do a much
better job of scheduling its disk accesses. It would be highly desirable to be able
to make these application specific optimisations without having to bypass the file
system completely.

7.5 Disk Drives

The technology used in modern disk drives is fairly uniform across vendors. Data
is stored magnetically in concentric tracks on a number of rotating surfaces, each
with its own read/write head. The heads are mounted on a movable arm which
may be used to place them over the selected tracks (the group of tracks which are
simultaneously accessible are usually referred to as a cylinder). Although drives
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Figure 7.2: Major Disk I/O Data-path Components

with multiple arms are available, the majority only have a single arm.

After moving a head to a new track it is necessary to make fine adjustments
to the position to ensure that the head is settled over the centre of the track
and data is transferred reliably. More expensive drives use error correction logic
to enable reads to be serviced before the head is completely settled, and a drive
controller will often begin reading from a track before the required data has come
around assuming that the entire track will be of interest.

Each track is divided into a number of sectors, but since the length of a
track depends on the distance from the centre of the disk, it is common for
large capacity drives to divide each surface into a number of zones with different
numbers of sectors per track. The data transfer rate for a transaction may vary
by up to a factor of two from the centre of the disk to the outside.

Due to imperfections in the surfaces of the disk it is also common to manufac-
ture a drive with more tracks than necessary. Track numbers are then remapped
by the drive controller to avoid damaged regions - a procedure known as track
sparing. Individual bad sectors may also be remapped, either to a different sector
on the same cylinder, or to a reserved cylinder elsewhere on the disk surface. Disk
1/0O is performed in units of blocks which appear to be arranged as a contiguous
array, but since the physical location of a block may be impossible to determine,
the penalties incurred when accessing these sectors can not always be predicted.
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Figure 7.3: Typical Activity During SCSI Transactions
7.5.1 Disk I/O Data-path

The drive is connected to the host using one of the standard peripheral buses such
as SCSI. Figure 7.2 shows the major components on the disk I/O data-path. Both
the host and the drive typically contain a standard SCSI controller chip which
deals with the low-level protocols required to access the bus. Although data
rates from the disk heads are usually less than the bus bandwidth, cache memory
inside the drive makes it possible for the device to use the bus at full speed for
short periods. Given the relative data rates, it is rare to connect more than two
disk drives to the same SCSI bus. The host controller is usually attached to the
workstation I/O interconnect which provides more than enough bandwidth into
main memory of the workstation.

Since the peak media transfer rate is typically substantially lower than the bus
transfer rate, the drive controller will often disconnect from the SCSI bus during
a long read until sufficient data has been read into internal buffer memory. The
controller will also usually perform some amount of read-ahead and write-behind.
Figure 7.3 shows typical activity on the SCSI bus and in the drive controller

during read and write transactions.”

"This figure is taken directly from [Ruemmler94].
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Average Seek Time: 9.5 ms A weighted average of the time taken to move the
disk arm from one part of the surface to another.
Average Access Time: 15.1 ms A weighted average of the combined time taken

to move the disk arm to the correct position, the
time taken for the head to settle plus the rotational
latency.

Rotation Speed: 5400 rpm  The rate of rotation of the disk platter.

Media Transfer Rate: 3.3 MBps The speed at which data may be read from the sur-
face of the disk into the controller’s buffer memory.
This is usually proportional to the rotation speed
of the disk.

Bus Transfer Rate: 10 MBps  The speed at which data may be transferred from
the disk controller’s buffer memory to the host ma-
chine. This usually depends on the type of bus to
which the device is connected.

Buffer Size: 512 KB The amount of buffer memory in the disk
controller.

Table 7.1: Published Specifications of the Digital RZ26 Disk Drive
7.5.2 Performance Characterisation

The performance of disk drives is usually characterised by a handful of parameters
related to the mechanical timings of the device. The published specifications of
the Digital RZ26 drive used in the Sandpiper are shown in table 7.1. Although
these figures are typically the only information provided with a drive, they are a
dramatic over-simplification of the actual behaviour of the device. The average
seek and access times given in the drive specifications are sometimes of little use
when trying to estimate the cost of a transaction since drive controllers attempt
to optimise performance for certain common access patterns and when these
optimisations fail the results are costly.

7.5.3 Access Time Variations

Figure 7.4(a) shows a graph of the measured times to access a single block at
various distances across the surface of the disk. Measurements were obtained by
first reading a single reference block at the start position on the disk surface, then
waiting a random about of time (to remove any correlation with disk rotation) and
measuring the time taken to read the destination block. Results were averaged
over 100 measurements for each seek distance starting at different positions on
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Figure 7.4: Access Times for Digital RZ26 Disk Drive

The graph has several interesting features. Firstly, the average access times

are very stable and easily modelled using a constant transfer overhead T}, a v/d

component for short seeks (accelerating the head), an additional linear component

for longer seeks (“coasting”) and the rotation time 7, as shown in equation 7.1.

Lower and upper bounds for access times can be obtained by adding or subtract-
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ing 37, as in figure 7.4(b).

Ty ifd=0,
A(d) = K,Vd+ 3T, + T, if d < 500, (7.1)
KoV/500 + K (d — 500) + T, + T, if d > 500.

Secondly, the effects of disk rotational latency are clearly visible as a wide
band and are of comparable magnitude to the seek time. Unless disk rotation is
taken into account, the variation of access times will clearly present a problem.
In addition, a number of unavoidable limitations of the hardware, deliberately
hidden by the device abstraction, can introduce essentially “random” variables.
For example, if the disk’s forward-error-correction (FEC) circuitry (intended to
allow reading of data before the head is completely settled) does not succeed, it is
often preferable to try a different transaction rather than wait an entire rotation
time for the desired block to come around again.

Thirdly, during the course of the measurements, the drive regularly entered
phases where approximately 0.5% of the accesses took a disproportionately long

time.®

Figure 7.4(c) shows the results of another experiment designed to investigate
the cause of these anomalous measurements. A single-block access requiring a
seek of a fixed distance of 100 cylinders was performed repeatedly over a 3 hour
period. The graphs show the experimentally measured access times normalised
by subtracting the mean access time of 12.8ms for ease of plotting. The results
show that the drive is changing its behaviour over quite a coarse time-scale. The
anomalous measurements appear to be regularly spaced with a period of around
30 seconds, presumably due to some internal background processing within the
drive. Many papers on disk scheduling and modelling mention discrepancies of
this magnitude but usually attribute the results to the vagueries of the UNIX
scheduler. Whilst measurements of this kind are often difficult in the UNIX en-
vironment, it is readily apparent that these are actually features of the drive’s
behaviour which are impossible to take into account in a model.

Another complicating factor is that the internal buffer memory in the drive
is not simply used as a FIFO. Drive controllers will typically partition the buffer
space so as to cache around 8 regions of the disk surface. Models of disk

8The concentration of anomalous measurements at around 1200 cylinders are believed to be
due to drive thermal recalibration.

103



Source: fs.tex DRAFT of 11:06, June 28, 1996

drives are usually highly inaccurate unless they take into account these factors
[Ruemmler94]. A detailed model of one particular disk drive is described in
[Kotz94] which manages to estimate the cost of most disk transactions to within
1%. The model is based around an event-driven simulator, required intimate
knowledge of the internals of the particular drive and takes over 12,000 lines
of code. Techniques for on-line extraction of the important parameters govern-
ing disk performance are described in [Worthington94b|, although the resulting
models still require cache contents to be continuously tracked and the prefetching
behaviour of the drive to be simulated.

Due to the features described above, computing an estimate of the cost of a
disk transaction is a complicated process. The total cost is derived from a large
number of factors, the most significant of which depend on the pattern of previous
accesses and invisible state within the drive [Worthington94al. Although it would
be highly desirable for the microcode inside the drive to schedule transactions
according to QoS parameters, it is not feasible to apply hard-real-time scheduling
techniques outside the drive itself.

A technique for abstracting a conventional disk drive which supports applica-
tion specific 1/O scheduling policies and QoS guarantees will now be presented.

7.6 DAM: The User-Safe Disk Driver

The User-Safe Disk (USD) device driver provides provides the device abstrac-
tion module (DAM) for the disk. The driver (dev/USD) is therefore the single
multiplexing point for disk I/O and is responsible for implementing all necessary
protection between clients. The granularity of protection provided is the extent
- a contiguous range of blocks on the disk.

The driver exports a privileged control interface (USDCtl.if) for each par-
tition of each disk to which a single DMM may bind. The DMM must register
a callback interface (USDCallback.if) which, amongst other things, provides a
fault-handler called whenever a client attempts to access a new area of the disk.

The control interface also provides operations for creation and deletion of /O
streams. With each stream is associated a QoS which may be updated via the
control interface. In addition, each stream keeps a cache of disk extents which
the client may access.
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USDCtl : LOCAL INTERFACE =
NEEDS USD;
NEEDS IDCOffer;
BEGIN
Failure : EXCEPTION [J;
NoResources : EXCEPTION [];
RegisterHandler : PROC [ handler : IREF IDCOffer ]

RETURNS [ 1;
-- Used to register an interface of type "USDCallback".

PROC [ cid : USD.ClientID,
m : USD.Mode,
q : USD.QoS 1]
RETURNS [ sid : USD.StreamlID,
offer IREF IDCOffer ]
RAISES Failure, NoResources;

CreateStream :

-- "cid" is an opaque value which is associated with this stream
-- and is passed as an argument to the USD fault handler.
-- "CreateStream" returns an offer for an "I0" channel.

DestroyStream : PROC [ sid : USD.StreamID ]
RETURNS [ 1;
AdjustQoS : PROC [ sid : USD.StreamlD,

q : USD.QoS 1]
RETURNS [ ]
RAISES NoResources;

AddExtent : PROC [ sid : USD.StreamlD,
e : USD.Extent ]
RETURNS [ 1;
DeleteExtent : PROC [ sid : USD.StreamlID,
e : USD.Extent ]
RETURNS [ 1;
END.
(a) USDCt1.if
USDCallback LOCAL INTERFACE =
NEEDS USD;
BEGIN
Fault : PROC [ sid : USD.StreamlD,
cid : USD.ClientlID,
blockno : CARDINAL,
nblocks : CARDINAL,
0UT e : USD.Extent ]
RETURNS [ ok : BOOLEAN ];

END.

Figure 7.5: MIDDL for dev/USD interfaces (USDCt1l.if and USDCallback.if).

(b) USDCallback.if
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Clients perform I/O directly to the disk by sending read or write requests
down the Rbufs channel. Requests consist of a small record containing the block
number and the number of blocks to read or write. In the case of a write, this
record is followed by iorecs pointing to the data itself. For a read, iorecs
describing an empty buffer are sent. The USD driver will first check the extent
cache for that stream to see if the permissions for that area of the disk are already
known. If an entry is not found in the cache, then the DMM is upcalled via the
USDCallback.if interface. The management interface also allows the extent
cache to be explicitly loaded in advance and flushed if necessary.

If the client has suitable permissions for that area of the disk, then the transac-
tion is enqueued with the disk I/O scheduler. If the transaction is not permitted,
then the buffer will not be updated in the case of a read and data will simply be
discarded in the case of a write. In either case, an acknowledgement is sent to
the client containing the length of data successfully read or written.

7.6.1 The RSCAN Algorithm

In order to support QoS guarantees on client connections, it is vital that the USD
driver schedule disk transactions. Although the exact scheduling algorithm used
is largely unimportant, provided that it is capable of delivering the necessary QoS
guarantees, excessive disk head seeking can dramatically reduce the aggregate
throughput of the device. The RSCAN algorithm was a simplistic first attempt
at QoS directed disk head scheduling and is a compromise solution which also
attempts to minimise the cost of “context-switches”.

Research into disk head scheduling algorithms has invariably focussed on in-
creasing the utilisation of the drive, at the expense of predictability. As mentioned
in section 7.2.1, the resulting high variance of service times for individual trans-
actions has proved to be a source of problems. The RSCAN algorithm employed
by the USD scheduler differs from previous disk head scheduling algorithms in
that it aims to provide per-client rate guarantees at the possible expense of disk
utilisation. The scheduler may even split a long contiguous transfer at a block
boundary in order to meet the QoS guarantee of another client.

The disk I/O scheduler maintains a list of pending transactions for all streams
sorted by block number. The scheduler attempts to minimise seek overheads by
servicing transactions in a manner similar to the SCAN algorithm described in
[Coffman72]. Due to the impracticality of computing the cost of a disk transaction
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Figure 7.6: RSCAN Scheduling Algorithm

in advance and the disproportionate cost of “context-switches”, the scheduler
accounts the actual cost of each transaction in arrears and uses a credit scheme
based on “leaky-buckets” to rate-control each stream. To support best-effort
[/O, the scheduler also maintains an estimate of the remaining slack-time in the
system and distributes this in the form of additional credits between all clients
with pending 1/O transactions.

In order to ensure that it is possible to deliver the QoS guarantees of each
stream, it is necessary to modify the admission-control policy to take account of
the likely seek overheads incurred by multiplexing between the various streams.
Although this requires that worst-case seek overheads be assumed,” useful guar-
antees of minimum bandwidth may still be made, and this does not prevent the
entire bandwidth of the disk being available in situations where worst-case over-
heads are not realised. A single client may read or write directly to the disk at
the maximum rate supported by the physical drive.

A more sophisticated approach to QoS directed disk-head scheduling could
potentially provide each client with a seek budget allowing an additional number
of seek operations in each period as part of the QoS contract. Any seeks over this
budget would necessarily be performed using best-effort resources. This would
be useful for DBMS style applications with non-sequential access patterns, or for
supporting paging in a virtual memory system.

9An estimate may be cheaply calculated using the bandwidth guarantee periods and extent
sizes of each client.
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Figure 7.7: RSCAN Scheduler Trace
7.6.2 Evaluation

Figure 7.6.1 shows a 20 second trace obtained from the RSCAN scheduler. The
trace shows two clients, C1 and C2, attempting to use the device simultaneously.
Client C1 has been guaranteed 80% of the device bandwidth, whilst C2 has no
guarantee and is relying entirely on best-effort bandwidth. Initially C1 obtains
almost 100% of the disk bandwidth. At time T1, C2 begins making 1/O requests
and the non-guaranteed bandwidth is shared approximately equally between C1
and C2. At time T2, C1 completes its I/O and the entire bandwidth is available
for best-effort clients. The small gaps in the trace are caused by conservative
behaviour of the RSCAN algorithm in the presence of both guaranteed bandwidth
and best-effort traffic.

Despite the simplistic approach, the USD is able to provide useful QoS guar-
antees between clients without discarding the protection traditionally provided
by file-system code. This benefit is achieved at the expense of some performance.
If it were possible to embed a scheduler in the drive itself, or if the SCSI bus
were replaced with a more tightly-coupled disk interface (e.g. SSA [Deming95])
then it would perhaps be possible to achieve the same goals whilst sacrificing
significantly less in the way of performance.
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Figure 7.8: The £FS File System

7.7 DMM: The £FS File System

In order to make effective use of the USD device it is also necessary to manage
both disk space usage and allocation of disk bandwidth. The DMM functions
for the disk device are traditionally part of a file system. As a demonstration
of the flexibility of the Nemesis I/O architecture is was decided to implement a
prototype file system which could equally well support conventional, multimedia
and DBMS applications. The £FS file system was written for this purpose.

EFS is a simple extent-based file system, but implements only the out-of-
band file system functions. Files are comprised of a number of extents which are
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used to control the extent-based protection provided by the USD. £FS uses the
same disk layout and meta-data format as CMFS [Jardetzky92], but the in-band
data-path operations are provided entirely by the USD.

An architectural overview of the system is shown in figure 7.8 together with
a brief description of the various Nemesis domains involved. The EFS server
is responsible for maintaining the meta-data associated with each file. This is
performed in exactly the same manner as for a traditional file system. The file-
system server ensures that it is the only domain permitted to update file meta-
data, which is cached in memory in order to reduce the latency of out-of-band

operations.!?

Clients interact with the £FS using an unprivileged RPC interface which
supports all of the out-of-band control operations of a traditional file-system
(EFSClient.if). This interface is used to create, destroy, open and close files
and to read the file meta-data. Files are named using unique identifiers from a
single flat name-space, although a directory service may easily be built on top of
this name space [Lo93].

Opening a file for read or write causes the £FS server to invoke the USD
control interface and obtain an IDC offer for an Rbufs channel. This offer is
returned to the client who may bind to the offer creating an I/O stream connected
directly to the USD device. Updating the data contained in a file is achieved by
sending read or write requests on the Rbufs connection. These 1/O transactions
are serviced sequentially at a rate determined by the QoS associated with the
connection.

An attempt to access an area of the disk for which the permissions are not
in the USD driver’s per-stream cache causes the file-system to be upcalled. The
file-system uses information supplied by the USD to determine the client’s per-
missions for that area of the disk. If the attempted access lies within an extent
belonging to the file then that extent is recorded in the USD cache and the access
is permitted.

Files are extended by adding a new extent. The size of this extent may vary
depending on the type of data the file contains. Multimedia files typically use
large extents to minimise the overheads of checking access rights during 1/0. As
a rough guide, the extent size chosen should be comparable to the granularity at

10In UNIX file system traces, stat operations account for a large proportion of requests.
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EFSClient : LOCAL INTERFACE =
NEEDS USD;
NEEDS IDCOffer;

BEGIN

NoSuchFile : EXCEPTION [];
Failure : EXCEPTIONI[];
PermissionDenied : EXCEPTION [];

FileID : TYPE = LONG CARDINAL;
-- Files are named by a 64-bit identifier.

Create : PROC [ perms : CARDINAL,
extentsize : CARDINAL ]
RETURNS [ id : FilelID 1];
RAISES Failure;

-- Creates a new file with permissions "perm" and given extent
-- size. The file may be referred to by the identifier "id".

Delete : PROC [ id : FilelID ]
RETURNS [ 1]
RAISES NoSuchFile, PermissionDenied;

-- Deletes the file with the identifier "id".

Stat : PROC [ id : FileID ]

RETURNS [ owner : CARDINAL,
mode : CARDINAL,
type : CARDINAL,
size : CARDINAL,
time : CARDINAL ]

RAISES NoSuchFile;

-- "Stat" returns the owner, mode, type, size and time
-- associated with the file "id".

Chmod : PROC [ id : FileID,
mode : CARDINAL ]
RETURNS [ ]
RAISES NoSuchFile, PermissionDenied;

Open : PROC [ id : FileID,
mode : USD.Mode,
qos : USD.QoS ]

RETURNS [ usdio : IREF IDCOffer ]
RAISES NoSuchFile, PermissionDenied;

-- Opens the file specified by "id" for either read or write.
-- Returns an offer for an "IO" connection to the USD.

Grow : PROC [ id : FilelD ]

RETURNS [ e : USD.Extent ]

RAISES NoSuchFile;

-- Adds another extent to the specified file.
Close : PROC [ id : FileID ] RETURNS [ 1;

-- Close the specified file.

END.

Figure 7.9: MIDDL for £FS interface (EFSClient.if).
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which I/O is expected to be performed."

7.7.1 Discussion

The EFS design allows files to be used for a number of purposes. The asyn-
chronous nature of disk I/O allows applications to perform appropriate amounts
of read-ahead and avoids the problem of the file system being required to reverse-
engineer the behaviour of the application.

Should an application desire, it would be perfectly possible to run a log-
structured file system in a file over £FS with a guaranteed proportion of the
disk I/O bandwidth.

7.8 Summary

File system designs have been heavily influenced by the programming environ-
ment of operating systems such as UNIX. In such operating systems, where the file
system is often used for inter-process communication, a log-structured file system
can provide significant advantages over the more conventional block-structured
approach. This is both due to the reduced frequency of storage allocation and
the sequential disk access patterns.

Due to their ability to achieve 100% utilisation for disk writes, it has become
common to use such a file system for recording of CM data. Simultaneous play-
back of a number of CM streams still requires the disk head to be moved and the
only benefit of the file system layout is to increase the likelihood of contiguous
placement of file data. An extent-based file system provides exactly the same
benefits.

The majority of multimedia file systems have been implemented as dedicated
CM servers and support a stream abstraction rather than the more traditional
file abstractions of general purpose file systems. This amounts to communicating
file access patterns to the file system which is then able to schedule 1/O using
global knowledge of the future behaviour of all clients.

A low-level disk abstraction has been presented can provide the same QoS

""The CMFS file system performed low level disk I/O in units of an extent.
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guarantees as stream based CM file servers, but without the oversimplified and
restrictive interface. The device abstraction module implements protection and
translation at a low level using a per-connection cache to minimise the number
of interactions with the device management module.

An extent-based file system is described which uses the protection afforded by
the device driver to determine the areas of the disk to which each client has access.
Clients of the file system may use application specific storage management policies
and access patterns whilst receiving the benefits of guaranteed 1/0O performance.
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Chapter 8

Conclusion

This dissertation has presented an architecture for device drivers in a multi-service
operating system which is designed to meet the demands of applications handling
time-sensitive media. This chapter summarises the work and its conclusions, and
makes suggestions for further areas of study.

8.1 Summary

Chapter 2 presented the background to this work, including a brief description
of the Cambridge environment, and the local influences on this work. The chap-
ter then discussed two properties of continuous media which must influence the
design of a multi-service operating system. The temporal property requires the
ability to cope with high volumes of time-sensitive data. The operating system
must therefore be able to provide applications with fine-grained guarantees on
the availability of processing and I/O resources. The informational property
means that applications can often adapt to lower levels of resources and that
soft-gquarantees are therefore sufficient.

A discussion of operating system architectures was presented which concen-
trated on their effectiveness for providing Quality of Service guarantees. The
complexity of resource accounting, and the inevitability of QoS-crosstalk in tra-
ditional operating systems makes them unsuited to the general-purpose process-
ing of CM data types. Attempts to extend such operating systems to support
multimedia applications have been both inelegant and narrow in focus. Vertically-
structured operating systems do not suffer from the above problems and provide
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a framework where QoS-guarantees can potentially be provided for all operating
system resources.

Chapter 3 presented the design and prototype implementation of the Nemesis
operating system. In Nemesis, the majority of operating system services are im-
plemented within the protection and accounting domain of the client application,
with only the minimum functionality in servers. This approach enables accurate
and direct accounting for resource usage and enables meaningful QoS guarantees
to be provided at the lowest levels.

The prototype provides a number of mechanisms which are intended to sup-
port the operation of device drivers. Of particular importance are the decoupling
of hardware interrupts to enable device drivers to be scheduled as conventional
processes, and the Rbufs data transport mechanism which efficiently supports
asynchronous inter-process communication of high-bandwidth data. Nemesis, as
presented however, provides no guarantees other than processor bandwidth.

Chapter 4 discusses the problem of scheduling hardware I/O resources. Con-
ventional workstations are constructed using a hierarchical bus architecture. The
majority of bus implementations do not provide any software means of influ-
encing the arbitration mechanism, or controlling background DMA activity by
bus-mastering devices. These problems are exacerbated by the use of hierarchical
topologies. Even if such facilities existed, it is argued that device 1/O must be
scheduled on a per-connection basis rather than a per-device basis.

Alternative workstation architectures are discussed which address the prob-
lem of scheduling I/O resources to minimise QoS-crosstalk. The use of channel
controllers in mainframes provides much of the required functionality, but at
the expense and inflexibility of replicated 1/O hardware. DAN-based worksta-
tions use a connection-oriented interconnect and support peer-to-peer transfers.
Devices for such a workstation may use the connection identifier to implement
protection and scheduling mechanisms in hardware these are referred to as
User-Safe Devices. In such a system, scheduling of devices, the processor and the
interconnect may be closely integrated.

Chapter 5 presented the Nemesis Device Driver Architecture. The architec-
ture provides a clear separation of control- and data-path operations and requires
devices to be abstracted at a low level where accounting and scheduling of re-
source usage is most effective. Network interfaces and network-connected periph-
erals often provide a hardware abstraction which is highly appropriate for this
architecture.
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Chapter 6 considered the example of the framebuffer device. Framebuffers re-
quires fine-grained sharing mechanisms, and are usually abstracted at a high level
using a window system. This approach makes the provision of QoS-guarantees
extremely difficult. Techniques are presented for abstracting the device at a much
lower level than in a conventional system. These include a fine-grained protection
mechanism and an extension to Nemesis which allows device driver code to be
invoked by clients in a restricted environment, thereby aiding resource accounting
for devices which do not support DMA.

The framebuffer driver is used to construct a window system where all render-
ing is performed by the client, and updates to the framebuffer are performed in a
protected fashion at a rate determined by per-connection QoS parameters. The
system is demonstrated to provide useful QoS guarantees and remove application
QoS-crosstalk.

Chapter 7 presented techniques for restructuring the file system so as to pro-
vide QoS-guarantees. Disk drives have a number of features which make their
abstraction difficult. As with the framebuffer, fine-grained sharing is necessary.
In addition, mechanical timing constraints of the device mean that scheduling is
necessarily a compromise between predictability and performance. A disk head
scheduling algorithm was presented which, unlike conventional algorithms, does
not solely attempt to maximise throughput, but instead respects QoS-guarantees
of individual clients.

The disk device driver is used to implement the data-path operations of a
prototype extent-based file system with per-connection QoS guarantees. The file
system permits application specific optimisation of storage allocation and file
access patterns.

It is the thesis of this dissertation that, given an operating system which
supports Quality of Service, such as Nemesis, it it possible to construct a software
architecture for converting conventional devices into User-Safe Devices providing
QoS guarantees to applications. This dissertation supports the above thesis by
exhibiting such an architecture and presenting implementations for a number of
particularly troublesome devices — the £b/WWS and usd/EFS combinations.
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8.2 Further Work

The implementation of Nemesis described in this dissertation is a prototype writ-
ten to enable investigation of operating system research ideas. It currently does
not have a Virtual Memory (VM) system, and the window system and file sys-
tem presented in this dissertation are intended mainly as proofs of concept. The
Pegasus II project in the Computer Laboratory plans to produce a more robust
Nemesis implementation on new platforms (including Pentium PCs), including a
native Nemesis-style protocol stack, window system and file system.

Using the User-Safe Disk abstraction of chapter 7, and a driver providing pages
of physical memory, it should be possible to construct a VM system for Nemesis
where applications are responsible for performing their own paging to disk. Such
a VM system would allow fine control over the amount of physical memory and
disk bandwidth dedicated to each application, effectively being able to guarantee
a maximum page-fault rate. Domains would also be free to implement whatever
paging strategies best suited their requirements.

So far, Nemesis provides only the low-level mechanisms required for Quality
of Service. High level system-wide resource allocation and admission control has
yet to be implemented. In Nemesis, this is the task of the QoS Manager domain.
The operation of the QoS Manager and the interface it presents to the user are
still an open issue.

An unexpected benefit of the Nemesis approach to resource management
is that the operating system has potentially become amenable to mathemat-
ical analysis. The unpredictability introduced by features such as the priority-
feedback scheduler used in many UNIX implementations is no longer present. The
Measure project [Measure95] is investigating call-admission control for ATM net-
works based on estimation of traffic entropy by on-line measurement. A more
speculative aspect of this project is the investigation of QoS admission control in
Nemesis using the same techniques.
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