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SummaryIncreases in processor speed and network and device bandwidth have led togeneral purpose workstations being called upon to process continuous media datain real time. Conventional operating systems are unable to cope with the highloads and strict timing constraints introduced when such applications form partof a multi-tasking workload. There is a need for the operating system to provide�ne-gained reservation of processor, memory and I/O resources and the abilityto redistribute these resources dynamically. A small group of operating systemsresearchers have recently proposed a vertically-structured architecture where theoperating system kernel provides minimal functionality and the majority of op-erating system code executes within the application itself. This structure greatlysimpli�es the task of accounting for processor usage by applications. The pro-totype Nemesis operating system embodies these principles and is used as theplatform for this work.This dissertation extends the provision of Quality of Service guarantees tothe I/O system by presenting an architecture for device drivers which minimisescrosstalk between applications. This is achieved by clearly separating the data-path operations which require careful accounting and scheduling, and the infre-quent control-path operations which require protection and concurrency control.The approach taken is to abstract and multiplex the I/O data-path at the low-est level possible so as to simplify accounting, policing and scheduling of I/Oresources and enable application-speci�c use of I/O devices.The architecture is applied to several representative classes of device includingnetwork interfaces, network connected peripherals, disk drives and framestores.Of these, disks and framestores are of particular interest since they must be sharedat a very �ne granularity but have traditionally been presented to the applicationvia a window system or �le-system with a high-level and coarse-grained interface.A device driver for the framestore is presented which abstracts the device at alow level and is therefore able to provide each client with guaranteed bandwidthto the framebu�er. The design and implementation of a novel client-renderingwindow system is then presented which uses this driver to enable rendering codeto be safely migrated into a shared library within the client.A low-level abstraction of a standard disk drive is also described which e�-ciently supports a wide variety of �le systems, and other applications requiringpersistent storage, whilst providing guaranteed rates of I/O to individual clients.An extent based �le system is presented which can provide guaranteed rate �leaccess and enables clients to optimise for application-speci�c access patterns.
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Chapter 1
Introduction
This dissertation presents the design and implementation of an I/O architecturefor the Nemesis multi-service operating system. The architecture supports theexecution of both conventional and multimedia applications by the provision ofguaranteed Qualities of Service (QoS) to individual applications at the lowestpossible level.1.1 MotivationThe continuing advances in communications network and processor speeds areenabling interesting new areas of computation hitherto considered infeasible.General-purpose processing of continuous media (CM) data is perhaps the mostchallenging of these areas. CM data di�ers from conventional data in two impor-tant respects:� A CM stream is often tolerant to some degree of information loss. Thisproperty can be exploited by applications when computational and I/Oresources are scarce.� The usefulness of CM data is dependent on the timeliness with which it isdelivered.Applications processing CM data can often produce acceptable results at a num-ber of di�erent quality levels, however it is usually the case that they will be able1



Source: intro.tex DRAFT of 11:06, June 28, 1996to perform more e�ectively if they know in advance what level of system resourcesthey will have access to. For this reason, the notion of Quality of Service (QoS),commonly used in the �eld of networking research, is being extended up into theoperating system.This dissertation addresses a speci�c problem which may be characterised asfollows:� Supporting applications which perform general-purpose computation withCM data types and high-bandwidth I/O.� Simultaneous execution of a number of tasks on the same machine, someof which are highly time-sensitive, some of which require only best-e�ortservice.� Applications may be both computationally intensive, and I/O intensive,and may change their behaviour dynamically, for example in response toexternal events or as a result of processing a CM stream.� Demand for operating system provided resources is far in excess of thatwhich is available. The machine is invariably running at 100% load.� Adequate informationmust be provided to enable application-speci�c degra-dation when insu�cient resources are available.The e�ective support of a number of simultaneous activities on a single machinerelies upon the ability to place resource �rewalls between applications. The aimis to remove QoS crosstalk whereby use of a resource by one client has an adversee�ect on the QoS received by other clients.General purpose workstations are readily equipped with multimedia periph-eral devices to provide capture and playback of CM streams. In such a systemit should be possible to build interesting new applications which both store andprocess CM data. User interfaces may be extended to include face recognition,eyeball-tracking and gesture or voice input. Video recording applications mayindex features automatically and support searching for particular scenes. Thesenew applications must peacefully coexist with more conventional workloads suchas interactive text editing and batch computation.
2



Source: intro.tex DRAFT of 11:06, June 28, 19961.2 BackgroundMuch operating system research has been devoted to supporting the execution ofmultimedia applications. Many researchers have taken existing operating systemsas a starting point and attempted to retro�t support for \real-time" activities,often by extending the CPU scheduler. Resource allocation has traditionally beenperformed using a notion of \priority" to determine which task should receivea given resource. It has been demonstrated that priority based allocation isunacceptable in a multimedia system, and that schemes are necessary whichdetermine both the quantity of resource and the time at which it should allocated.When using a conventional operating system for multimedia, particularly inthe presence of high-bandwidth I/O, the majority of resources are consumed bydevice drivers, shared server processes and the operating system, rather thanby the application process. A small group of operating system researchers haverecently proposed a radical restructuring of the operating system to migrate func-tionality into the application itself where resource usage is more easily accounted- so called vertically-structured operating systems.To date however, all research in this area has focussed solely on the allo-cation of CPU resource. Multimedia applications, by de�nition, perform largeamounts of I/O and though guarantees of CPU resource are necessary, they arenot su�cient.A number of extensions have been made to conventional operating systemsto support end-to-end QoS for network I/O. These have typically involved usingreal-time threads within the kernel to service individual network connections atguaranteed rates. These ad-hoc solutions do not fully solve the problem describedabove, and are inapplicable in the context of a vertically-structured operatingsystem.Until the advent of the personal workstation, it was common practice to imple-ment resource �rewall mechanisms simply by providing separate hardware. Forexample, the I/O channels of IBM mainframes e�ectively isolate the performanceof distinct I/O activities by having all I/O data-path operations performed byseparate channel controllers. Out-of-band control operations are performed onthe main processor by the operating system. The inexibility and increased ex-pense of replicating I/O hardware makes it an impractical approach for buildinga multimedia workstation. 3



Source: intro.tex DRAFT of 11:06, June 28, 1996Contemporary workstation designs do not provide any hardware support forper-connection control of I/O resources by the operating system. Whilst pro-totype workstations have been constructed which address this problem, it maybe some time before they are commonplace. A software solution is thereforerequired.1.3 ContributionThe author has built upon the work described in [Hyden94], [Roscoe95] and[Black94], investigating the extension of a QoS-based operating system to provideguarantees of I/O performance which are useful at the application level.The thesis of this work is that a vertically-structured operating system re-quires a device driver architecture where I/O resources are:� Multiplexed only once,� Multiplexed at the lowest possible level,� Protected at the lowest possible level, and� Scheduled at a �ne granularity in order to provide QoS guarantees.| and that using these design principles it is possible to implement high-levelfunctions within the application itself without sacri�cing the protection a�ordedby traditional server-based approaches.This dissertation both describes the device driver architecture and demon-strates its application to a number of representative devices. The e�ectivenessof the device abstraction is evaluated by implementation of higher level serviceswhich allow applications to take full advantage of the QoS guarantees providedby the operating system. In addition, this dissertation also presents:� Mechanisms for low-level protection of problematic devices which have tra-ditionally been accessed via servers with high-level interfaces.� An operating system mechanism for providing applications with protectedand accounted access to devices which do not support DMA.4



Source: intro.tex DRAFT of 11:06, June 28, 1996� A new disk head scheduling algorithm which delivers guaranteed rate I/Oand supports best-e�ort clients without excessively sacri�cing disk perfor-mance.The above issues are illustrated by describing a prototype implementation for theNemesis multi-service operating system, running on the DEC 3000/400 Sandpiperworkstation. The Nemesis system was developed in Cambridge over a 2 yearperiod by Timothy Roscoe, David Evers and the author, with signi�cant inuencefrom the Fawn system written by Richard Black.1.4 OutlineChapter 2 provides background material relevant to this work and describes theresearch environment in which it was carried out.Chapter 3 describes the structure of Nemesis, an operating system structuredso as to support application level Quality of Service. The architectural principlesof the design are presented, and a brief overview of the prototype implementationis given. The remainder of the chapter considers the areas of Nemesis whereQuality of Service provision has not been addressed, focussing on the problemspresented by multimedia I/O.Chapter 4 discusses the scheduling of I/O resources. It provides an overviewof the architecture of a contemporary workstation and highlights some of thedesign features which present particular problems for a multi-service operatingsystem.Chapter 5 presents a generic device driver architecture designed to provideindividual applications with secure, direct access to the underlying hardwareresources with Quality of Service guarantees.The following two chapters provide an evaluation of the architecture by itsapplication to two particularly troublesome devices. The abstraction of the frame-bu�er device and a complete implementation of a novel window system are pre-sented in chapter 6. Chapter 7 describes the abstraction of disk devices and a new�le-system which is able to provide guaranteed qualities of service to its clients.Finally, chapter 8 summarises the main arguments of the dissertation andmakes some suggestions for further work.5
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Chapter 2
Background
2.1 EnvironmentThere has been much previous work in Cambridge in the areas of high-speednetworks, distributed computing and multimedia systems, with a strong tradi-tion of building and using these systems. Early work on Asynchronous TransferMode (ATM) networks led to deployment of the Cambridge Fast Ring (CFR)[Temple84] enabling much of the subsequent continuous media research. TheCFR was later supplemented by the Fairisle ATM network [Leslie91]. An im-portant focus of the ATM research in Cambridge has been the elimination oflayered-multiplexing [Tennenhouse89], especially in the network protocol stack[McAuley89].These ATM networks were used to transport digital audio and video for thePandora's Box [Hopper90], a continuous media peripheral providing support forcapture and display of audio and video in a workstation environment. The Pan-dora system made use of distributed computing technology [Nicolaou90] to pro-vide applications such as multi-party video conferencing and mail. A continuousmedia �le-server was also provided [Jardetzky92].Although highly successful in supporting \�rst generation" multimedia appli-cations concerned primarily with presentation and orchestration issues, Pandoraincluded no support for processing of continuous media data - digital audio andvideo could not be accessed by the workstation itself.With continuing increases in processor and workstation speeds, it quickly6



Source: bg.tex DRAFT of 11:06, June 28, 1996became possible to provide all of the functionality of a Pandora system in soft-ware on an ATM-equipped general-purpose workstation [Barham95], although itrapidly became apparent that the bus-based design of contemporary worksta-tions forces continuous media data to traverse the bus several times en-route toits eventual destination. The Desk Area Network project [Hayter91] led to a pro-totype second generation multimedia workstation which addresses this problem[Barham95].Second generation multimedia applications, where continuous media data isprocessed as well as merely being transferred, present enormous problems forconventional operating systems. The Pegasus project [Leslie93] proposed a com-pletely new operating system architecture which could support these demandingapplications, and resulted in the prototype Nemesis operating system [Leslie96].The implementation work in support of the ideas presented in this dissertationhas been performed entirely over Nemesis on a conventional workstation equippedwith a number of multimedia peripherals, many of which were designed andconstructed in the Computer Laboratory.2.2 Properties of Continuous MediaThe desire to perform computation on continuous media data types has dra-matically changed the demands placed on the operating system and I/O systemof workstations. Properties which di�erentiate these data types from conven-tional data types include time-sensitivity and susceptibility to quality/correctnesstradeo�s. These are referred to by [Hyden94] as the temporal and informationalproperties.The temporal property of CM data means that the usefulness of the resultof a computation depends on the timeliness with which it is delivered. Theinformational property means that is often possible to perform a calculation onCM data in a number of ways producing results of varying accuracy [Liu91]and consuming di�erent levels of operating system provided resources. If anapplication is provided with a Quality of Service contract by the operating system,it may maximise the quality of the result obtained for the level of resourcesavailable.The two most common classes of CM tra�c are still digital audio and video,although streams of sensor readings or location information [Want92] exhibit7



Source: bg.tex DRAFT of 11:06, June 28, 1996some of the same properties. This section briey discusses some of the issuesrelevant to computation with these media types.2.2.1 Digital VideoUntil recently the bandwidth requirements of high quality digital video has madeit fairly uncommon. An uncompressed digital video stream of comparable qualityto a PAL encoded analogue TV broadcast requires about 160Mbps. Consumersexpect video of at least this quality, but this amount of network bandwidth isstill prohibitively expensive.In order to provide more interactive services, cable television distributors arebecoming increasingly interested in digital video distribution. The intended largescale deployment of this technology is already having a bene�cial e�ect on the costand availability of multimedia peripherals for workstations and home computers.It is important, however, to bear in mind that the constraints on an interac-tive video distribution system and a general purpose multimedia workstation aresigni�cantly di�erent and much of the available hardware is not completely suitedto the purposes for which it is required. Section 2.2.3 considers the example ofvideo compression.The majority of video standards are designed for eventual presentation to ahuman observer - digital video is usually transmitted as a number of sequen-tial frames, where the frame rate is related to the persistence of human vision.Most video sources are conventional analogue video cameras and recorders usingone of the broadcast video encoding standards. As computation with CM datatypes becomes more common, video may often be \observed" only by computersworking on a time-scale much faster than human perception and so this will notnecessarily remain the case.2.2.2 Digital AudioAlthough audio bandwidths are usually much lower than video, its sensitivityto loss and jitter is much greater - a 10ms gap in an audio stream is readilydiscernible. In these respects, digital audio presents greater challenges to currentmultimedia systems than does video. 8



Source: bg.tex DRAFT of 11:06, June 28, 1996Digital audio transmission has been in widespread use over the SynchronousTransfer Mode (STM) networks of most telephone operators. STM networks pro-vide reliable transmission, constant bit-rate and e�ectively zero jitter, and theseproperties have strongly inuenced the standards used for audio transmission.For example, compression of audio is usually limited to companding and silencesuppression.The transmission of audio across wide-area Packet Transfer Mode (PTM) net-works, in particular the Internet, has caused renewed interest in audio coding forincreased loss-tolerance and to minimise bandwidth and latency. Extremely lowbandwidth, variable-bit-rate compression schemes are becoming more commonand can require signi�cant software processing in the end-points. This process-ing introduces latency and synchronisation issues which can be critical to theusability of interactive digital audio systems. Section 2.3 discusses some of theseproblems.2.2.3 Video CompressionDigital video is often compressed in an attempt to reduce the bandwidth, partic-ularly for transmission across wide-area networks. Whilst compression is a usefulmechanism for reducing the bandwidth of individual streams, it is invariablyused to increase the quality or number of streams which may be simultaneouslyhandled by a system. Experience has shown that multimedia systems are almostalways run at 100% load. This section examines the characteristics of several pop-ular video compression schemes including so-called motion-JPEG, MPEG and theMPEG2 standards.JPEG [Wallace91] is a \lossy" compression scheme exploiting the responsive-ness of the human eye to various spatial frequencies by transforming 8� 8 pixeltiles of video data into the frequency domain (using a Discrete Cosine Trans-form) and then quantising selectively. The amount of information discarded bythis quantisation process can be controlled by a parameter referred to as theQ-factor. The resulting data is run-length and then Hu�man coded. The in-termediate frequency domain information is often useful for image-processingcomputations.Using JPEG, a typical 24-bit video image can be encoded using approximatelyone bit-per-pixel without signi�cant subjective loss. JPEG compression and de-compression may easily be performed in real-time using relatively inexpensive9



Source: bg.tex DRAFT of 11:06, June 28, 1996hardware [CCube94]. Software compression and decompression is computation-ally expensive, but becoming more feasible. Processor designers have even begunto extend the instruction set of general purpose CPUs to facilitate software de-compression of JPEG, for example the HP PA-RISC architecture [Hew94].The JPEG standard was initially designed for compression of still images.Independent compression of each frame of a video stream using JPEG is usuallyreferred to as \motion-JPEG" compression. Advantages of this technique overmore sophisticated video compression schemes include comparatively low latencyand higher tolerance to data loss when a stream is carried across an unreliablenetwork.The MPEG video compression scheme [LeGall91, ISO93] achieves greatercompression than JPEG by using motion-estimation techniques to take advantageof inter-frame redundancy in motion video. The compression technique requirescross-correlation of each frame with adjacent frames and is thus fairly computa-tionally intensive. Although hardware is available which can perform real-timeMPEG compression, it is expensive. Decompression is roughly comparable incost to JPEG. The asymmetry between compression and decompression makesMPEG more amenable to Video on Demand (VOD) applications where the mostimportant consideration is to minimise the cost of the decoder in the set-top-boxand the additional latency is not a problem.MPEG2 [ISO95] is even more asymmetric in this respect than its predecessor.Real-time MPEG2 encoding is exceptionally expensive even in hardware, whilstdecoders are relatively simple and inexpensive. The standard is primarily aimedat applications where o�-line compression may be used.The inter-frame dependencies inherent in MPEG and MPEG2 mean thatdecompression is less tolerant to data loss. The extra latency and increasedbu�ering requirements are also disadvantageous. For these reasons, motion-JPEGis still the preferred technology for live video.Although compressed video occupies signi�cantly less bandwidth, most schemesresult in a Variable Bit-Rate (VBR) stream encoded in a manner which also makesit much more di�cult to process. Figure 2.1 shows a 3 minute trace of the band-width requirements of a motion-JPEG compressed video stream.1 It can be seen1This trace was obtained by connecting a VCR, receiving BBC1 TV broadcasts, to an AVA-200 and capturing a JPEG compressed 384x288 pixel video stream at Q-factor 32, with theAVA's cell spacing feature disabled. The resulting ATM stream was passed through a Fairisleport controller to log cell inter-arrival times. 10
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Figure 2.1: Trace of a motion-JPEG Compressed Video Streamfrom the main plot that the peak bandwidth requirement of the stream is sub-stantially larger than the mean. The discontinuities visible in the expanded plotare caused by scene changes in the original video. The bandwidth requirementsof each scene are often fairly constant with time.An interesting possibility is the application of motion-compression techniquesto 3D video streams such as those used by the Cambridge Autostereo Display[Castle95]. Such streams contain a number of 2D views of the same scene, butfrom slightly di�erent viewing angles. A slice taken across all of the views cor-responds closely to panning the camera. MPEG compression works particularlywell when the images are strongly correlated, although distortions introduced bythe change in viewing angle may cause problems. The high latency and loss sensi-tivity properties of motion-based compression schemes do not present a problemwhen it is used in this way.2.3 Synchronisation and LatencyMost non-trivial multimedia applications are distributed in nature comprised ofa number of communicating processes on di�erent machines [Nicolaou90]. Acommon problem for such multimedia applications is to process a number of CMstreams at various points in the system in a time-synchronised manner.One of the simplest instances of this problem is that of synchronising theplayout of an audio stream to the display of frames of video in order to achieve\lip-sync". This form of synchronisation has relatively loose timing constraints,11



Source: bg.tex DRAFT of 11:06, June 28, 1996requiring an accuracy of only around 20ms, but is often impossible to achieveover a conventional operating system where processes may not receive the CPUfor periods far in excess of 20ms.In situations where latency is not an issue (e.g. playback of pre-recordedvideo and audio), this particular problem can be alleviated by use of substantialplayout bu�ers. Synchronising multicast streams for VOD applications couldeasily tolerate latencies of a number of seconds. Indeed, most of the distributionproblems in VOD systems would disappear immediately if each \set-top-box"contained a small hard disk capable of bu�ering 15 minutes worth of data. Videoand audio conferencing applications are of a more interactive nature and round-trip times must be kept to a minimum.Synchronisation of multiple audio streams for the purposes of digital recordingor distributed performance potentially requires much greater accuracy. For theseapplications, whilst it is desirable to keep latency to an absolute minimum, thesynchronisation accuracy is of primary importance. For example, musicians whoplay in an orchestra are used to audio latencies of 30ms or more, but are notused to the various sound sources appearing to move relative to each other. Thevisual cues of the conductor are used to keep time.2.4 Systems for Handling Continuous MediaUntil quite recently, multimedia systems have been unconcerned with the pro-cessing of CM data, and have focussed mainly on transport quality of service andorchestration issues such as synchronisation of a number of continuous mediastreams and presentation on suitable output devices [Campbell92]. Much workhas been devoted to architectural support for end-to-end QoS negotiation andtranslation of high-level QoS speci�cations, for example the IMAC [Nicolaou90]and QOS-A [Campbell93] architectures. This following sections briey describethe evolution of multimedia systems and discuss the new demands which thesesystem place upon the workstation operating system.2.4.1 Pandora: A First Generation Multimedia SystemThe Pandora multimedia system [Hopper90] consisted of a custom multimediaperipheral, the Pandora's Box, controlled by a conventional workstation. The12
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Figure 2.2: The Pandora Multimedia Systembox contained, amongst other things, video and audio hardware, a framebu�er,an ATM network interface and a number of Transputers. The Transputers weremainly used to move video and audio data between the various devices and theATM interface but were also used for resizing video streams. The workstationdirected the actions of the Pandora's Box via a dedicated Transputer-link serialinterface.The video output of the workstation passed through the box en-route to themonitor and an analogue video mixer was used to merge the outputs of theframebu�er in the box and that in the workstation. The X server running on theworkstation contained a video extension which informed the Pandora's Box of thesize and positions of video windows, and which regions of the screen were currentlyunobscured. The host workstations used a conventional 10Mbps Ethernet forall low-bandwidth out-of-band communications such as connection setup andteardown.Pandora's Boxes were connected via a 100Mbps CFR which was used totransport the audio and video streams. Only simple �xed-ratio compressionschemes were used2 to simulate the network bandwidth requirements of colour2Pandora used a form of Di�erential Pulse Code Modulation (DPCM) which achieved a13



Source: bg.tex DRAFT of 11:06, June 28, 1996video streams using more sophisticated compression techniques. Although anMPEG-2 compressed colour video stream would require comparable bandwidthand be approximately Constant Bit-Rate (CBR), the scheme used by Pandoradoes not exhibit the high latency and poor loss-tolerance properties.Pandora's design was highly successful in separating in-band and out-of-bandI/O operations - by implementing the in-band operations in entirely separatehardware, and leaving control operations to be performed by the host worksta-tion. The drawback of this rigid hardware separation was that general purposeprocessing of video and audio was impossible since this data could not be passedthrough the workstation. This limitation was unimportant at the time since pro-cessor speeds were such that only very rudimentary calculations could have beenperformed.2.4.2 Second-Generation Multimedia SystemsModern workstations are now fast enough to implement similar functionality toPandora entirely in software and have su�cient resources spare to be able to per-form processing of the continuous media streams. A software emulation of a Pan-dora's Box implemented on a DECStation 5000/25 is described in [Barham95].Systems which support computation with CM data types have been referred toas \Second Generation" multimedia systems [Hayter93].Pandora's successor, Medusa [Wray94] aims to build a highly distributed mul-timedia system composed of ATM network-connected multimedia devices such asthe ORL Disk-Brick [Chaney95] and the AVA-200 [Barham94] which are used assources and sinks of CM data. In systems such as this, video and audio mayeasily be processed by any ATM-equipped workstation.Several researchers have proposed designs for second generation multimediaworkstations which replace the traditional bus interconnect with a connection-oriented space-division switch. The Desk Area Network (DAN) [Hayter91] andthe MIT VuNet [Houh95] are the two most prominent examples of this approach.These systems are equipped with connection-oriented multimedia devices whichsuch as the DAN Framestore (DFS) [Pratt95] and the MIT Vidboard [Adam93]supporting peer-to-peer communication of continuous media data. Specialisedprocessing nodes such as the DAN DSP node [Atkinson93] may also be used toperform calculations which are not suited to a conventional CPU.�xed 2:1 compression ratio. 14



Source: bg.tex DRAFT of 11:06, June 28, 1996Second generation multimedia applications place new demands upon the op-erating system. Typically the application will be composed of a number of timesensitive tasks, whose total demand for resources vastly exceeds that which isavailable. Due to the properties of CM data, it is often possible for an applica-tion to provide acceptable results at a lower quality when insu�cient resourcesare available.The relative importance of the various multimedia activities on a machine willpotentially change dramatically in response to external events. For example, itshould be possible to write a simple application which, using a small fraction ofthe resources of the machine, monitors a low-quality video or audio stream in thebackground watching for \interesting" events.3 In response to such an event, theapplication may immediately request additional resources to be able to present ahigh-quality form of the stream to the user.The operating system must therefore be able to control the distribution ofresources ensuring that all parts of the system receive that which is currentlydeemed necessary.2.4.3 DiscussionOn poorly designed hardware, the majority of the available CPU time is consumedpurely by copying CM data between the various I/O devices. In this situation,guarantees of CPU QoS may initially appear to be of use in controlling thedistribution of I/O resources within the system. Device drivers may be providedwith appropriate levels of CPU resource to support all of their clients, but in orderto e�ectively support more than one multimedia client they must still internallyaccount and schedule use of these resources.As workstation technology improves, the burden of high bandwidth I/O mustbe removed from the CPU. In order to build larger and faster machines, scalablearchitectures will become more important, supporting peer-to-peer transfers andminimising the amount of processor interaction required to perform I/O. Givensuch well-designed hardware, �rst generation multimedia applications tend to beI/O-bound with small amounts of CPU time being used to orchestrate the timesat which events occur. The CPU QoS guarantees provided to such applicationshave limited bene�t since the rate of progress is determined almost entirely bythe degree of competition for I/O resources.3Such as motion in a video stream from a security camera.15



Source: bg.tex DRAFT of 11:06, June 28, 1996Second generation multimedia systems are designed to allow computations tobe performed on the CM data itself. In this environment, applications may ei-ther be CPU-bound or I/O-bound, perhaps changing their behaviour in responseto data they receive or an external stimulus. In order for such applications toperform predictably and be able to produce useful results on systems which areusually running at 100% load, it is essential that guaranteed levels of I/O re-sources can be provided by the underlying operating system and hardware.2.5 Operating System StructureThe structure of an operating system invariably reects the workload which it wasdesigned to handle. As the workload has evolved from o�-line batch computation,to include interactive processing and now time-sensitive continuous media appli-cations, operating systems have also evolved to meet the signi�cantly di�eringresource control requirements.The majority of operating systems currently running on personal workstationsfall into one of three architectural categories: monolithic, kernel based or micro-kernel based. Recently a vertically-structured operating system architecture hasbeen proposed as a means of simplifying resource accounting. The following sec-tions briey describe these architectures and discuss their respective suitabilitiesfor processing continuous media.2.5.1 Monolithic Operating SystemsSeveral early personal workstations ran monolithic operating systems where ap-plications and system code executed in exactly the same environment or protec-tion domain (�gure 2.3a). Cedar [Swinehart86], the Apple Macintosh [Apple85],MS-DOS and Windows fall into this category.Monolithic systems are usually assumed to be under the control of a singleuser and so a cooperative multi-tasking model is often applied. Invocation of sys-tem services is often performed using simple indirect procedure calls via vectortables at well-known locations or by processor trap instructions. Good program-ming discipline and sophisticated compilers must be relied upon to minimise theprobability of one application interfering with another or even crashing the entiresystem. 16
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Source: bg.tex DRAFT of 11:06, June 28, 1996By avoiding potentially costly changes of protection domain, monolithic oper-ating systems achieve high performance, but with the disadvantages of no protec-tion from misbehaving processes, and no e�ective resource �rewall mechanismsto prevent one application from monopolising system resources.2.5.2 Kernel-Based Operating SystemsLater workstation operating systems grouped all services and functions into asingle large kernel running at a privileged level, with applications running as un-privileged processes over the top (�gure 2.3b). System calls provide a mechanismfor applications to invoke services within the kernel. Examples include early va-rieties of unix [Ritchie74], VMS [Goldenberg92] and more recently Windows-NT[Custer93].This structure allows numerous performance improvements to be obtained bytaking advantage of the tightly coupled nature of the system. Distinct internalfunctions of the operating system usually interact with each other using a setof locking disciplines based around a notion of Interrupt Priority Level (IPL)[Le�er89] which are di�cult to enforce and often result in unexpected deadlockor even livelock [Mogul95].Such operating systems were originally designed to allow multiple users tosimultaneously execute computationally intensive tasks. Processes with whichusers interacted, usually via an attached terminal, required special treatment inorder to keep down the interactive response time. In a number of varieties ofunix, the scheduler identi�es interactive processes by the fact that they blockperforming I/O and, in order to minimise response times, they are preferentiallygiven the CPU with the assumption that they will soon block again. This heuris-tic has disastrous results in the multimedia environment where an applicationrequires only a small amount of CPU time to cause high volumes of I/O to takeplace.In kernel-based systems, the resources consumed by the operating systemkernel whilst performing this high-volume I/O are typically unaccounted, withthe result that in a multimedia system implemented over unix, the majorityof CPU time will be spent within the kernel and only a small amount will beaccounted to user applications. For example, in an experiment in which a singlestream of ATM video from an AVA-200 was displayed on a unix workstation,30% of the processor time was accounted to the application, 30% to the X server18



Source: bg.tex DRAFT of 11:06, June 28, 1996displaying the video, and the remaining time was consumed by the operatingsystem �elding interrupts from the ATM interface.2.5.3 Microkernel-Based Operating SystemsRecent operating systems research has caused functionality to be moved outof monolithic kernels and into server processes, usually for reasons of modular-ity and maintainability (�gure 2.3c).4 Operating systems of this kind are gen-erally referred to as microkernel-based. Well-known examples include Amoeba[Tanenbaum81], Mach [Accetta86], Chorus [Rozier90], Plan9 [Pike90] and Spring[Hamilton93].The operating system kernel usually provides little more than support for\kernel-threads" and an Inter-Process Communication (IPC) mechanism suchas the message-passing system of Mach. Microkernel based operating systemsnecessarily incur performance penalties due to the increased amount of commu-nication which must take place. For this reason, several researchers have inves-tigated mechanisms for migrating functionality back into the kernel [Bricker91].The SPIN microkernel [Bershad94] provides mechanisms for servers to move spe-cially veri�ed code sections known as SPINdles into client address-spaces andeven into the kernel. A portable hardware abstraction layer provides access toprocessor features such as the translation lookaside bu�er (TLB) and operatingsystem datastructures allowing applications to e�ectively implement their owncommunications primitives.In an operating system designed to support multimedia, moving system pro-vided services out of the kernel and into servers introduces a complicated account-ing problem. Resources consumed by an application must be transferred to andaccounted within each server, and each resource must now be multiplexed morethan once. Not only is this an inelegant approach, but in the �eld of networking,layered multiplexing has been shown to be harmful to the provision of Quality ofService [Tennenhouse89].4Although some researchers seem to view the minimisation of kernel size as its own justi�-cation | hence the proliferation of \nano-kernels" and \pico-kernels".
19



Source: bg.tex DRAFT of 11:06, June 28, 19962.5.4 Vertically Structured Operating SystemsA large proportion of the code executed on behalf of an application in a tradi-tional operating system requires no additional privilege and does not thereforeneed to execute in a di�erent protection domain. Typically code which mustatomically and securely update important datastructures is rarely executed andusually associated with out-of-band operations such as opening or closing a �le. Itis only this code which must necessarily execute in a di�erent protection domain.The Nemesis operating system [Leslie96] makes use of these observations, to-gether with a platform and language independent interface de�nition language(IDL), to transparently move the majority of operating system services into theapplication itself, leading to a vertically structured operating system (�gure 2.3d).The kernel is still responsible for implementing scheduling and protection of hard-ware resources, but this functionality is provided at a much lower level of abstrac-tion. In a multimedia system this also has the advantage of allowing applicationsto make their own resource management policy decisions. Nemesis is describedin greater detail in chapter 3.The design principles used in Nemesis have been parallelled closely by theMIT Exokernel project [Engler95], although for di�erent reasons. The motivationfor this work, as with SPIN was to improve e�ciency, rather than accountabil-ity, by providing the minimal primitives to support per-process customisation ofthe operating system. This led to a design where the Aegis kernel does littlemore than virtualise processor features to support multiple \library-operatingsystems". Aegis provides minimalist interrupt and exception dispatching and asoftware TLB abstraction. Capability mechanisms are used to implement secure-bindings for the update of the software TLB. The Ethernet device is abstractedusing low-level packet-�ltering [Mogul87] and although discussions of framebu�erand disk I/O mechanisms are presented, these have not been fully realised.52.6 Quality of Service in Operating SystemsOperating systems QoS research has focussed almost exclusively on schedulingthe processor resource so as to provide support for multimedia applications { socalled \soft-real-time" technology. This has often involved adding a real-time5For example, Aegis currently runs on DEC5000/125 platforms, yet [Engler95] describes aSilicon Graphics framebu�er not available for TURBOchannel based machines.20



Source: bg.tex DRAFT of 11:06, June 28, 1996thread scheduling class to the kernel thread scheduler of an existing microkernelbased operating system [Tokuda93]. Such an extension does not alleviate thefundamental problem that the majority of system resources consumed by anapplication are not accounted to that application and so any QoS guaranteegiven to that application is therefore meaningless.E�orts have been made to provide high-level interfaces to allow applicationsto specify their QoS requirements in more meaningful terms [Coulson93]. Whilstthese QoS translation schemes are often useful, de�ning any high-level QoS ar-chitecture within the operating system only serves to restrict the classes of ap-plication which can be supported.The extension of QoS to I/O within an operating system is discussed in[Coulson95]. High priority threads within the driver of an ATM network in-terface are used to demultiplex I/O streams at a low level and perform protocolprocessing operations for each connection with some form of timeliness guaran-tee. Three classes of threads are provided by the system, ranging from best-e�ortto guaranteed threads with absolute priority over other classes. Threads of thelatter class are used per-connection to shepherd packets from the device driver upto applications. The lack of hardware demultiplexing functions in the ATM in-terface means that a signi�cant fraction of the processing overheads are incurredby a single \interrupt handler" thread.The inappropriate structure of microkernel-based operating systems, wherethe majority of system services are provided by servers, introduces the need forcomplicated resource transfer mechanisms. The Processor Capacity Reservesscheme [Mercer93] allows processor time originally allocated to an application,in the form of a reserve to be used by a server when performing an RemoteProcedure Call (RPC).There is no way to ensure, however, that the processor time is used for thepurposes for which it was originally intended, and for any timeliness guaranteesto be preserved, the server must internally schedule clients' requests. [Mercer93]describes the need to modify the X Window System Server to service its clients ina prioritised fashion to maintain the QoS guarantees of video display applications.Lottery scheduling [Waldspurger94] shares the processor between a numberof kernel threads using statistical mechanisms. A cheap pseudo-random numbergenerator selects one of a number of \tickets" and the application currently hold-ing the ticket is allowed to execute for a �xed quantum of time. Mechanisms fortransferring tickets between clients and servers are also provided. The statistical21



Source: bg.tex DRAFT of 11:06, June 28, 1996nature of this scheduling technique is only suitable to provision of guaranteesover large time-scales in comparison with the reschedule rate, and unless theproperties of the random-number generator are well understood, it is possible forprocesses not to receive their allocated resources.The later re�nement, Stride scheduling [Waldspurger95] uses a deterministicmethod to apportion resources with the same ticket-based abstraction. Thistechnique has also been used to control the rate of transmission of UDP packetsacross and Ethernet with some success.Thread tunnelling/migration has been used to allow a client thread to enterthe protection domain of a server for the duration of an RPC, e�ectively transfer-ring the exact amount of resources to allow the call to be performed. Examplesof this include lightweight-RPC [Bershad90], doors in Spring [Hamilton93] andportals in the Opal system [Chase93]. In general, all of these mechanisms implythe use of kernel threads, and mean that all scheduling decisions must be takenby the kernel and/or the server. This both removes thread scheduling policyfrom the application, and requires that the application describe its schedulingrequirements to the kernel using a �xed and necessarily restrictive interface.The approach taken by Nemesis is described in chapter 3.
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Chapter 3
Nemesis
Nemesis is the prototype operating system developed at the University of Cam-bridge Computer Laboratory as part of the Pegasus Project [Leslie93]. Nemesiscurrently runs on a number of platforms including the DEC 3000/AXP series ofworkstations [DEC94b], DECchip EB64 Alpha evaluation board [DEC93], DEC5000/25 (Maxine) [Voth91] and the Fairisle FPC3 Port Controller [Hayter94].1Several ports to other platforms and architectures are also underway, includingthe DECchip EB164 evaluation board [DEC95] and the Intel Pentium processor.This chapter describes the structure of Nemesis.3.1 IntroductionThe purpose of an operating system is to multiplex shared resources betweenapplications. Traditional operating systems have presented physical resourcesto applications by virtualisation. e.g. unix applications run in virtual time ona virtual processor { most are unaware of the passage of real time and thatthey often do not receive the CPU for prolonged periods. The operating systempro�ers the illusion that they are exclusive users of the machine.Multimedia applications tend to be sensitive to the passage of real time. Theyneed to know when they will have access to a shared resource and for how long.In the past it has been considered su�cient to implement little more than access-1Nemesis was written from scratch over a 2 year period by Timothy Roscoe, David Eversand the author, with signi�cant inuence from the Fawn system described in [Black94].23



Source: nemesis.tex DRAFT of 11:06, June 28, 1996control on physical resources. It is becoming increasingly important to account,schedule and police shared resources so as to provide some form of QoS guarantee.Whilst it is necessary to provide the mechanisms for multiplexing resources,it is important that the amount of policy hard-wired into the operating systemkernel is kept to an absolute minimum. That is, applications should be free tomake use of system provided resources in the manner which is most appropriate.At the highest level, a user may wish to impose a globally consistent policy, butin the Nemesis model this is the job of a QoS-manager agent acting on the user'sbehalf and under the user's direction. This is analogous to the use of a \window-manager" process to allow the user to control the decoration, size and layout ofwindows on the screen, but which does not otherwise constrain the behaviour ofeach application.3.2 Previous WorkPrevious work in the Pegasus project has restricted attention to the CPU re-source. [Hyden94] discusses scheduling mechanisms for soft-real time problemsand demonstrates a system which provides QoS guarantees to applications andmechanisms which allow applications to degrade gracefully in conditions of highload.[Black94] describes the advantages of QoS guarantees and resource account-ing mechanisms for controlling the behaviour of device-drivers in an high-speednetwork environment.[Roscoe95] addresses the problem of QoS crosstalk in microkernel systems. Bymigrating operating system functionality into applications themselves, the use ofservers is minimised. Servers are only required for out-of-band operations anddo not reside on the data path for most operations. This architecture minimisesthe problem of QoS crosstalk without having to resort to complicated resourcetransfer mechanisms.3.3 The Structure of NemesisNemesis was designed to provide QoS guarantees to applications. In a microkernelenvironment, an application is typically implemented by a number of processes,24
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Figure 3.1: The Structure of a Nemesis Systemmost of which are servers performing work on behalf of more than one client. Thisleads to enormous di�culty in accounting resource usage to the application. Theguiding principle in the design of Nemesis was to structure the system in sucha way that the vast majority of functionality comprising an application couldexecute in a single process, or domain. As mentioned previously, this leads to avertically-structured operating system (�gure 3.1).2The Nemesis kernel consists of a scheduler (less than 250 instructions) and asmall amount of code known as the Nemesis Trusted Supervisor Code (NTSC),used for Inter-Domain Communication (IDC) and to interact with the scheduler.The kernel also includes the minimum code necessary to initialise the proces-sor immediately after booting and handle processor exceptions, memory faults,unaligned accesses, TLB misses and all other low-level processor features. TheNemesis kernel bears a striking resemblance to the original concept of an operat-ing system kernel or nucleus expressed in [Brinch-Hansen70].The kernel demultiplexes hardware interrupts to the stage where a devicespeci�c �rst-level interrupt handler may be invoked. First level interrupt handlersconsist of small stubs which may be registered by device-drivers. These stubs areentered with all interrupts disabled and with the minimal number of registerssaved and usually do little more than send noti�cation to the appropriate devicedriver.2This diagram is derived from a diagram in [Hyden94].25



Source: nemesis.tex DRAFT of 11:06, June 28, 19963.3.1 DomainsThe term domain is used within Nemesis to refer to an executing program andcan be thought of as analogous to a unix process { i.e. a domain encapsulatesthe execution state of a Nemesis application. Each domain has an associatedscheduling domain (determining CPU time allocation) and protection domain(determining access rights to regions of the virtual address space).Nemesis is a Single Address Space (SAS) operating system i.e. any accessibleregion of physical memory appears at the same virtual address in each protectiondomain. Access rights to a region of memory, however need not be the same. Theuse of a single address space allows the use of pointers in shared data-structuresand facilitates rich sharing of both program text and data leading to signi�cantreduction in overall system size.All operating system interfaces are written using an IDL known as Middlwhich provides a platform and language independent speci�cation. Middl interfaces,3modules and code-structuring tools are used to support the single address spaceand allow operating system code to be migrated into the application. Thesetechniques are discussed in detail in [Roscoe95].3.3.2 Nemesis Trusted Supervisor Code (NTSC)The NTSC is the low level operating system code within the Nemesis kernelwhich may be invoked by user domains. Its implementation is potentially ar-chitecture and platform speci�c, for example, the NTSC is implemented almostentirely in PALcode on Alpha platforms [Sites92] whilst on MIPS [Kane88] andARM [ARM91] platforms, the NTSC is invoked using the standard system callmechanisms.The NTSC interface may be divided into two sections - those calls which maybe invoked by any domain, and those which may only be invoked by a privilegeddomain. Unprivileged calls are used for interaction with the kernel scheduler andto send events to other domains. Privileged calls are used to a�ect the processormode and interrupt priority level and to register �rst level interrupt stubs. Asan example, table 3.1 lists the major NTSC calls for the Alpha architecture.The NTSC interacts with domains and the kernel scheduler via a per-domain3Middl interfaces in Nemesis are written in �les with a .if su�x, e.g. Activation.if26



Source: nemesis.tex DRAFT of 11:06, June 28, 1996Unprivileged DomainsName Purposentsc rfa Return from activation.ntsc rfa resume Return from activation, restoring a context.ntsc rfa block Return from activation and block.ntsc block Block awaiting an event.ntsc yield Relinquish CPU allocation for this period.ntsc send Send an event.Privileged DomainsName Purposentsc swpipl Change interrupt priority level.ntsc entkerna Enter kernel mode.ntsc leavekern Leave kernel mode.ntsc regstub Register an interrupt stub.ntsc kevent Send an event from an interrupt stub.ntsc rti Return from an interrupt stub.antsc entkern is necessarily implemented as an unprivileged PAL-code call, but which results in an illegal instruction fault for unprivilegeddomains. Table 3.1: Alpha NTSC Call Interface.area of shared memory known as the Domain Control Block (DCB). Portions ofthe DCB are mapped read-write into the domain's address-space, whilst othersare mapped read-only to prevent modi�cation of privileged state. The read-only DCB contains scheduling and accounting information used by the kernel,the domain's privilege level, read-only datastructures used for implementing IDCchannels and miscellaneous other information. The read-write section of the DCBcontains an array of processor-context save slots and user-writable portions of theIDC channel datastructures.3.4 Virtual Processor InterfaceNemesis presents the processor to domains via the Virtual Processor Interface(VP.if). This interface speci�es a platform independent abstraction for managingthe saving and restoring of CPU context, losing and regaining the real processorand communicating with other domains. It does not however attempt to hide27



Source: nemesis.tex DRAFT of 11:06, June 28, 1996the multiplexing of the underlying processor(s). The virtual processor interfaceis implemented over the NTSC calls described in section 3.3.2.3.4.1 ActivationWhenever a domain is given the CPU, it is upcalled via a vector in the DCBknown as the activation handler in a similar manner to Scheduler Activations[Anderson92]. A ag is set disabling further upcalls until the domain leaves acti-vation mode allowing code on the activation vector to perform atomic operationswith little or no overheads. Information is made available to the activation han-dler including an indication of the reason why the domain has been activated,the time when it last lost the real processor and the current system time. Thepurpose of this upcall is to a�ord QoS-aware applications an opportunity to as-sess their progress and make application-speci�c policy decisions so as to makemost e�cient usage of the available resources.When a domain is handed the processor it is informed whether it is currentlyrunning on guaranteed time, or merely being o�ered use of some of the slack-timein the system. QoS-aware applications must take account of this before decidingto adapt to apparent changes in system load. This may be used to preventQoS feedback mechanisms from reacting to transient improvements in resourceavailability.3.4.2 Processor ContextWhen a virtual processor loses the CPU, its context must be saved. The DCBcontains an array of context-save slots for this purpose. Two indices into thisarray specify the slots to use when in activation mode and when in normal mode,based on the current state of the activation ag.When a domain is preempted it will usually be executing a user-level thread.The context of this thread is stored in the save slot of the DCB and may bereloaded by the activation handler of the domain when it is next upcalled. If adomain is preempted whilst in activation mode, the processor context is savedin the resume slot and restored transparently when the domain regains the CPUrather than the usual upcall. 28



Source: nemesis.tex DRAFT of 11:06, June 28, 19963.4.3 EventsThe only means of communication directly provided by the Nemesis kernel is theevent. Each domain has a number of channel-endpoints which may be used eitherto transmit or to receive events. A pair of endpoints may be connected by a thirdparty known as the Binder, to provide an asynchronous simplex communicationschannel.This channel may be used to transmit a single 64-bit value between two do-mains. The event mechanism is intended to be used purely as a synchronisationmechanism for shared memory communication, although several simple protocolshave been implemented which require nothing more than the event channel itself,e.g the TAP protocol described in [Black94] used for start-of-day communicationwith the binder. Unlike message-passing systems such as Mach [Accetta86] orChorus [Rozier90], the kernel is not involved in the transfer of bulk data betweentwo domains.Nemesis also separates the act of sending an event and that of losing the pro-cessor. Domains may exploit this feature to send a number of events before beingpreempted or voluntarily relinquishing the CPU. For bulk data transports suchas the Rbufs mechanism described in section 3.5.3, pipelined execution is usu-ally desirable and the overheads of repeatedly blocking and unblocking a domainmay be avoided. For more latency-sensitive client-server style communication adomain may choose to cause a reschedule immediately in order to give the serverdomain a chance to execute.3.5 Inter-Domain Communication (IDC)Various forms of IDC have been implemented on top of the Nemesis event mech-anism. Some of the most commonly used are described below.3.5.1 Shared DatastructuresSince Nemesis domains share a single address space, the use of shared mem-ory for communication is relatively straightforward. Datastructures containingpointers are globally valid and the only further requirement is to provide somesynchronisation mechanism to allow the datastructure to be updated atomically29



Source: nemesis.tex DRAFT of 11:06, June 28, 1996and to prevent readers from seeing an inconsistent state. Very lightweight lockingprimitives may easily be built on top of the kernel-provided event mechanism.3.5.2 Remote Procedure Call (RPC)Same-machine RPC [Birrell84] is widely used within Nemesis. Although themajority of operating system functionality is implemented within the application,there are many out-of-band operations which require interaction with a server inorder to update some shared state.The default RPC transport is based on an area of shared memory and a pairof event channels between the client and server domains. To make an invocation,the client marshalls an identi�er for the call and the invocation arguments intothe shared memory and sends an event to the server domain. The server domainreceives the event, unmarshalls the arguments and performs the required oper-ation. The results of the call, or any exception raised are then marshalled intothe shared memory and an event sent back to the client. Marshalling code andthe client and server stubs are generated automatically from theMiddl interfacede�nition and loaded as shared libraries.The average cost of a user-thread to user-thread null-RPC between two Neme-sis domains using the default machine-generated stubs and the standard user-level threads package, was measured at just over 30�s on the Sandpiper platform[Roscoe95].3.5.3 RbufsWhilst RPC provides a natural abstraction for out-of-band control operationsand transaction style interactions, it is unsuited to transfer of bulk data. Themechanism adopted by Nemesis for transfer of high volume packet-based data isthe Rbufs scheme detailed in [Black94]. The transport mechanism is once againimplemented using Nemesis event-channels and shared memory. Three areas ofshared memory are required as shown in �gure 3.2. One contains the data to betransferred and the other two are used as FIFOs to transmit packet descriptorsbetween the source and sink. The head and tail pointers of these FIFOs arecommunicated by Nemesis event-channels.Packets comprised of one or more fragments in a large pool of shared memory30
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Source: nemesis.tex DRAFT of 11:06, June 28, 1996are described by a sequence of (base; length) pairs known as iorecs. Figure 3.2ashows iorecs describing two packets, one with two fragments and the other withonly a single fragment. Rbufs are highly suited to protocol processing operationssince they allow simple addition or removal of both headers and trailers andfacilitate segmentation and reassembly operations.In receive mode, the sink sends iorecs describing empty bu�er space to thesource, which �lls the bu�ers and updates the iorecs accordingly before returningthem to the sink. In transmit mode, the situation is the converse. The closedloop nature of communication provides back-pressure and feedback to both endsof the connection when there is a disparity between the rates of progress of thesource and sink.The intended mode of operation relies on the ability to pipeline the processingof data in order to amortise the context-switch overheads across a large numberof packets. Sending a packet on an Rbufs connection does not usually cause adomain to lose the CPU. Figure 3.3 shows theMiddl interface type for the Rbufstransport.3.6 SchedulingScheduling can be viewed as the process of multiplexing the CPU resource be-tween computational tasks. The schedulable entity of an operating system oftenplaces constraints both on the scheduling algorithms which may be employed andthe functionality provided to the application.The recent gain in popularity of multi-threaded programming due to lan-guages such as Modula-3 [Nelson91] has led many operating system designersto provide kernel-level thread support mechanisms [Accetta86, Rozier90]. Thekernel therefore schedules threads rather than processes. Whilst this reduces thefunctionality required in applications and usually results in more e�cient pro-cessor context-switches, the necessary thread scheduling policy decisions mustalso be migrated into the kernel. As pointed out in section 2.6, this is highlyundesirable.Attempts to allow applications to communicate thread scheduling policy tothe kernel scheduler [Coulson93, Coulson95] lead to increased complexity of thekernel and the possibility for uncooperative applications to misrepresent theirneeds to the operating system and thereby gain an unfair share of system re-32



Source: nemesis.tex DRAFT of 11:06, June 28, 1996IO : LOCAL INTERFACE =NEEDS IDC;BEGIN-- An "IO" channel has to be one of two kinds, a "Read"er or-- "Write"r. Readers remove valid packets from the channel with-- "GetPkt" and send back empty "IO_Rec"s with "PutPkt"; Writers-- send valid packets with "PutPkt" and acquire empty "IO_Rec"s by-- calling "GetPkt".Kind : TYPE = { Read, Write };-- The values passed through "IO" channels are "IO_Recs",-- essentially "base" + "length" pairs describing the data.Rec : TYPE = RECORD [base : ADDRESS,len : WORD];-- "PutPkt" sends a vector of "IO_Rec"s down the channel. The-- operation sends "nrecs" records in a vector starting at "recs" in-- memory. Of these, the first "valid_recs" are declared as holding-- useful data.PutPkt : PROC [ nrecs : CARDINAL;recs : REF Rec;valid_recs : CARDINAL ]RETURNS [];-- Send a vector of I/O records down the channel, or release them-- at the receiving end.-- "GetPkt" acquires a maximum of "max_recs" "IO_Rec"s, which are-- copied into memory at address "recs". At the receive end these-- typically constitute a packet, which uses the first "valid_recs"-- for pointing to its data. The total number of records read is-- returned in "nrecs".GetPkt : PROC [ max_recs : CARDINAL;recs : REF Rec;OUT valid_recs : CARDINAL ]RETURNS [ nrecs : CARDINAL ];-- Pull a vector of I/O records out of the channel.-- "PutPktNoBlock" sends a packet assuming that the client has-- already determined that "PutPkt" would not block.PutPktNoBlock : PROC [ nrecs : CARDINAL;recs : REF Rec;valid_recs : CARDINAL ]RETURNS [];-- Guaranteed non-blocking "PutPkt".-- "GetPktNoBlock" checks whether it would block, and returns-- "False" if this is the case.GetPktNoBlock : PROC [ max_recs : CARDINAL;recs : REF Rec;OUT nrecs : CARDINAL;OUT valid_recs : CARDINAL ]RETURNS [ avail : BOOLEAN ];-- As "GetPkt", but fails rather than block.-- "GetPoolInfo" returns information about the pool used to send-- data.GetPoolInfo : PROC [ OUT buf: IDC.Buffer ] RETURNS [];-- Return the main pool buffer.Slots : PROC [ ] RETURNS [ ns: CARDINAL ];-- Return the number of slots of the tx fifo.Dispose : PROC [] RETURNS [];END. Figure 3.3: Middl interface for Rbufs (IO.if)33



Source: nemesis.tex DRAFT of 11:06, June 28, 1996sources. For example, in the above systems user processes are required to commu-nicate the earliest deadline of any of their threads to the kernel thread scheduler.Nemesis allows domains to employ a split-level scheduling regime with themultiplexing mechanisms being implemented at a low level by the kernel, and theapplication-speci�c policy decisions being taken at user-level within the applica-tion itself. Note that the operating system only multiplexes the CPU resourceonce. Most application domains make use of a threads package to control theinternal distribution of CPU resource between a number of cooperating threadsof execution.3.6.1 Inter-Process SchedulingInter-process scheduling in Nemesis is performed by the kernel scheduler. Thisscheduler is responsible for controlling the exact proportions of bulk processorbandwidth allocated to each domain according to a set of QoS parameters in theDCB. Processor bandwidth requirements are speci�ed using a tuple of the form(p; s; x; l) with the following meaning:p The period of the domain in ns.s The slice of CPU time allocated to the domain every period in ns.x A ag indicating willingness to accept extra CPU time.l A latency hint to the kernel scheduler in ns.The p and s parameters may be used both to control the amount of processorbandwidth and the smoothness with which is is provided. The latency hintparameter is used to provide the scheduler with an idea as to how soon thedomain should be rescheduled after unblocking.The kernel scheduler interacts with the event mechanism allowing domainsto block until they next receive an event, possibly with a timeout. When adomain blocks it loses any remaining CPU allocation for its current period - it istherefore in the best interest of a domain to complete as much work as possiblebefore giving up the processor.The current kernel scheduler employs a variant of the Earliest Deadline First(EDF) algorithm [Liu73] where the deadlines are derived from the QoS param-eters of the domain and are purely internal to the scheduler. The scheduler is34



Source: nemesis.tex DRAFT of 11:06, June 28, 1996capable of ensuring that all guarantees are respected provided thatXi sipi 6 1and is described in detail in [Roscoe95]. Despite the internal use of deadlines, thisscheduler avoids the inherent problems of priority or deadline based schedulingmechanisms which focus on determining who to allocate the entire processorresource to, and provide no means to control the quantity of resource handedout.In order to provide �ne-grained timeliness guarantees to applications whichare latency sensitive, higher rates of context-switching are unavoidable. The ef-fects of context-switches on cache and memory-system performance are analysedin [Mogul91]. It is shown that a high rate of context switching leads to excessivenumbers of cache and TLB misses reducing the performance of the entire sys-tem. The use of a single address space in Nemesis removes the need to ush avirtually addressed cache on a context switch, and the process-ID �elds presentin most TLBs can be used to reduce the number of TLB entries which need to beinvalidated. The increased sharing of both code and data in a SAS environmentalso helps to reduce the cache-related penalties of context-switches.3.6.2 Intra-Process SchedulingIntra-process scheduling in a multimedia environment is an entirely application-speci�c area. Nemesis does not have a concept of kernel threads for this reason.A domain may use a user-level scheduler to internally distribute the CPU timeprovided by the kernel scheduler using its own policies. The application speci�ccode for determining which context to reload is implemented in the domain itself.The activation mechanism described in section 3.4.1 provides a convenientmethod for implementing a preemptive user-level threads package. The currentNemesis distribution provides both preemptive and non-preemptive threads pack-ages as shared library code.The default thread schedulers provide lightweight user-level synchronisationprimitives such as event counts and sequencers [Reed79], and the mutexes andcondition variables of SRC threads [Birrell87]. The implementation of varioussets of synchronisation primitives over the top of event counts and sequencers isdiscussed in [Black94]. 35



Source: nemesis.tex DRAFT of 11:06, June 28, 1996It is perfectly possible for a domain to use an application speci�c threadspackage, or even to run without a user-level scheduler. A user-level threadspackage based on the ANSAware/RT [ANSA95] concepts of Tasks and Entrieshas been developed as part of the DCAN project at the Computer Laboratory.4The ANSAware/RT model maps naturally onto the Nemesis Virtual Processorinterface.3.7 Device Driver SupportIn order to present shared I/O resources to multiple clients safely, device-driversare necessary. The driver is responsible for ensuring that clients are protectedfrom each other and that the hardware is not programmed incorrectly. This ofteninvolves context-switching the hardware between multiple concurrent activities.The exact nature of the hardware dictates the methods employed and thereforethe level of abstraction at which a device may be presented to applications.Device drivers typically require access to hardware registers which can notsafely be made accessible directly to user-level code. This can be achieved byonly mapping the registers into the address space of the device driver domain.Some hardware registers are inherently shared between multiple device drivers,e.g. interrupt masks and bus control registers. The operating system must pro-vide a mechanism for atomic updates to these registers. In kernel-based operatingsystems this has traditionally been performed by use of a system of interrupt-priority levels within the kernel. On most platforms, Nemesis provides similarfunctionality via privileged NTSC calls.In the design of Nemesis it was considered essential that it was possible tolimit the use of system resources by device driver code so that the behaviour ofthe system under overload could be controlled. For this reason, Nemesis devicedrivers are implemented as privileged domains which are scheduled in exactly thesame way as other domains, but have access to additional NTSC calls.4This work was performed by Timothy Roscoe and David Evers.
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Source: nemesis.tex DRAFT of 11:06, June 28, 19963.7.1 Hardware InterruptsThe majority of I/O devices have been designed with the implicit assumption thatthey can asynchronously send an interrupt to the operating system which willcause appropriate device-driver code to be scheduled immediately with absolutepriority over all other tasks. Indeed failure to promptly service interrupt requestsfrom many devices can result in serious data loss. It is ironic that serial lines,the lowest bit-rate I/O devices on most workstations, often require the mosttimely processing of interrupts due to the minimal amounts of bu�ering and lackof ow-control mechanisms in the hardware. Section 4.3.1 describes how thisphenomenon inuences DMA arbitration logic on the Sandpiper.More recently designed devices, particularly those intended for multimediaactivities, are more tolerant to late servicing of interrupts since they usuallyhave more internal bu�ering and are expected to cope with transient overloadsituations.In order to e�ectively deal with both types of device, Nemesis allows driversto register small sections of code known as interrupt-stubs to be executed imme-diately when a hardware interrupt is raised. These sections of code are enteredwith a minimal amount of saved context and with all interrupts disabled. Theythus execute atomically. In the common case, an interrupt-stub will do littlemore than send an event to the associated driver causing it to be scheduled ata later date, but for devices which are highly latency sensitive it is possible toinclude enough code to prevent error conditions arising. The unblocking latencyhint to the kernel scheduler is also useful for this purpose.This technique of decoupling interrupt noti�cation from interrupt servicingis similar to the scheme used in Multics which is described in [Reed76], but themotivation in Nemesis is to allow e�ective control of the quantity of resourcesconsumed by interrupt processing code, rather than for reasons of system struc-ture. [Dixon92] describes a situation where careful adjustment of the relativepriorities of interrupt processing threads led to increased throughput under highloads when drivers were e�ectively polling the hardware and avoiding unnecessaryinterrupt overhead. The Nemesis mechanisms are more generic and have beenshown to provide better throughput on the same hardware platform [Black94].
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Source: nemesis.tex DRAFT of 11:06, June 28, 19963.7.2 Kernel Critical SectionsThe majority of device-driver code requires no privilege, but small regions ofdevice driver code often need to execute in kernel mode. For example, performingI/O on a number of processors requires the use of instructions only accessiblewithin a privileged processor mode. Nemesis provides a lightweight mechanismfor duly authorised domains to switch between kernel and user mode.5Although the current implementation requires explicit calls to enter and exitkernel mode, an alternative would be to register these code sections (ranges ofPC values) in advance and perform the switch to kernel mode when the processordetects a privilege violation. The PC range tables generated by many compilersto enable e�cient language-level exception mechanisms may be used for thispurpose. Although this support is expected soon, the version of gcc currently inuse does not yet include these features.63.8 Nemesis and I/OAlthough Nemesis is intended as an operating system for a personal multimediaworkstation, much of the previous experimental work has been evaluated usingworkloads which are unrepresentative of those found in multimedia systems {i.e. processes which are entirely CPU-bound. The Nemesis approach to QoSprovision has been proven to be highly successful in environments where thebottleneck resource for all applications is the CPU.The work described in [Roscoe95] approaches the QoS-crosstalk problem bymigrating operating system code into user domains. Whilst this solution workswell for code which does not require to run with elevated privilege, such asprotocol-processing code, it cannot be used in situations which requires writeaccess to shared state or access to hardware registers. A multimedia system byde�nition deals with a large volume of I/O which invariably involves privilegedoperations at the lowest levels. Since these operations must be therefore be per-formed by a privileged domain, and Nemesis provides no low-level mechanismsfor resource transfer, some degree of QoS-crosstalk is unavoidable.The problem of e�ective control over I/O resources is tackled more convinc-5The implementation takes approximately 16 PALcode instructions on the Alpha.6Version 2.7.2. 38



Source: nemesis.tex DRAFT of 11:06, June 28, 1996ingly in [Black94]. Although a number of useful mechanisms for streamlining I/Oin a connection-oriented environment are presented, the prototype system knownas Fawn was designed for the port-controller of an ATM switch, and so multime-dia activities were restricted. The only high-bandwidth I/O device available wasan ATM interface which required use of the CPU on a per-cell basis.Explicitly scheduling the activities of the ATM device driver as a user-level do-main, rather than performing the cell-forwarding function in an interrupt handlerwith no resource accounting, was demonstrated both to improve overall through-put and to allow QoS �rewalls to be introduced protecting various other activitiessuch as connection management. This scheduling, however, was only e�ective dueto the the lack of DMA support causing the CPU resource to be the system bot-tleneck. Provision of QoS guarantees during concurrent use of the ATM deviceby multiple clients was not addressed, but would require high-level QoS man-agement functions and more sophisticated intra-process scheduling mechanismswithin the device driver.3.9 SummaryNemesis as described in [Roscoe95] provides highly e�ective mechanisms for mul-tiplexing the CPU resource between a number of concurrent activities accordingto QoS contracts negotiated out-of-band with a QoS manager.For these guarantees to be meaningful, the majority of in-band operationstraditionally performed by the operating system are performed by unprivilegedcode in shared libraries forming part of the application. Only infrequent out-of-band operations are performed by trusted servers required to maintain sharedstate in a consistent manner.The CPU, however, is only one of a number of resources required by a second-generation multimedia application. E�ective partitioning of other system re-sources, particularly those involved in I/O, has not been previously addressed.The remainder of this dissertation will address this issue.
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Chapter 4
Scheduling I/O Resources
If an operating system is to be able to control the distribution of I/O resourcesbetween competing clients, mechanisms are necessary for scheduling access tothose resources. It must be possible for the operating system to determine bothwhen each client is handed the resource, and for how long. The e�ectiveness withwhich this can be achieved is determined by the hardware architecture of theworkstation.4.1 Traditional Workstation ArchitectureMost modern workstations are designed around a bus architecture. All I/O de-vices are accessed across a time-division multiplexed bus where I/O transactionsmay either be performed using the processor (often called Programmed I/O) orusing some form of bus-mastering or Direct Memory Access (DMA).In order to achieve reasonable performance and avoid deadlocks, it is essentialthat the bus implement some form of scheduling and policing. It is extremely rare,however, that these functions are under the control of the processor. For example,DMA controllers often give the programmer the illusion that long transfers froma device to main memory may be performed uninterrupted, but it is normalfor a bus to provide mechanisms for aborting DMA transfers in order for theCPU to gain access. It has also been found necessary for buses to provide somesort of arbitration scheme whereby more important transactions can be givenpreferential access to the bus. The policies for these arbitration mechanisms areusually implemented in hardware and are rarely more sophisticated than simple40



Source: hw.tex DRAFT of 11:06, June 28, 1996static-priority mechanisms.Although the bus often has su�cient aggregate bandwidth to support all ofthe connected I/O devices, data usually has to travel across the bus more thanonce in order to reach its eventual destination. This situation is unavoidable onbuses which support only a single master device, e�ectively forcing the use ofmain memory as one endpoint of each transfer. Despite the fact that recent busarchitectures such as PCI [PCI95] support peer-to-peer transfers, it is rare forperipheral devices to take advantage of this feature. This is perhaps the mainreason why the I/O bus becomes a bottleneck when a traditional workstation isused for multimedia activities.The TURBOchannel and SCSI speci�cations are considered in slightly moredetail since they are the interconnect technologies found in the experimentalplatforms used for this work.4.1.1 TURBOchannelThe TURBOchannel [DEC90] is a 32-bit wide synchronous, asymmetric I/Ochannel which can be operated at any �xed frequency between 12.5MHz and25MHz. TURBOchannel is asymmetric in that it supports one system moduleand a number of option modules. The system module usually contains the pro-cessor and memory system and the option modules are used for connection ofperipheral I/O devices.A variety of transactions may be performed on the TURBOchannel fallinginto two broad categories:� Programmed I/O (PIO) Transactions The system module can performa read or write to a single option module.� DMA Transactions An option module can read or write to the systemmodule.It is impossible for an option module to address another option module on theTURBOchannel - i.e. peer-to-peer DMA is impossible.DMA transactions may be of arbitrary length up to a system de�ned max-imum which must be at least 64 words. After an initial overhead of 5 cycles41



Source: hw.tex DRAFT of 11:06, June 28, 1996to transfer the �rst word, an additional word of data may be transferred perclock cycle. DMA transactions may not cross 2048-byte page boundaries. Theexact scheme used for DMA request arbitration is implementation speci�c allow-ing elaborate fair-service mechanisms - but most implementations currently usestatic priority or round-robin arbitration.Programmed I/O transactions transfer only a single word of data and take 5clock cycles.1 Back-to-back transactions to the same option must be separatedby a special inter-transaction cycle. Some implementations may even requireadditional idle cycles between PIO transactions. These factors conspire to makePIO an excessively costly operation.4.1.2 Small Computer System Interface (SCSI)SCSI is a vendor and architecture independent ANSI standard for the connectionof peripheral I/O devices [ANSI86]. The standard covers all layers from thephysical and electrical connection of the devices up to de�ning several genericdevice classes and protocols for communicating with these devices. Non-genericfunctionality may still be exploited via vendor-unique �elds and commands.The original SCSI-I standard speci�ed an 8-bit wide bus clocked at 5MHz,but the newer SCSI-II standard allows 8, 16 or even 32-bit wide buses clockedat up to 10MHz providing data transfer rates of up to 40MBps. In all cases,the maximum number of devices which may be connected is eight. These areassigned unique addresses from 0 to 7 which statically determine their priorityduring bus arbitration phases (the higher the numeric value of the address, thehigher the priority).SCSI transactions take place between an initiator and a target device. Al-though the standard allows multiple initiators and multiple targets connected tothe same bus it is normal to have a single initiating device (the host computer)and multiple target devices. It is also possible for a device to function both asan initiator and as a target, though not simultaneously. In addition to the nor-mal transfers between the host computer and a single peripheral device, limitedpeer-to-peer transfer support is provided.The SCSI bus allows logical connections to persist between pairs of devices1TURBOchannel also supports a Block I/O mode for writes only which allows additionalwords of data to be transferred as for DMA transactions.42
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Bus Free Bus Free Bus FreeFigure 4.1: SCSI Bus Phase Sequences.even while they are physically disconnected from the bus. This allows targets tofree the bus for use by other devices if for some reason the transaction cannotbe completed immediately. This feature is commonly used by disk drives whilstseeking the head.A typical SCSI transaction is composed of a number of bus phases, the tim-ing of which are not always under control of the initiator. Figure 4.1 shows thesequence of bus phases for a very simple read transaction. For longer transac-tions, the Data In phase shown in the diagram would often be fragmented usinga number of additional disconnections and reselections. The meanings of thevarious phases are as follows:� The arbitration phase determines which of potentially several devicesrequiring access to the bus has the highest priority and gives that devicecontrol of the bus.� The initiator uses a selection phase to select the target of the operation.This phase establishes a connection between the two devices.� A reselection phase may be used by a target to re-establish a connectionto an initiator in order to complete an interrupted transaction.� The data transfer phases (command, data, status and message) areused to move bytes across the bus between the initiator and target. Twomethods of transfer are supported - synchronous and asynchronous. Thefaster synchronous mode is only supported during the data phase.
4.2 The Experimental PlatformFigure 4.2 shows a block-diagram of the DEC 3000/400 AXP (Sandpiper) work-station [DEC94b] upon which most of the work described in this dissertation was43
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Source: hw.tex DRAFT of 11:06, June 28, 1996performed. The workstation is built around a 22.5MHz TURBOchannel givingan aggregate bandwidth of 720 Mbps. DMA arbitration is performed in hard-ware using a round-robin mechanism and the maximum contiguous DMA transferlength supported is 128 words.Although the TURBOchannel control ASIC on the DEC 3000 AXP seriesworkstations decodes 8 option slots, only 5 are used on the Sandpiper. Three ofthese slots are used for plugging in expansion cards: the experimental platformswere equipped with an OTTO ATM interface, a PMAG-BA framestore and aJ300 video capture and JPEG compression card. The remaining two slots aremultiplexed further using ASICs to allow connection of two SCSI controllers anda variety of miscellaneous low-bandwidth devices including an ISDN device, twodual UARTs and a Lance Ethernet.The SCSI buses are attached via NCR53C94 controllers and are clocked at5MHz giving an aggregate bandwidth of 40Mbps each. The experimental ma-chines were supplied with a CDROM drive and a Digital RZ26 hard disk sup-porting a maximum transfer rate of around 26Mbps.4.3 Scheduling the InterconnectOne possible approach to providing QoS guarantees for I/O transactions would beto schedule the workstation interconnect since this would e�ectively schedule theactivity of all devices connected to the interconnect. The feasibility of this tech-nique clearly depends to a large extent on the type of interconnect around whichthe workstation is constructed, and the degree of control which the processor canexert over access to the interconnect by other devices.The following sections consider the possibility of scheduling the various inter-connects found in the experimental platforms available in the Computer Labora-tory, and also the possibilities where the workstation interconnect is provided byan ATM switch as in the case of the DAN.4.3.1 TURBOchannelThe possibility of scheduling the TURBOchannel depends entirely on the exactimplementation of the DMA arbitration mechanism and the ability of the pro-45



Source: hw.tex DRAFT of 11:06, June 28, 1996cessor to control the background activities of the option modules. This sectionexamines the possibility of controlling I/O activities by scheduling the TUR-BOchannel on the Sandpiper workstation.A number of option modules, for example network interfaces, perform unso-licited DMA transactions as a result of external events. As packets arrive onthe network, they must be DMAed into bu�ers in main memory. Some deviceshave only a small amount of internal bu�ering and, if prompt access to the TUR-BOchannel is not available, are forced to discard data. Most devices provide ameans for the operating system to disable DMA, but DMA request signals arenot available to the processor.
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Source: hw.tex DRAFT of 11:06, June 28, 1996the normal probability of gaining access to the bus. If request lines 0-6 wereasserted simultaneously, there would be a 25% probability of device 6 obtainingcontrol of the bus, and 12.5% probability of each other device gaining the bus.These probabilities are obviously seriously a�ected by the fact that slots 0-2 areunused on the Sandpiper and slot 3 contains the PMAG-BA framestore which isincapable of DMA.Without a means for the processor, and hence the operating system to deter-mine when a device requires access to the bus, and without mechanisms eitherto prevent all but one device from performing DMA, or to explicitly grant DMArequests from software, it is impossible to implement any form of scheduling ofthe TURBOchannel. This situation is exacerbated on the Sandpiper by the hi-erarchical nature of the I/O system, in particular the two SCSI buses connectedto a single option slot. Section 4.3.2 discusses the additional problems presentedby SCSI.Even if it were possible for the processor to control the amount of interconnectbandwidth available to each TURBOchannel option, it would do little to assist theprovision of QoS guarantees to individual applications. Such guarantees wouldstill require all devices to implement scheduling of requests from distinct clients.4.3.2 SCSI TransactionsThe classes of device usually connected to a SCSI bus (e.g. Disks, CDROMs, tapedrives, etc.) have the common property that the timing of their I/O transactionsis often dictated by mechanical constraints, such as the rotation speed of a disk.The controller �rmware running on the device is usually designed to minimisethis e�ect, and techniques such as read-ahead and cacheing are common. Despitethese attempts, performance and I/O latency often su�er badly if the device isnot serviced soon after it signals its readiness. The SCSI reselection mechanismmentioned in section 4.1.2 is indicative of this problem.Although devices are required to ask the host controller for a reselection whenthey are prepared to complete an I/O transfer, the hardwired bus arbitrationmechanism means that the processor only knows about the highest priority devicerequesting reselection, and is unable to preferentially service requests from deviceswith a lower numeric device ID. The allocation of SCSI IDs can have seriouse�ects on performance and is usually performed by moving hardware jumpers onthe devices. It is normal for the host controller to be allocated SCSI ID 7 to allow47



Source: hw.tex DRAFT of 11:06, June 28, 1996it to gain access to the bus with the minimum latency.The lack of useful information by which the processor could order I/O trans-actions, and the relatively high latency of sending small messages across the SCSIbus mean that scheduling of transactions is often better performed by the deviceitself. A number of high-performance SCSI-2 devices are prepared to accept mul-tiple outstanding transactions and service them out of order using informationonly available internally to make the best scheduling decisions. These features canimprove performance in a number of cases, but they usually result on policy beingbuilt into the hardware, which can have a catastrophic e�ect for non-conformingapplications.4.3.3 Hierarchical InterconnectsFor reasons of cost-e�ectiveness, current workstations are usually constructed us-ing a hierarchical bus topology. The processor and memory system are connectedusing proprietary bus interface designs, and the main I/O bus will usually be ahigh-performance industry standard bus, but mass-produced components and pe-ripherals are attractive due to the low price and usually require connections tolegacy bus architectures, such as the ISA, EISA and VESA buses in the PC mar-ket. For this reason, most workstations provide support for legacy buses usingbridge chips on the main I/O bus.Performing I/O to a devices may therefore require simultaneous use of allbuses en-route. Scheduling such an I/O interconnect in the generic case becomes asimultaneous resource scheduling problem akin to the scheduling of data transfersin parallel computers and communications systems. [Jain92] provides a goodanalysis of the issues involved, showing that the general problem is NP complete.In certain restricted cases an algorithm is presented which leads to an optimalinterconnect schedule for a single bus in O(n4) time. An extension to hierarchicalbuses is also described.In the area of parallel computing, however, the aim of scheduling the inter-connect is to maximise its utilisation so as to minimise the elapsed executiontime of a large number of communicating parallel computations. The solutionspresented assume a �xed task set with well known communication patterns, andrely on the o�-line computation of a static schedule. These aims and techniquesare at odds with the provision of dynamic Quality of Service guarantees.48
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Source: hw.tex DRAFT of 11:06, June 28, 1996This model of I/O is highly appropriate both in situations where I/O is atime-consuming operation, and in situations where high volumes of data mustbe transferred without intervention by the main CPU. Multimedia workstationshave similar I/O requirements, yet it is rare for hardware to provide this degreeof unsupervised operation.4.5 The Desk Area Network (DAN)Conventional bus-based architectures are already proving inadequate for high-endworkstation designs. For example, in high-end PCI systems [PCI95], the electricalconstraints of running a 64-bit wide bus at 66MHz or more mean that the numberof devices which may be connected to the bus is limited to 2 or 3 - clearlyinadequate for building a sensibly con�gured workstation. Many manufacturersare therefore moving towards switch-based interconnects.The DAN architecture [Hayter91] is an attempt to make explicit the inherentmultiplexing issues of a workstation interconnect. At the same time it addressesthe scalability problems of contemporary workstation architecture by simplifyingthe use of peer-to-peer transfers. The DAN architecture di�ers from a traditionalworkstation in a number of important aspects.In a DAN-based workstation, all communication across the interconnect isconnection-oriented and is performed using a small �xed-size transfer unit. Al-though [Hayter91] describes the use of a space-division ATM interconnect, itshould be noted that this does not in any way imply the full complexity of theemerging ATM networking standards [ATMForum93]. The 100% reliability ofa workstation interconnect allows the use of much simpler protocols. The DANapproach has a number of important bene�ts:� Connection-oriented communication and the �xed-size transfer unit aid ac-counting for resource usage.� The implementation of hardware protection mechanisms is much simplerallowing the design of devices which provide a user-safe interface.� By supporting peer-to-peer transfers the usual memory bottleneck is re-moved. 50
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Source: hw.tex DRAFT of 11:06, June 28, 19964.5.1 The Prototype DAN WorkstationThe prototype DAN multimedia workstation described in [Barham95] uses the8�8 space-division ATM switch fabric developed by the Fairisle project [Leslie91]as its interconnect. A typical con�guration is shown in �gure 4.5. One importantresult of enabling simple and e�cient peer-to-peer communication is that thebandwidth required for cache-memory tra�c is greatly reduced due to the lackof data-copying.The possibility of using this same interconnect for carrying cache-memorytra�c was investigated in [Hayter93]. Despite the relatively dated technology2used in the implementation of the prototype, the results achieved demonstratedthe feasibility of this approach. Also described was the concept of a stream-cache whereby continuous media data may be piped through a reserved regionof the CPU cache without having to pass through memory, allowing streamlinedprocessing of data with spatial but not temporal locality-of-reference.4.5.2 User-Safe DevicesAlthough interconnects such as PCI support peer-to-peer transfers, it is rare forI/O cards to make use of this capability. The traditional model for hardwaredevices is one of a relatively simple state machine which is guided through eachtransition by a single privileged device driver inside the operating system kernel.The driver must often execute rapidly in response to interrupts raised by thedevice if performance is not to su�er.This device model relies on the fact that I/O has always been performed by theoperating system, rather than the application. Quality of Service considerationswithin the operating system are beginning to make this model unacceptable - itis no longer desirable, particularly in a multi-service operating system, that unre-stricted amounts of system resources be consumed by device-drivers performingwork on behalf of applications.For peer-to-peer transfers to be used e�ectively, it is essential that some formof connection exists between the communicating devices. When an I/O trans-action is performed, the connection identi�er (e.g. the Virtual Circuit Identi�er2The Fairisle switch fabric has an 8-bit wide data path and is clocked at up to 20MHzcompared with the external cache interface of the Sandpiper which is 128 bits wide and canperform a read or write in 5 cycles at 133MHz giving a cache bandwidth of 427MBps.52



Source: hw.tex DRAFT of 11:06, June 28, 1996(VCI) in the case of an ATM interconnect) may be used to index into a tableof per-connection state to rapidly determine whether the transaction should beallowed. Without per-connection state in the device, third party intervention isrequired to check the validity of each operation.With this additional functionality present in device hardware, it becomespossible to remove the device driver completely from the I/O data-path. Thedevice driver is still necessary to maintain the per-connection state in a consistentand secure manner, but data-path operations may easily be made available tounprivileged processes. This may be achieved by mapping I/O registers into thevirtual address space in multiple places, once for each client, or by extending theprocessor context-switch code to update client-ID registers in I/O hardware. Amore sophisticated technique would be for the CPU node to provide a pool ofDMA engines for use by user-level processes. These ideas are more fully treatedin [Pratt96].A number of devices conforming to this model have been constructed as partof the DAN Devices project [Barham95], and are referred to as User-Safe Devices.Sections 5.4.1 and 6.6.5 describe two such devices which have been used for partof this experimental work.4.6 Scheduling an ATM InterconnectAlthough the use of an ATM interconnect within a workstation is still rare,switch-based solutions are likely to become more common in the near future.The use of an ATM switch-fabric enables the interconnect to be scheduled interms of individual I/O connections discriminated via the VCI, rather than justthe destination device. Scheduling mechanisms designed for use within LocalArea Network (LAN) switches are potentially applicable.The Parallel Iterative Matching (PIM) algorithm of the AN2 switch describedin [Anderson93] is designed to approach maximum utilisation of the space-divisioninterconnect. Rate control for each virtual circuit is imposed in the source host-interface and cell-by-cell credit-based ow-control is used to prevent cell-loss.Support for CBR tra�c has also been added to the Fairisle network by com-puting a schedule for the switch fabric. The technique works by reserving anappropriate number of slots for each CBR connection in a switch-wide framingstructure using a distributed algorithm described in [Khan94]. The short dura-53



Source: hw.tex DRAFT of 11:06, June 28, 1996tion of individual connections in a DAN, and the extreme burstiness of tra�cpresent problems for this sort of long-term peak reservation strategy.The number of concurrent streams within a DAN, however, is likely to bemuch smaller than in the case of a LAN switch with each stream consuming alarger proportion of the aggregate bandwidth. The degree of correlation betweenstreams is also likely to be much higher. When combined, these two factors meanthat scheduling on an ATM interconnect is almost essential. Unfortunately, theresulting decrease in potential for \statistical multiplexing" of tra�c tends tomake scheduling algorithms designed for LAN switches inappropriate.DeskNet uses a novel MAC protocol which provides a guaranteed minimumQoS to each connection in situations of high load but which allows transmission ata second, higher rate if the interconnect is observed to be idle. The interconnectscheduling mechanims are designed to be readily implemented in hardware, butthe parameters controlling their behaviour are intended to be under softwarecontrol.The tightly coupled nature of the DAN, and of a workstation interconnect ingeneral, means that global information is more easily available to the operatingsystem with which to make scheduling decisions. The time scales over which con-nections may endure, and the burstiness of tra�c require hardware mechanismssimilar to those proposed for DeskNet. It is also likely that close integration ofthe CPU scheduler and the interconnect scheduler would be required in such amachine where the CPU is used more like a stream processing device.4.7 SummaryE�ective control of the distribution of I/O resources requires scheduling of boththe interconnect and the devices, since both are multiplexed. Scheduling theinterconnect alone is not su�cient to provide Quality of Service guarantees toindividual clients of devices.In conventional workstation designs however, the interconnect is multiplexedin a fashion which is not amenable to control by the operating system. Manydevices such as disk drives have natural timing constraints which lead to poorperformance if they are not respected. Network devices assume that they can gainaccess to the bus rapidly in response to events which are not under the controlof the operating system. In order to support devices of this nature, hardware54



Source: hw.tex DRAFT of 11:06, June 28, 1996arbitration mechanisms often embody policy decisions which should be undersoftware control.Hardware solutions such as channel controllers have been used in the past toprovide e�ective resource �rewalls between competing I/O activities. Althoughthe abstraction provided is ideally suited to the multimedia environment, thesesolutions rely on replication of hardware to eliminate crosstalk and are bothexpensive and inexible.Bus-based designs are already becoming unsuitable for high-end workstationsand switch-based solutions are starting to appear. It is possible that future inter-connects will provide connection-oriented I/O and support peer-to-peer transfersby use of user-safe devices. This will greatly simplify the integration of deviceand interconnect scheduling.In conventional workstations, scheduling of the interconnect by the operatingsystem is not a feasible approach. Admission-control techniques can be used tominimise the probability of the interconnect being overloaded, but the hardwarearbitration mechanisms must be relied upon to minimise jitter and latency. Sincethe multimedia environment is one where applications can make e�ective use ofsoft-guarantees, uncoordinated software scheduling of each device is su�cient toprovide satisfactory QoS guarantees to individual clients.
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Chapter 5
Device Driver Architecture
The ability of a multimedia application to make e�cient use of non-CPU relatedresources provided by an operating system is clearly inuenced by the manner inwhich that operating system abstracts device hardware and I/O in general. Thischapter presents an architecture for device drivers, designed speci�cally for theNemesis operating system, which is able to deliver guaranteed performance I/Oto individual applications.5.1 IntroductionThe most important reasons for the existence of device drivers in an operatingsystem are:� Safe programming (of hardware). Incorrect programming of hardwarecan often result in failure of the system. It invariably results in loss ofservice. The driver provides code which is trusted to program the hardwarein a safe manner and cooperate with the operating system as a whole.� Abstraction (of device interface). Clients of a device do not wish to beconcerned with variations between hardware supplied by di�erent manufac-turers. The interface provided by the driver should hide these variations.� Protection. The device driver is responsible for protection of a numberof varieties. Clients should be protected from the actions of each other,56



Source: dev.tex DRAFT of 11:06, June 28, 1996malicious or otherwise. Suitable protection mechanisms should also be pro-vided to prevent unprivileged clients from performing privileged operationsor denying the use of the resource completely.� Multiplexing. The device driver allows simultaneous use of the hardwareby a number of clients. It must maintain a consistent view of the state ofthe hardware and perform the necessary context-switches between clients.It is the device driver which dictates when each client will gain access tothe physical resource.The above functions are necessary within any environment where a number ofclients share the same resources. The Nemesis environment however places addi-tional demands on device drivers:� Drivers must not hide the shared nature of the underlying physical resourcebut instead provide explicit control over the multiplexing of that resource.� Applications need to be aware of the current level of resources to whichthey have access. Negotiated QoS-guarantees should be provided to eachclient of the driver.� There should be simple and e�ective feedback mechanisms to allow an ap-plication to monitor its progress and adapt its behaviour in light of the rateat which I/O requests are being serviced.5.2 Nemesis Device Driver ArchitectureThis dissertation proposes a new approach to device abstraction which separatesthe control- and data-path functions required for I/O in a multi-service operatingsystem such as Nemesis. The structure of a generic Nemesis device driver is showndiagrammatically in �gure 5.1. As can be seen from the diagram, the functionalityis implemented by two main modules:� The Device Abstraction Module (DAM)� The Device Management Module (DMM)Whilst these two modules may often execute in the same Nemesis domain, forcertain devices the DMM is more logically implemented in a separate domain.57
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Figure 5.1: Nemesis Device Driver Architecture5.2.1 Device Abstraction Module (DAM)The DAM resides on the I/O data path and is intended to contain the minimalfunctionality to provide secure user-level access to the hardware and support QoSguarantees to clients. The DAM serves three main purposes:� Translation (of stream addresses). It is highly desirable that the addressespresent in an I/O stream should be independent of the destination of thestream. This allows a single stream to be multicast e�ciently to a numberof destinations, and also to be processed entirely in hardware should theworkstation provide this facility.� Protection (between clients). The addresses to which each client mayperform I/O are usually di�erent. The DAM should ensure that a clientcannot perform I/O to addresses for which it does not have suitable accesspermissions.� Multiplexing (of physical resources). The DAM is the single multiplexingpoint for a hardware resource. It is responsible not only for providingshared access to an I/O resource, but also for controlling both the amountof resource which each client receives and the time at which the client58



Source: dev.tex DRAFT of 11:06, June 28, 1996receives it. The DAM must provide a scheduler for this purpose. This isthe most fundamental di�erence between a Nemesis device driver and thoseof traditional operating systems, microkernel or otherwise.Address translation and protection functions are performed individually for eachI/O connection, since all I/O requests on a particular connection inevitably havethe same source.Explicit and visible multiplexing is performed at a single point within eachdriver. It is at this point where hardware resources are scheduled. With each con-nection are associated QoS parameters which are used to control the multiplexing.These parameters are themselves determined by out-of band negotiation betweenthe client and a QoS-manager domain. The exact scheduling algorithms appliedare likely to be device speci�c, but in general any algorithm which supportsQoS-guarantees is potentially applicable. Examples include stride-scheduling[Waldspurger95], Jubilee-scheduling [Black94] and the RSCAN algorithm for disk-head scheduling presented in section 7.6.1.The low-latency feedback requirement is provided by use of the asynchronousRbufs mechanism described in section 3.5.3. Clients are able to observe both thelength of the queue and the rate at which requests are being serviced and may usethis information to adapt their behaviour. Each connection to the driver has anindependent queue and so the QoS-crosstalk prevalent in �rst-come, �rst-served(FCFS) queueing systems is avoided.5.2.2 Device Management Module (DMM)Out-of-band control of the translation, protection and multiplexing functionsof the DAM is performed by a separate management entity known as the De-vice Management Module (DMM). The DMM communicates with the multiplex-ing layer of the DAM in order to set up new connections and adjust the QoS-parameters associated with existing connections. The DMM is never involvedwith the in-band operations of the device driver.The DMM uses high-level descriptions of access-permissions (e.g. �le-systemmeta-data or window arrangements), together with access-control policies to gen-erate the low-level protection and translation information required by the DAM.These low-level permissions are often cached within the DAM's per-connectionstate records to reduce the number of interactions with the device manager. This59



Source: dev.tex DRAFT of 11:06, June 28, 1996cache provides conceptually similar functionality to the TLB of modern proces-sors.5.3 Network InterfacesNetwork interfaces are one of the few areas where some attention has recentlybeen paid to QoS considerations at the hardware level. For this reason, it is tobe expected that the above device model should map most naturally onto thenetwork interface device.[Black94] proposes a binary classi�cation of network interfaces based upontheir ability to identify the eventual destination of data, often by some pre-established connection identi�er, and arrange to place data in the correct placeas it is received. Devices which have this property are described as Self-Selectinginterfaces.The remainder of this section considers the application of the Nemesis I/Omodel to network interfaces of both classes.5.3.1 Non-Self-Selecting InterfacesPerhaps the most common non-self-selecting interface is the Ethernet. The net-works to which these devices attach are typically connectionless and therefore agood deal of protocol processing is required to determine the eventual endpointof the data. In the majority of operating systems, all protocol processing is per-formed in the kernel and not accounted to the application for whom the data wasdestined.Packet-�ltering techniques [Mogul87] have recently been used in conventionaloperating systems to allow protocol processing code to be removed from the kernelfor ease of debugging and to minimise the complexity and size of the kernel. Asuitable privileged process may download a description of \interesting packets"to the device driver, often in the concise form of a set of masks and comparisonsapplied to the protocol headers. Any packets matching this �lter are then passedup to the process in question for further processing. Usually however the protocolprocessing is still performed using a single privileged server such as the x-Kernel[Hutchinson91], rather than by the application.60



Source: dev.tex DRAFT of 11:06, June 28, 1996In order to remove QoS-Crosstalk completely, it is necessary for the protocolprocessing operations of each application to be e�ectively isolated. For reasonsof security, it is highly undesirable to allow applications to transmit or receivearbitrary packets across a network. [Black94] describes a mechanism which usespacket-�ltering techniques on both the receive and transmit sides of a networkinterface to enforce these security issues. An application may only receive ortransmit packets which match the �lters set in place by some trusted server atconnection setup time.The �lters installed in the network interface device driver also allow packetsto be correctly accounted at the lowest level allowing QoS guarantees to be sup-ported. Similar use of packet-�lters is made by the Aegis Exokernel [Engler95]which provides secure multiplexing of an Ethernet interface by dynamic packet�lter code generation within the kernel, but the motivation in this case was toallow multiple \library operating-systems" to transparently share the same hard-ware.Until recently, non-self-selecting interfaces have been typically low bandwidthand with modern workstation speeds and e�ciently implemented protocol stacks,their detrimental e�ect on QoS is minimal. The x-Kernel was ported to Nemesisin order to provide interim support for interfaces of this kind, and in particular toprovide TCP/IP connectivity over Ethernet enabling inter-operation with unixplatforms in the experimental environment.A disturbing trend for high bandwidth non-self-selecting interfaces is emerg-ing. Network interfaces for FDDI and the various 100Mbps Ethernet standardsare often designed to appear to the programmer to be exactly like their low-bandwidth counterparts.1 With interfaces such as these, only highly e�cientpacket �ltering can prevent QoS crosstalk in protocol code, and the resourcesexpended in data copying operations must be carefully controlled. Since theunderlying networks invariably provide little in the way of QoS support, anyattention to QoS in the endpoint is likely to be of limited use.5.3.2 Self-Selecting InterfacesMore recent high-speed networks necessarily use protocols which allow signi�-cant fractions of the protocol processing to be performed in hardware. Most1Largely due to the widespread use of operating systems such asWindows where third-partydevelopment is di�cult and seamless inter-operability is therefore essential.61



Source: dev.tex DRAFT of 11:06, June 28, 1996notable of these are ATM networks, where all communication is performed overpre-established virtual circuits allowing the network interface to demultiplex con-versations at the lowest level. It is common for these networks to support QoSprovision on a per-connection basis. These QoS guarantees are useless howeverif the operating system of the destination machine does not deliver the data toits eventual endpoint in a timely manner [Saltzer84].Considering the high throughput of these host-interfaces, it is important toensure that data is not forced to traverse the workstation bus more often thanabsolutely necessary. Protocol stacks in operating systems such as unix oftenrequire data to be copied a number of times in addition to the unavoidable copiesbetween user paged virtual memory and kernel locked-down physical memory.This can be highly detrimental to performance. Nemesis' single virtual addressspace and Rbufs I/O transport mechanism address these problems.5.3.3 The OTTO ATM InterfaceThe OTTO is a 155Mbps ATM host interface adaptor for either TURBOchannelor PCI, originally designed for use with the AN2 network [Anderson93].2 TheOTTO provides extensive hardware support for the ATM Forum standard AAL5ATM adaptation layer used by most commercially available equipment.The OTTO reassembles complete AAL5 PDUs in its internal cell memory.When a complete PDU has been received and the CRC32 checksum is correct,the PDU is enqueued for DMA into main memory. A record associated with eachreceive VCI contains a pointer to a bu�er-ring. Each bu�er in the ring consistsof a number of fragments which describe contiguous regions of physical memory.When a packet DMA has been completed, a timestamped report is written intoa circular bu�er, and an interrupt is raised.The driver removes full bu�ers from the ring and replaces them with freshbu�er descriptors. Hardware mechanisms prevent the bu�er ring from overowingif not serviced promptly.To transmit an AAL5 PDU, a free transmit bu�er is obtained and its frag-ments made to point to the user data in physical memory. The bu�er descriptoris placed on a per-VCI transmit queue. The packet is eventually DMAed into2Product versions of the OTTO are now marketed by Digital Equipment Corporation as theATMWorks 750 (TURBOchannel) and ATMWorks 350 (PCI) [DEC94a]62
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Figure 5.2: OTTO Device Driver Structurethe OTTO and fragmented into cells, computing the CRC32 checksum in theprocess. At this point, a report is generated indicating that the bu�er in mainmemory may safely be freed.Each transmit VCI may be marked as either scheduled or best-e�ort. TheOTTO driver computes a cell-by-cell transmit schedule, based on QoS param-eters, which is downloaded into the hardware. Each position in the schedulecontains a VCI. For each slot in the schedule, the hardware �rst checks to see ifthe named VCI has cells to transmit. If it has, then a cell is sent, otherwise acell from a best-e�ort VCI is sent in its place.The OTTO also supports a proprietary ow-control mechanism known asFlowMaster, which is based on per-VCI cell-by-cell credits. This feature is onlyuseful when talking to an AN2 switch or another OTTO.
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Source: dev.tex DRAFT of 11:06, June 28, 19965.3.4 DAM: The OTTO Device DriverFrom the above description, it is clear that the OTTO hardware implementsalmost the entire functionality of the DAM in hardware. The majority of code inthe driver is concerned with out-of-band operations such as initialising the deviceand recon�guring when connections are set up or torn down. Since the hardwareis relatively complicated, the device driver is certainly non-trivial3 but despitethis, very little software intervention is required on the data-path.Figure 5.2 shows three clients of the OTTO driver receiving packets on dif-ferent VCIs. Each client has obtained an Rbufs channel via the RPC interfaceexported by the DMM (AAL5Pod.if). Each client sends iorecs describing emptybu�ers to the OTTO driver which loads them onto the appropriate receive ringfor the particular VCI. When complete packets are received, the OTTO driverreturns the full bu�er descriptors to the client.In the expected mode of operation, the pipelining available when using Rbufsallows multiple packets to be transferred at a time without the requirement toreschedule (e.g. client C1). Clients which process their data too quickly, suchas C2 will block on an empty receive FIFO. In the situation where a client isunable to keep up (C3), the OTTO driver will not remove full bu�ers from thereceive ring and the hardware will automatically stop receiving on that VCIuntil an empty bu�er is available. This mechanism prevents the situation knownas livelock where so much CPU resource must be expended during an overloadcondition that it is impossible to rectify [Mogul95].Per-packet protocol processing in the OTTO driver is so cheap in comparisonto CPU speeds that, when the system is lightly loaded, the client and driver entera state where only one packet is available for processing at a time. The operatingsystem must therefore context switch between the driver and the client on a per-packet basis. Although the CPU resource expended per packet is much higherthan the case when the Rbufs pipelining is working e�ciently, this situation iscaused by the system being lightly loaded and so neither the total throughputobtainable nor the latency su�er signi�cantly. The commonly used mechanismof spinning for a while before leaving the interrupt handler waiting for the nextpacket merely reduces the amount of CPU available to other domains. Thisis analogous to optimising the behaviour of the whole system during normalworking operation, rather than attempting to optimise unimportant statistics3Approximately 3000 lines of C. 64



Source: dev.tex DRAFT of 11:06, June 28, 1996such as \null-RPC times".At high loads, the number of packets received per interrupt increases until asituation is reached where the driver is e�ectively polling the hardware. Providedthat the driver is scheduled with su�cient regularity, the hardware-maintainedbu�er rings will not overow and no data will be lost.5.4 Network Attached PeripheralsAs device bandwidth requirements increase, and scalability problems of currentinterconnects start to impact performance, it is becoming increasingly commonfor devices to be designed for connection to a high speed local area network.Multimedia �le servers and peripherals are highly amenable to this approach.A number of recent proposals for the connection of disk drives, for exampleSerial Storage Architecture (SSA) [Deming95], bear a strong resemblance to LANtechnology.Devices connected in this way must be designed to cope with the higher la-tency control path. This usually necessitates the clear separation of in-band andout-of-band functionality of the Nemesis I/O model. Network attached peripher-als often provide most of the functionality of the DAM in the remote hardware,whilst the DMM is intended to be provided by a \manager" process running ona workstation.The AVA-200 described in the following section is an example of such anetwork-attached peripheral which was designed in the Computer Laboratory.The �rmware resident in the device was written to conform to the Nemesis I/Omodel and can e�ectively support a number of sophisticated higher-level appli-cations. When video or audio clients are executing on a Nemesis workstationequipped with an OTTO, QoS guarantees from the AVA-200 and the OTTOdriver may be used in conjunction to ensure that end-to-end quality of service isprovided for each stream.5.4.1 AVA-200 HardwareThe AVA-200 is a network-connected audio and video capture device derived fromthe much simpler ATM Camera originally built for the DAN [Pratt92]. The �rst65
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Figure 5.3: AVA-200 Major Data-pathsATM camera was a fairly \dumb" device which needed close supervision by aprocessor node on the DAN. The AVA-200, however, was designed for connectionto an ATM LAN and therefore needed to be largely autonomous. For this reason,a limited amount of processing power was included and the device is able tocommunicate with a remote manager process using a simple RPC protocol. Themajor data-paths within the AVA-200 are shown diagrammatically in �gure 5.3.45.4.2 DAM: AVA-200 FirmwareThe �rmware executed by the AVA-200's microcontroller was designed and writ-ten by the author to support concurrent use of the device by a number of clients.Access control and out-of-band QoS negotiation is performed by a more intelligentand trusted manager process running on a workstation connected to the ATMnetwork. Due to the obvious timing constraints, all multiplexing of the hardwaremust be performed by the device itself. The manager communicates with theAVA-200 on a notionally secure management VCI and is able to download simpledescriptions of the required video and audio streams.Since the hardware only contains a single digital video chipset, and a single4This diagram is derived from a schematic drawn by Ian Pratt.66



Source: dev.tex DRAFT of 11:06, June 28, 1996audio codec, there are inevitable hardware constraints on the number of audio andvideo streams which may be generated. When using gen-locked5 video sources,it is possible to multiplex the video digitising hardware on a per-frame basis.For audio this is clearly not sensible. The �rmware therefore supports multipleconcurrent video streams, but only a single audio stream.For each video stream it is necessary to download a number of parameters tothe unit. These parameters specify picture sizes and scaling, pixel formats, datarates, the physical video channel to use and the VPI/VCI for the outgoing videostream. This information is loaded into a video bucket. Similarly, parameters forthe audio streams including sample rate, format and physical audio input mustbe loaded into an audio bucket.A schedule is then loaded into the AVA-200 which speci�es a sequence of videobuckets. This schedule is executed in a round-robin fashion, grabbing a frameusing the parameters speci�ed in the relevant video bucket. The reserved videobucket index of zero indicates that the unit should idle for a frame. The schedulealso identi�es which audio bucket should be used.
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Figure 5.4: AVA-200 Video Programming Paradigm.These datastructures are shown diagrammatically in �gure 5.4 which illus-trates two concurrent streams whose parameters are speci�ed in video bucketsVB1 and VB2. The �rst stream has been allocated 3 frames out of every n, andthe second 2 frames out of every n. The remaining frames are unallocated and5PAL encoding follows an 8 frame sequence so resynchronisation between signals which arenot at the same point within the sequence can be expensive.67



Source: dev.tex DRAFT of 11:06, June 28, 1996are therefore spent idling. Bucket VB3 has been loaded with the parameters fora third stream in preparation for an atomic change of schedule.All audio and video streams are transmitted directly to the client across thenetwork, without any further intervention by the manager process. In addition,a single synchronisation stream is sent to the manager containing the currentsequence numbers of all audio and video streams. The manager is then able toforward appropriate synchronisation streams to each client. It is also possible toenable a credit-based ow control mechanism on a per-stream basis which can beused to cause the AVA-200 to cease transmission on a particular VCI if the sinkis unable to keep up.5.5 SummaryA software device-driver architecture has been presented which provides QoSguarantees to individual clients and minimises QoS-crosstalk between applica-tions by clearly separating the control-path and data-path operations necessaryfor I/O.The Device Abstraction Module resides on the data-path and is responsiblefor providing the minimum functionality required to multiplex the hardware be-tween a number of clients in a safe and e�ective manner. This involves providingmechanisms for translation, protection and scheduling of I/O requests. In orderto simplify the accounting and scheduling of I/O resources, devices are abstractedat a low-level using small, �xed-length operations. Visible multiplexing and ef-fective feedback mechanisms are provided by use of the Rbufs mechanism.The Device Management Module resides on the control-path and is responsiblefor directing the operation of the DAM. Clients communicate with the DMMusing a synchronous RPC interface to create new connections and perform out-of-band control requests.Network interfaces and network-connected peripherals often contain hardwarewhich provides most of the functionality of the DAM. Application of the Nemesisdevice driver architecture to these devices has been demonstrated to be straight-forward and highly e�ective.
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Chapter 6
Window System
This chapter considers the application of the Nemesis device-driver architecturepresented in the previous chapter to the framebu�er device. This device is ofparticular concern in a multimedia system where it must often deal with simul-taneous high bandwidth I/O from a number of applications. It is also a devicewhich is particularly di�cult to abstract securely at a low level and for this rea-son the majority of operating systems make do without a device driver at all andrely on a window system to abstract the device at a much higher level.6.1 IntroductionThe purpose of a window system is to mediate access to shared resources includingthe pixels of the framebu�er and a number of input devices. The abstractionpresented to clients is usually that of a virtual framebu�er supporting both readand write operations. It is the job of the window system to protect clients againsteach other. This usually involves preventing one client from updating the pixelslogically owned by another client.The window system is also responsible for demultiplexing input events fromthe various hardware devices to interested clients according to some policy usuallybased on the position of a pointer.In a multi-service environment, it should also be the job of the window systemto support the provision of end-to-end QoS guarantees. Consider a client of awindow system whose purpose is to render an incoming network video stream in69



Source: ws.tex DRAFT of 11:06, June 28, 1996a window. Any operating system and network provided QoS guarantees becomemeaningless if it is impossible for the application to deliver the video data to theframebu�er in a timely manner.Window systems can be divided into two broad categories based on the loca-tion of the actual rendering code:1. Server Rendering window systems.2. Client Rendering window systems.Current window systems fall almost without exception into the �rst category.6.2 Server RenderingIn such a system, protection is enforced by having all rendering operations per-formed by a single centralised server which maintains the state describing whichpixels are owned by which window. Perhaps the best known example of a serverrendering window system is the X Window System [Scheier86]. Microsoft Win-dows [Hyman88] is unusual in that the operating system itself is also the windowsystem server. Under Windows-NT [Custer93], a separate server process is nowresponsible for providing this same interface.The client communicates rendering requests to the server using some formof IDC. Due to the relatively large overheads of communication (mainly proces-sor context-switch overheads) compared with the cost of updating pixels in aframebu�er most systems use a variant of pipelined RPC or message passing.The necessity for the window system to support all rendering primitives whichmay be required leads to a vast increase of complexity in the server. The clientlibraries must also provide RPC marshalling code for all of these operations.The X Window System supports the X Extension mechanism which allows newproprietary operations to be added to the server. However, since for the majorityof platforms extensions may only be added at server compile time, this does nothelp to reduce the size and complexity of the server.The set of rendering primitives supported are often numerous and relativelyhigh level in order to amortise the cost of communication. High level primitivesalso reduce the cost of checking access permissions to regions of the framebu�er70



Source: ws.tex DRAFT of 11:06, June 28, 1996before performing updates. Large primitives are recursively subdivided into sub-tasks which are either wholly permissible or disallowed, enabling the low levelrendering code to bypass additional checks.Typically there is a single communications channel between each client andthe server which is used for both rendering requests and con�guration/controlrequests. Since the IDC bandwidth required for communication of high-level ren-dering primitives is small, and the channel is also used to carry in-band controlrequests, a reliable transport mechanism is often employed (e.g. X uses unix do-main sockets for local connections and TCP/IP sockets for remote connections).Unfortunately, this combination of large-grained rendering primitives and asingle multiplexed connection between each client and server presents a numberof problems for QoS provision:� A client can cheaply generate rendering requests at a rate much faster thanit is possible for the server to complete them.� The IDC transport mechanism cannot distinguish between control messagesrequiring reliable semantics and rendering requests which potentially do not.� The service time for requests can vary by several orders of magnitude be-tween a simple request like \set pixel" and a complicated one like \�llarbitrarily shaped non-convex polygon".� Requests on a connection may not be reordered or discarded since applica-tions often make use of the reliability and ordering semantics when render-ing complicated graphics.� The server itself is often a single threaded application which processes clientrequests to completion in some arbitrary order.1 This introduces largeamounts of jitter.In a multimedia environment, support for high bandwidth updates to theframebu�er and associated QoS guarantees is essential. In server renderingsystems, support for high bandwidth updates has often been added by usinga shared-memory transport for the video data and the standard transport forsending the update request.1X uses FIFO queueing on each connection and services clients in a round-robin fashion.71



Source: ws.tex DRAFT of 11:06, June 28, 1996It is obviously impossible to provide QoS guarantees to an application unlessthe server itself has enough aggregate resources to ful�l the guarantees of all ofits clients. It is also necessary that the server respects the QoS guarantees ofeach client when performing work on their behalf.Several mechanisms have been investigated for the transfer of resources andeven threads between clients and servers (processor capacity reserves [Mercer93],lottery scheduling [Waldspurger94], thread migration [Hamilton93], etc.). In allof these mechanisms, resources consumed by the server on behalf of each clientmust be accounted and the servicing of client requests must be scheduled in someway. The di�erences lie solely in the level at which the accounting is performedand scheduling policy applied.All of the above methods however require that the server is trusted to use theclient's resources for performing work on behalf of the client.6.3 Client RenderingIn a client rendering system, an application typically has direct access to theframebu�er and is able to perform updates using whatever rendering algorithmsare most suitable. It may choose to render a complicated graphic into cachedmain memory and only make updates to the real framebu�er when all renderingoperations have been completed. Alternatively, an incoming video stream maybe written directly into the framebu�er avoiding unnecessary copying operations.This situation has a number of important advantages:� An application is not restricted to a standard set of rendering primitives.� No client-server communications overheads are incurred.� Resources consumed by the client are naturally accounted to the client andthus the problem of QoS crosstalk is largely avoided.Client rendering has been used in the past by the Cedar system [Swinehart86],early versions of SunView [Sun88], the Amiga [CBM91] and the Apple Macintosh[Apple85]. The majority of these systems were intended as single user machinesand so the lack of protection between clients was not seen as a serious problem.72
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Source: ws.tex DRAFT of 11:06, June 28, 19966.4 FramestoresDespite the fact that the framebu�er is the eventual destination of the majority ofincoming video streams, most multimedia systems fail to recognise the importanceof QoS issues in this part of the system. Partly responsible for this fact is theprominence of server-based window systems such as X where the window systemserver performs most of the functions traditionally provided by a device driver,but for reasons of e�ciency and network transparency must present a much higherlevel interface. When a device driver is provided for the framestore, it usuallydoes little more than provide a means to map the framebu�er and video controlregisters into the address space of the window system server.26.4.1 PMAG-BA HardwareThe Sandpiper workstations are equipped with Digital PMAG-BA framestores,which plug into one of the three available TURBOchannel option slots. Thedevice provides a memory-mapped 8-bit pseudo-colour framebu�er. Each pixelmay be one of 256 colours selected from a single palette. The device does notldl ldq stl stqTURBOchannel 142 143 18 36Memory System 5 7 1 3Table 6.1: Average Times for Loads and Stores (in 133MHz cycles)support DMA of any description and therefore the only method of updating pixelsis via a 32-bit TURBOchannel PIO cycle, although the TURBOchannel ASIC onthe Sandpiper will automatically convert a 64-bit read or write operation into twoconsecutive 32-bit PIO cycles. These cycles are expensive in comparison with theequivalent operations when performed to the memory system. Table 6.1 shows theaverage costs of various relevant operations on the Sandpiper workstation whenreading or writing consecutive addresses in the framebu�er and in the memorysystem.Although the theoretical peak bandwidth of the TURBOchannel is 720Mbps,the maximum sustained PIO write performance to the framebu�er is only around2On DECStations running Ultrix, this functionality is embarrassingly provided by/dev/mouse. 74



Source: ws.tex DRAFT of 11:06, June 28, 1996x11perf Test SRC DST DiamondStealth 64 DigitalPMAG-BAcopypixwin500 MEM FB 127 reps/s 78 reps/scopywinpix500 FB MEM 26 reps/s 26 reps/scopypixpix500 MEM MEM 597 reps/s 288 reps/sTable 6.2: Performance of TURBOchannel and PCI Framebu�ers.240Mbps.3 Reading from the framebu�er is extremely expensive since cacheingis disabled in regions of the physical address space used for I/O. This feature iscommon to a number of interconnects. Table 6.2 shows relevant results from theX benchmark utility x11perf for a typical PCI framebu�er and for the PMAG-BA. In both cases the discrepancy between memory speeds and I/O performanceis clearly visible.Devices which do not support any form of DMA present a serious problemfor the Nemesis QoS architecture. They introduce a multiple resource schedul-ing problem since performing I/O to the framebu�er device necessarily consumesCPU time,4 as well as framebu�er bandwidth. For DMA devices, the I/O sched-uler may initiate a transaction for a client process which is not currently execut-ing, decoupling the two resources, but any transaction scheduler for a PIO-onlydevice would have to be closely integrated with the CPU scheduler.Performing I/O with these devices not only requires privileged code to beexecuted on the control-path, but also on the data path. Ideally, we would liketo be able to execute this code within the protection domain of the appropriatedevice driver, but within the scheduling and accounting domain of the client. Asolution to this problem is presented in section 6.5.6.5 CallPriv SectionsA simple extension of the Nemesis PALcode provides a mechanism for privilegeddomains to register small sections of code with the NTSC.5 An additional unpriv-3This �gure corresponds to the x11perf -shmput500 performance of the DEC Xserver of76 reps/sec. (4:75� 106 PIO cycles/sec. = 28 cycles/write)4240Mbps consumes the entire CPU resource.5Currently the privileged PALcode call ntsc regstub is used for this purpose.75
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Source: ws.tex DRAFT of 11:06, June 28, 1996is to prevent a reschedule from occurring during the call and thus simplify theimplementation and reduce the overheads of the mechanism. The lowest-leveltimer continues to run throughout the call and may post a reschedule interrupt,but the kernel scheduler itself will not be entered until the CallPriv completes.6.5.1 DiscussionIt is important to contrast the operation of CallPrivs with thread migrationtechniques. CallPriv stubs execute within an environment which is very di�er-ent from user code. They are entered with the minimal number of registers savedand with all interrupts disabled. It is not possible for code within a CallPrivsection to block, and it is not possible to invoke another CallPriv section. Thedevice driver is expected to ensure that the duration of the CallPriv is kept toa minimum. The mechanism should rather be thought of as a software version ofa channel-controller.Device drivers are privileged domains and as such must be trusted by theoperating system. Incorrect or malicious code within a driver is clearly capable ofcompromising the system. The execution of this code within CallPriv sectionsinvoked by an unprivileged domain therefore introduces no additional danger.6.5.2 PerformanceAs can be seen from �gure 6.2, the cost of invoking a CallPriv section has beenmeasured at 0:54�s and returning to the calling process takes 0:82�s. These over-heads are small in comparison with the 100�s clock granularity of the Sandpiper.For the purposes of comparison, the cost of using Rbufs for the same purposehave been measured at 5:2�s for the IO$PutPkt operation and 5:4�s for theIO$GetPkt operation.7Time spent within a CallPriv section therefore introduces some amountof jitter into the kernel scheduler. Device drivers, as always, are expected tominimise the time spent with interrupts disabled. For all devices consideredso far, it has been possible to devise a simple and useful atomic I/O operationwhich executes in a time comparable with the granularity of the system clock.7These are the costs when pipelining is working correctly and no reschedules occur.77



Source: ws.tex DRAFT of 11:06, June 28, 1996The driver for the PMAG-BA framestore described in section 6.6 uses the updateof a small rectangular tile of pixels as its I/O primitive for this reason.In order to amortise the overheads of the protection domain switch still fur-ther, some drivers may allow clients to request fairly long transactions whichmay be broken into smaller units if they would take too long to complete. Theremainder of the transaction may be completed using a second CallPriv.6.6 DAM: The Framebu�er DriverThe Nemesis framebu�er driver (dev/fb) implements the DAM for the PMAG-BA device. As such it is responsible for providing protected access to the pixelsof the framebu�er with guaranteed rates of I/O to each of its clients. As withall other devices, the operation of these protection and scheduling mechanisms isdirected by the DMM and the driver exports the FB.if interface for this purpose(�gure 6.3). This control interface is used exclusively by the DMM to:� Create, destroy, move and resize windows.� Create update streams for a window (using the IO.if interface).� Change the update permissions of areas of the framebu�er.Since the framebu�er is the primary video output device of a multimediaworkstation, the driver is optimised for the display of high bandwidth digitalvideo streams. The driver is stream oriented in that the only way to update thepixels in the framebu�er is to send a packet on a pre-established connection tothe driver.Clients communicate window updates directly to the driver using one of anumber of simple packet based protocols. The driver however supports a singleprimitive: the update of a small �xed-size rectangular region know as a tile.8Packets contain an (x; y) coordinate and a rectangular region of pixels to replacethe pixels in the framebu�er. Even traditional graphics rendering is performedby sending a video stream to the framestore. In order to minimise bandwidth,this stream may consist only of the changes since the last time the window wasrepainted.8A recent experimental version of 8 12 , the Plan 9 Window System [Pike91] has also adoptedtiles as the single update primitive [Pike94]. 78
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FB : LOCAL INTERFACE =NEEDS IDCOffer;NEEDS Time;BEGINBadWindow : EXCEPTION [];Failure : EXCEPTION [];Unsupported : EXCEPTION [];NoResources : EXCEPTION [];WindowID : TYPE = LONG CARDINAL;StreamID : TYPE = LONG CARDINAL;Protocol : TYPE = { Bitmap, AVA, DFS };QoS : TYPE = RECORD [ tiles : CARDINAL,period : Time.ns ];CreateWindow : PROC [ x, y : INTEGER,width, height : CARDINAL,clip : BOOLEAN ]RETURNS [ wid : WindowID ]RAISES Failure;-- "CreateWindow" creates a window with the specified-- position and size. If "clip" is "False" then updates-- to the window do not take account of the clip mask.-- A "WindowID" is returned.DestroyWindow : PROC [ wid : WindowID ]RETURNS [ ]RAISES BadWindow;-- "DestroyWindow" frees resources allocated to window "wid".UpdateStream : PROC [ wid : WindowID,p : Protocol,q : QoS,clip : BOOLEAN ]RETURNS [ s : StreamID,offer : IREF IDCOffer ]RAISES BadWindow, Failure, Unsupported;-- "UpdateStream" returns an IDCOffer for a video-- updates stream using protocol "p". If "clip" is-- False then updates to the window do not take account-- of the clip mask.MapWindow : PROC [ wid : WindowID ]RETURNS [ ]RAISES BadWindow;

-- "MapWindow" causes the window "wid" to become mapped-- on the framestore device. Updates to the window-- become possible.UnMapWindow : PROC [ wid : WindowID ]RETURNS [ ]RAISES BadWindow;-- "UnmapWindow" causes the window "wid" to become-- unmapped on the framestore device. Updates to the-- window will be silently discarded.ExposeWindow : PROC [ wid : WindowID,x, y : CARDINAL,width, height : CARDINAL ]RETURNS [ ]RAISES BadWindow;-- "ExposeWindow" causes window "wid" to become visible-- in the rectangle described. (Coordinates are frame-- buffer coordinates.)MoveWindow : PROC [ wid : WindowID,x, y : INTEGER ]RETURNS [ ]RAISES BadWindow;-- "MoveWindow" ssks for the window "wid" to be moved to-- position $("x", "y")$.ResizeWindow : PROC [ wid : WindowID,width, height : CARDINAL ]RETURNS [ ]RAISES BadWindow, Failure;-- "Resize" asks for the window "wid" to be resized to-- $"width" \cross "height"$.AdjustQoS : PROC [ sid : StreamID,q : QoS ]RETURNS [ ]RAISES NoResources;-- Attempts to set the QoS for stream "sid" to "q".END.

Figure 6.3: Middl for dev/fb management interface (FB.if).
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Source: ws.tex DRAFT of 11:06, June 28, 1996Update streams provide a direct data path between the owner of a windowand the framebu�er driver. Each update stream is associated with a single win-dow - the per-stream state record identi�es the window and also contains QoSparameters and protocol speci�c information. In most cases update streams useRbufs [Black94] as a highly e�cient packet based shared-memory transport, al-though other experimental transports have been used including the CallPrivmechanism described in section 6.5.
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6.6.1 Virtual WindowsThe framebu�er driver will usually have a large number of update streams con-nected to it. When I/O requests arrive at the driver, the connection identi�er isused to index into a table of per-stream state records. The entry in this tabledescribes a rectangular region of the screen known as a virtual window. The (x; y)coordinates of each update request are translated by the on-screen coordinates ofthe virtual window allowing rendering code and hardware video capture devicesto operate independently of the position of the destination window. Any updaterequests which lie outside the virtual window are silently discarded. This trans-lation mechanism also allows a single video stream to be multicast to a numberof destinations without CPU intervention on the data-path.80



Source: ws.tex DRAFT of 11:06, June 28, 19966.6.2 Key Based Pixel ProtectionFor each pixel in the framebu�er, an additional tag �eld is stored in a separatebank of memory. A similar tag is held in the per-stream state record. Reads toor writes from the framebu�er are only permissible for those pixels whose tagsmatch the tag of the current stream.As above, writes to pixels whose tag value does not match are silently dis-carded. This situation commonly occurs when a client is rendering to a windowwhich is partially obscured. Reads from pixels whose tag value does not matchreturn unde�ned data.6.6.3 Protection OverheadsThe overhead of this software protection is not as large as one would expect sincethe cost of a TURBOchannel programmed I/O read or write operation is so largein comparison with the cost of main memory reads and writes and the necessaryarithmetic operations for comparing tags and masking individual pixels.Since the 21064 CPU of the Sandpiper has a 4-entry write bu�er, it is possibleto execute a large number of arithmetic operations \in the shadow" of writes tothe framebu�er. These may be used to perform the per-pixel clipping operationse�ectively with zero cost. Also, the majority of rendering operations supportedby an X server will frequently need to update only a single 8-bit pixel, but sincethe TURBOchannel only supports 32 bit reads and writes this will result in twoexpensive TURBOchannel PIO operations. Rendering in the cached DRAM ofthe main memory system will often prove signi�cantly faster.6.6.4 Quality of ServiceQoS support is provided at the lowest levels in the device driver i.e. at the levelwhere concrete resources are being consumed. In the case of the PMAG-BAdriver these resources consist of both TURBOchannel I/O bandwidth and CPUcycles since the card has no DMA support. A scheduler in the driver determinesthe order in which to service transactions on the various connections accordingto the current QoS parameters. When using the Rbufs transport, CPU resourceexpended servicing requests is unavoidably accounted to the driver rather than81



Source: ws.tex DRAFT of 11:06, June 28, 1996to the clients. Although the scheduler ensures that the QoS guarantees of eachclient are respected, it is still necessary for the driver to be provided with enoughbulk CPU resource to service all of its clients. This function must be performedby the QoS-manager.
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Source: ws.tex DRAFT of 11:06, June 28, 1996the DFS written for the DECStation 5000/25 whilst the hardware was beingdeveloped.A framebu�er driver has also been implemented for the DFS connected via theOTTO ATM interface. The level of hardware support provided by the PMAG-BA and the DFS di�er substantially but the drivers export the same interface,namely FB.if. Naturally, the dev/fb driver for the DFS is much simpler and doeslittle more than perform connection setup and provide a higher level mechanismfor updating the protection tag RAM.When using the DFS, dev/FB communicates with the framestore using a sim-ple single-cell ATM protocol to create virtual windows and update streams onparticular VCIs. The framebu�er driver invokes the OTTO driver to obtain anIDC o�er for an AAL5 connection on the appropriate VCI and with the neces-sary QoS parameters.10 This o�er is handed back to the client which then bindsdirectly to the OTTO driver.6.7 DMM: The WS Window SystemThis section describes a prototype Nemesis window system (WS) and a numberof simple example applications. TheWS window system is an example of a client-rendered window system. An architectural overview of the system is shown in�gure 6.6(a) together with a description of the various Nemesis domains involved.
6.7.1 The WS ServerThe WS server is a Nemesis domain which manages the mouse, keyboard andframebu�er devices. In the prototype system, the mouse and keyboard driversare part of dev/serial and both export the IO.if interface which is used totransport streams of timestamped mouse and keyboard events. The WS serverdemultiplexes these events to the appropriate client event stream (another IO.ifinterface) depending on the position of the mouse pointer.The WS server is also responsible for out of band control operations such10ATM signalling software has not yet been ported to Nemesis, so for the moment permanentvirtual circuits are assumed. 83
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WS : LOCAL INTERFACE =NEEDS IDCOffer;NEEDS Time;NEEDS FB;BEGINFailure : EXCEPTION [];BadWindow : EXCEPTION [];WindowID : TYPE = LONG CARDINAL;-- A window is an opaque identifierButton : TYPE = { Left, Middle, Right };Buttons : TYPE = SET OF Button;MouseData : TYPE = RECORD [ buttons : Buttons,x, y : INTEGER ];KeySym : TYPE = CARDINAL;NoData : TYPE = CARDINAL;Rectangle : TYPE = RECORD [ x1, y1, x2, y2 : CARDINAL ];ExposeData : TYPE = Rectangle;EventType : TYPE = {Mouse, KeyPress, KeyRelease,EnterNotify, LeaveNotify, Expose, Obscure};EventData : TYPE = CHOICE EventType OF {Mouse => MouseData,KeyPress => KeySym,KeyRelease => KeySym,EnterNotify => NoData,LeaveNotify => NoData,Expose => Rectangle,Obscure => Rectangle};Event : TYPE = RECORD [ t : Time.ns,w : WindowID,d : EventData ];-- Events are a discriminated union of all possible event types.EventStream : PROC [ ]RETURNS [ evoffer : IREF IDCOffer ]RAISES Failure;

-- Ask for the WS server to provide an event streamCreateWindow : PROC [ x, y : INTEGER,width, height : CARDINAL ]RETURNS [ w : WindowID ]RAISES Failure;-- Create a window with the given position and size. Returns a-- window identifier "w".DestroyWindow : PROC [ w : WindowID ]RETURNS [ ]RAISES BadWindow, Failure;UpdateStream : PROC [ w : WindowID,p : FB.Protocol,q : FB.QoS,clip : BOOLEAN ]RETURNS [ fbid : FB.StreamID,offer : IREF IDCOffer ]RAISES BadWindow, Failure;-- Returns an IDC Offer for an update stream for window "w"-- using the protocol "p".MapWindow : PROC [ w : WindowID ] RETURNS [ ]RAISES BadWindow, Failure;-- Causes the window "w" to become mapped on the framestore-- device. Updates to the window become possible.UnMapWindow : PROC [ w : WindowID ] RETURNS [ ]RAISES BadWindow, Failure;-- Causes the window "w" to become unmapped on the framestore-- device. Updates to the window will be ignored.MoveWindow : PROC [ w : WindowID,x, y : INTEGER ]RETURNS [ ]RAISES BadWindow, Failure;ResizeWindow : PROC [ w : WindowID,width, height : CARDINAL ]RETURNS [ ]RAISES BadWindow, Failure;END.Figure 6.7: Middl for WS interface (WS.if).
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Figure 6.8: WS Screendumpdata path.6.7.2 Non-Multimedia ApplicationsIn the WS system, non-multimedia applications usually render their graphicsinto a private copy of the window in main memory and when �nished ush theirupdates to the framebu�er as a stream of tile di�erences. For many applicationswhich render complicated user interfaces using \painter's algorithm" or similar,the bene�ts of drawing in fast cached DRAM and copying only the resultingdi�erences to the slower framebu�er can be signi�cant. [Stratford96] describes aclient-rendering port of libX11 which in most cases performs faster than usingthe server.Although most applications link against a shared library containing a setof default rendering operations similar to those provided by the X server (�g-ure 6.9a), it is perfectly possible for an application to supply its own customisedrendering code.
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Source: ws.tex DRAFT of 11:06, June 28, 19966.8.2.1 Server Rendering (WSR)In this con�guration, the WSR server is responsible for performing all renderingof video and graphics. When the competing process (B) is not running, both videoapplications are able to display their entire video streams since the WSR serverhas access to the spare resources in the system. When the competing process Bbecomes active, however, the additional workload of the server prevents it fromkeeping up with the requests from either video application (�gure 6.11a).This QoS crosstalk prevents either video application from performing accept-ably, irrespective of their individual QoS guarantees.6.8.2.2 Client Rendering (WS)When using the client rendering version of theWS server, all framebu�er updatesare sent directly to dev/fb where they are accounted to the appropriate clientapplication at the lowest level. Requests from each client are scheduled accordingto their respective QoS guarantees.The QoS observed by the video application V1 (with su�cient guaranteedresources) is una�ected by the activities of competing application B. Video appli-cation V2, however, is forced to discard a large proportion of its data whenever thecompeting process is running since dev/fb no longer has enough spare bandwidthto service its requests (�gure 6.11b).QoS crosstalk between the various clients of the window system has largelybeen eliminated.6.9 SummaryIt has been common practice for a workstation operating system to leave the jobof multiplexing the framebu�er device entirely to the window system. Windowsystems have traditionally provided a high-level abstraction to the framebu�erdevice both to reduce the number of interactions required between client andserver, and to support remote clients. These high-level primitives are di�cultto account and schedule and are therefore undesirable in an environment whereQuality of Service is an issue. 90



Source: ws.tex DRAFT of 11:06, June 28, 1996In a server-based window system, it is necessary for the server to contain codefor every rendering primitive which could conceivably be required by a client.This both constrains the range of applications which may be constructed andleads to \code bloat" in the server. Previous client-rendering window systems donot su�er from this problem, but have included no protection at the device leveland are thus prone to abuse by uncooperative clients.The framebu�er device demands sharing and protection at a �ne granularity;protection which is not provided by conventional graphics hardware. A low-level software protection mechanism has been presented which has a negligibleperformance overhead and is readily implemented in hardware at a minimal cost.Most framebu�er devices support no form of DMA, instead requiring the pro-cessor to be used to move data. This code must be executed within the protectiondomain of the device driver but the processor resource consumed should ideally beaccounted to the client. The CallPriv mechanism e�ectively supports devicesof this nature.The above two techniques have been combined to produce a Device Abstrac-tion Module for the framebu�er device which both provides �ne-grained protectedaccess to the framebu�er and accounts for resource usage at the lowest possiblelevels. A new client-rendering window system has been presented which makesuse of this low-level device driver to allow migration of rendering code into theapplication where it gains the bene�t of QoS guarantees provided by the frame-bu�er driver and minimises application QoS crosstalk.
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Chapter 7
File System
The storage capacities of modern disk drives are starting to approach levels com-parable to the typical size of an MPEG compressed feature-�lm. The read andwrite performance of drives has also increased to a level in excess of that neededto handle real-time video streams. For these reasons, disks are increasingly beingrequired to act as sources or sinks of multimedia data.This chapter considers the application of the Nemesis device driver archi-tecture to a standard SCSI disk drive and presents mechanisms for abstractingthe device which e�ectively support the implementation of a wide variety of �lesystems and potentially an application-speci�c virtual memory system.7.1 IntroductionA number of operating systems provide an environment where the �le systemis used for inter-process communication. For example, the unix environmentencourages the composition of a number of simple programs to perform morecomplicated tasks, and although it is often possible to use \pipes" between pro-cesses, many applications require the use of temporary �les. In order to achieveacceptable performance, write-bu�ering and cacheing in the �le system code at-tempts to prevent this data being written to disk. This additional code is asigni�cant disadvantage when dealing with high volume CM data.The majority of information used to direct the course of �le system researchis derived from one or two low-level traces obtained from instrumented unix �le92



Source: fs.tex DRAFT of 11:06, June 28, 1996systems [Ousterhout85][Baker91].1 As expected, these traces show a dispropor-tionate number of short-lived �les written sequentially in their entirety, read oncein their entirety, and then deleted. This observation has led �le system designersto optimise their designs for such behaviour. It is argued that in an operatingsystem such as Nemesis, this form of inter-process communication should not benecessary.7.2 General Purpose File SystemsGeneral purpose workstation �le systems can be categorised into 3 broad cate-gories based on the manner in which they use the underlying physical storagedevices:� Block-Structured File Systems� Log-Structured File Systems� Extent-Based File SystemsAlthough the functionality provided by all 3 storage schemes is similar, they areoptimised for di�erent usage patterns.
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Source: fs.tex DRAFT of 11:06, June 28, 19967.2.1 Block-Structured File SystemsBlock-structured �le systems divide the surface of the disk into a large number ofequal sized blocks. This is the unit of disk storage allocation and also the unit ofdisk I/O. The size of a block is a compromise between the amount of disk spacewasted per-�le and the I/O transaction overheads. Block structured �le systemsare the most common variety of �le system and until recently have been used bymost varieties of unix.Block structured �le systems are designed primarily to achieve high spaceutilisation; hence the small unit of disk allocation. Since half a disk block, onaverage, is wasted per �le there is a strong motivation to keep the disk block sizefairly small2 if the �le system is expected to contain a large number of small �les.The underlying assumptions seems to be that disk space is an expensive resourceand this is currently not the case, although the cost of managing large volumesof disk space should not be ignored.Figure 7.1 shows the distribution of �le sizes, both in terms of number of �lesof a particular size and in terms of the proportion of disk space consumed by�les of various sizes. The graphs are based on a survey of unix �le size data for12 million �les, residing on 1000 separate �le systems, with a total size of 250gigabytes.3. The �rst graph shows that the majority of �les are small - 90% of�les are less than 16KB in length - whilst the second shows that the majority ofdisk space is occupied by �les over 1MB in length.Another reason for the popularity of block structured �le systems is that theyare easy to integrate with virtual memory systems and bu�er caching schemes dueto the �xed-sized unit of I/O. It is often arranged that the block-size supportedby the �le system is the same as the page-size supported by the virtual-memorysystem.Block allocation is necessarily a frequent operation and requires update ofshared state. In a microkernel environment this incurs the cost of communicationwith the �le-system server. When writing high volume data to disk, as is the casewith CM�les, it would be preferable to be able to perform disk space allocationin larger units.2Most unix �le systems use a block size of 4096 or 8192 bytes.3These results come from a number of traces which were co-ordinated and analysed byGordon Irlam <gordoni@home.base.com> Further information may be obtained on the WorldWide Web at http://www.base.com/gordoni/ufs93.html94



Source: fs.tex DRAFT of 11:06, June 28, 1996Another drawback of block-structured �le-systems is that, since all disk I/Orequests are single blocks, the disk seek overheads are extremely large in com-parison with the time taken to transfer the actual data.4 This leads to very poorperformance if the pattern of disk I/O requests is essentially random. Even whenusing disk-head scheduling techniques in an attempt to reduce the seek over-heads, disk utilization �gures of around 7% are reported in [Gopal86]. By usingvery large write bu�ers capable of dealing with I/O queue lengths of around 1000transactions it is possible to increase the write utilisation of the disk to around25% [Seltzer90]. Scheduling algorithms which take into account rotational la-tency such as the ASATF5 algorithm described in [Jacobson91] achieve utilisationsof up to 32%6 but su�er from response times of about a second at that load. TheASATF algorithm even required an explicit special case to prevent in�nite servicetimes!The vast majority of work in the �eld of disk and �le-system performance isdevoted to increasing total throughput and/or decreasing average response times.The large variance in service times caused by several head scheduling algorithmsis usually considered as of secondary importance. The multimedia environmentoften requires that total throughput of a system is sacri�ced in order to maintainpredictable levels of performance on each individual connection.7.2.2 Log-Structured File SystemsAs a result of analysing large traces of unix �le system activity, the observationswere made that the majority of �les are written exactly once in their entirety, andthat most �les are fairly short-lived. By implementing a �le-system where the onlydisk write operation permitted is to append to a log, a large fraction of the seekoverheads of a block-structured �le-system may be eliminated [Ousterhout89].The addition of a cache allows most reads to be serviced from memory andin addition means than most short-lived temporary �les never need to hit thedisk. The log is periodically compacted to remove old and deleted �le data by abackground process similar to a garbage-collector.4The time taken to transfer an 8KB block across a 5MHz SCSI bus is 1.6ms, whilst thetypical access time (comprised of seek time and rotational latency) is around 15ms.5Aged Shortest Access Time First6These results were acheived using a software simulator and an unrealistic workload gener-ated using exponential inter-arrival times and a uniform random distribution of requests acrossthe disk surface. 95



Source: fs.tex DRAFT of 11:06, June 28, 1996Although log-structured �le systems allow disk write throughput to approachthe maximum transfer rate of the device, they require that all �le updates areperformed by a single server. This potentially introduces large amounts of QoScrosstalk. Read performance depends on the amount of fragmentation in the logand the number of concurrent read requests. Attempting to read a number ofcontinuous-media �les simultaneously will still incur seek penalties.Examples of log-structured �le systems include Sprite LFS [Rosenblum92],BSD-LFS [Seltzer92] and the Huygens File Server developed as part of the Pega-sus project [Bosch93].7.2.3 Extent-Based File SystemsExtent-based �le systems are a compromise between the predictability of block-structured �le systems and the throughput achievable using a log-structured �lesystem. Disk space is allocated as contiguous ranges of blocks called extents. Thenumber of blocks in an extent is variable and typically dependent on the expectedsize of the �le.Allocating disk space in this way cuts down the frequency of operations re-quiring access to shared state and allows disk throughput to be increased by useof larger transactions. It also results in less disk fragmentation and therefore anincreased likelihood of consecutive reads and writes. In the case where all ex-tents are of length one, the data-path performance can be expected to convergewith that of a block-structured �le system. In the majority of cases, however, asigni�cant performance increase should be observed.File creation and deletion is potentially more expensive than in a block-structured �le system, but this can be amortised using schemes similar to thePartitioned Datasets of MVS [IBM80] where a number of �les owned by the sameuser are grouped together into a single dataset stored in preallocated extents ondisk.Extent-based �le systems are becoming popular in situations where time con-straints are important and the unpredictability of a log-structured �le system isunacceptable. Examples include the QNX �le system [Hildebrand92] and CMFS[Jardetzky92].
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Source: fs.tex DRAFT of 11:06, June 28, 19967.3 Multimedia File SystemsIn order to more e�ectively support multimedia �le types, a number of researchershave abandoned conventional �le system technology altogether in favour of adedicated multimedia �le system optimised for large �les. Indeed such �le serversare typically constructed as an embedded hard-real time system running on stand-alone machines connected to a high speed network and so do not experiencecontention from other activities on the workstation.A multimedia �le server may make the assumptions that there will only be asmall number of �les open at any particular time and that clients will performpredominantly sequential accesses. The abstraction supported is often closer tothat of a VCR with play, pause and rewind operations [Jardetzky92] implyingthat demands for I/O bandwidth are constant for prolonged periods of time. Withthese simpli�ed �le access patterns it is possible to provide stream-oriented I/Oat a predetermined rate purely by use of large amounts of read-ahead [Reddy94].Unfortunately this abstraction is completely unsuited to conventional general-purpose �le access. Random access to �les is usually very slow and often notallowed at all. Where it is allowed, it often causes transient QoS problems forother streams.In a multimedia �le system, disk layout is optimised for very large �les. It isnot uncommon to allocate disk space, and indeed perform I/O in units relatedto the physical geometry of the drive, e.g. a cylinder at a time. Often the �lesystem is assumed to be essentially read-only and its layout optimised o�-line.For example, in a VOD system serving a number of streams from a single diskit is possible to achieve more predictable average-cost seek times by deliberatelystriping �le data across the disk.The Huygens �le server [Bosch93] and CMSS [Lougher93] use a log-structured�le system as the underlying storage service. Although a log-structured �le sys-tem is ideally suited to simultaneous recording of a number of continuous mediastreams with di�ering QoS guarantees, simultaneous playback of these streamssu�ers unavoidable QoS crosstalk due to the interleaving of �le data on the disksurface and the impossibility of caching large continuous media �les. In both ofthe above systems, prefetching and request scheduling are used to provide play-back of a small number of streams at predetermined rates. Knowledge of theinternal structure of �les is built into the �le server to allow �les to be \playedback" at the \correct rate", and it is not uncommon to support only a prede�ned97



Source: fs.tex DRAFT of 11:06, June 28, 1996set of �le types. The log-structure of �le system provides no signi�cant advantageover extent-based layouts for this application.The Multi-Service Storage Architecture (MSSA) [Lo93] separates the func-tions of data storage and the provision of higher-level �le abstractions in a two-level architecture. At the lowest level, Byte-Segment Custodes (BSC) providerate-based access to persistent data, stored in an extent-based fashion, using anotion of sessions with QoS guarantees. A number of higher level services areprovided including directory services and support for continuous media and struc-tured typed data. The architecture is primarily intended for a network �le server,but many of its features are equally applicable to this work.7.4 Custom Storage SystemsThere are a number of applications such as persistent programming languagessuch as PS-ALGOL [Atkinson83] or Napier88 [Morrison89], and Database Man-agement Systems (DBMS) [Date90] whose performance is highly dependent ondisk I/O, and which have disk access patterns which di�er signi�cantly fromconventional or multimedia �le access patterns. A true multi-service operatingsystem should equally well be able to support applications of this form.It is common for DBMS software running over a conventional general-purposeoperating system to use a \raw" disk interface, bypassing the �le system layeraltogether. The DBMS is allowed to use an entire disk partition in whatevermanner it desires, and using application speci�c knowledge is able to do a muchbetter job of scheduling its disk accesses. It would be highly desirable to be ableto make these application speci�c optimisations without having to bypass the �lesystem completely.7.5 Disk DrivesThe technology used in modern disk drives is fairly uniform across vendors. Datais stored magnetically in concentric tracks on a number of rotating surfaces, eachwith its own read/write head. The heads are mounted on a movable arm whichmay be used to place them over the selected tracks (the group of tracks which aresimultaneously accessible are usually referred to as a cylinder). Although drives98
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Figure 7.2: Major Disk I/O Data-path Componentswith multiple arms are available, the majority only have a single arm.After moving a head to a new track it is necessary to make �ne adjustmentsto the position to ensure that the head is settled over the centre of the trackand data is transferred reliably. More expensive drives use error correction logicto enable reads to be serviced before the head is completely settled, and a drivecontroller will often begin reading from a track before the required data has comearound assuming that the entire track will be of interest.Each track is divided into a number of sectors, but since the length of atrack depends on the distance from the centre of the disk, it is common forlarge capacity drives to divide each surface into a number of zones with di�erentnumbers of sectors per track. The data transfer rate for a transaction may varyby up to a factor of two from the centre of the disk to the outside.Due to imperfections in the surfaces of the disk it is also common to manufac-ture a drive with more tracks than necessary. Track numbers are then remappedby the drive controller to avoid damaged regions - a procedure known as tracksparing. Individual bad sectors may also be remapped, either to a di�erent sectoron the same cylinder, or to a reserved cylinder elsewhere on the disk surface. DiskI/O is performed in units of blocks which appear to be arranged as a contiguousarray, but since the physical location of a block may be impossible to determine,the penalties incurred when accessing these sectors can not always be predicted.
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Figure 7.3: Typical Activity During SCSI Transactions7.5.1 Disk I/O Data-pathThe drive is connected to the host using one of the standard peripheral buses suchas SCSI. Figure 7.2 shows the major components on the disk I/O data-path. Boththe host and the drive typically contain a standard SCSI controller chip whichdeals with the low-level protocols required to access the bus. Although datarates from the disk heads are usually less than the bus bandwidth, cache memoryinside the drive makes it possible for the device to use the bus at full speed forshort periods. Given the relative data rates, it is rare to connect more than twodisk drives to the same SCSI bus. The host controller is usually attached to theworkstation I/O interconnect which provides more than enough bandwidth intomain memory of the workstation.Since the peak media transfer rate is typically substantially lower than the bustransfer rate, the drive controller will often disconnect from the SCSI bus duringa long read until su�cient data has been read into internal bu�er memory. Thecontroller will also usually perform some amount of read-ahead and write-behind.Figure 7.3 shows typical activity on the SCSI bus and in the drive controllerduring read and write transactions.77This �gure is taken directly from [Ruemmler94].
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Source: fs.tex DRAFT of 11:06, June 28, 1996Average Seek Time: 9.5 ms A weighted average of the time taken to move thedisk arm from one part of the surface to another.Average Access Time: 15.1 ms A weighted average of the combined time takento move the disk arm to the correct position, thetime taken for the head to settle plus the rotationallatency.Rotation Speed: 5400 rpm The rate of rotation of the disk platter.Media Transfer Rate: 3.3 MBps The speed at which data may be read from the sur-face of the disk into the controller's bu�er memory.This is usually proportional to the rotation speedof the disk.Bus Transfer Rate: 10 MBps The speed at which data may be transferred fromthe disk controller's bu�er memory to the host ma-chine. This usually depends on the type of bus towhich the device is connected.Bu�er Size: 512 KB The amount of bu�er memory in the diskcontroller.Table 7.1: Published Speci�cations of the Digital RZ26 Disk Drive7.5.2 Performance CharacterisationThe performance of disk drives is usually characterised by a handful of parametersrelated to the mechanical timings of the device. The published speci�cations ofthe Digital RZ26 drive used in the Sandpiper are shown in table 7.1. Althoughthese �gures are typically the only information provided with a drive, they are adramatic over-simpli�cation of the actual behaviour of the device. The averageseek and access times given in the drive speci�cations are sometimes of little usewhen trying to estimate the cost of a transaction since drive controllers attemptto optimise performance for certain common access patterns and when theseoptimisations fail the results are costly.7.5.3 Access Time VariationsFigure 7.4(a) shows a graph of the measured times to access a single block atvarious distances across the surface of the disk. Measurements were obtained by�rst reading a single reference block at the start position on the disk surface, thenwaiting a random about of time (to remove any correlation with disk rotation) andmeasuring the time taken to read the destination block. Results were averagedover 100 measurements for each seek distance starting at di�erent positions on101
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Source: fs.tex DRAFT of 11:06, June 28, 1996ing 12Tr as in �gure 7.4(b).A(d) = 8>><>>:Tt if d = 0,Kapd+ 12Tr + Tt if d 6 500,Kap500 +Kc(d� 500) + 12Tr + Tt if d > 500. (7.1)Secondly, the e�ects of disk rotational latency are clearly visible as a wideband and are of comparable magnitude to the seek time. Unless disk rotation istaken into account, the variation of access times will clearly present a problem.In addition, a number of unavoidable limitations of the hardware, deliberatelyhidden by the device abstraction, can introduce essentially \random" variables.For example, if the disk's forward-error-correction (FEC) circuitry (intended toallow reading of data before the head is completely settled) does not succeed, it isoften preferable to try a di�erent transaction rather than wait an entire rotationtime for the desired block to come around again.Thirdly, during the course of the measurements, the drive regularly enteredphases where approximately 0.5% of the accesses took a disproportionately longtime.8Figure 7.4(c) shows the results of another experiment designed to investigatethe cause of these anomalous measurements. A single-block access requiring aseek of a �xed distance of 100 cylinders was performed repeatedly over a 3 hourperiod. The graphs show the experimentally measured access times normalisedby subtracting the mean access time of 12.8ms for ease of plotting. The resultsshow that the drive is changing its behaviour over quite a coarse time-scale. Theanomalous measurements appear to be regularly spaced with a period of around30 seconds, presumably due to some internal background processing within thedrive. Many papers on disk scheduling and modelling mention discrepancies ofthis magnitude but usually attribute the results to the vagueries of the unixscheduler. Whilst measurements of this kind are often di�cult in the unix en-vironment, it is readily apparent that these are actually features of the drive'sbehaviour which are impossible to take into account in a model.Another complicating factor is that the internal bu�er memory in the driveis not simply used as a FIFO. Drive controllers will typically partition the bu�erspace so as to cache around 8 regions of the disk surface. Models of disk8The concentration of anomalous measurements at around 1200 cylinders are believed to bedue to drive thermal recalibration. 103



Source: fs.tex DRAFT of 11:06, June 28, 1996drives are usually highly inaccurate unless they take into account these factors[Ruemmler94]. A detailed model of one particular disk drive is described in[Kotz94] which manages to estimate the cost of most disk transactions to within1%. The model is based around an event-driven simulator, required intimateknowledge of the internals of the particular drive and takes over 12,000 linesof code. Techniques for on-line extraction of the important parameters govern-ing disk performance are described in [Worthington94b], although the resultingmodels still require cache contents to be continuously tracked and the prefetchingbehaviour of the drive to be simulated.Due to the features described above, computing an estimate of the cost of adisk transaction is a complicated process. The total cost is derived from a largenumber of factors, the most signi�cant of which depend on the pattern of previousaccesses and invisible state within the drive [Worthington94a]. Although it wouldbe highly desirable for the microcode inside the drive to schedule transactionsaccording to QoS parameters, it is not feasible to apply hard-real-time schedulingtechniques outside the drive itself.A technique for abstracting a conventional disk drive which supports applica-tion speci�c I/O scheduling policies and QoS guarantees will now be presented.
7.6 DAM: The User-Safe Disk DriverThe User-Safe Disk (USD) device driver provides provides the device abstrac-tion module (DAM) for the disk. The driver (dev/USD) is therefore the singlemultiplexing point for disk I/O and is responsible for implementing all necessaryprotection between clients. The granularity of protection provided is the extent- a contiguous range of blocks on the disk.The driver exports a privileged control interface (USDCtl.if) for each par-tition of each disk to which a single DMM may bind. The DMM must registera callback interface (USDCallback.if) which, amongst other things, provides afault-handler called whenever a client attempts to access a new area of the disk.The control interface also provides operations for creation and deletion of I/Ostreams. With each stream is associated a QoS which may be updated via thecontrol interface. In addition, each stream keeps a cache of disk extents whichthe client may access. 104
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USDCtl : LOCAL INTERFACE =NEEDS USD;NEEDS IDCOffer;BEGINFailure : EXCEPTION [];NoResources : EXCEPTION [];RegisterHandler : PROC [ handler : IREF IDCOffer ]RETURNS [ ];-- Used to register an interface of type "USDCallback".CreateStream : PROC [ cid : USD.ClientID,m : USD.Mode,q : USD.QoS ]RETURNS [ sid : USD.StreamID,offer : IREF IDCOffer ]RAISES Failure, NoResources;-- "cid" is an opaque value which is associated with this stream-- and is passed as an argument to the USD fault handler.-- "CreateStream" returns an offer for an "IO" channel.DestroyStream : PROC [ sid : USD.StreamID ]RETURNS [ ];AdjustQoS : PROC [ sid : USD.StreamID,q : USD.QoS ]RETURNS [ ]RAISES NoResources;AddExtent : PROC [ sid : USD.StreamID,e : USD.Extent ]RETURNS [ ];DeleteExtent : PROC [ sid : USD.StreamID,e : USD.Extent ]RETURNS [ ];END. (a) USDCtl.ifUSDCallback : LOCAL INTERFACE =NEEDS USD;BEGINFault : PROC [ sid : USD.StreamID,cid : USD.ClientID,blockno : CARDINAL,nblocks : CARDINAL,OUT e : USD.Extent ]RETURNS [ ok : BOOLEAN ];END. (b) USDCallback.ifFigure 7.5: Middl for dev/USD interfaces (USDCtl.if and USDCallback.if).105



Source: fs.tex DRAFT of 11:06, June 28, 1996Clients perform I/O directly to the disk by sending read or write requestsdown the Rbufs channel. Requests consist of a small record containing the blocknumber and the number of blocks to read or write. In the case of a write, thisrecord is followed by iorecs pointing to the data itself. For a read, iorecsdescribing an empty bu�er are sent. The USD driver will �rst check the extentcache for that stream to see if the permissions for that area of the disk are alreadyknown. If an entry is not found in the cache, then the DMM is upcalled via theUSDCallback.if interface. The management interface also allows the extentcache to be explicitly loaded in advance and ushed if necessary.If the client has suitable permissions for that area of the disk, then the transac-tion is enqueued with the disk I/O scheduler. If the transaction is not permitted,then the bu�er will not be updated in the case of a read and data will simply bediscarded in the case of a write. In either case, an acknowledgement is sent tothe client containing the length of data successfully read or written.7.6.1 The RSCAN AlgorithmIn order to support QoS guarantees on client connections, it is vital that the USDdriver schedule disk transactions. Although the exact scheduling algorithm usedis largely unimportant, provided that it is capable of delivering the necessary QoSguarantees, excessive disk head seeking can dramatically reduce the aggregatethroughput of the device. The RSCAN algorithm was a simplistic �rst attemptat QoS directed disk head scheduling and is a compromise solution which alsoattempts to minimise the cost of \context-switches".Research into disk head scheduling algorithms has invariably focussed on in-creasing the utilisation of the drive, at the expense of predictability. As mentionedin section 7.2.1, the resulting high variance of service times for individual trans-actions has proved to be a source of problems. The RSCAN algorithm employedby the USD scheduler di�ers from previous disk head scheduling algorithms inthat it aims to provide per-client rate guarantees at the possible expense of diskutilisation. The scheduler may even split a long contiguous transfer at a blockboundary in order to meet the QoS guarantee of another client.The disk I/O scheduler maintains a list of pending transactions for all streamssorted by block number. The scheduler attempts to minimise seek overheads byservicing transactions in a manner similar to the SCAN algorithm described in[Co�man72]. Due to the impracticality of computing the cost of a disk transaction106
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Figure 7.6: RSCAN Scheduling Algorithmin advance and the disproportionate cost of \context-switches", the scheduleraccounts the actual cost of each transaction in arrears and uses a credit schemebased on \leaky-buckets" to rate-control each stream. To support best-e�ortI/O, the scheduler also maintains an estimate of the remaining slack-time in thesystem and distributes this in the form of additional credits between all clientswith pending I/O transactions.In order to ensure that it is possible to deliver the QoS guarantees of eachstream, it is necessary to modify the admission-control policy to take account ofthe likely seek overheads incurred by multiplexing between the various streams.Although this requires that worst-case seek overheads be assumed,9 useful guar-antees of minimum bandwidth may still be made, and this does not prevent theentire bandwidth of the disk being available in situations where worst-case over-heads are not realised. A single client may read or write directly to the disk atthe maximum rate supported by the physical drive.A more sophisticated approach to QoS directed disk-head scheduling couldpotentially provide each client with a seek budget allowing an additional numberof seek operations in each period as part of the QoS contract. Any seeks over thisbudget would necessarily be performed using best-e�ort resources. This wouldbe useful for DBMS style applications with non-sequential access patterns, or forsupporting paging in a virtual memory system.9An estimate may be cheaply calculated using the bandwidth guarantee periods and extentsizes of each client. 107
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Figure 7.7: RSCAN Scheduler Trace7.6.2 EvaluationFigure 7.6.1 shows a 20 second trace obtained from the RSCAN scheduler. Thetrace shows two clients, C1 and C2, attempting to use the device simultaneously.Client C1 has been guaranteed 80% of the device bandwidth, whilst C2 has noguarantee and is relying entirely on best-e�ort bandwidth. Initially C1 obtainsalmost 100% of the disk bandwidth. At time T1, C2 begins making I/O requestsand the non-guaranteed bandwidth is shared approximately equally between C1and C2. At time T2, C1 completes its I/O and the entire bandwidth is availablefor best-e�ort clients. The small gaps in the trace are caused by conservativebehaviour of the RSCAN algorithm in the presence of both guaranteed bandwidthand best-e�ort tra�c.Despite the simplistic approach, the USD is able to provide useful QoS guar-antees between clients without discarding the protection traditionally providedby �le-system code. This bene�t is achieved at the expense of some performance.If it were possible to embed a scheduler in the drive itself, or if the SCSI buswere replaced with a more tightly-coupled disk interface (e.g. SSA [Deming95])then it would perhaps be possible to achieve the same goals whilst sacri�cingsigni�cantly less in the way of performance.
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dev/USD: DAM: The user-safe disk device driver describedin section 7.6.sys/EFS: DMM: The EFS server.C1, C2: Two client domains liked against the lib/EFSshared library to provide a traditional higher level�le system abstraction.Figure 7.8: The EFS File System7.7 DMM: The EFS File SystemIn order to make e�ective use of the USD device it is also necessary to manageboth disk space usage and allocation of disk bandwidth. The DMM functionsfor the disk device are traditionally part of a �le system. As a demonstrationof the exibility of the Nemesis I/O architecture is was decided to implement aprototype �le system which could equally well support conventional, multimediaand DBMS applications. The EFS �le system was written for this purpose.EFS is a simple extent-based �le system, but implements only the out-of-band �le system functions. Files are comprised of a number of extents which are109



Source: fs.tex DRAFT of 11:06, June 28, 1996used to control the extent-based protection provided by the USD. EFS uses thesame disk layout and meta-data format as CMFS [Jardetzky92], but the in-banddata-path operations are provided entirely by the USD.An architectural overview of the system is shown in �gure 7.8 together witha brief description of the various Nemesis domains involved. The EFS serveris responsible for maintaining the meta-data associated with each �le. This isperformed in exactly the same manner as for a traditional �le system. The �le-system server ensures that it is the only domain permitted to update �le meta-data, which is cached in memory in order to reduce the latency of out-of-bandoperations.10Clients interact with the EFS using an unprivileged RPC interface whichsupports all of the out-of-band control operations of a traditional �le-system(EFSClient.if). This interface is used to create, destroy, open and close �lesand to read the �le meta-data. Files are named using unique identi�ers from asingle at name-space, although a directory service may easily be built on top ofthis name space [Lo93].Opening a �le for read or write causes the EFS server to invoke the USDcontrol interface and obtain an IDC o�er for an Rbufs channel. This o�er isreturned to the client who may bind to the o�er creating an I/O stream connecteddirectly to the USD device. Updating the data contained in a �le is achieved bysending read or write requests on the Rbufs connection. These I/O transactionsare serviced sequentially at a rate determined by the QoS associated with theconnection.An attempt to access an area of the disk for which the permissions are notin the USD driver's per-stream cache causes the �le-system to be upcalled. The�le-system uses information supplied by the USD to determine the client's per-missions for that area of the disk. If the attempted access lies within an extentbelonging to the �le then that extent is recorded in the USD cache and the accessis permitted.Files are extended by adding a new extent. The size of this extent may varydepending on the type of data the �le contains. Multimedia �les typically uselarge extents to minimise the overheads of checking access rights during I/O. Asa rough guide, the extent size chosen should be comparable to the granularity at10In unix �le system traces, stat operations account for a large proportion of requests.110
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EFSClient : LOCAL INTERFACE =NEEDS USD;NEEDS IDCOffer;BEGINNoSuchFile : EXCEPTION [];Failure : EXCEPTION[];PermissionDenied : EXCEPTION [];FileID : TYPE = LONG CARDINAL;-- Files are named by a 64-bit identifier.Create : PROC [ perms : CARDINAL,extentsize : CARDINAL ]RETURNS [ id : FileID ];RAISES Failure;-- Creates a new file with permissions "perm" and given extent-- size. The file may be referred to by the identifier "id".Delete : PROC [ id : FileID ]RETURNS [ ]RAISES NoSuchFile, PermissionDenied;-- Deletes the file with the identifier "id".Stat : PROC [ id : FileID ]RETURNS [ owner : CARDINAL,mode : CARDINAL,type : CARDINAL,size : CARDINAL,time : CARDINAL ]RAISES NoSuchFile;-- "Stat" returns the owner, mode, type, size and time-- associated with the file "id".Chmod : PROC [ id : FileID,mode : CARDINAL ]RETURNS [ ]RAISES NoSuchFile, PermissionDenied;Open : PROC [ id : FileID,mode : USD.Mode,qos : USD.QoS ]RETURNS [ usdio : IREF IDCOffer ]RAISES NoSuchFile, PermissionDenied;-- Opens the file specified by "id" for either read or write.-- Returns an offer for an "IO" connection to the USD.Grow : PROC [ id : FileID ]RETURNS [ e : USD.Extent ]RAISES NoSuchFile;-- Adds another extent to the specified file.Close : PROC [ id : FileID ] RETURNS [ ];-- Close the specified file.END. Figure 7.9: Middl for EFS interface (EFSClient.if).
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Source: fs.tex DRAFT of 11:06, June 28, 1996which I/O is expected to be performed.117.7.1 DiscussionThe EFS design allows �les to be used for a number of purposes. The asyn-chronous nature of disk I/O allows applications to perform appropriate amountsof read-ahead and avoids the problem of the �le system being required to reverse-engineer the behaviour of the application.Should an application desire, it would be perfectly possible to run a log-structured �le system in a �le over EFS with a guaranteed proportion of thedisk I/O bandwidth.7.8 SummaryFile system designs have been heavily inuenced by the programming environ-ment of operating systems such as unix. In such operating systems, where the �lesystem is often used for inter-process communication, a log-structured �le systemcan provide signi�cant advantages over the more conventional block-structuredapproach. This is both due to the reduced frequency of storage allocation andthe sequential disk access patterns.Due to their ability to achieve 100% utilisation for disk writes, it has becomecommon to use such a �le system for recording of CM data. Simultaneous play-back of a number of CM streams still requires the disk head to be moved and theonly bene�t of the �le system layout is to increase the likelihood of contiguousplacement of �le data. An extent-based �le system provides exactly the samebene�ts.The majority of multimedia �le systems have been implemented as dedicatedCM servers and support a stream abstraction rather than the more traditional�le abstractions of general purpose �le systems. This amounts to communicating�le access patterns to the �le system which is then able to schedule I/O usingglobal knowledge of the future behaviour of all clients.A low-level disk abstraction has been presented can provide the same QoS11The CMFS �le system performed low level disk I/O in units of an extent.112



Source: fs.tex DRAFT of 11:06, June 28, 1996guarantees as stream based CM �le servers, but without the oversimpli�ed andrestrictive interface. The device abstraction module implements protection andtranslation at a low level using a per-connection cache to minimise the numberof interactions with the device management module.An extent-based �le system is described which uses the protection a�orded bythe device driver to determine the areas of the disk to which each client has access.Clients of the �le system may use application speci�c storage management policiesand access patterns whilst receiving the bene�ts of guaranteed I/O performance.
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Chapter 8
Conclusion
This dissertation has presented an architecture for device drivers in a multi-serviceoperating system which is designed to meet the demands of applications handlingtime-sensitive media. This chapter summarises the work and its conclusions, andmakes suggestions for further areas of study.8.1 SummaryChapter 2 presented the background to this work, including a brief descriptionof the Cambridge environment, and the local inuences on this work. The chap-ter then discussed two properties of continuous media which must inuence thedesign of a multi-service operating system. The temporal property requires theability to cope with high volumes of time-sensitive data. The operating systemmust therefore be able to provide applications with �ne-grained guarantees onthe availability of processing and I/O resources. The informational propertymeans that applications can often adapt to lower levels of resources and thatsoft-guarantees are therefore su�cient.A discussion of operating system architectures was presented which concen-trated on their e�ectiveness for providing Quality of Service guarantees. Thecomplexity of resource accounting, and the inevitability of QoS-crosstalk in tra-ditional operating systems makes them unsuited to the general-purpose process-ing of CM data types. Attempts to extend such operating systems to supportmultimedia applications have been both inelegant and narrow in focus. Vertically-structured operating systems do not su�er from the above problems and provide114



Source: conclusion.tex DRAFT of 11:06, June 28, 1996a framework where QoS-guarantees can potentially be provided for all operatingsystem resources.Chapter 3 presented the design and prototype implementation of the Nemesisoperating system. In Nemesis, the majority of operating system services are im-plemented within the protection and accounting domain of the client application,with only the minimum functionality in servers. This approach enables accurateand direct accounting for resource usage and enables meaningful QoS guaranteesto be provided at the lowest levels.The prototype provides a number of mechanisms which are intended to sup-port the operation of device drivers. Of particular importance are the decouplingof hardware interrupts to enable device drivers to be scheduled as conventionalprocesses, and the Rbufs data transport mechanism which e�ciently supportsasynchronous inter-process communication of high-bandwidth data. Nemesis, aspresented however, provides no guarantees other than processor bandwidth.Chapter 4 discusses the problem of scheduling hardware I/O resources. Con-ventional workstations are constructed using a hierarchical bus architecture. Themajority of bus implementations do not provide any software means of inu-encing the arbitration mechanism, or controlling background DMA activity bybus-mastering devices. These problems are exacerbated by the use of hierarchicaltopologies. Even if such facilities existed, it is argued that device I/O must bescheduled on a per-connection basis rather than a per-device basis.Alternative workstation architectures are discussed which address the prob-lem of scheduling I/O resources to minimise QoS-crosstalk. The use of channelcontrollers in mainframes provides much of the required functionality, but atthe expense and inexibility of replicated I/O hardware. DAN-based worksta-tions use a connection-oriented interconnect and support peer-to-peer transfers.Devices for such a workstation may use the connection identi�er to implementprotection and scheduling mechanisms in hardware | these are referred to asUser-Safe Devices. In such a system, scheduling of devices, the processor and theinterconnect may be closely integrated.Chapter 5 presented the Nemesis Device Driver Architecture. The architec-ture provides a clear separation of control- and data-path operations and requiresdevices to be abstracted at a low level where accounting and scheduling of re-source usage is most e�ective. Network interfaces and network-connected periph-erals often provide a hardware abstraction which is highly appropriate for thisarchitecture. 115



Source: conclusion.tex DRAFT of 11:06, June 28, 1996Chapter 6 considered the example of the framebu�er device. Framebu�ers re-quires �ne-grained sharing mechanisms, and are usually abstracted at a high levelusing a window system. This approach makes the provision of QoS-guaranteesextremely di�cult. Techniques are presented for abstracting the device at a muchlower level than in a conventional system. These include a �ne-grained protectionmechanism and an extension to Nemesis which allows device driver code to beinvoked by clients in a restricted environment, thereby aiding resource accountingfor devices which do not support DMA.The framebu�er driver is used to construct a window system where all render-ing is performed by the client, and updates to the framebu�er are performed in aprotected fashion at a rate determined by per-connection QoS parameters. Thesystem is demonstrated to provide useful QoS guarantees and remove applicationQoS-crosstalk.Chapter 7 presented techniques for restructuring the �le system so as to pro-vide QoS-guarantees. Disk drives have a number of features which make theirabstraction di�cult. As with the framebu�er, �ne-grained sharing is necessary.In addition, mechanical timing constraints of the device mean that scheduling isnecessarily a compromise between predictability and performance. A disk headscheduling algorithm was presented which, unlike conventional algorithms, doesnot solely attempt to maximise throughput, but instead respects QoS-guaranteesof individual clients.The disk device driver is used to implement the data-path operations of aprototype extent-based �le system with per-connection QoS guarantees. The �lesystem permits application speci�c optimisation of storage allocation and �leaccess patterns.It is the thesis of this dissertation that, given an operating system whichsupports Quality of Service, such as Nemesis, it it possible to construct a softwarearchitecture for converting conventional devices into User-Safe Devices providingQoS guarantees to applications. This dissertation supports the above thesis byexhibiting such an architecture and presenting implementations for a number ofparticularly troublesome devices | the fb/WS and usd/EFS combinations.
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Source: conclusion.tex DRAFT of 11:06, June 28, 19968.2 Further WorkThe implementation of Nemesis described in this dissertation is a prototype writ-ten to enable investigation of operating system research ideas. It currently doesnot have a Virtual Memory (VM) system, and the window system and �le sys-tem presented in this dissertation are intended mainly as proofs of concept. ThePegasus II project in the Computer Laboratory plans to produce a more robustNemesis implementation on new platforms (including Pentium PCs), including anative Nemesis-style protocol stack, window system and �le system.Using the User-Safe Disk abstraction of chapter 7, and a driver providing pagesof physical memory, it should be possible to construct a VM system for Nemesiswhere applications are responsible for performing their own paging to disk. Sucha VM system would allow �ne control over the amount of physical memory anddisk bandwidth dedicated to each application, e�ectively being able to guaranteea maximum page-fault rate. Domains would also be free to implement whateverpaging strategies best suited their requirements.So far, Nemesis provides only the low-level mechanisms required for Qualityof Service. High level system-wide resource allocation and admission control hasyet to be implemented. In Nemesis, this is the task of the QoS Manager domain.The operation of the QoS Manager and the interface it presents to the user arestill an open issue.An unexpected bene�t of the Nemesis approach to resource managementis that the operating system has potentially become amenable to mathemat-ical analysis. The unpredictability introduced by features such as the priority-feedback scheduler used in many unix implementations is no longer present. TheMeasure project [Measure95] is investigating call-admission control for ATM net-works based on estimation of tra�c entropy by on-line measurement. A morespeculative aspect of this project is the investigation of QoS admission control inNemesis using the same techniques.
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