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Abstract. Programmable Logic Controllers (PLC) are widespread in
the manufacturing and processing industries to realize sequential proce-
dures and to avoid safety-critical states. For the specification and the
implementation of PLC programs, the graphical and hierarchical lan-
guage Sequential Function Charts (SFC) is increasingly used in indus-
try. To investigate the correctness of SFC programs with respect to a
given set of requirements, this contribution advocates the use of formal
verification. We present two different approaches to convert SFC pro-
grams algorithmically into automata models that are amenable to model
checking. While the first approach translates untimed SFC into the input
language of the tool Cadence SMV, the second converts timed SFC into
timed automata which can be analyzed by the tool Uppaal. For differ-
ent processing system examples, we illustrate the complete verification
procedure consisting of controller specification, model transformation, in-
tegration of dynamic plant models, and identifying errors in the control
program by model checking.
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1 Introduction

A large part of the control software of processing and manufacturing systems
performs logic and supervisory control. Logic control is characterized by the re-
action of the controller to events generated by the plant (e.g., a relevant quantity
exceeds a threshold), and the controller selects one out of finitely many control
actions. The two major objectives of such controllers are (a) the realization of
sequential procedures, as for example to establish a given sequence of production



steps, and (b) to ensure a safe operation of the plant. The latter may involve to
initiate an emergency routine if a malfunction or a deviation from the desired
operation is detected.

While many industrial logic controllers are still implemented in the languages
instruction list, ladder diagram, or continuous function charts [1], the so-called
Sequential Function Charts (SFC) become increasingly important and accepted.
By using SFC, which are standardized according to [2], the control logic can
be specified in an intuitive way. Sequential, parallel, and nested procedures are
represented graphically, and subfunctions given in any of the other languages
listed above can be embedded. Irrespectively of the language chosen to model the
controller, the correctness with respect to the intended behavior of the controlled
system is, of course, crucial. This is most apparent for safety specifications, i.e.,
the objective of the logic controller is to prevent that the plant runs into a
state which is harmful for the personnel, the equipment, or the environment of
the plant. While it is industrial practice to rely on extensive testing to check
that the controller is correct, academia has intensively studied the technique of
formal verification for this purpose. It performs a manual or algorithmic proof
that a logic controller complies with a set of formal requirements and has been
investigated in, e.g., [3–6]. From the various known verification techniques [7],
we focus on model checking [8] which (partially) computes the reachable set
of a state-transition model and evaluates if a formal requirement expressed in
temporal logic holds for this set.

In order to apply model checking to controllers given as SFC, the latter first
have to be translated into a state-transition model. The approach in [9] uses
Petri-Nets as the target format while the methods in [10, 11] transform the SFC
into automata and apply model checking afterwards. This contribution follows
the latter approach and describes three important extensions:

(a) We explicitly account for the cyclic operation mode of the hardware on
which logic controllers are usually executed, i.e. of Programmable Logic Con-
trollers (PLC). Each cycle of this mode consists of a scanning step (in which the
inputs from the plant are read), the step of executing possible transitions of the
SFC, and finally writing the outputs to the plant.

(b) We present transformation schemes to convert SFC into the input lan-
guage of two different tools for model checking. The first scheme is applicable
to SFC without real-time quantifiers. Such charts are transformed into the in-
put format of the tool Cadence-SMV [12] which is known to be efficient for
large finite-state automata [13]. The second approach considers real-time speci-
fications of the control program by transforming the SFC into timed automata
using a procedure based on graph grammars. To verify timed automata, the tool
Uppaal is applied [14].

(c) For processing and manufacturing systems, many requirements are usually
formulated for the controlled plant, i.e., it is not sufficient to consider only a
model of the controller for verification, but one has also to consider the plant
behavior. For the two approaches listed above, we describe how an appropriate
model of the plant behavior (specified either as a finite state automaton or a



timed automaton) can be used to verify whether the controlled plant shows the
intended behavior.

2 Verification Objectives and Modeling Alternatives

Figure 1 summarizes our overall design procedure for logic controllers: The con-
troller is constructed as an SFC in a manual design procedure in which a spec-
ification of the control goals and the expected plant behavior are taken into
consideration. This step involves to formulate a sequence of control actions that
realize the goals given an intuitive understanding of how the plant reacts to these
actions. Depending on whether the controller includes timed actions, the SFC
is translated into a finite state automaton (FSA) or a timed automaton (TA).
The analysis tool (optionally) composes the controller with a formal model of
the plant and checks the validity of a formalized representation of the require-
ments. The plant model is also represented as FSA or TA, depending on whether
quantitative time is relevant for the analysis task. If the analysis reveals that
the requirements are met, the SFC can be transferred to the PLC. A violation
of the requirements may either be due to a wrong controller design (i.e., the
SFC has to be modified) or to an insufficiently detailed plant model (i.e., a less
conservative one has to be employed).

In order to illustrate the choice of a plant model and a typical set of require-
ments, we consider the simple processing system shown in Fig. 2: The plant
consists of two tanks T1 and T2 with heating devices H1 and H2, a condenser
C1, a pump P1, four on-off valves V1 to V4, and sensors for monitoring if thresh-
olds for the liquid levels (LI ), the temperature (TI ), the concentration (QI ), and
the flow (FI ) are exceeded. The nominal operation of this system (and thus a
control goal) is as follows: T1 is first filled through V1 with a liquid that contains
a dissolved substance. The liquid is heated up in T1 by the heater H1 until the
boiling point is reached. By further supplying heat, a certain amount of solvent
is evaporated until the concentration of the liquid has reached a desired concen-
tration. During the evaporation, vapor is condensed in C1 which is cooled by a
cooling agent that is supplied through V4. When the evaporation is finished, the
liquid is transferred from T1 into T2 through V2. This procedure is repeated
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Fig. 2. Flowchart of an evaporator system.

twice until T2 is filled with three batches from T1. The content of T2 (the
product) is then pumped out of T2 through P1, and afterwards the complete
operation can start again. In addition, two disturbance scenarios are considered,
an appropriate handling of which constitutes two further control objectives: (a)
In the event of a cooling failure (detected by FIS101 ) the evaporation is stopped
after a short period of time (to avoid overpressure) and, if the concentration goal
is not reached by then, the content of T1 is disposed through V3. (b) In the
event of a heating failure, T1 is also emptied immediately through V3, since
the process control goal cannot be achieved in any case. In both cases the nom-
inal operation should be resumed when the faulty devices have been repaired or
replaced.

A possible SFC controller as a result of manual design is shown in Fig. 3.
Each step is denoted by a rectangle and a step identifier (S0 is the initial step).
The transition between two consecutive steps (marked by a bold horizontal line)
carries a condition given as a Boolean expression. If the latter evaluates to true,
the transition can be taken and the following step becomes active. The vari-
ables that occur in the conditions are either input variables (i.e., their values
represent information received from the plant) or internal variables (e.g. count).
The actions assigned to the steps are specified in action blocks by a qualifier
and a Boolean variable. The variables that are manipulated by action blocks
are either internal or output variables. The latter represent the control actions
that are transmitted to the plant. The two branches enclosed by the horizontal
double lines represent simultaneous operations, where the left branch accounts
for the nominal operation and the right one for the failure scenarios. In Sect. 3,
the syntax and semantics of SFCs is described in more detail, and Sect. 5 con-
tains a description of how the SFC in Fig. 3 realizes the desired operation of the
evaporator.
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Fig. 3. SFC-controller for the evaporation system.

For systems like the controlled evaporator, the verification usually aims at
checking requirements that are of the following type: (a) it has to be checked
whether the controller indeed realizes the desired production sequence; (b) safety
guidelines imply that unsafe states (as a maximum or minimum temperature in
T1 ) are never reached, and (c) the SFC must never be deadlocked. The first two
requirements can obviously only be checked if a plant model is employed that
represents the behavior of quantities like levels, temperatures, and concentra-
tions. The last requirement should be checked for arbitrary values of the input
variables, i.e., a plant model is not required for (c). Section 5 describes the ver-
ification of the first two requirements for the evaporator system, while Sect. 3
deals with the structural analysis of SFC.

3 Analysis of Untimed SFC Programs

This section describes the algorithmic verification of SFC programs without time
quantifiers using the model checker Cadence SMV (CaSMV). While the method
proposed in Sect. 4 is, of course, also applicable to untimed SFC, we deem it
preferable to use CaSMV in this case due to the known efficiency of symbolic
model checking for untimed models.



3.1 The SFC Language and Semantics

Sequential function charts are described in the IEC 61131-3 standard [2] as
elements of a graphical programming and structuring language for PLCs, and
the syntax and semantic is formally defined in [15]. For an SFC S, this syntax
introduces the symbol S for its sets of steps with an initial step s0 and a function
block which assigns a set of action blocks to each si ∈ S. An action block is a pair
(a, q), where a is an action name and q is one of the following action qualifiers.
We only consider the untimed action qualifiers N (non-stored), R (reset), S (set
or stored), P1 (pulse, rising edge), and P0 (pulse, falling edge) in this section.
While non-stored actions are active only when its corresponding step is activated,
stored actions continue being active until a reset action is executed. Actions with
the pulse qualifier are performed only once when entering (P1) or exiting (P0) a
step. If the action name is a Boolean variable, the variable is true if the action is
active and false otherwise. Action qualifiers control the activity of the respective
action depending on the activity of steps. We assume that the SFC operates only
on Boolean variables. Action names refer to a Boolean variable, a subordinated
SFC (thus enabling nested or hierarchical structures) or programs written in one
of the other programming languages defined in the standard.

The execution of SFC is described by evolution rules similar to the firing rules
of Petri nets considering the cyclic operation of PLC as mentioned in Sect. 1, i.e.
the actions are executed first in each cycle, and the guards are evaluated and the
enabled transitions are taken afterwards. In general, the actions are executed in
a fixed order given either explicitly or implicitly. Whenever a nested SFC gets
deactivated, its enabled transitions are still taken in that cycle, but then the
nested SFC becomes inactive and its current location is marked as a history
step from which the executions resumes if this SFC is activated again. All steps
that are “active” in a cycle (meaning that their actions are executed) are called
active steps. The union of history steps and active steps is called ready steps.
The actions which are potentially executed in a cycle are called active actions
and the ones which have been activated by an S-qualifier and which have not
yet been reset are called stored actions.

The formal operational semantics for SFC according to [15] is based on con-
figurations describing a system state as follows:

Definition 1 (Configuration). A configuration of an SFC and its sub-SFC is
a 5-tuple (σ, readyS , activeS , activeA, storedA), where σ is the state (i.e., a func-
tion assigning a value to each variable), and readyS denotes the set of ready steps,
activeS the set of active steps, activeA the set of active actions, and storedA the
set of stored actions.

Such a configuration is modified within a PLC cycle as follows: (1) get new
input from the environment and store the information in σ; (2) execute the
set activeA of active actions and update σ accordingly; (3) determine readyS ,
activeS , activeA, and storedA; (4) send the outputs to the environment by ex-
tracting the required information from the new state σ.

For each cycle the new active steps are the old ones plus the targets of the
taken transitions, but without their source steps. Moreover, the new active steps,



active actions, and stored actions are computed recursively on the structure of
the SFC [15]. The semantics of an SFC is given by its possible set of configuration
sequences. A configuration sequence consists of a possibly infinite number of
transformations of configurations, where each PLC cycle corresponds to one
transformation.

3.2 Translation to CaSMV

CaSMV [12] is a symbolic model-checker [16, 17, 8] which supports the algorith-
mic verification of temporal logic properties of Kripke structures. The transition
relation of a Kripke structure is expressed in CaSMV by evaluation rules depend-
ing on the current and the next state of each system variable q (q and next(q)
in CaSMV notation). In order to translate an SFC to CaSMV, we mimic the
transition relation on a configuration of the SFC semantics. We initially assume
that each action changes an output variable—in this case, an explicit ordering
of the actions is not necessary since actions do not share output variables. We
also start without an explicit order of transitions which allows us to additionally
check for conflicting transitions automatically. Later we show how to extend this
framework by embedding orders on transitions and actions resulting in a deter-
ministic execution model. This enables us to deal with more complex actions
and situations where a variable is modified by more than one action.

Data Structure of the CaSMV Module. A system modeled in CaSMV can
be composed from components called modules. One module describes the SFC
and its actions, and further modules may describe the environment or parts
thereof. The translation from a system of SFC into a CaSMV module requires
the following Boolean variables:

– ready si for each step si, i.e., one variable for each step of the top level SFC
and the subordinated ones. These variables model whether the respective
step is ready, i.e. the step is active or control resides in it and waits to
resume.

– guardi for each guard gi. This variable represents the transition condition
and is in general a Boolean expression formulated over program variables
and input variables inputi (e.g., process variables from the plant to be con-
trolled) and the activity of steps step.Xi, where, e.g., step.X1 evaluates to
true whenever step s1 is active.

– active ai for each action ai. This variable is introduced to code whether an
action is active or not. This action can be an SFC itself.

– stored ai for each action ai, which indicates if an action is currently stored,
i.e., it has been activated in the current or a previous step by an S qualifier.

A CaSMV module has input parameters for each Boolean input variable of
the SFC program. The behavior of the input variables is a-priori chaotic, i.e.,
they might take any possible value, unless not otherwise specified. This allows
to check the SFC program as an open system. Any restrictions on the behavior



of input variables can be modeled in an additional CaSMV module representing
the environment.

Evolution of State Variables. Next we define how to code the transition
relation on the variables defined above. This is of special interest for the activity
of actions, which are tagged by qualifiers. Therefore, we explicitly define the
next-state of all variables, except for guards and input variables, since inputs
are provided by the environment and the truth values of guards are determined
by the evaluation of the Boolean expressions which they represent.

Ready steps. The ready variable ready si of a step si is true if and only if there
is a transition taken into si or it is already true and there is no transition taken
leaving si. Inside a nested SFC, transitions can only be taken if the nested SFC
itself is active. In detail, for a nested SFC given by an action ak, the variable
ready si for each step si of ak can only be changed if active ak holds.

Active actions. The value of active ak for the activity of an action ak de-
pends on the activity of the steps sj with (ak, q) ∈ block (sj), and the quali-
fier q tagged to ak. The expression for determining next(active ak) is defined
by (act N steps∨ act S steps∨ act P1 steps∨ act P0 steps∨ stored ak) ∧
¬act R steps where

– act N steps =
∨

{sj | (ak,N)∈block(sj)}(next(ready sj) ∧ next(active al)),
– act S steps =

∨
{sj | (ak,S)∈block(sj)}(next(ready sj) ∧ next(active al)),

– act P1 steps =
∨

{sj | (ak,P1)∈block(sj)}(¬ready sj ∧ next(ready sj)),
– act P0 steps =

∨
{sj | (ak,P0)∈block(sj)}(ready sj ∧ next(¬ready sj)), and

– act R steps =
∨

{sj | (ak,R)∈block(sj)}(next(ready sj) ∧ next(active al)).

(In the definitions above, al denotes the SFC to which sj belongs.)
Thus, an action will become active if one of the following conditions hold:

the step with which the action is associated becomes active and the action itself
is tagged with the qualifier N or S; a step the action belongs to will be entered
in the next cycle and the action is tagged with the qualifier P1; the step the
action belongs to is active and will be inactive in the next cycle and the action is
tagged with the qualifier P0, or the action is a stored one (see below). Resetting
an action always has higher priority and, thus, will in any case deactivate ak.

Stored actions. The value stored ak is set to true if one or more steps where ak

is associated to are active and ak is tagged with an S qualifier and there is no
matching reset. It is set to false, whenever a matching reset action is called. Thus
the next value of stored ak is defined by next(stored ak) = (act S steps ∨
stored ak) ∧ ¬act R steps.



Initialization. The initial ready step s0 of the top-level SFC is initialized to true,
denoting that this step is active at the beginning. All other steps are initially
set to false. For reasons of simplicity, we assume that the initial step of the top
level SFC contains no nested SFC. This does not limit the set of SFC that can
be translated, because each SFC can be transformed into one that meets this
constraint. Furthermore, all variables encoding that an action is active or stored
are initially false .

Extension to Orders on Actions and Transitions. The translation pre-
sented above does not consider orders on actions and on transitions. Further-
more, it only works for actions which map their activity to an output variable.
However, this approach can be extended to consider orders on transitions and
actions. To take the order on transitions into account we modify the guards of
the transitions such that there are no more conflicts. This can be done statically
by adding constraints such that a transition is enabled if and only if its guard
holds and no other higher-priority transition which shares at least one common
source step is enabled.

To consider more complex actions which make it necessary to deal with the
order on actions we introduce a new CaSMV variable outputi for each output
variable which is modified by more than one action. Each of these new variables
is modified in a micro-cycle by all actions which access this output variable,
while using the correct action ordering. Furthermore, we need a global cycle for
the synchronization of all micro-cycles and for the execution of the remaining
actions as described above.

3.3 Example: Application to a Chemical Plant

The presented approach is applied to a batch laboratory plant in which two
products are simultaneously produced from three raw materials in three reactors
[18]. We focus here only on the production of one product in one of the reactors.

Process and Control Program. Figure 4 shows the reactor T3 used to form
the product C from two raw materials, referred to as A and B. The tanks T1

and T2 are used as buffers for A and B, and they are filled through the valves
V1 and V2. The production procedures starts by filling A into T3 through V3,
and afterwards the contents of T2 are filled into T3 through V4. B immediately
reacts with A to C, and the product C can be withdrawn through V5 for further
processing. The vessels are equipped with sensors LIS+ and LIS− for detecting
that upper and lower threshold for the liquid levels are crossed. T3 is additionally
equipped with a stirrer M.

Figure 5 contains a control program consisting of a top-level SFC which
triggers the following three parallel processes: (a) filling T1 with A given by
action a1 in step s2, (b) filling T2 with B given by action a2 in step s5, and (c)
reaction in T3 and emptying T3 given in step s7 as action a3. The action a3 is
given as a separate SFC. Due to conflicting processes, such as “empty contents
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of T1 into T3” (a sub-step of a3) and “fill T1 with A”, the waiting steps s1, s4

and s10 are included to ensure that certain conditions (given as guards) hold
before the processes start. Apart from a3, the actions are very simple since the
activity simply determines the value of an output variable, e.g., V1 is open as
long as a1 is active.

Translation to CaSMV. The translation of the control program into CaSMV
code follows directly from the definitions in Sect. 3.2. Figure 6 shows two ex-
amples for defining the transition relation on state variables, where the CaSMV
code contains the symbols ‘&’, ‘|’, (and ‘!’) denoting the logical ‘and’, ‘or’ (and
‘not’). The step s12 of the nested SFC will become ready if the preceding step
s11 is currently ready, the SFC it is nested in is active, and the guard “LIS− 1”
of the transition connecting these two steps will evaluate to true. On the other
hand, step s12 will become inactive, if it is currently ready, its SFC is active
and the outgoing transition condition will hold. In any other case, s12 keeps its
current value. The action a5 will become active if either s11 is active (i.e., s11 is
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default next(readyS_s12) := readyS_s12; in case{

(readyS_s11 & next(LISminus1) & activeA_a3) : next(readyS_s12) := 1;

(readyS_s12 & next(LISminus2) & activeA_a3) : next(readyS_s12) := 0;}

default next(activeA_a5) := 0;

in case{

next(readyS_s13) & next(activeA_a3) : next(activeA_a5) := 0;

(next(readyS_s11) & next(activeA_a3)) | next(storedA_a5) :

next(activeA_a5) := 1;}

default next(storedA_a5) := storedA_a5;

in case{

next(readyS_s13) & next(activeA_a3) : next(storedA_a5) := 0;

next(readyS_s11) & next(activeA_a3) : next(storedA_a5) := 1;}

Fig. 6. CaSMV code fragments for the SFC a3

ready and a3 active) or a5 is stored and s13 is not active. In any other case, a5

will be inactive. Furthermore, a5 is stored if s11 is active, and a5 is not stored if
it is reset in s13.

Specification of Verification Tasks. The translated SFC is checked for the
following properties: (a) reachability of each step to ensure that the SFC does
not contain unused code; in CaSMV the corresponding CTL specification is for a
step si: SPEC EF si , i.e., there exists an execution path by which si is eventually
reached; (b) the absence of deadlocks by checking that each run by which si is
reached can be extended such that si is reached once more: SPEC AG (AF si );
and (c) plant specific requirements: For batch plants, the conflicting allocation
of equipment by different production steps is often important; e.g. the steps
“emptying contents of T1 into T3” and “filling T1 with A” are in conflict since
they compete for tank T1. Therefore, it has to be verified that each piece of
equipment is exclusively used by one process at a time. As an example, we check
for tank T1 that the valves V1 and V3 are never open at the same time, specified
by: SPEC AG !(V1 & V3).

The verification tasks presented here are independent of a specific environ-
ment, they reason about the control software only. In order to verify, e.g., that
there is no overflow in a tank, parts of the plant and the environment have to
be included into the model and have to be checked in combination with the
controller.

Verification Results. All verification tasks presented above are checked within
a fraction of a second on a Sun UltraSPARC 1. This is not surprising, since the
model is still of small size and for illustration purpose only. It is verified that
every step is reachable and there are no deadlocks. We also verified that the
tanks T1 and T3 are never filled and emptied at the same time. However, tank



T2 does not fulfill this requirement. The counter trace produced by CaSMV
shows that both valves V2 and V4 may be open simultaneously. This happens
because when entering step s5 it is only required that step s12 is not active (NOT
s12.X), i.e., that filling T2 does not start if it is already in the emptying phase.
However, when entering s12 there is no condition that checks if the tank is still in
the filling phase. Hence, the verification detected a flaw in the control program
which is not obvious to see, and the counter trace helps to see why it happened
and how to prevent it.

4 Model checking of timed SFC

In timed SFC, time specifications in the transition conditions and actions have
to be considered. Timed action qualifiers can be recognized by the letter D for
delayed actions and L for time-limited actions. Both can be combined with the
“set” qualifier S. [2] defines five timed qualifiers: L, D, LS, SD, and DS. Timed
transition conditions contain inequality expressions that compare a timer vari-
able with a real-valued expression. In most cases, timer variables reference step
timers which store the time elapsed since the corresponding step was activated
the last time. Step timers are denoted by the step name extended with the suffix
“.T”. Finally, the PLC cycle itself affects the timed behavior of an SFC.

4.1 Timed Automata and Uppaal

In order to check the timing properties of a given SFC, it has to be transformed
into a formalism that enables appropriate timed analysis based on automatic
verification software. The timed automaton (TA) formalism satisfies this require-
ment and is used here. The graphical representation of TA consists of nodes that
are called locations, and directed arcs that represent the discrete transitions [19].
The current state of a timed automaton is given by the current location together
with the valuation of integer and clock variables. The valuations of all clock vari-
ables grow with the same rate corresponding to the progress of time; the only
way to influence a clock variable is to reset it to zero by a transition assignment.
Informally, the semantics of a TA can be understood such that (i) the TA can
stay at most as long in the current location as an invariant (a condition for the
clock values) is satisfied, (ii) a transition can be taken when a condition for the
clock values called guard is fulfilled, and (iii) a transition can reset clocks.

We refer to the specific form of TA used within the verification tool Uppaal
[20, 21]. In the Uppaal language, a model consists of a collection of timed au-
tomata that can communicate via shared variables and channels. Channels are
used to synchronize the processes, i.e., certain transitions of different automata
can be forced to be taken synchronously. The channels have to be declared glob-
ally and are referenced in the synchronization labels of those transitions that
are synchronized. In the synchronization label the name of the channel has to
be followed either by an exclamation mark or by a question mark, indicating a
sending or receiving role of the transition. Only two transitions can synchronize



at a time using a binary channel. For this, one transition has to be sender and
the other has to be receiver on the same channel. Non-deterministic situations
occur when several senders and receivers may use a channel at the same time.
Other elements specific to Uppaal such as broadcast channels, urgent locations
and committed locations will be explained in the context of the representation
of SFC. For a formal definition of the Uppaal language we refer to [19, 22].

4.2 Representation of SFC in Uppaal

The Uppaal tool includes a graphical user interface for modelling TA and for an
interactive animation of the behavior. To make use of these features in verifying
SFC programs, it is necessary to convey the structure of the SFC as far as
possible to the TA domain, thus to enable the user to identify certain SFC
components in the TA model. In the case of an SFC without parallel branches,
as shown in Fig. 7(a), the complete structure of steps and transitions can be
reproduced by the locations and the transitions of a single automaton. This
even applies to complex SFC including nested loops and alternative branches.
However, parallel branches as shown in Fig. 7(b) cannot be represented in one
automaton such that the structure is preserved. Therefore, a connected group of
parallel sequences is represented by one location in the embedding automaton,
and additional automata represent the parallel branches. This will be explained
in detail below. Note that the locations mentioned above do not represent the
activity of steps but determine which steps are ready, i.e. they represent the
union of history steps and active steps. To mark the set of active steps, additional
Boolean variables are used with names which are composed of the step name
and the suffix “ X”.

The set of active actions is also represented by Boolean variables with names
formed of the action name and the suffix “ Q”. In the standard, a logic diagram
including flip-flops, timers, and logical operations, defines how the value of an
action variable has to be computed. The circuit can be divided into sections
that independently model the dynamic behavior of the qualifiers P0, P1, S, L,
D, LS, SD, and DS, and a section that describes the superposition of the results
together with the qualifiers N and R. For each qualifier, a Boolean input denotes
whether the qualifier is in use by the currently active steps or not. We use integer
variables for modeling this. The name of such a variable is the concatenation of
the action name and the qualifier symbol. The value of the variable determines
the number of currently active steps that use the given combination of action
and qualifier. The qualifier sections and the superposition section of the logic
diagram are modelled by individual timed automata. Hence, for each action at
least one and at most nine automata have to be instantiated depending one the
qualifiers used in the SFC program.

Finally, we have to consider the PLC cycle semantics. This is achieved by
an automaton that forces the other automata of the SFC program to execute
their transitions in a fixed order. This coordinator also advances time in an
appropriate way. To illustrate the interplay of all automata, consider the SFC
given in Fig. 7(a) and the automatically generated timed automata in Fig. 8.
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(a) SFC with an action block.
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(b) SFC with simultaneous sequences.

Fig. 7. Two simple examples of SFC.

The SFC program consists of one simple SFC without simultaneous sequences so
that only one automaton is needed to model the sequence of steps and transitions
(Fig. 8(b)). The action block attached to the step S1 evokes the action openV1
with the qualifier L for a time-limited activity with a duration of 10 sec. For the
action openV1 two automata are needed: one for the dynamic behavior of the L
qualifier of openV1 (Fig. 8(c)) and one to compute the action activity variable
openV1 Q (Fig. 8(d)). The automaton shown in Fig. 8(a) coordinates the other
three automata in order to emulate the PLC cycle.

Coordinator. The coordinator forces the other components to perform their
transitions in a fixed order by the use of binary synchronization channels with
the prefix “call ”. So-called committed locations, denoted by a “c”, are used here
to avoid any (non-deterministic) advance of time during the computations. Only
in the location of the coordinator that is not marked as committed, the time
progresses in order to model the delay between the PLC cycles. The maximum
time delay of this location is given by the invariant on the clock variable c tick
that is reset when the location is entered. The minimum delay is given by the
guard of the outgoing transition. Thus the delay is deterministic if both are
equal.

Simple Step Sequence. Each step and each transition of the SFC has its
counterpart in the step sequence automaton, i.e., whenever a transition is taken
in the SFC, the corresponding transition in the TA is also taken. Note that
the transitions of the automaton can only be taken if the corresponding step
activity variables are true; this is important for subordinated SFC. An additional
committed location is used to initialize the automaton of the top level SFC graph.
Transitions with identical source and target location (self-loops) are necessary



(a) The coordinator (b) Automaton for the step sequence

(c) Automaton for qualifier L (d) Computation of action activity

Fig. 8. Automata resulting from the SFC shown in Fig. 7(a).

in order to prevent deadlocks since the coordinator has to synchronize with
every other automaton (even if the latter does not change its location). The
step activity variables S0 X, S1 X, and S2 X are updated only when the current
location changes. The action input variable openV1 L is incremented when the
location S1 is entered, and decremented when it is left. An additional variable
openV1 T conveys the duration parameter to the action automata.

Action Automata. Fig. 8(c) shows the automaton for the behavior of the
L qualifier of the action openV1. openV1 c is the clock variable used for the
time limiting function. When the integer variable openV1 L becomes greater
than zero, the initial location is left, the clock is set to zero, and the output
variable openV1 L Q is set to true. The automaton returns to the initial location
only when openV1 L becomes zero again. The output variable openV1 L Q is
set to false when the clock reaches the time limit or when openV1 L becomes
zero before the time limit is reached. Fig. 8(d) shows the output automaton for
the case that only the qualifier L appears in the SFC. The qualifiers R (reset)
and N (not stored) are always included. Note that the reset qualifier has the
highest priority. The automaton contains an error location in order to detect
forbidden situations defined in the standard, e.g., it is not allowed that steps



which reference the same action with a timed qualifier are active at the same
time.

Simultaneous Sequences. An SFC with two simultaneous sequences is shown
in Fig. 7(b): one consists of the steps S1 and S3 and the transition with the guard
T1, and the other consists of S2, S4, and the transition labelled with T2. The
main sequence consists of the steps S0 and S5, the transitions guarded by T0
and T3, as well as of a parallel block that encloses the simultaneous sequences.
The automata generated for these three sequences are shown in Fig. 9. In the
main sequence, the parallel block is represented by one location only, i.e., this
location is an abstraction of the simultaneous sequences. The off location of a si-
multaneous sequence indicates that there is no ready step inside of the sequence.
When the parallel block location is entered, the automata of the simultaneous
sequences have to leave their off locations and enter the locations S1 and S2.
This is achieved by the broadcast channel enter ParallelBlock S1S2 which al-
lows the synchronization of one sender with several receivers. Correspondingly,
the off locations of the simultaneous sequences are resumed when the parallel
block location is left. This can only happen if the steps S3 and S4 are active. The
urgent locations (denoted by an “u”) before and after the parallel block location

(a) The coordinator (b) Main sequence

(c) Simultaneous sequence 1 (d) Simultaneous sequence 2

Fig. 9. Automata resulting from the SFC shown in Fig. 7(b).



are necessary for the synchronization, since Uppaal does not support multiple
synchronization labels on one transition. Urgent locations have a lower priority
than committed locations but are also left instantly.

Hierarchical SFC with History. Subordinated SFC are executed as long as
the action they are associated with is active. Hence, it is necessary to deactivate
and to activate a subordinated SFC depending on an action activity variable.
This is achieved by additional self-loops. Assume that the simple SFC shown in
Fig. 10 depends on the action activity variable SFC2 Q. At the beginning, the
current location is S1, but the step activity variable S1 X is zero, which means
that the step S1 is ready, but not active. The self-loops on the right hand side of
the locations model the activation of the corresponding step by setting the step
activity variable to one (and incrementing possible action reference variables).
The self-loops on the left hand side of the automaton model the deactivation of
the SFC by setting the step activity variable to zero (and decrementing possible
action request variables). This implementation corresponds to hierarchy with
history since the SFC resumes the last step that was activated before. For an
implementation without history, all deactivation transitions must lead to the
initial location.

4.3 Translation Procedure

We now describe the automatic generation of the Uppaal model from the SFC.

Translation of Actions. First, all combinations of action names and qualifier
symbols that appear in the action blocks of the steps have to be retrieved from
the given SFC. For each combination, a corresponding qualifier automaton has
to be instantiated (except for the qualifiers N and R), and an action reference
variable is declared. In addition, an action control automaton is created for each
action.

S1

T1

S2

Fig. 10. The SFC associated to the action “SFC2” and the corresponding automaton.



Translation of Charts. The most difficult task in the translation of an SFC
program is to identify the simultaneous sequences and to reject malformed
charts. A possibility to achieve this in a reliable way even for complex charts
containing nested simultaneous sequences (as shown in Fig. 11(a)), entwined
loops, and alternative branches is the use of graph grammars [23]. The graph
grammar shown in Tab. 1 consists of a set of transformation rules that are ap-
plied iteratively to the given chart in order to reduce the graph. The left hand
side pattern of a rule defines the situation in which the rule can be applied, and
the right hand side gives the result of the transformation. For example, applying
the first rule requires an initial step of the chart, and applying the rule replaces
the initial by a partition node. In our implementation of the corresponding SFC
parser, a rule is always applied to all matching patterns of the graph, before
applying another rule. The rules are applied from the first to the sixth, before
the procedure continues again with the first one until no further rule can be
applied anymore. If the final graph contains only one partition node, the parsing
was successful, if not the SFC contains a syntactical error (as, e.g., that two
simultaneous sequences lead into a single step).

For illustration, consider the example shown in Fig. 11, and the following
sequence of rules:

– rule 1: replace S0 by partition node P0
– rule 2: replace S1 by P1, replace S2 by P2, replace S3 by P3 (→ Fig. 11(b))
– rule 3: P1 takes T1 and S4, P2 takes T2-S5, P3 takes T3-S6 (→ Fig. 11(c))
– rule 6: replace P1 and P2 by PB-Step1 (→ Fig. 11(d))
– rule 2: replace PB-Step1 by partition node P4

Table 1. Parse grammar for SFC graphs.

#: find pattern: replace by: #: find pattern: replace by:

1

S0 Partition

4

Partition

T0

T1

T2 Partition

T1

T2

2

Step1 StepN

TNaT1a

T1b Tnb

...

Partition1 PartitionN

TNaT1a

T1b Tnb

...

5

Partition1 PartitionN

N
...

T1

T2

ParallelBlockStep

T1

...
N

T2

3

Partition

T0
T3

T1

Step

T2

T4

Partition

T3

T1

T2

T4 6

Partition1 PartitionN

...

T1

N

T2

ParallelBlockStep

T1

...

T2

N
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Fig. 11. Successive reduction of a complex SFC graph.

Partition0

Partition2Partition3 Partition1Partition4

S0

S1 S2S3

S4 S5S6S7S8

T0

T1 T2T3T4T5

PB-Step2 PB1-Step1

Fig. 12. The identified partitions of the given SFC.

– rule 3: P4 takes T4 and S7 (→ Fig. 11(e))
– rule 5: replace P4 and P3 by PB-Step2 (→ Fig. 11(f))
– rule 3: P0 takes T0 and PB-Step2, P0 takes T5 and S8 (→ Fig. 11(g)).

The partition nodes represent the (nested) simultaneous sequences and the main
sequence of the graph. The steps and transitions that belong to a partition are
those which are removed by the corresponding transformation step. In the case
of a successful transformation, the identified partitions (Fig. 12) are used for the
generation of the timed automata: for each partition, a separate automaton is
introduced such that the steps and SFC transitions contained in the partition
are mapped directly into locations and transitions of the automaton. Depending
on whether the SFC graph belongs to the top level or a lower level, and whether
the partition contains the initial step or not, different elements such as self-loops,
additional locations, etc., are added to the graphs similar to the automata shown
in Fig. 9 and Fig. 10.



Generation of the Coordinator. The coordinating automaton simply estab-
lishes a loop of steps and transitions that synchronize with each of the other
automata in the right order. Only one location is used for modeling the time de-
lay of the PLC cycle. The algorithm that generates all locations and transitions
considers the fact that the qualifier automata have to be executed before the
corresponding action control automaton. The order of executing the partition
automata does not influence the resulting state of the overall model at the end
of a cycle.

5 Application to the Evaporation Example

The method described in the previous section is now applied to the evaporation
example introduced in Sect. 2. The SFC shown in Fig. 3 realizes the desired
operation in the following sense: In the initial step S0, the valves V1, V2, and
V3 are closed and the heater H1 is switched off by resetting the corresponding
Boolean variables. S0 is left when an input variable start is set by an operator,
and two parallel branches (starting with S1 and Se1 ) are activated. In nominal
operation (the left branch), the system cycles three times through the sequence
from S1 to S4, i.e., T2 is filled with three batches of T1, and is subsequently
emptied in step S5. If one of the errors is encountered during heating or evapo-
ration, the left branch enters step Se4. The right branch leaves Se1 through one
of the transitions labelled by error1 (heating failure) or error2 (cooling failure).
The actions assigned to Se2, or Se3, Se5 and Se6 respectively, correspond to
the exception procedures described above. If the left branch has reached S6 and
the right one Se7, the parallel branching is left and the initial state is reached
again.

Fig. 13. TA model of the level in tank T1.



(a)

(b)

Fig. 14. TA models for the heater H1 (a) and the state of aggregation of the fluid in
T1 (b).

As mentioned in Sect. 2, the objective of verifying that the temperature in
T1 does never exceed a maximum or minimum value (leading to overpressure or
to crystallization in T1 ), requires to consider the plant behavior. We employ a
model consisting of one TA each to represent the fluid level of tank T1, the level
of tank T2, the heating effect of the heater H1, the state of aggregation of the
fluid in T1, the mode of operation of the condenser, and an additional automaton
that models the occurrence of a failure of the heater or of the condenser. Three
of these automata are exemplarily shown in Fig. 13 and 14.

In all cases, the transition times between two events are determined based
on measurements for the corresponding laboratory plant, e.g. T1 is filled in
350 sec (compare to the invariant of the location being filled in Fig. 13). The
communication among the plant automata and with the controller automata
is realized by synchronization labels and integer variables used in the guard
conditions of transitions. The automaton in Fig. 14(b) contains two unsafe plant
states, crystallizing and overpressure, the reachability of which is checked in the
verification. It is assumed that the liquid in T1 crystallizes between 800 and 850
sec after a failure of H1 occurs, and that the pressure in the evaporator exceeds
a critical limit 150 seconds after a cooling failure if heating is continued.

The plant model is composed with the automata generated by the automatic
transformation procedure described in Sect. 4. The transformation of the SFC
program shown in Fig. 3 yielded 22 automata overall. Three of these correspond
to the partitions obtained from applying the rules of the graph grammar. The
partition that corresponds to the error handling (the right branch in Fig. 3) is
shown in Fig. 15. Another 18 automata represent the action qualifiers, and the



Fig. 15. TA-model of the controller branch for error handling.

model is completed by the coordinator automaton. The relatively large number
of automata is a result of the precise emulation of the PLC behavior. However,
the overall number of locations is rather small (111), the number of clocks is
moderate (10), and the controller part of the model is completely deterministic.

We first verify the safety requirement that the system must never reach the
states crystallizing and overpressure (according to requirement (b) in Sect. 2).
On a PC with a 1000 MHz-Duron processor, the analysis with Uppaal (version
3.4) terminates after less than 10 seconds with the result that both states are
not reachable, i.e. the controller is designed correctly with respect to the safety
requirement. To verify that the controller realizes the desired production cycle
(requirement (a)), we analyze for the plant automaton of the tank T2 whether
the state emptied is reachable after the tank was filled. For illustration, a rel-
atively large PLC cycle time of 50 sec was chosen for these experiments. This
analysis terminates after approx. 15 minutes with the result that the state is
reachable. The difference in computation time for both experiments is due to
the different length of the traces that lead to the final states for the two require-
ments.



6 Conclusions

The benefits of the approach presented here are (i) it starts from a controller rep-
resentation that is a de-facto standard for specifying PLC programs in industry,
and (ii) the procedure is completely algorithmic once the SFC controller, the for-
mal requirements, and the plant model are available. The steps of designing the
SFC controller, obtaining the plant model, and correcting the design in case of a
negative verification result, can obviously not be accomplished completely algo-
rithmically. Our current aim is, however, to develop a scheme to derive the SFC
program systematically from the set of specifications (usually given in natural
language).

When applying the approach described here, an important issue is to employ
a plant model of sufficient accuracy. At least for chemical processing systems, we
have experienced that FSA models are often not sufficient to verify the exclusion
of safety-relevant plant states. The use of TA models is appropriate if the tran-
sition times between certain events can be estimated (or measured) accurately
and conservatively. If this is not possible, one can start from hybrid dynamical
models and derive TA algorithmically, e.g., by the procedures described in [24].

The choice of the plant model but also the level of detail of the controller
model determines the complexity of the verification task. A system of the size of
the example in Sect. 5 can be verified in a few minutes. It should be mentioned,
however, that the main complexity here arises from the fact that the PLC cycle
is mapped into the TA model. To reduce this source of complexity we currently
investigate how to separate the verification of requirements for which the cyclic
operation is relevant from the analysis of those for which it is not.
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