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ABSTRACT
Social relationships between people, e.g., whether they are
friends with each other, can be inferred by observing their
behaviors in the real world. Due to the popularity of GPS-
enabled mobile devices or online services, a large amount of
high-resolution spatiotemporal location data becomes avail-
able for such inference studies. However, due to the sensitiv-
ity of location data and user privacy concerns, those studies
cannot be largely carried out on individually contributed
data without privacy guarantees. Furthermore, we observe
that the actual location may not be needed for social rela-
tionship studies, but rather the fact that two people meet
and some statistical properties about their meeting location,
which can be computed in a private manner. In this paper,
we envision a novel extensible framework, dubbed Privacy-
preserving Location Analytics and Computation Environ-
ment (PLACE), which enables social relationship studies by
analyzing individually generated location data. PLACE uti-
lizes an untrusted server and computes the building blocks to
support various social relationship studies, without disclos-
ing location information to the server and other untrusted
parties. We showcase PLACE with three use cases and four
novel building blocks and ensure privacy for block compu-
tation with encryption and differential privacy primitives.
The successful realization of PLACE will facilitate private
location data acquisition from individual devices, thanks to
the strong privacy guarantees, and will enable a wide range
of applications.

1. INTRODUCTION
For decades, anthropologists and social scientists have been
studying people’s social behaviors by utilizing sparse datasets
obtained by observations [3] and interviews [14]. These stud-
ies received a major boost in the past decade due to the avail-
ability of web data (e.g., social networks, blogs and review
web sites) [8, 11]. However, due to the nature of the utilized
dataset, these studies were confined to behaviors that were
observed in the online world. Recently, due to the availabil-
ity of high-resolution spatiotemporal location data collected

by GPS-enabled mobile devices through mobile apps, e.g.,
Google Maps, Facebook, Foursquare, and WhatsApp, or
through online services, such as geo-tagged contents (tweets
from Twitter, pictures from Instagram, Flickr or Google+
Photo), etc., it has become possible to study social behaviors
by observing people’s behaviors in the real world, especially
via location history [15, 13]. For example, if two people
were seen at the same places and at the same time, i.e., co-
occurred, we can infer that they are socially connected [13].

The main impediment to utilize these location datasets to
infer real-world social behaviors is the sensitivity of the raw
location data. The downside of public location sharing can
be illustrated by the website of “Please Rob Me” [1]. By
publicly sharing location via check-ins, tweets, etc., attack-
ers may infer when one is not at home. Furthermore, the
anonymity of movement data is hard to achieve. In fact,
De Montjoye et al. [4] studied fifteen months of human mo-
bility data for one and a half million individuals and con-
cluded that human mobility patterns are highly unique. In a
dataset where location is specified every hour and the spatial
resolution is coarsely given by antennas, four spatiotemporal
points are enough to uniquely identify 95% of the individ-
uals. Given the sensitivity of location data and the funda-
mental constraints to individual privacy, data holders may
not be willing to share these datasets for social good.

However, our main observation is that to make such infer-
ences about people’s social behavior, we do not require the
specific location information, e.g., the semantic of the loca-
tion, but only the knowledge that two people have met (i.e.,
have been at the vicinity of each other for some period of
time) and some statistics about how often they meet and the
popularity of the locations at which they meet. For example,
to infer social connection [13], we do not need to know at
which exact restaurant two people meet as long as we know
the popularity of the location they meet at (e.g., quantified
by location entropy) – the more popular the location the less
the chance that they are socially connected and vice versa.
Based on this core observation, our vision is that these social
behaviors can be studied in a privacy-preserving manner if
we can simply capture the “meeting” event, for example by
using encryption on locations, and collect statistics about
the frequency of meetings and the popularity of meeting lo-
cations, for example by using differential privacy on location
statistics.

To this end, we envision a novel extensible framework, dubbed



Privacy-preserving Location Analytics and Computation En-
vironment (PLACE), which enables social relationship stud-
ies by analyzing individually generated location data. PLACE
utilizes an untrusted server and perform location analyt-
ics to support various social relationship studies, without
disclosing location information to the server and other un-
trusted parties. Three use cases of PLACE will be show-
cased: Reachability use case answers the question whether
one person can be reached by another through a sequence of
pair-wise meetings during a period of time. Social Strength
use case infers whether one person is socially connected (e.g.,
friends) with another. Spatial Influence use case estimates
whether one person’s behavior influences another.

In order to support the three use cases without revealing
people’s location information, we design four novel privacy-
preserving building blocks: Location Proximity, Co-Occurrence
Vector, Location Entropy, and Followship. These blocks are
designed based on deep understanding of people’s social be-
haviors and generic such that they can be utilized across use
cases as well as to define new blocks. Existing encryption
and differential privacy primitives will be utilized to ensure
privacy for block computation, as well as innovative unified
schemes for dynamic data acquisition.

The successful realization of PLACE will facilitate private
location data acquisition from individual devices, thanks
to the strong privacy guarantees. Our use cases enable
many applications such as Reachability in epidemiology to
study the spread of diseases through human contacts, Social-
Strength in criminology to identify the new or unknown
members of a criminal gang or a terrorist cell, and Spatial-
Influence in policy to induce local influence in electing a
tribal representative. New use cases can be easily developed
under PLACE framework and built on top of existing and/or
newly defined blocks.

2. RELATED WORKS
A plethora of works has been developed to protect location
privacy. Here we briefly review related works on Location
Obfuscation, Private Information Retrieval, Differential Pri-
vacy, and Private Proximity Testing.

Some location obfuscation techniques hide the actual loca-
tion among a set of dummy and send redundant queries
to the server [20], while others adopt the concept of k-
anonymity [17] and use a Cloak Region (CR) which includes
the actual location as well as k − 1 other users [6]. The
privacy guarantee of obfuscation based techniques is weak.
The actually location hidden among dummy locations can
be disclosed by brute-force attacks. Cloaking approaches
are prone to semantic disclose, when the CR region contains
only one type of locations.

Cryptographic approaches based on Private Information Re-
trieval (PIR) protocols, e.g., in [7] allow individual users re-
trieve their nearest neighbors, e.g., the nearest gas station,
through an untrusted server, while the server learns nothing
about the requesting user’s location. However, such proto-
cols protect only the query issuer’s privacy, meaning other
people’s location data are disclosed to the server. Further-
more, they would incur prohibitive cryptographic operations
and communication overheads when applied to computing

Figure 1: The Vision of PLACE

blocks on large amount of location data [16].

Differential privacy [5] has become the state-of-the-art pri-
vacy paradigm for statistical databases. It guarantees that
an adversary is not able to decide whether a particular indi-
vidual is included or not in the published dataset, regardless
of the amount of additional information available to the ad-
versary. Many techniques have been developed to publish
static datasets indexed in a hierarchical structure [19] and
trajectories [2]. However, Differential Privacy sanitizes sta-
tistical information only and assumes the data aggregator
is trusted (data records are disclosed). The privacy chal-
lenges in our setting, where the computation is done on an
untrusted server and location data is held by individuals,
cannot be fully addressed by Differential Privacy alone.

Private Proximity Testing (PPT) [12, 21] protocols enable
a pair of mobile users to be notified through an untrusted
server when they are within a threshold distance of each
other, but otherwise reveal no information about their lo-
cations to anyone. Since peer-to-peer model is adopted for
computation, it is not straightforward to utilize PPT proto-
cols for complex tasks.

3. PLACE FRAMEWORK

To show the practicality of our vision, we envision a system
dubbed Privacy-preserving Location Analytics and Compu-
tation Environment (PLACE), which will ingest location
data from a large number of mobile devices. PLACE will en-
able location analytics using an untrusted server, e.g., cloud,
and privacy will be ensured by encryption and statistical in-
ference control. As in Figure 1, PLACE will provide four
essential blocks, Location Proximity, Co-Occurrence Vector,
Location Entropy, and Followship, all computed on an un-
trusted server without compromising the privacy of data
providers. On the other hand, data consumers, e.g., epi-
demiologists, criminologists, intelligent analysts, and policy
makers will utilize the analytics provided by PLACE to infer
social relations from location data. Similarly, third party ap-
plication developers can utilize the blocks and/or use cases
to build their applications.



Use Cases. We showcase the applicability of PLACE with
three following example social relationship studies:

• Reachability : If two people have come in close con-
tact with each other or there exists a contact path
between them through other people, we can infer one
is “reachable” from the other for delivering a package,
or contracting a disease [15].

• Social Strength: If two people have been to the same
places at the same time, i.e., co-occurred, we can infer
that they are socially connected. Depending on the
places they visited, we can also infer how strong their
social connection is [13].

• Spatial Influence: If one person “follows” the other
through a sequence of places, i.e., visits the same lo-
cations shortly after the other person’s visits, we can
infer he/she is under the influence of the other person.
Depending on the spatial and temporal properties of
the “followship”, we can also quantify the amount of
influence one individual exerts on the other.

The three use cases above are generic enough to empower
many real-world applications including all the applications
enabled by online social networks such as marketing applica-
tions (e.g., target advertising, recommendation engines such
as friendship suggestions), social studies (e.g., identifying in-
fluential people) and cultural studies (e.g., to examine the
spreading patterns of new ideas, practices and rumors). In
addition, they also have their own unique applications due
to the geo-spatial properties. For example, the inferred so-
cial connections can be used to identify the new (or un-
known) members of a criminal gang or a terrorist cell or it
can be used in epidemiology to study the spread of diseases
through human contacts. The inferred social influence also
has its own unique applications due to its geospatial prop-
erty, specifically by inducing local influence in real-world
applications bounded to a specific location. Examples in-
clude healthcare (when we need to inform the residents of a
suburb about the outbreak of a contagious disease), in local
advertisements (local restaurants, cafes, events), in a local
political campaign (selecting a district’s representative), or
simply disseminating information (ideas, rumors) related to
a geographically contained community, e.g., students at a
university campus.

Input Data. We define the input data to PLACE, i.e. in-
dividually generated data tuples, as d = (u, l, t) where u is
a user/device identifier, l is an exact location (e.g., Lati-
tude=22.3130, Longitude=114.0406), and t is a time stamp
(e.g., April, 2, 2015, 3:20pm).

Building Blocks. We define four novel building blocks
in PLACE based on deep understanding of people’s social
behaviors and will be utilized by various social relationship
studies. Note that our block definitions are quite generic
and they can be built on top of each other. Specifically,

• Location Proximity block tests whether two locations
are within close distance, as in [12]. It is fundamental
to all three uses cases and is a basic procedure needed
for computing other blocks. Formally, the proximity
test is to return a binary answer (Yes or No) for the
following inequality in the physical space: dist(l1, l2) ≤

r, where li is a location represented by its latitude and
longitude and r is the range threshold.

• Co-occurrence Vector block computes/maintains the
frequency of two individual co-occurring at each place,
as defined in [13]. Co-occurrence is an important block
to measure the Social Strength and Spatial Influence
between two people. Formally, the co-occurrence vec-
tor between two individuals u and v is defined as Cuv =
(cuv,1, ..., cuv,m), where cuv,l is the frequency of their
co-occurrence at location l.

• Location Entropy block computes/maintains the pop-
ularity of a location based on how frequently people
visit it, as in [13]. It is another important block to
measure the Social Strength and Spatial Influence be-
tween two people. The input to computing the Loca-
tion Entropy of a given location l is a list of frequen-
cies: Fl = (f1, f2, ...), where fi represents the number
of visits to l by user ui.

• Followship block is a novel concept used in Spatial In-
fluence. It computes the co-location between two peo-
ple at different times, in order to quantify the concept
of influence. This temporal aspect of followship is mea-
sured as the time delay or the time interval between
the visits by u and v at each location. The spatial
aspect of followship is the popularity of each location,
as in Location Entropy.

Private Computation. We believe the development of the
building blocks of PLACE would open up new research chal-
lenges in the area of privacy. This is because to protect the
privacy of the individual data holders, their location data
must be transformed prior to the block computation, in or-
der to prevent the disclosure of location, statistical infor-
mation about their location history (against frequency at-
tacks), and associated timestamps (against side information
attacks) to the untrusted server and other parties. However,
the majority of existing approaches provide interface and
disclosure control for one type of information, such as PIR-
based protocols for hiding location and differential-privacy-
based approaches for hiding statistics. Moreover, consider-
ing how the raw location data is transformed, current ap-
proaches fall near either ends of the spectrum, between flex-
ibility of computation and privacy guarantees. For instance,
Location obfuscation approaches can be used to build all of
our blocks but provide weak privacy guarantees, while PIR
protocols are highly private but incur prohibitive computa-
tion/communication overheads for our block computations.
Therefore, there is a need for a unified approach which pro-
vides privacy guarantee for various types of information and
is practical for computing all blocks.

Our vision is to design innovative block computation meth-
ods to utilize encryption and differential privacy primitives
and provide comprehensive privacy protection to the spa-
tiotemporal data collected from individual devices. To pro-
tect locations, encryption-based schemes can be adopted and
efficient, private designs with Deterministic Encryption [10]
and Probabilistic Encryption [18] can be developed. To sani-
tize statistical information, differential privacy primitive can
be deployed in a distributed setting, in addition to encryp-
tion. Lightweight schemes similar to locality sensitive hash-
ing [9] can be designed to prevent the disclosure of time as
well as to improve the computational efficiency.



4. CONCLUSION

We presented our vision for PLACE, a novel extensible frame-
work which enables social relationship studies by analyzing
individually generated location data. PLACE utilizes an un-
trusted server and performs location analytics without dis-
closing location information to the server and other parties.
We illustrated three example social relationship studies en-
abled by PLACE, i.e., Reachability, Social Strength, and Spa-
tial Influence, and presented four novel privacy-preserving
building blocks: Location Proximity, Co-Occurrence Vector,
Location Entropy, and Followship to support our use cases.
We proposed to utilize encryption and differential privacy
primitives to prevent the disclosure of people’s location, sta-
tistical information about their location history, and asso-
ciated timestamps for block computation. These blocks are
designed based on deep understanding of people’s social be-
haviors and generic such that they can be utilized across use
cases as well as to define new blocks. The successful real-
ization of PLACE will facilitate private location data acqui-
sition from individual devices, thanks to the strong privacy
guarantees, and will enable a wide range of applications in
epidemiology, criminology, political science, and etc.
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