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Abstract

Bayes factors have been advocated as superior to p-values for assessing sta-
tistical evidence in data. Despite the advantages of Bayes factors and the
drawbacks of p-values, inference by p-values is still nearly ubiquitous. One
impediment to adoption of Bayes factors is a lack of practical development,
particularly a lack of ready-to-use formulas and algorithms. In this paper,
we discuss and expand a set of default Bayes factor tests for ANOVA de-
signs. These tests are based on multivariate generalizations of Cauchy priors
on standardized effects, and have the desirable properties of being invariant
with respect to linear transformations of measurement units. Moreover, these
Bayes factors are computationally convenient, and straightforward sampling
algorithms are provided. We cover models with fixed, random, and mixed
effects, including random interactions, and do so for within-subject, between-
subject, and mixed designs. We extend the discussion to regression models
with continuous covariates. We also discuss how these Bayes factors may
be applied in nonlinear settings, and show how they are useful in differen-
tiating between the power law and the exponential law of skill acquisition.
In sum, the current development makes the computation of Bayes factors
straightforward for the vast majority of designs in experimental psychology.
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1. Introduction

Psychological scientists routinely use data to inform theory. It is common
to report p-values from t-tests and F -tests as evidence favoring certain the-
oretical positions and disfavoring others. There are a number of critiques of
the use of p-values as evidence, and we join a growing chorus of researchers
who advocate the Bayes factor as a measure of evidence for competing posi-
tions (Edwards et al., 1963; Gallistel, 2009; Kass, 1992; Myung & Pitt, 1997;
Raftery, 1995; Rouder et al., 2009; Wagenmakers, 2007). Even though many
of us are convinced that Bayes factor is intellectually more appealing that
inference by p-values, there is a pronounced lack of detailed development of
Bayes factors for real-world experimental designs common in psychological
science. Perhaps the problem can be illustrated by a recent experience of the
first author. After giving a colloquium talk comparing Bayes factors to p-
values, he was approached by an excited colleague asking for help computing
a Bayes factor for a run-of-the-mill three-way ANOVA design. At the time,
the first author did not know how to compute this Bayes factor. After all,
there were no books that covered it, and the computation was not built into
any commonly-used software.

Although the Bayes factor is conceptually straightforward, the computa-
tion requires a specification of priors over all parameters and an integration
of the likelihood with respect to these priors. Useful priors should exhibit
two general properties: First, they should be judiciously chosen because the
resulting Bayes factors depends to some degree on the prior. Second, they
should be computationally convenient so that the integration of the likeli-
hood is stable and relatively fast. Showing that the priors are judicious and
convenient entails much development. Substantive researchers typically have
neither the skills nor the time to develop Bayes factors for their own choice
of priors. To help mitigate this problem, we provide default priors and asso-
ciated Bayes factors for common research designs. These default priors are
general, broadly applicable, computationally convenient, and lead to Bayes
factors that have desirable theoretical properties. The defaults priors may
not be the best choice in all circumstances, but they are reasonable in most.

The topic in this paper is the development of default Bayes factors for
the linear model underlying ANOVA and regression. In experimental psy-
chology there is a distinction between linear models, which are used to assess
the effects of manipulations, and domain-specific models of psychological
processes. Linear models are simple and broadly applicable, whereas pro-
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cess models are typically nonlinear, complex, and targeted to explore specific
phenomena, processes, or paradigms. In many cases, an ultimate goal is
the development of Bayes factor methods for comparing competing process
models. Given this distinction and the appeal of process models, it may
seem strange that the majority of the development here is for linear models.
There are three advantages to this development: First, ANOVA and regres-
sion are still the most popular tests in experimental psychology. Develop-
ing Bayes factors for these models is a necessary precursor for widespread
adoption of the method. In this paper we provide development for many
ANOVA designs, including within-subject, between-subject and mixed de-
signs. Second, many nonlinear models have linear subcomponents. Linear
subcomponents may be used to account for nuisance variation in the sam-
pling of participants or items. For example, Pratte & Rouder (2011) fit
Yonelinas’ dual process recognition-memory model (Yonelinas, 1999) to real-
world recognition-memory data where each observation comes from a unique
cross of people and items. To fit the model, Pratte and Rouder placed addi-
tive linear models on critical mnemonic parameters that incorporated people
and items as additive random effects. In cases such as this, development of
Bayes factors for inference with linear models is a natural precursor to devel-
opment for nonlinear models. Third, the priors suggested here may transfer
well to nonlinear cases. We provide an example of this transfer by developing
Bayes factors to test between the power law and the exponential law of skill
acquisition.

This paper is organized as follows. In the next section, we review com-
mon critiques of null hypothesis significance testing, which lead naturally to
consideration of the Bayes factor. In Section 3, the Bayes factor is presented,
along with a discussion of how it should be interpreted when assessing the
evidence from data for competing positions. Following this discussion, we
discuss the properties of good default priors, and provide default priors for
the one-sample case. These existing default priors are then generalized for
several effects in Section 5 and 6. In Section 7 and 8, we present Bayes fac-
tors for one-way and multi-way ANOVA, respectively, for both random and
fixed effects. In Section 9, we discuss how within-subject, between-subject
and mixed designs may be analyzed. In Section 10 we provide an example
from linguistics that is known to be particularly problematic. In linguis-
tic designs, both items and participants should be treated simultaneously
as random effects, and failure to do so substantially affects the quality of
inference (Clark, 1973). We show how this treatment may be accomplished
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in a straightforward fashion with the developed Bayes factor methodology.
Sections 11 through 14 provide discussion about the large-sample properties
of the Bayes factors, alternative choices for priors, solutions for regression de-
signs, and a discussion of computational issues, respectively. In Section 15,
we discuss how the developed priors may be extended for nonlinear cases,
and provide an example in assessing learning curves.

2. Critiques of Significance Testing

It has often been noted that there is a fundamental tension between null
hypothesis significance testing and the goals of science. On the one hand,
researchers seek simplicity or parsimony to explain target phenomena. An
example of such simplicity comes from the work of Gilovich et al. (1985), who
assessed whether basketball shooters display hot and cold streaks in which
the outcome of one shot attempt affects the outcome of subsequent ones.
They concluded that there was no such dependency, which is a conclusion in
favor of simplicity over complexity. In null hypothesis significance tests, the
simpler model which serve as nulls may only be rejected and never affirmed.
Hence, researchers using significance testing find themselves on the “wrong
side” of the null hypothesis whenever they argue for the null hypothesis. If
the null is true, the best case outcome of a significance test is a statement
about a lack of evidence for an effect. It would be desirable to state positive
evidence for a lack of an effect.

Being on the wrong side of the null is not rare. Other examples include
tests of subliminal perception (perception must be shown to be at chance lev-
els, e.g., Dehaene et al., 1998; Murphy & Zajonc, 1993), expectancies of an
equivalence of performance across group membership (such as gender, e.g.,
Shibley Hyde, 2005), or assessment of a lack of interaction between factors
(e.g., Sternberg, 1969). Additionally, models that predict stable relation-
ships, such as the Fechner-Weber Law1, serve as null hypotheses. Researchers
who test strong theoretical positions that predict specified invariances or reg-
ularities in data are typically on the wrong side of the null. From a theoretical
point of view, being on the wrong side of the null is an enviable position:

1The Fechner-Weber Law (Fechner, 1966; Masin et al., 2009) describes how bright a
flash must be to be detected against a background. If the background has intensity I, the
flash must be of intensity I(1 + θ) to be detected. The parameter θ, the Weber fraction,
is posited to remain invariant across different background intensities.
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the goal of scientific theory is often to model or explain observed invariances.
Testing strong invariances often indicates a high level of theoretical sophis-
tication. From a practical point of view, however, being on the wrong side
of the null presents statistical difficulties. This tension, that null hypotheses
are theoretically desirable yet are impossible to support by significance test-
ing, has been noted repeatedly (Gallistel, 2009; Kass, 1992; Raftery, 1995;
Rouder et al., 2009).

The asymmetry in significance testing in which the null may be rejected
but not supported is a staple of introductory statistics courses. Yet, it has a
subtle but pervasive implication that is often overlooked: significance tests
overstate the case against the null (Berger & Berry, 1988; Edwards et al.,
1963; Wagenmakers, 2007). This bias is highly problematic because it means
that researchers may reject the null without substantial evidence against it.
The following argument, adapted from Sellke et al. (2001), demonstrates
this bias. Consider the distributions of p-values under competing hypotheses
(Figure 1A). If the null hypothesis is false, then p-values tend to be small, and
decrease (in distribution) as sample size increases. The dashed line colored
green shows the distribution of p-values when the underlying effect size is .2
and the sample size is 50; the dashed-dotted line colored red shows the same
when the sample size is increased to 500. The distribution of p-values under
the null, however, is quite different. Under the null, all p-values are equally
likely (solid line colored blue in Figure 1A). This uniform distribution under
the null hypothesis holds regardless of sample size.

If the null is rejected by significance testing, then, presumably, the ob-
served data are more improbable under the null than under some other point
alternative. A reasonable measure of evidence is the factor by which the data
are more probable under this alternative than under the null. Suppose a data
set with sample size of 50 yields a p-value in the interval between .04 and
.05, which is sufficiently small by convention to reject the null hypothesis.
Figure 1B shows the distributions of p-values around this interval for the
null and the alternative that the effect size = .2. The probabilities that the
p-value will fall in the interval are represented by the shaded areas under the
curves, which are .01 and .04 under the null and alternative hypotheses, re-
spectively. The ratio is .04/.01 = 4: The probability of the observed p-value
is four times more likely under the alternative than under the null. Although
such a ratio constitutes evidence for the alternative, it is not as substantial
as might be mistakenly inferred by the fact that the p-value is less than .05.

Figure 1C shows a similar plot for the null and alternative (effect size = .2)
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Figure 1: Significance tests overstate the evidence against the null hypothesis. A. The
distribution of p-values for an alternative with effect-size of .2 (dashed and dashed-dotted
lines are for sample sizes of 50 and 500, respectively) and the null (solid line). B. Prob-
ability of observing a p-value between .04 and .05 for the alternative (effect size = .2)
and null for N = 50. The probability favors the alternative by a ratio of about 4 to 1.
C. Probability of observing a p-value between .04 and .05 for the alternative (effect size
= .2) and null for N = 500. The probability favors the null by a factor of 10. D. The
probability ratio as a function of alternative. The probability ratio is the probability of
observing a t-value of 2.51 and N = 100 given an alternative divided by the probability of
observing this t-value for N = 100 given the null. The circle and square points highlight
alternatives for which the ratios favor the alternative and null, respectively.6



for a large sample size of 500. For this effect size and sample size, very small
p-values are the norm. Let’s again suppose we observe a p-value between
.04 and .05, which leads conventionally to a rejection of the null hypothesis.
The probability of observing this p-value under the null remains at .01. But
the probability of observing it under the alternative with such a large sample
size is close to .001. Therefore, observing a p-value between .04 and .05
is about ten times more likely under the null than under the alternative.2

This behavior of significance testing in which researchers reject the null even
though the evidence overwhelmingly favors it is known as Lindley’s paradox
(Lindley, 1957), and is a primary critique of inference by p-values in the
statistical literature.

In Figures 1B and 1C, we compared the evidence for the null against
an alternative in which the effect size under the alternative was a specific
value (.2). One could ask about these probability ratios for other effect sizes.
Consider a recent study of Bem (2011), who claims that people may feel or
sense future events that could not be known without psychic powers. In his
Experiment 1, Bem asks 100 participants to guess which of two erotic pictures
will be shown at random, and finds participants have an accuracy of .531,
which is significantly above the chance baseline value of .50 (t(99) = 2.51;
p < .007). Such small p-values are conventionally interpreted as sufficient
evidence to reject the null. Figure 1D, solid line, shows probability that the
p-value falls between .0065 and .0075 under a specific alternative relative to
that under the null. These ratios vary greatly with the choice of alternative.
Alternatives that are very near the null hypothesis of .5 – say, .525 – are
preferred over the null (filled circle in Figure 1D). Alternatives further from
.5, say .58 (filled square) are definitely not preferred over the null. Note that
even though the null is rejected at p = .007, there is only a small range of
alternatives where the probability ratio exceeds 10, and for no alternative
does it exceed 25, much less 100 (as might naively be inferred from a p-value
less than .01). We see that the null may be rejected by p-values even when the
evidence for every specific point alternative is more modest. Note that the
critique that p-values overstate the evidence is not dependent on a Bayesian
perspective, and that the probabilities and probability ratios in Figure 1 are
used as measures of evidence within the frequentist paradigm, where they

2More generally, a p-value at any nonzero point, say .05, constitutes increasing evidence
for the null in the large sample-size limit.
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are called likelihood ratios (Hacking, 1965; Royall, 1997).

3. The Bayes Factor

The probability ratio in Figure 1D can be generalized to the Bayes factor
as follows. Let B01 denote the Bayes factor between Models M0 and M1.
For discretely distributed data,

B01 =
Pr(Data|M0)

Pr(Data|M1)
.

For continuously-distributed data, these probabilities are replaced with prob-
ability densities. We use the term probability loosely in the development
to refer either to probability mass or to probability density, depending on
whether the data are discrete or continuous. We use subscripts on Bayes
factors to refer to the models begin compared, with the first and second
subscript referring to the model in the numerator and denominator, respec-
tively. Accordingly, the Bayes factor for the alternative relative to the null
is denoted B10, B10 = 1/B01.

When models are parameterized,

B01 =

∫
θ∈Θ0

Pr(Data|M0,θ)π0(θ)dθ∫
θ∈Θ1

Pr(Data|M1,θ)π1(θ)dθ
,

where Θ0 and Θ1 are the parameter spaces for Models M0 and M1, re-
spectively, and π0 and π1 are the prior probability density functions of the
parameters for the respective models. These priors describe the researcher’s
prior belief or uncertainty about the parameters. The specification of priors
is critical to defining models, and is the point where subjective probability
enters the computation of Bayes factor. The argument for subjective prob-
ability is made most elegantly in the psychological literature by Edwards et
al. (1963), to whom we refer the interested reader. Readers interested in the
axiomatic foundations of subjective probability are referred to Cox (1946),
de Finetti (1992), and Jaynes (1986). The numerator and denominator are
also called the marginal likelihoods as they are the integral of the likelihood
functions with respect to the priors.
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Bayes factors describe the relative probability of data under competing
positions. In Bayesian statistics, it is possible to evaluate the relative odds
of the positions themselves, conditional on the data:

Pr(M0|Data)

Pr(M1|Data)
= B01 ×

Pr(M0)

Pr(M1)
,

where the Pr(M0|Data)/Pr(M1|Data) and Pr(M0)/Pr(M1) are posterior
and prior odds, respectively. The prior odds describe the beliefs about the
models before observing the data. The Bayes factor, then, describes how the
evidence from the data should change beliefs. For example, a Bayes factor of
B01 = 100 indicates that posterior odds should be 100 times more favorable
to the alternative than the prior odds.

The distinction between prior odds, posterior odds and Bayes factors pro-
vides an ideal mechanism for adding value to findings. Researchers should
report the Bayes factor, and readers can update their own priors accordingly
(Jeffreys, 1961; Good, 1979). Sophisticated researchers may add guidance
and value to their analysis by suggesting prior odds, or ranges of prior odds.
We use prior odds to add context to our Bayes factor analysis of Bem’s (2011)
claim of extrasensory perception of future events that cannot otherwise be
known (Rouder & Morey, 2011). Our Bayes factor analysis of Bem’s data
yielded a Bayes factor of 40 in favor of an effect consistent with ESP. We cau-
tioned readers, however, to hold substantially unfavorable prior odds toward
ESP as there is no proposed mechanism, and its existence runs contrary to
well-established principles in physics and biology. We believe that a Bayes
factor of 40 is too small to sway readers who hold appropriately skeptical
prior odds. Of course, a Bayes factor of 40 may be more consequential in less
controversial domains where prior odds are less extreme.

Because Bayes factors measure the evidence for competing positions, they
have been recommended for inference in psychological settings (an incomplete
list includes Edwards et al., 1963; Gallistel, 2009; Lee & Wagenmakers, 2005;
Mulder et al., 2009; Rouder et al., 2009; Vanpaemel, 2010; Wagenmakers,
2007). There are, however, other Bayesian approaches to inference including
Aitkin’s (1991, see Liu & Aitkin, 2008) posterior Bayes factors, Kruschke’s
(2010) use of posterior distributions on contrasts, and Gelman and colleagues’
notion of model checking through predictive posterior p-values (e.g., Gelman
et al., 2004). The advantages and disadvantages of these methods remain
an active and controversial topic in the statistical and social-science method-
ological literatures. Covering this literature is outside the scope of this paper,

9



and the interested reader is referred elsewhere: good reviews include Aitkin
(1991, especially the subsequent comments), Berger & Sellke (1987, especially
the subsequent comments), Raftery (1995), and, more recently, Gelman and
Shalizi (in press). Our view is that none of these alternative approaches offers
the ability to state evidence for invariances and effects in as convincing and
as clear a manner as does Bayes factors. Additional discussion is provided
in the Conclusion as well as in Morey et al. (in press) and Rouder & Morey
(2012).

4. One-Sample Designs

4.1. Model and Priors

In this section, we develop default priors for a one-sample design as an
intermediate step toward developing Bayes factors for ANOVA designs. The
development in this section will be directly relevant throughout. In a one-
sample design, there is a single population, and the researcher’s question of
interest is whether the mean of that population is zero. An example of a one-
sample design is a pretest-intervention-posttest design (Campbell & Stanley,
1963) in which the researcher tracks each individual’s change between the
pretest and posttest. The question of whether the mean intervention effect is
zero is typically assessed via consideration of a p-value from a paired-sample
t-test. The observed intervention effects are modeled as independent and
identically distributed random variables:

yi
iid∼ Normal(µ, σ2), i = 1, . . . , N.

The null model, that there is no treatment effect, is given by µ = 0. To com-
pute a Bayes factor, we must also choose a prior distribution for µ under the
alternative. It may seem desirable to make µ arbitrarily diffuse to approx-
imate a state of minimal prior knowledge. This choice, however, is unwise.
Diffuse priors imply that all values are equally plausible, including those that
are obviously implausible. For instance, under a diffuse prior, an effect of
5% is as plausible as an effect of one million percent. When the likelihood
under the alternative is averaged over large, implausible values, the average
approaches zero. Hence, arbitrarily diffuse priors lead to the result that the
null is more probable than the alternative regardless of the data (Lindley,
1957).
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Jeffreys (1961) recommends reparameterizing the problem in terms of
effect size, which is denoted by δ, where δ = µ/σ is a dimensionless quantity.
The model may then be rewritten:

yi ∼ Normal(σδ, σ2).

Null and alternative models differ in the choice of priors on δ:

M0 : δ = 0,

M1 : δ ∼ Cauchy,

where the Cauchy is a distribution with probability density function

π(x) =
1

(1 + x2) π
, (1)

and π in the denominator on the right-hand side is the common mathemat-
ical constant. Additional details about the Cauchy distribution are provided
in Johnson et al. (1994).

Priors must be specified for the remaining parameter in the model, σ2.
Fortunately, because this parameter plays an analogous role in bothM0 and
M1, it is possible and desirable to place a noninformative Jeffreys prior on
σ2:

π(σ2) ∝ 1

σ2
.

Bayarri & Garcia-Donato (2007) call this combination of priors the JZS priors
in recognition of the contributions of Jeffreys (1961) as well as Zellner and
Siow (1980), who generalized these priors for linear models. The resulting
Bayes factor, called the JZS Bayes factor, is

B01(t, N) =

(
1 + t2

N−1

)−N/2
∫ ∞
0

(1 +Ng)−1/2
(

1 +
t2

(1 +Ng)(N − 1)

)−N/2
π(g)dg

, (2)

where π(g) is the probability density function of the inverse χ2 distribution
with one degree of freedom:

π(g) = (2π)−1/2g−3/2e−1/(2g). (3)
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The expression is convenient because the data enter only though the test
statistic t = ȳ

√
N/sy, where ȳ and sy are the sample mean and sample

standard deviation of the data, respectively. Fortunately, the expression is
computationally convenient as the integration is across a single dimension
and may be performed quickly and accurately using Gaussian quadrature
(Press et al., 1992). Rouder et al. (2009) provide a web applet for computing
the JZS Bayes factor at pcl.missouri.edu/bayesfactor.

4.2. Properties of the Bayes Factor

Some of the characteristic differences between inference by Bayes factor
and p-values are shown in Figure 2. Figure 2A shows the needed t-value
for stating particular levels of evidence for an effect. Consider the line for
a Bayes factor of B10 = 3, which indicates that the data are three times
more likely under the alternative than under the null. First, note that larger
t-values are needed to maintain a B01 = 3 than are needed to maintain a
p = .05 criterion. Second, note that as the sample size becomes large, in-
creasingly larger t-values are needed to maintain the same level of evidence.
The need for increasing t-values contrasts with inference by p-values. Fig-
ure 2B shows the practical consequences of these different characteristics.
The figure summarizes the findings of Wetzels et al. (2011), who provided
p-values and JZS Bayes factors for all 855 t-tests reported in the Journal
of Experimental Psychology: Learning, memory, and Cognition and Psycho-
nomic Bulletin & Review in 2007. We have plotted the results for the 440
tests that have p-values between .001 and .15. The plot shows that although
Bayes factors and p-values rely on the same information in the data, they
are calibrated differently. In particular, the tendency of p-values to overstate
the evidence in data against the null hypothesis is apparent. For example, a
p-value of .05 may correspond to as much evidence for the alternative as for
the null, and even a p-value of .005 hardly confers a strong advantage for the
alternative.

4.3. Desirable Theoretical Properties of Default Priors

Our goal in this paper is to develop default priors that may be used
broadly and easily. One criteria for choosing these priors is to consider the
theoretical properties of the resulting Bayes factors. The one-sample Bayes
factor in Equation (2) has the following desirable properties:

• Scale Invariance. The value of the Bayes factor is unaffected by mul-
tiplicative changes in the unit of measure of the observations. For
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instance, if observations are in a unit of length, the Bayes factor is
the same whether the measurement is in nanometers or light-years.
This invariance comes about because of the scale-invariant nature of
the prior on σ2 and the placing of a prior on effect size rather than on
mean (Jeffreys, 1961).

• Consistency. In the large sample limit, the Bayes factor approaches
the appropriate bound (Liang et al., 2008):

δ = 0 =⇒ lim
N→∞

B10(t(N), N) = 0,

δ 6= 0 =⇒ lim
N→∞

B10(t(N), N) =∞,

where t(N) =
√
Nȳ/sy is the t-statistic.

• Consistent in Information. The Bayes factor approaches the correct
limit as t increases, e.g., limt→∞B10(t, N) = ∞ for all N . This last
property is called consistency in information, and it holds for the Cauchy
prior on effect size, but not for a normal prior on effect size (Jeffreys,
1961; Zellner & Siow, 1980). The property holds when the prior has
slowly-diminishing tails, and serves as additional motivation for the
Cauchy prior on δ.

5. Multivariate Generalizations of the Cauchy

The focus of this paper is the development of default-prior Bayes fac-
tor for ANOVA settings. In the previous development, there was a single
effect parameter, δ, on which the prior a Cauchy distribution. In ANOVA
and regression designs, we will posit several effect parameters, and a suitable
prior for each. There are two possible extensions of the Cauchy, and the con-
trast between them is informative. The first is a straightforward independent
Cauchy prior in which the multivariate prior density on p effects is simply
the product of p univariate prior densities. Let θ = (θ1, . . . , θp)

′ be a vector
of p effects. The independent Cauchy has a density function,

π(θ) =

p∏
i=1

1

(1 + θ2i )π
, (4)

A plot of a bivariate independent Cauchy prior is shown on the left side of
Figure 3, and it is characterized by a lasso shape. The lack of symmetry, in
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Figure 3: Two bivariate Cauchy distributions. For both distributions, the marginal dis-
tributions are univariate Cauchy. In the independent Cauchy distribution (left), the joint
is the product of the marginals. In the multivariate Cauchy distribution (rights), there is
a dependence with more joint density on effects that are similar in magnitude.

which there is sizable mass for large values of one effect and small values of
the other, is a natural consequence of the fat tails of the Cauchy.

The second generalization, conventionally termed the multivariate Cauchy
(Kotz & Nadarajah, 2004), is given by the joint probability density function

π(θ) =
Γ [(1 + p)/2]

Γ(1/2)πp/2 [1 +
∑p

i=1 θ
2
i ]

(1+p)/2
. (5)

The marginal distribution for any one of the p dimensions is a univariate
Cauchy with density given in (1). A plot of the bivariate case is shown on
the right side of Figure 3, and the defining characteristic of this generaliza-
tion is a specified dependence among the effects such that they are similarly
sized in magnitude. When compared to the independent Cauchy, the multi-
variate Cauchy places less mass on the combinations of large values for one
effect and small values on the other. The result of this dependence is a sym-
metric bivariate distribution, but this symmetry should not be confused for
independence.

The motivation for the multivariate Cauchy comes from the relationship
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between the normal and Cauchy distributions. The Cauchy results from a
mixture of normals with different variances. Consider the following condi-
tional model on an effect θ,

θ|g ∼ Normal(0, g)

where g is the variance. Zellner & Siow (1980) note that if g follows an
inverse-χ2 distribution with one degree of freedom, then the marginal dis-
tribution of θ is a univariate Cauchy. For the multivariate case, let θ be a
vector of p effects,

θ|g ∼ Normal(0, gIp),

where Ip is the identity matrix of size p. If g follows an inverse-χ2 distri-
bution with one degree of freedom, then the marginal distribution of θ is
the multivariate Cauchy given in (5). The independent Cauchy may also be
expressed as a mixture of normals. Let G be a p × p diagonal matrix with
values g1, g2, . . . , gp on the diagonal. Let

θ|G ∼ Normal(0,G),

and let each gi be distributed independently as an inverse-χ2 with a single
degree of freedom. Then the marginal distribution of θ is the independent
Cauchy in (4). Both the independent and multivariate Cauchy generaliza-
tions will be useful, and, as is discussed, each is used to encode different sets
of relations among effects.

6. Bayes Factor for ANOVA Models

In this section, we provide general development for ANOVA models. It
is convenient to use matrix notation. Let y be a vector of N observations.
It is convenient to start with a linear model with p effects:

y = µ1 + σXθ + ε, (6)

where µ is a grand mean parameter, 1 is a column vector of length N with
entries of 1, θ is a column vector of standardized effect parameters of length
p, and X is a N × p design matrix. The vector ε containing the error terms
is a column vector of length N :

ε|σ2 ∼ Normal(0, σ2I).
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Note that the parameterization of the linear model in (6) differs from more
conventional presentations (e.g., McCullagh & Nelder, 1989). In (6) the
effects are standardized relative to the standard deviation of the error, and,
consequently, σXθ explicitly includes a scale factor σ.

ANOVA models have two constraints. First, the covariates are categor-
ical and indicate group membership. Membership may indicated by setting
design-matrix entries to be 1 or 0, denoting whether an observation is from a
specific level of a specific factor or not, respectively. Second, factors provide
a natural hierarchy or grouping (Gelman, 2005). It is reasonable to think
a priori that levels within a factor are exchangeable whereas levels across
factors are not. We will implement this notion of exchangeability in our
development.

Priors are needed on parameters µ, σ2, and the vector of standardized
effects θ. As previously, we place a Jeffreys prior on µ and σ2:

π(µ, σ2) =
1

σ2
.

For ANOVA models with categorical covariates, we assume the following
g-prior structure:

θ|G ∼ Normal(0,G), (7)

whereG is a p×p diagonal matrix. A different prior, discussed subsequently,
is used when the covariate is continuous rather than categorical.

To complete the specification of the prior, the analyst needs to choose the
diagonal of G. One possible choice of priors is to use a separate g parameter
for each element of θ. In this case, the diagonal of G consists of g1, . . . , gp.
The priors on these parameters are

gi
iid∼ Inverse-χ2(1), i = 1, . . . , p.

The corresponding marginal prior on θ is the independent Cauchy distri-
bution. The independent Cauchy prior is useful when there is no a priori
relationship among effects. Yet, in some cases, it is more appropriate to
assume that effects vary on a similar scale, and are not arbitrarily different
from one another. In this case, the multivariate Cauchy may be more appro-
priate. The multivariate Cauchy prior is implemented by setting G = gI,
and g ∼ Inverse-χ2(1). The development of Bayes factors for this single-g
model is discussed in Bayarri & Garcia-Donato (2007).
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Gelman (2005) comments that ANOVA should be viewed as a hierarchi-
cal grouping of effects into factors where levels within but not across factors
are exchangeable. When effects share a common g parameter, they are in-
deed exchangeable in that they are random deviates from a common parent
distribution in a hierarchical structure. Hence, effects within a factor should
share a common g parameter while those across should not. For example,
suppose there are four effects, θ1, . . . , θ4 with θ1 and θ2 describing the effect
of one factor and θ3 and θ4 describing the effect of another. Because the first
two levels are exchangeable within one factor and the second in a different
factor, we may specify that the scales of the first two effects may be more
similar to each other, but may be dissimilar to those for the last two effects.
In this case, a separate g-parameter for each factor is appropriate, e.g.,

G =


g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2

 .

In this case, the priors on g1 and g2 would be independent inverse chi-square
with one degree-of-freedom. The marginal prior on θ in this case is two multi-
variate Cauchy priors, where each is a bivariate distribution across two levels
of a factor. These two multivariate Cauchy distributions are independent of
one another. We develop Bayes factors for any combination of independent
and multivariate Cauchy distributions. Let r denote the number of unique g
parameters in G, and let g = (g1, . . . , gr), 1 ≤ r ≤ p.

The marginal likelihood, m, for the ANOVA model is obtained by inte-
grating the likelihood against the joint prior for µ, σ2, θ, and g. It is not
possible to express this integral across all parameters as a closed-form ex-
pression. Fortunately, it is possible to derive a closed-form expression for the
integral across µ, σ2, and θ,

m =

∫
g1

· · ·
∫
gr

Tm(g)π(g1) · · · π(gr) dg1 · · · dgr, (8)

where Tm(g) is the likelihood integrated with respect to the joint priors on µ,
σ2 and θ, and where π(g) is the probability density function of an inverse-χ2
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distribution with 1 degree of freedom given in (3). To define Tm(g), let

P0 =
1

N
11′,

ỹ = (I − P0)y,

X̃ = (I − P0)X,

Vg = X̃ ′X̃ +G−1.

Then the integrated likelihood is

Tm(g) =
Γ((N − 1)/2)

π(N−1)/2|G|1/2|Vg|1/2
√
N(ỹ′ỹ − ỹ′X̃V −1g X̃ ′ỹ)(N−1)/2

.

The derivation of Tm(g) is provided in the Appendix.
Bayes factors for the model in (6) may be constructed with reference to

the null model, y = µ1 + ε.
Using the same argument as in the appendix, the corresponding marginal

likelihood, denoted m0, is

m0 =
Γ((N − 1)/2)

π(N−1)/2
√
N(y′y −N ȳ2)(N−1)/2

,

where ȳ = 1′y/N . The Bayes factor between the model in (6) and the null
model is

B10 =

∫
g1

· · ·
∫
gr

S(g)π(g1) · · · π(gr) dg1 · · · dgr. (9)

where

S(g) =
1

|G|1/2|Vg|1/2

(
y′y −N ȳ2

ỹ′ỹ − ỹ′X̃V −1g X̃ ′ỹ

)(N−1)/2

.

Equation (9) is used throughout for computing Bayes factors. Appropriate
choices forG andX in various ANOVA designs are discussed in the following
sections. Computational issues in evaluating (9) are discussed in Section 14.

The proposed default prior is similar to those proposed by Zellner and
Siow (1980) and recommended for ANOVA by Wetzels et al. (2012). Yet,
there are two critical differences. The Zellner-Siow prior is based on a sin-
gle g parameter whereas our prior is more flexible and allows for differ-
ent g parameters across different factors. A second critical difference is
that the Zellner-Siow prior on effect sizes has an additional scaling term:
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θ|g ∼ Normal(0, g(X ′X/N)−1Ip), where (X ′X/N)−1 is this new term. In
Section 13 we discuss the meaning of this additional term, and argue that
such scaling is appropriate for continuous covariates (regression) but inap-
propriate for categorical covariates (ANOVA).

7. One-Way ANOVA Designs

In this section, we develop the default Bayes factor for the case where
observations are classified into one of a groups. Let α be a vector of a
effects, α = (α1, . . . , αa)′. The corresponding model is

y = µ1 + σXαα+ ε. (10)

The design matrix, denotedXα, has N rows and a columns, and is populated
by entries of 1 or zero that indicate group membership. For instance, if 7
observations came from 3 groups, with the first two observations in the first
group, the next two observations in the second group, and the last three
observations in the third group, the design matrix would be

Xα =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1


.

The model in (10) is not identifiable without additional constraint as there
are a total of a+ 1 parameters that determine the a cell means. In classical
statistics, the additional constraint reflects whether effects are treated as fixed
or random. For fixed effects, additional linear constraints are imposed, e.g.,∑

i αi = 0. For random effects, the constraint comes from considering each
effect as a sample from a common distribution, or, as discussed previously,
as exchangeable. Gelman (2005) recommends this hierarchical approach for
both fixed and random effects, and we follow this recommendation here.
Gelman also recommends that researcher impose the usual sum-to-zero linear
constraints as well, and the difference between fixed and random effects is
a matter of interpretation but not computation. We do not take this last
recommendation. Instead, we make a sharp distinction between treating
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factors as fixed and random. When factors are treated as fixed, the usual
sum-to-zero constraints are imposed. When they are treated as random, these
constraints are not imposed. As a rule of thumb, it is appropriate to treat a
factor as fixed when they are manipulated through a few levels, and the focus
is on the difference between levels. Likewise, it is appropriate to treat a factor
as random when levels are sampled, such as the sampling of participants from
a participant pool or the sampling of words from a language, and the focus is
on generalization to all possible levels of the factor. We consider the random
effects model first as it is more straightforward.

7.1. Random Effects Model

A natural specification for the random effects one-way ANOVA model is

α | g ∼ Normal(0, gI),

where g is the variance of the random effects. The prior on g is g ∼
Inverse-χ2(1), and the resulting marginal prior on α is the multivariate
Cauchy in (5).

The marginal likelihood of this random-effects model is given in (8) by
setting X = Xα and G = gI. The Bayes factor in (9) may be expressed
as follows: Let yij be the jth observation in the ith group, i = 1, . . . , a,
j = 1, . . . , nj; let ȳi· be the sample mean for the ith group; and let ȳ·· be the
grand sample mean. Then B10, the Bayes factor between the model in (10)
and the null, y = µ1 + ε, is

∫
g

K(n, g)

(∑
i

∑
j (yij − ȳi)2 + 1

g

(∑
i ciȳi

2 − (
∑

i ciȳi)
2/ (
∑

i ci)
)∑

i

∑
j (yij − ȳ)2

)−(N−1)/2
π(g) dg

(11)
where n = (n1, . . . , na)

′,

N =
∑

i ni,

ci =
ni

ni + 1/g
,

and K(n, g) =
√
N

( ∏
i 1/(1 + gni)∑
i ni/(1 + gni)

)1/2

.
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If the design is balanced, then (11) reduces to

B10 =

∫
g

(1 + gn)−(a−1)/2
(

1− R2

(1 + gn)/gn

)−(N−1)/2
π(g) dg, (12)

where R2 is the unadjusted proportion of variance accounted for by the
model3 and n = n1 = . . . , na. The one-dimensional integral in (11) and (12)
may be conveniently and accurately evaluated with Gaussian quadrature.

7.2. Fixed Effects Models

In one-way ANOVA, the fixed effect constraint is
∑

i αi = 0. One ap-
proach is to consider only the first a − 1 effects and set the last one to
αa = −

∑a−1
i=1 αi. A drawback of this approach, however, is that the choice of

eliminated effect is arbitrary. Moreover, the marginal prior on the eliminated
effect cell mean is more diffuse than on the others.

A better approach to implementing the sum-to-zero constraint is to project
the space of a dimensions into a space of dimension a− 1 with the property
that the marginal prior on all a effects is identical. The constraint that∑
αi = 0 may be implemented by placing a prior with negative correlation

across the effects. A suitable choice for the covariance matrix across the
effects is

Σa = Ia − Ja/a

where Ia is the identity matrix (of size a) and Ja is a square matrix of size
a with entries 1.0. For example, if a = 3, the resulting covariance matrix is

Σ3 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .

The above covariance matrix is not full rank, as it captures the side condition
on α. Consequently, Σa may be decomposed as

Σa = QaIa−1Q
′
a

3The R2 statistic is

R2 =

∑
i ni(ȳi· − ȳ··)2∑
i

∑
j(yij − ȳ··)2

.
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where Qa is an a × (a − 1) matrix of the a − 1 eigenvectors of unit length
corresponding to the nonzero eigenvalues of Σa, and Ia−1 is an identity matrix
of size a− 1. The new parameter vector of a− 1 effects, α∗, is defined by

α∗ = Q′aα.

Inspection of these matrices is helpful in understanding the nature of param-
eter constraint. For two groups,

Q′2 =
(√

2/2, −
√

2/2.
)

For five groups,

Q′5 =


.89 −.22 −.22 −.22 −.22
0 .87 −.29 −.29 −.29
0 0 .82 −.41 −.41
0 0 0 .71 −.71

 .

Note that Qa defines an orthonormal set of contrasts that identify the a− 1
parameters.

Let X∗α denote the N × (a − 1) design matrix that maps α∗ into obser-
vations:

X∗α = XαQa. (13)

With this full-rank parameterization, the fixed-effect model is

y = µ1 + σX∗αα
∗ + ε. (14)

A prior is needed on α∗, and we use a multivariate Cauchy:

α∗|g ∼ Normal(0a−1, gIa−1), g ∼ Inverse-χ2(1).

where the 0 column vector is of length a− 1. This prior maintains a notion
of exchangeability, though the exchangeability is on the differences between
effects rather than the effects themselves.

The Bayes factor is calculated from (9) by setting X = X∗α and setting
G = gIa−1. This Bayes factor will, in general, be different from the random-
effects Bayes factor in (11). If the design is balanced, however, it can be
shown that the Bayes factor reduces to the same expression as that for the
random-effects in (12). This equivalence of random-effect and fixed-effect
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Bayes factors in balanced one-way designs is analogous to the equivalence
of F -tests for one-way, balanced designs. Whereas most researchers use bal-
anced designs, consideration of fixed or random effects is not critical in this
case. There are, however, important differences for multiple factor designs.

In ANOVA designs, researchers are sometimes concerned about additional
contrasts, such as whether any two levels differ. For instance suppose a factor
has three levels and the main-effect Bayes factor indicates that the full model
is preferred to the null model. Then, three intermediate models may be
proposed where the any two levels equal each other. Each of these models
can be implemented with a simple two-column design matrix and tested with
the above methodology. The resulting pattern of Bayes factors across these
models, as well as that across the full model, may be compared in analysis.

8. Multi-Way ANOVA

In many applications, researchers employ factorial designs in which they
seek to assess main effects and interactions. In this section, we develop Bayes
factor for multiple factors. Although the following developments generalize
seamlessly to any number of factors, we will focus on the two-factor case for
concreteness. Let a and b denote the number of levels for the first and second
factors, respectively. Let α be a vector of a standardized effects for the first
factor, let β be a vector of b standardized effects for the second factor, and
let γ be a vector of a× b standardized interaction effects. A full model may
be given by

Mf : y = µ1 + σ (Xαα+ Xββ + Xγγ) + ε. (15)

Design matrices Xα, Xβ and Xγ describe how effect parameters map onto
observations. For example, if a = 2, b = 2, and there is one replicate per cell,
the design matrices are

Xα =


1 0
1 0
0 1
0 1

 , Xβ =


1 0
0 1
1 0
0 1

 , Xγ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

For balanced designs with n replicates per cell, these design matrices are
given compactly by

Xα = Ia ⊗ 1b×n, Xβ = 1a ⊗ Ib ⊗ 1n, Xγ = Ia×b ⊗ 1n,
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where subscripts on 1 and I denote the sizes, and ⊗ denotes a Kronecker
product (Eves, 1980).

In factorial designs, researchers are interested in an array of models that
encode constraints on main effects and interactions. In addition to the full
model, Mf , there are seven submodels of the full model for the two-way
design:

Mα+β : y = µ1 + σ (Xαα+ Xββ) + ε.

Mα+γ : y = µ1 + σ (Xαα+ Xγγ) + ε.

Mβ+γ : y = µ1 + σ (Xββ + Xγγ) + ε.

Mα : y = µ1 + σXαα+ ε,

Mβ : y = µ1 + σXββ + ε,

Mγ : y = µ1 + σXγγ + ε,

as well as the null model,

M0 : y = µ1 + ε.

8.1. Fixed, Random, and Mixed Effects

Different models of effects may be implemented through the design ma-
trices, as we discuss in the following sections.

8.1.1. Random Effects

Consider first the case in which both factors are treated as random ef-
fects, and consequently, the interaction terms are random effects as well. We
recommend the following prior structure with three separate g parameters
for α, β, and γ:

α | gα ∼ Normal(0, gαIa), (16)

β | gβ ∼ Normal(0, gβIb),

γ | gγ ∼ Normal(0, gγIa×b),

with gk
iid∼ Inverse-χ2(1) for k = α, β, γ. Note here that the prior on stan-

dardized effects is the product of three independent, multivariate Cauchy
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distributions. Within a factor, the levels are related through a common g
parameter. Yet, there are separate g parameters across factors (and their
interactions), and this indicates that the factors themselves are unrelated.
The Bayes factor for the full model relative to the null model, denoted Bf,0

is given in (9) with X = (Xα,Xβ,Xγ) and G = diag(gα1
′
a, gβ1

′
b, gγ1

′
ab).

Computational approaches to performing the resulting three-dimensional in-
tegral are discussed in Section 14. Bayes factors for the submodels are given
analogously.

8.1.2. Fixed Effect Models

Consider the case where both factors are treated as fixed effects, and,
consequently, the interaction is fixed as well. The usual side conditions on
fixed effects are ∑

i

αi = 0, (17)∑
j

βj = 0,∑
i

γij = 0,∑
j

γij = 0.

The side conditions on main effects each impose one linear constraint; the
side condition on interactions imposes I + J − 1 linear constraints.

To capture these side conditions, it is helpful to specify a matrix operation
for the construction of interaction design matrices from main effect ones.
Consider the following operation denoted by �. Let S and T be matrices
with m and n columns, respectively, and r rows:

S =

s11 . . . s1m
...

...
...

sr1 . . . srm

 , T =

t11 . . . t1n
...

...
...

tr1 . . . trn

 ,

Then

S � T =

s11t11 s11t12 . . . s11t1n s12t11 . . . s12t1n . . . s1mt1n
...

...
...

...
...

...
...

...
...

sr1tr1 sr1tr2 . . . sr1trn sr2tr1 . . . sr2trn . . . srmtrn
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is a matrix of size r×mn. With this operation, design matrices of interactions
in factorial designs are given by

Xγ = Xα �Xβ.

The following full model captures the side conditions in (17):

y = µ1 + σ
(
X∗αα

∗ + X∗ββ
∗ + X∗∗γ γ

∗∗)+ ε,

Main-effects parameter vectors α∗ and β∗ are of length a − 1 and b − 1,
respectively, and the corresponding respective design matrices X∗α and X∗β
are derived from the centering projection analogously to (13). The interaction
parameter vector γ∗∗ is of length (a−1)(b−1), and the corresponding design
matrix is given by

X∗∗γ = X∗α �X∗β.

The use of two asterisks in the superscript on interaction parameters and
design matrices indicates that there are separate sum-to-zero constraints on
both rows and columns in the matrix representation of interaction parame-
ters. Prior specification of α∗, β∗, and γ∗∗ is analogous to (16). Moreover,
all submodels are defined as the appropriate restriction on this full model.

8.1.3. Mixed Interactions

The development extends in a straightforward manner to mixed interac-
tions. For example, suppose the first factor is fixed and the second is random.
The model is given by

y = µ1 + σ
(
X∗αα

∗ + Xββ + X∗·γ γ
∗·)+ ε.

where X∗·γ = X∗α �Xβ is a design matrix with (a − 1)b columns and γ∗· is
an interaction vector of (a − 1)b effects which obeys the side constraint on
row sums of interactions but not on column sums. This parameterization
of mixed interactions is the same as in the classical Cornfield-Tukey mixed
model (Cornfield & Tukey, 1956; Neter et al., 1996). Submodels are defined
by various restrictions of this full model.

8.2. Assessment of Main Effects and Interactions

Conventional ANOVA is a top-down approach in which the total vari-
ability is partitioned into main effects and interactions, and that which is
residual. Each main effect and interaction is separately assessed through a

27



comparison of the accounted variation relative to an appropriate error term.
In the two-way case, researchers are interested in three comparisons: the two
main-effect comparisons and the interaction. Here, we recommend several
useful Bayes factor model comparisons.

Assessing interactions is the most straightforward, and a top-down ap-
proach that contrasts the performance of the full model to one without inter-
actions is appropriate. We denote the corresponding Bayes factor by Bf,α+β.4

If the restriction without the target interaction is preferred to the full model
with it, the interaction term is unnecessary to account for the data. Then,
the appropriate Bayes factor to test the main effects of Factor 1 and Factor 2
are Bf,β+γ and Bf,α+γ, respectively, and the effect in question is preferred if
the full model has higher marginal likelihood than the restriction without it.
In some contexts, the analyst may be interested whether there is any effect
of a factor rather than just a main effect. In this case, corresponding Bayes
factor comparisons Bf,β and Bf,α are appropriate for assessing Factor 1 and
Factor 2, respectively.

We ran a small-scale set of simulations to assess the performance of these
three Bayes factor contrasts. To make the situation concrete, we assumed
that participants responded to the onset of Gabor patches that varied in
orientation and frequency, modeled as fixed effects. There were 2 levels per
factor and 10 replicates per cell in a simulated data set. We simulated data
from 12 different true models, which comprised select combinations of main
effects and interactions, and for each of these true models, 1000 simulated
data sets were analyzed. Median Bayes factors across these 1000 sets for main
effects and interactions are shown in Figure 4. In Simulation I, far left panel,
the null model serves as the generating model, and the Bayes factors for main
effects and interaction correctly favor the null. In Simulation II, next panel,
there is a main effect of orientation, that is, Mα serves as the generating
model. The three different effect size values5 of orientation are shown (.2, .5,
and 1). Median Bayes factor for the main effect of orientation tracks with
effect size, and the median Bayes factors for the interaction and main effect of
frequency favor a null effect. In Simulation III there are main effects of both
orientation and frequency, with the main effect of orientation manipulated

4The Bayes factor may be computed by noting that Bf,α+β = Bf,0/Bα+β,0. Both Bf,0
and Bα+β,0 are given in (9) with appropriate choices for X and G.

5An effect size of .2 for a fixed factor with two levels means that the effect for both
levels is .2 standardized units from the mean.
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Figure 4: Median Bayes factor from simulated data. I. Data generated from the null
model. II. Data generated with main effects in orientation. True effect-size values for
orientation were .2, .5, and 1. III. Same as previous simulation, except there was a true
main effect of frequency as well (true orientation effect-size values of .2, .5, and 1; true
frequency effect-size value of .4). IV. Data generated with equal-sized true main effects
in orientation and frequency. V. Data generated with main effects of both factors (true
effect-size values of .4) and an interaction (true effect size values of .2 and .5). Orientation
and frequency are modeled as fixed effects.

(.2, .5, 1) and the main effect of frequency held constant at .4. As can be
seen, the Bayes factors track the true effect sizes well. Simulations IV and
V show the case that there are two main effects of the same size, and when
there are main effects and interactions, respectively. In all cases, the Bayes
factor performs as expected. One desirable property that is evident is an
independence or orthogonality. The Bayes factor for one comparison, say the
main effect of orientation, does not depend on the true values of the other
factors and interactions. This orthogonality mirrors that in conventional
ANOVA analysis, and a necessary condition for it is separate g parameters
across main effects and interactions.

8.3. A Note on Fixed, Random, and Mixed Interactions

There is a trend in Bayesian analysis to treat effects as random in ANOVA
designs. For one-way ANOVA, the Bayes factor for balanced designs is the
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same whether the effects are modeled as fixed or random lending credence to
the notion that constraint from priors is in some abstract way comparable
to explicitly imposing a sums-to-zero constraint. Unfortunately, this general
comparability does not hold for interactions. Consider the 2×2 factorial case
in which in the random-effects model there are 4 interaction effects, and the
constraint comes from the prior in which they are treated as exchangeable.
Contrast this to the fixed-effect model where three sum-to-zero constraints
are imposed and there is subsequently one interaction parameter. We explore
how imposing the sum-to-zero constraints affects the Bayes factor through
evaluation of an example.

The table in Figure 5 shows hypothetical data from Model Mα in which
there are only orientation effects. Classically, the F -value for orientation
effect in the fixed-effects model is obtained by dividing MSA by MSE, and
it evaluates to F (1, 36) = 17.0, which, because the degrees-of-freedom in the
error term is high, results in a small p-value of .0002. For the random-effects
model, the F -value is obtained by dividing MSA be MSI , the interaction
term, and it evaluates to F (1, 1) = 28.3. Although this F -value is high, the
corresponding p-value is .12 because there is a single degree-of-freedom in
the error term. In classical statistics, evidence for an orientation effect in
this example is more easily detected when the effects are modeled as fixed
rather than random. This makes sense: it should be easier to conclude that
two levels differ than it is is to conclude that all possible levels differ when
there are only two in a design.

Our default Bayes factors follow these classical patterns. Figure 5 shows
the resulting Bayes factors for the three contrasts and for four different types
of effects models. In the first model, darkest bars, the orientation and fre-
quency are both considered fixed. In the second model, orientation is fixed
and frequency is random, and their interaction is mixed with 2 parameters
(dark grey bars). Included too is the complementary model (light grey bars)
with random orientation and fixed frequency, and the random effects model
(white bars), which has 4 interaction parameters. For all four models, there
is evidence for a null frequency effect and for a null interaction. These results
are appropriate as the data were generated without these effects. There is a
discrepancy across the models in the assessment of the orientation main ef-
fect. If frequency is considered fixed, the resulting Bayes factors yield strong
evidence for an orientation effect; conversely, if frequency is considered ran-
dom, the evidence is equivocal. Whereas the data are generated with a strong
orientation effect, these random frequency models are hiding the underlying
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Figure 5: Left: Hypothetical response times (sec) to Gabor gratings that vary in orienta-
tion (vertical vs. horizontal) and frequency (low vs. high) in a 2×2 design. Right: Resulting
Bayes factor for seven models when effects are modeled as fixed, mixed, or random.

structure. The reason they do so is that the random interactions are heavily
parameterized. It this case, this heavy parameterization leads to interactions
so flexible that they may account for main effect patterns.

This example highlights the usefulness of fixed-effects modeling. In many
cases, random-effect models are inappropriate because they are too flexible
for the experimental design and the questions of interest. Because of this
increased flexibility, random and mixed interactions should be used with
great care. Overall, we think the trend on Bayesian analysis to use random
effects are a rule-of-thumb is unhelpful and analysts will gain be better served
by careful consideration of context in deciding between fixed and random
effects. We think the prevailing rule-of-thumb that sum-to-zero constraints
should be imposed for manipulated variables and not imposed for sampled
levels is a good one.
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9. Within-Subject and Mixed Designs

The above development is appropriate to what are commonly referred to
as between-subject designs, in which participants are nested within factors.
Each participant performs under a single, specific combination of factors,
and systematic variability across participants enters into the residual error
terms. In within-subject designs, in contrast, participants are crossed with
the levels of the factors, and each participant performs in all combinations
of the factors. It is reasonable to expect that participants vary substantially,
and this variation induces a correlation in performance across conditions.
A common approach is to include a separate factor for participant effects.
Consider, for example, an experiment in which each participant identifies
Gabor gratings at varying orientations. In the psychological literature, this
design is commonly referred to as a one-way within-subject design, where the
one-way refers to the stimulus variable, orientation, and the within-subject
refers to the fact that the levels are crossed with participants. Even though
this design is called one way, it is in fact a two-factor design with factors
for participants and orientation. Likewise, what is commonly termed a two-
way within-subject design has three factors: one participant factor and two
stimulus factors.

The one-way within-subject design may be modeled with two-way ANOVA
model. The following is appropriate when the stimulus variable is modeled
as a fixed effect:

Mf : y = µ1 + σ
(
Xαα+ X∗ββ

∗ + X·∗γ γ
·∗)+ ε. (18)

where α and β∗ are parameter vectors that describe the effect of partic-
ipants and the levels of the stimulus factor, respectively. Included for full
generality is the mixed interaction term γ ·∗. This term may be estimated if
the design is replicated, that is, each participant yields several observations
in each condition. In repeated measures designs, in which participants yield
a single observation in each condition, it is not possible to distinguish the
participants-by-treatment interaction term from the residual. In this case,
the appropriate full model is Mα+β∗ .

Mixed designs occur when some factors are manipulated in a within par-
ticipant manner and others are manipulated in a between participants man-
ner. These designs may be treated analogously to within-subject designs. In
mixed designs, the design matrix on participant parameters codes which fac-
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tors are manipulated in a within-subject manner and which are manipulated
in a between-subjects manner.

10. Theoretical Properties of Bayes Factors with Multiple g-parameter
Priors

In Section 4.3, we listed three desirable properties of the one-sample Bayes
factor with a g-prior. These were scale invariance, consistency and consis-
tency in information. Some of these properties are known to apply to the
Bayes factor in (9). Scale invariance, for example, is assured because there
is a scale-invariant prior on (µ, σ2), and the model is parameterized in terms
of standardized effects rather than unstandardized effects.

Consistency is a more complicated concept in a factorial setting because
there are multiple large-sample limits to be considered. Take the case of
the two-factor design in which the sample size, N , is the product of three
quantities: the number of levels of the first and second factors (a, b), and
the number of replicates in a cell r, N = abr. The sample size may in-
crease to the limit by increasing any of these three quantities. Perhaps the
simplest case is when r, the number of replicates in a cell, is increased to
the limit while a and b are held constant. In this case, the model dimen-
sionality is held constant as sample size increases. A more difficult case is
when r is held constant and the number of levels of a factor is increase; i.e.,
when say a is increased. In this case, increases in sample size correspond
to an increase in model dimensionality. This second case is quite important
for within-subject designs. In these designs, researchers increase sample size
by adding additional subjects rather than by increasing the replicates per
subject. Adding additional subjects entails adding more levels, that is, in-
creasing model dimensionality. Hence, it is important to show consistency in
the large-model-dimension limit too.

Min (2011) studied the consistency properties of a more general class of
priors in various large sample limits. He proved two facts of relevant here:
First, if r is increased and the model dimensionality (a, b) is held constant,
then Bayes factor (9) is consistent; that is, it approaches zero when the null
holds and ∞ when the specified model holds. Second, the Bayes factor is
consistent in the large a or large b limit when r is held constant. Therefore,
researchers may use multiple g-priors in between-subject, within-subject, and
mixed designs with assurance of correct limiting behavior.
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To our knowledge, consistency in information, which refers to the correct
limit as the R2 approaches zero or 1, has not been studied in multiple g-
parameter priors. It is known to hold for single-g parameter priors (Liang et
al, 2008). Consistency in information is not as critical to us as consistency
in cell replicates or in model dimensionality, and the lack of theoretical work
on this particular type of consistency should not dissuade adoption.

11. Inference With Multiple Random Effects: Memory and Lan-
guage

Our development of default Bayes factors for ANOVA is exceedingly gen-
eral. In this section, we illustrate the generality with an application to mem-
ory and language studies. Inference is more complicated in memory and
language because in typical designs, researchers sample items from a cor-
pus as well as people from a participant pool. The goal is to generalize the
results back to these corpra and populations. Consider a researcher who
wishes to know if nouns are read at a different speed than verbs. Suppose
the researcher samples 25 nouns and 25 verbs, and asks 50 participants to
read each of these 50 words. In this case, there are three factors. The one of
substantive interest is the part-of-speech factor (noun vs. verb), which may
be modeled as a fixed effect. A second factor is an item factor. Individual
nouns and verbs are assumed to have their own systematic effects above and
beyond their part-of-speech mean. The final factor is the effect of partici-
pants, and each participant is assumed to have his or her own systematic
effect.

In many language studies, and in almost all memory studies, researchers
average the results across items to construct participant-level scores. These
participant-level scores are then submitted to a conventional ANOVA analy-
sis. In the current example, a mean noun and verb reading time can be tab-
ulated for each participant, and these scores may be submitted to a paired
t-test to assess the part-of-speech effect. This averaging approach, however,
is known to be flawed because the Type I error rate will be inflated over nom-
inal values. Clark (1973) noted that averaging treats items as fixed rather
than as random effects, and the correlation in performance across items leads
to downward bias in the estimate of residual variability.

To demonstrate this downward bias, we performed a small simulation in
which there is no true part-of-speech effect. Participants and items varied,
and their individual effects are normally distributed with a standard devia-

34



●

●

●

●

●

●

●

●

●

p−
va

lu
e

Item Aggregation

0.0

0.2

0.4

0.6

0.8

1.0

B
ay

es
 fa

ct
or

 B
01

0

2

4

6

8

10

12

Crossed Random Effects

Figure 6: Simulation of a word-naming experiment with systematic variation across par-
ticipants and items. Data were generated from a null model in which there was no part-
of-speech effect. The p-values are obtained from a t-test on participant-specific noun and
verb means. The distribution of these p-values deviates substantially from a uniform, with
an overrepresentation of small values. The Bayes factor are from the same data, but the
model includes crossed random effects of people and items. The Bayes factor favors the
no part-of-speech effect null model.

tion of 100 ms. The residual error distribution has a standard deviation of
150 ms. We performed 100 replicates in the simulation to explore the distri-
bution of p-values, which is shown in the left box plot in Figure 6. If there
were no distortions due to averaging, then these p-values should be uniformly
distributed. The p-values deviate from a uniform distribution, and there is
a dramatic over representation of small values. For a nominal .05 level, the
observed Type I error rate is .34.

Fortunately, researchers in linguistics are well aware of the problem of
inflated Type I error rates when items are aggregated. One recommended
solution is to specify mixed linear models that treat people and items as
crossed random effects (Baayen et al., 2002). Mixed models may be analyzed
in many popular packages including Proc Mixed in SAS, SPSS, and NMLE
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in R. These more advanced models provide suitable Type I error control,
that is, if there truly is no part-of-speech effect, the resulting p-values are
uniformly distributed. Surprisingly, memory researchers have not adopted
crossed random-effects modeling as readily as their linguistics colleagues (cf.,
Pratte et al., 2010).

We show here Bayes factors for crossed-random effects may be conve-
niently calculated. We implemented the following models to assess the part-
of-speech effect for the above example in which 50 participants read 25 nouns
and 25 verbs. In this case, there are a total of N = 50× 50 = 2500 observa-
tions. Let X∗α be a 2500×1 design matrix that indicates whether the item is
a noun or verb, and let Xλ and Xτ be 2500× 50 design matrices that map
people and items into observations respectively. The full model is

M1 : y = µ1 + σ (X∗αα
∗ + Xλλ+ Xττ ) + ε, (19)

where α∗ is a part-of-speech effect, and λ and τ are person and item random
effects, respectively. The null model to assess part-of-speech effects is

M0 : y = µ1 + σ (Xλλ+ Xττ ) + ε. (20)

The Bayes factor for the two models is straightforwardly computed via (9),
and the results are shown in the right box plot in Figure 6. The Bayes factor
for all 100 replicates of the experiment favor the null model between a factor
of 6 to 12. This result is desirable as the data were simulated with no part-
of-speech effect. Note here how researchers can state positive evidence for a
lack of an effect.

12. Alternative g-priors

In our development, we use separate g parameters for each factor. There
are obvious alternatives. One is to use a single g parameter for all effects
regardless of factor; a second is to use a separate g-prior for each effect. In
this section, we compare our choice to these alternatives.

12.1. A single g-prior

In the single-g prior, there is one g parameter for all main effects and
interactions, i.e, G = gI. Wetzels et al. (2012), for example, discuss this
approach. Clearly, a single-g prior is more computationally efficient as the
integral in (9) is single-dimensional for all models. Nonetheless, we think
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the single-g prior is inferior to the multiple-g prior for general use. When
there is one g, the pattern of effects on one factor calibrates the prior on the
others through the single g. For instance, take the case of two researchers
who wish to test the effect of part-of-speech (noun vs. verb) on word reading
times. The first researcher uses one fixed effect, part-of-speech, and presents
each word for 300 ms. The second researcher crosses part-of-speech with a
second variable, presentation time, which is manipulated across two levels:
299 ms and 301 ms. If these researchers use a single-g prior, the value of
g will be lower for the second researcher to reflect the assuredly null effect
of presentation time. Hence, the Bayes factor for tests of part-of-speech
will differ, and, in particular, the second researcher will be more likely to
interpret small observed part-of-speech effects as evidence for a true effect.
The multiple-g prior allows the inference about one factor to be independent
of the patterns of effects in the other factors.

12.2. A separate g-parameter for each effect

Each element in the diagonal of G may be specified as a unique param-
eter, and the marginal joint prior on effects is consequently the independent
Cauchy in (4). This prior, which is also a multiple g-parameter prior, has
potentially many more g parameters than the previous multiple g-parameter
prior as there may be several levels for each factor. To differentiate this
prior from the previous one, we call this prior the independent Cauchy prior
and reserve the term multiple g-parameter prior for the recommended one
in which each factor rather than each effect is modeled with a separate g
parameter.

We argue that the independent Cauchy prior is not ideal for ANOVA de-
signs. Researchers use ANOVA specifically when effects can be decomposed
into factors. Factors, by their very nature, have a group structure that imply
a certain degree of coherence within a factor. For instance, consider the ori-
entation and frequency factor in the previous example. The different levels
of orientation have a coherency in that they all describe a unified property;
different levels of frequency also have a coherency. This coherence is cap-
tured by the exchangeability of level (Gelman, 2005) as implemented by the
correlations in the multivariate Cauchy. With this prior, effects of levels of
a factor cannot be arbitrarily different from one another.

There are some designs/models where the independent Cauchy prior is
more appropriate than the recommended multiple g-parameter prior, and
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these designs do not have a factor structure. For example, consider the ques-
tion of whether various diverse chemical compounds are agonists for a specific
neural receptor. Without some knowledge of the structure of the compounds,
there may be little coherency among them with regard to the ensuing recep-
tor activity. In this case, the analyst is not interested in the mean effect
of the compounds, or the variation around this mean. Instead, the analyst
assesses whether any specific compound serves as an agonist, and there is
no hypothetical correlation or structure among the levels. The appropriate
model is a cell-means model in which there is a separate standardized effect
parameter for each cell, and an appropriate prior is the independent Cauchy
prior. The multiple g-parameter prior, in contrast, embeds possible struc-
ture among factors and is more appropriate for ANOVA designs in which the
analyst is concerned about main effects and interactions.

13. A Comparison To Default Regression Priors

In modern statistics it is common to think of ANOVA and regression in a
unified linear models framework. Yet, we think researchers should be mindful
of some differences when considering categorical and continuous covariates.
In the previous development, we advocated priors that led to Bayes factors
that were invariant to the location and scale of measurement of the dependent
variable. With continuous covariates, it is desirable to consider an additional
theoretical property: the Bayes factor should be invariant to the location and
scale of the independent variable. For example, consider a researcher wishes
to study intelligence as a function of height, the Bayes factor should not
depend on whether height is measured in inches or centimeters (or, for that
matter, light years or angstroms), The following Bayes factor, from Zellner
and Siow (1980), obeys this property.

Let the linear model in (6) hold with the condition that each column ofX
sums to zero. This condition is not substantive and provides no constraint;
it simply guarantees that µ may be interpreted as a grand mean. Zellner
and Siow placed the noninformative prior π(µ, σ2) = 1/σ2 and the following
prior on standardized slopes θ:

θ | g ∼ Normal(0, g(X ′X)−1), g ∼ Scaled Inverse-χ2(N),

where the scaled inverse-χ2 distribution has density

f(x;h) = r−2(2π)−1/2(x/h)−3/2e−h/(2x), (21)
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where h is a scale parameter. It is helpful to rewrite this prior so that the
scale factor of N is in the variance of θ rather than in g:

θ | g ∼ Normal(0, g(X ′X/N)−1), g ∼ Inverse-χ2. (22)

The difference between the Zellner and Siow prior and the ones we develop
for ANOVA (Eq. 7) is the introduction of a new scaling matrix X ′X/N
as well as the use of a single g-parameter. Because X is set to be zero-
centered, this scaling term can be thought of as the variance or noise power
of the covariates. The scaling term is a matrix and includes the covariances
between covariates, making it appropriate for nonorthogonal covariates. A
helpful interpretation is that there is a g-prior on double standardized effects,
where effects is standardized to both the variability in the dependent variable
and covariates, and are, consequently, without units. This scaling byX ′X/N
is necessary for the resulting Bayes factor to be invariant to the scale of the
independent variable. With this scaling in the prior, Liang et al (2008) derive
the following expression for the resulting Bayes factor against the null model:

Bf0 =

∫ ∞
0

(1 + g)(N−p−1)/2
[
1 + g

(
1−R2

)]−(N−1)/2 √N/2

Γ(1/2)
g−3/2e−n/(2g)dg.

(23)

The introduction of the scaling termX ′X/N strikes us as very reasonable
for regression applications with continuous covariates, but less so for ANOVA
applications with categorical covariates. Consider the basic random effects
model given in (10) with a design matrix given by

X =


1 0
1 0
0 1
0 1

 .

To meet the requirement that each column sums to zero, we subtract a
constant 1/2 from each entry:

D =


1/2 −1/2
1/2 −1/2
−1/2 1/2
−1/2 1/2

 .
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The resulting scale term is

D′D/N =

(
1/4 −1/4
−1/4 1/4

)
,

which is singular and cannot be inverted in the usual sense. One alternative
is to take a generalized inverse, which is proposed by Bayarri & Donato-
Garcia (2007). Even with the generalized inverse, we are unsure that the
scale term is well calibrated for the ANOVA case. Consider a balanced
one-way ANOVA with a levels and r replicates and design matrix X =
Ia ⊗ 1r. Note that (X ′X/N)−1 = aIa. Here, the prior variance on the
effects is proportional to the number of levels, which is indeed an unsatisfying
specification.6 Moreover, it has undesirable implications for consistency. The
Zellner-Siow priors lead to consistent Bayes factors if model dimensionality
is held constant, but they do not lead to consistent Bayes factors if model
dimensionality increases with sample size (Berger, Gosh, Mukhopadhyay,
2003; Lang et al., 2008). In the current example, consistency would fail as
a increases and r is kept constant. Because a scales the prior variance, in
the limit, this variance would grow without bound. Consequently, the Bayes
factor would favor the null regardless of the data. This behavior contrasts
unfavorably with the ANOVA priors in (7), which lead to consistent Bayes
factors even as model dimensionality is increased with sample size.

We recommend that researchers choose priors based on whether the co-
variate is categorical or continuous. It is appropriate to use (7) for categorical
covariates and (22) for continuous ones. Models with both types of covari-
ates may necessitate prior (7) on the categorical effects and prior (22) on the
continuous effects.

14. Computational Issues

The critical step in computing Bayes factor is integrating the likelihood
function with respect to the prior distribution on parameters. All of the
models discussed have parameters µ, and σ2, and the non-null models have
additional parameters θ and g. Computation of Bayes factors, therefore,

6This dependence of prior variance on the number of levels holds even if one centers
the design matrix so that the columns are orthogonal to 1 and then takes the generalized
inverse.
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requires evaluation of high-dimensional integrals. For the proposed models,
it is possible to derive closed-form expressions for the integrals over µ, σ2,
and θ, and impossible to do so for g. Although the closed-form integration
greatly reduces the dimensionality of integration relative to the number of
parameters, the resulting integral in (9) is still potentially multidimensional.
The evaluation of this integral is the topic of this section.

We evaluate the multidimensional integral in (9) with a straightforward
form of Monte-Carlo sampling. Note that the Bayes factor in (9) may be
expressed as an expected value:

B10 = Eg[S(g)],

where the expectation is with respect to the prior distributions on g1, . . . , gr.
This expectation value may be approximated by

Eg[S(g)] =
1

L

L∑
`=1

S(g`),

where g` is an r-dimensional random vector sampled from the joint prior on
g.

The efficiency of this method is a function of the concentration of S(g)
relative to the prior on g. If S(g) has large values on just a small range
of g relative to the prior, then it will take a great many samples of g to
accurately estimate the integral. Conversely, if S(g) is spread across a wide
range, then Monte Carlo integration may converge quickly. Fortunately, for
commonly used designs in experimental psychology, S(g) is relatively diffuse,
and Bayes factors in (9) may be evaluated quickly and accurately with Monte
Carlo integration.

Figure 7A illustrates why simple Monte Carlo integration of g parameters
may be effective. Shown are posterior and prior distributions of g for a fixed-
effects ANOVA model with two levels on a single factor. There are four
parameters for this model: µ, σ2, α (standardized effect), and g. The critical
quantity is S(g), and it is proportional to the ratio of posterior and prior
densities. As can be seen, the posterior is not much more concentrated
than the prior, implying that S(g) is also fairly diffuse. Although the figure
demonstrates the diffuseness of the posterior for a single-g parameter prior,
this diffuseness is general and applies to multiple g-parameter priors as well.
Figure 7B illustrates that the closed-form integration of the other parameters
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Figure 7: Concentration of posterior relative to the prior. A. The posterior for g is not
too concentrated relative to its prior, and Monte Carlo integration is relatively efficient.
B. The posterior for effect-size (α) is more concentrated relative to prior, indicating that
the closed-form integration over effects and variance is very helpful. The figure shows the
case for a two-group design with 100 observations in each group. The model is a one-way,
fixed effects model with four parameters: µ, σ2, α and g.

is necessary. Shown are the posterior and prior distributions of α, on which
a standard Cauchy prior is placed. The posterior is quite concentrated,
especially relative to the prior, and this concentration will slow convergence
of most numerical methods. In fact, the analytic integration of µ, σ2, θ in
the Appendix is critical for the convenient evaluation of (9).

In several cases, such as one-way ANOVA, or certain regression models,
there may be a single g parameter. In this case, the integration in (9) is
over a single dimension. We have found that Gaussian quadrature (Press
et al., 1992) provides for quick and accurate estimation of Bayes factors, and
recommend it for these cases. With large samples, researchers should be
cognizant of numerical precision issues, and may have to fine-tune default
quadrature algorithms. We have yet to explore Gaussian quadrature inte-
gration across multiple dimensions, but given the properties of S(g), it may
serve as a reasonable alternative to Monte Carlo integration in this context.

There are alternative approaches to evaluating (9) than Gaussian quan-
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drature or simple Monte Carlo integration. In cases where model dimen-
sionality is large, it may prove necessary to use other sampling approaches,
such as importance sampling (Ross, 2002) or bridge sampling (Meng & Wong,
1996). Another alternative is to use MCMC-based approaches, such as evalu-
ating the Savage-Dickey density ratio or its generalizations (Dickey & Lientz,
1970; Verdinelli & Wasserman, 1995; Chib, 1995; Morey et al., 2011) or trans-
dimensional MCMC (Carlin & Chib, 1995; see Lodewyckx, Kim, Lee, Tuer-
linckx, Kuppens, & Wagenmakers, 2011 for a review). One approach that we
have tried that does not seem to work as well as hoped is Laplace approxima-
tion (Gelman et al., 2004); the accuracy of the approximation is poor in some
cases because the tails on the posterior of g diminish very slowly. The current
approach of Monte Carlo sampling directly from the priors seems more con-
venient than MCMC approaches because the analyst need not worry about
mixing in MCMC chains.

We have implemented Gaussian quadrature (for one g-parameter priors)
and Monte-Carlo sampling (for multiple g-parameter priors) in the bayesfactorPCL
package for the R statistical software package. The package is currently in
beta development and can be found at
https://r-forge.r-project.org/projects/bayesfactorpcl/.

15. Bayes Factor for a Nonlinear Application: Skill Acquisition

The current development is for linear ANOVA and regression models.
Yet, many mathematical psychologists are interested in the analysis of non-
linear models. The current development must be modified, in some cases sig-
nificantly, to accommodate nonlinearity. There are two general approaches
that may prove useful: Laplace approximation and Savage-Dickey density
ratio evaluation. The Laplace approximation is based on assuming that the
posterior can be well-approximated with a multivariate normal, which can
be integrated analytically. Sarbanés Bové & Held (2011) use the Laplace
approximation to develop Bayes factors with g priors for the class of general-
ized linear models (McCullagh & Nelder, 1989). Some psychological process
models are members of the generalized linear model class, including Bradley-
Terry-Luce scaling models (Bradley & Terry, 1952; Luce, 1959) and a wide
class of signal-detection models (DeCarlo, 1998). Several other psychologi-
cal processing models fall outside the GLM class; examples include response
time models with shift parameters that denote the lower bound of support,
such as the TER shift parameter in Ratcliff’s (1978) diffusion model.
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In this section we provide an example of a nonlinear application. We
develop a few nonlinear models, and compute the multiple-g prior Bayes fac-
tor using the Savage-Dickey density estimation approach (Dickey & Lientz,
1970; Morey et al., 2011). Our example is skill acquisition, and we address
the particularly hard problem of assessing whether the speeding of the time
to complete a task falls as a power function or exponential function of the
amount of practice. Prior to the work of Heathcote et al. (2000), it was
generally accepted that learning followed a power law with practice (e.g.,
Newell & Rosenbloom, 1981), and this power law speed up was explained by
a straightforward race-among-exemplars process (Logan, 1988, 1992). Es-
timating learning curves has been a particularly vexing problem; although
averaging across participants seems attractive to reduce noise, the functional
form of the averaged data may not accurately reflect the functional form of
individuals (Estes, 1956). Heathcote, Brown, and Mewhort (2000) provide
a particularly lucid description of the problem for assessing whether learn-
ing is a power law or an exponential law. The power law describes a more
shallow decrease in learning than the exponential. Averaging data is known
to artifactually shallow the form of learning. Heathcote et al. showed that
if all individuals followed an exponential decrease (a steep form of learning),
then the averaged data would approximate a power law even though it was
not characteristic of any one individual.

Figure 8 provides some perspective on the difficulties of adjudicating be-
tween power and exponential laws of learning. The panel shows mean task
completion time as a function of practice. The left panel shows data where
all individuals follow an exponential law, but there is variation in scale and
shift across individuals that shallow the aggregate curve. Here, best fitting
power law and exponential laws are quite similar, and any analysis of mean
data would be inconclusive. The right panel shows data where all individ-
uals follow a power law. Neither power-law nor exponential-law fits to the
data are perfect, and each misses in slight but systematic ways. Here we see
that it is quite difficult to adjudicate between the functional forms form the
analysis of mean data aggregated across individuals.

We develop Bayesian hierarchical nonlinear power-law and exponential-
law models with multiple g-priors and use Savage-Dickey density ratio esti-
mation to compute the Bayes factor between the two models. In the exper-
imental setup, a set of a individuals each perform a task J times, and the
dependent variable is the time taken to complete the task. Let tij denote
this time for the ith participant on the jth trial, i = 1, . . . , a, j = 1, . . . , J .
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Figure 8: Mean task completion time as a function of practice for simulated data. Means
are averages over 30 participants. Solid and dashed lines show best lest-squares fit for three
parameter exponential and power laws, respectively. A. Each individual’s data follow an
exponential law and were generated with Me in (26). B. Each individual’s data followed
a power law and were generated with Mp in (27).
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As people repeat the task, they learn how to do it faster, and their times
decrease. We model skill acquisition as a three-parameter, shifted lognormal:

log(tij − ψi) = µ+ αi + βxj + εij, (24)

where ψi serves an individual-specific shift parameter, µ is a grand mean on
the log scale, αi is a subject effect, xj is a covariate related to the level of
practice, and β is a slope. Noise terms are

εij
iid∼ Normal(0, σ2).

The lognormal is a unimodal distribution with an elongated right tail and
a relatively soft rise, and all three of these properties are characteristic of
response time distributions. Not surprisingly, it has been recommended as
both a descriptive model and process model of RT (e.g., Ulrich & Miller,
1993).

The lognormal is a shift-scale-shape model; parameter ψ describes the
shift, parameters µ, α, and β describe the scale; parameter σ2 describes the
shape. If xj = j, then expected value of response time follows an exponential
law:

E(tij) = ψi +Ki exp(β × j),

where Ki = exp(µ + αi + σ2/2) serves as a constant. Alternatively, if xj =
log(j), then response time follows a power law:

E(tij) = ψi +Ki × jβ.

The fact that the power and exponential laws correspond to different
covariates is very useful. Before stating the models, we standardized the
linear covariates (xj = j) and logarithm covariates (xj = log(j)) so they
have a mean of 0 and a variance of 1. For the linear covariates, let w =
1, . . . , J denote the vector of covariates, and let w̄ and sw be the mean and
(population) standard deviation of w, respectively. The standardized linear
covariate, denoted cj, is cj = (wj− w̄)/sw. Likewise for logarithm covariates,
let v = (log(1), . . . , log(J)), v̄, and sv be the vector of covariates, its mean,
and its (population) standard deviation, respectively. The standardized log
covariate, denoted dj, dj = (vj − v̄)/sv. The following three submodels of
(24) serve as a null model (no skill acquisition), an exponential-law model,
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and a power-law model:

M0 log(tij − ψi) = µ+ σαi + εij, (25)

Me log(tij − ψi) = µ+ σ(αi + βcj) + εij, (26)

Mp log(tij − ψi) = µ+ σ(αi + βdj) + εij, (27)

where effects are standardized with respect to σ2 as in the previous develop-
ment. Priors are needed for all parameters. As before, noninformative priors
are placed on common parameters:

π(ψ, µ, σ2) = 1/σ2,

where ψ = (ψ1, . . . , ψa). Separate g-parameter priors are placed on partici-
pant and covariate slope:

α | g1 ∼ Normal(0, g1Ia),

β | g2 ∼ Normal(0, g2),

gk
iid∼ Inverse-χ2(1), k = 1, 2.

The key objective is to compute a Bayes factor between the power and ex-
ponential law: Bpe. This Bayes factor is given by Bpe = Bp0/Be0, where Bp0

is the Bayes factor betweenMp andM0 and Be0 is the Bayes factor between
Me and M0. If the shift ψi is zero for all people, then these Bayes factors
could be calculated with (9) by placing linear models on log yij. Unfortu-
nately, empirical distributions of response time robustly exhibit substantial
shifts (Rouder, 2005). Therefore, we implement an alternative Savage-Dickey
approach to calculate Bp0 and Be0 as follows.

Models Mp and M0 are nested and differ by only the inclusion of slope
β. Dickey & Lientz (1970) noted that in some cases the Bayes factor can
be expressed in this case as a ratio of posterior and prior densities of the
parameter of interest, which in this case is β. Because Dickey and Lientz
attributed the idea to Savage, this ratio is often called the Savage-Dickey
density ratio. The ratio, denoted here as D0p, is

D0p =
p(β = 0 | y)

p(β = 0)
, (28)

where the numerator and denominator are the posterior and prior probabil-
ities, respectively, that β = 0 under Model Mp. The Savage-Dickey ratio is
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equal to the Bayes factor B0p under the following independence conditions:
Let η denote all parameters that are in M0, and let π0 denote the prior
density on these parameters. Let πp be the priors of the same parameters
under Mp. Then, the independence condition is given by

πp(η | β = 0) = π0(η).

Fortunately, this condition is satisfied by the standardized effect models in
(26) and (27), and, consequently, D0p = B0p. The evaluation of the denomi-
nator, p(β = 0) is straightforward. The marginal prior on β is a Cauchy, and
its density evaluated at β = 0 is 1/π (where π is the mathematical constant).
The evaluation of p(β = 0 | y), the posterior evaluated at β = 0, is more
complicated. Wagenmakers et al. (2010) and Wetzels et al. (2010), who first
recommended computation of the Savage-Dickey ratio in psychology, used
the posterior samples of β to estimate the density at β = 0 through either
splines or through a normal approximation. Chen (1994) and Gelfand and
Smith (1990) recommend an alternative called conditional marginal density
estimation (CMDE) in which the probability that β = 0 is computed on each
iteration of the chain and averaged. Morey, Rouder, Pratte, and Speckman
(2011) discuss these methods at length and performed a set of simulations
to characterize their properties. In all cases, CMDE outperformed the other
density estimation methods and is implemented here.

For our case, it is relatively straightforward to set up an MCMC chain
to estimate parameters and the posterior density p(β = 0 | y). Derivation
of conditional posteriors is straightforward (see Rouder and Lu, 2005, for a
tutorial in such derivations). Parameters ψ may be efficiently sampled with
Metropolis-Hastings steps; parameters µ, α, and β may be treated as one
multivariate block and have a joint conjugate prior; variance parameters σ2,
g1 and g2 have conjugate priors. These conjugate priors are convenient as
the corresponding parameters may be sampled with Gibbs steps. The key
step is evaluating the conditional posterior density of β at the point β = 0,
and since this conditional is a normal density, evaluation is computationally
convenient.

Bayes factors were computed by Savage-Dickey density ratios for the two
sample data sets in Figure 8. The data for Figure 8A was generated from
Me with sizable uncorrelated individual variation in ψ and α; the data in
Figure 8B was generated fromMp, again with sizable uncorrelated individual
variation. The resulting Bayes factor for the data in Figure 8A was Bpe =
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7.4×10−31, indicating strong evidence for the exponential law. This behavior
is desirable as the true data were generated with the exponential-law model.
Likewise, the resulting Bayes factor for the data in Figure 8B was Bpe =
1.4×106, which is also desirable as the data were generated by the power-law
model. As can be seen, g-prior Bayes factor assessment of the functional form
of the learning curve is possible and convenient, and it is more principled and
more powerful than assessment from averaged data. In general, we suspect
that both Savage-Dickey density ratios and Laplace approximations will be
useful for developing g-prior Bayes factors in other nonlinear settings.

16. Conclusions

One goal in the analysis of experimental data is the assessment of theories
that specify constraints among observables. In service of this goal, there is a
general need to be able to state evidence for invariances as well as for effects.
The Bayes factor provides an approach to measuring evidence from data for
competing theoretical positions, including those that specify invariances. In
this regard, it provides a principled approach to accumulating evidence for
null hypotheses, an advantage not shared with null hypothesis significance
testing.

One of the necessary conditions for increased adoption of Bayes factor
is development of default priors with associated algorithms for Bayes factor
computation. Our approach herein is an objective approach in which priors
are chosen based on desirable theoretical properties of the resulting Bayes
factor. The defaults we advocate, combinations of multivariate and inde-
pendent Cauchy priors on effects, lead to well-behaved Bayes factors that
are invariant to changes in measurement scale. The resulting computation is
convenient, especially when the number of g-parameters is relatively small.
We therefore propose the default Bayes factor as a replacement for null hy-
pothesis significance testing in regression, ANOVA, and other linear models.

We conclude with a few caveats. The current class of default priors does
not free the researcher from making important decisions in analysis. Some
of these decisions, such as specifying whether model factors are to be treated
as fixed or random, or specifying which models are to be compared, are not
unique to Bayesian statistics. Other decisions, such as those involving the
choice of priors, are more specialized. The most consequential of these prior
specifications is the prior on effect parameters, and we have recommended
a combination of multivariate and independent Cauchy priors as a default
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position. This recommendation is not a hard and fast rule, and it may be
adapted as needed to reflect context about parameter variation, or, perhaps,
the goals of inference. For example, researchers who a priori believe that
small effects in a domain are substantially important and highly probable
may wish to use a less diffuse prior than the Cauchy, or, perhaps, a Cauchy
of reduced scale.7

Finally, we cannot escape the observations that (a) testing is not the
most appropriate analysis in many situations, and that (b) testing is per-
formed far too frequently in psychology. In fact, we characterize the field
as having a testing fetishism in which common-sense exploratory analyses
are sometimes ignored in favor of ill-suited hypothesis tests. For example,
researchers are quick to resort to ANOVA as the main tool of analysis, even
in cases where null hypotheses are implausible a priori (Cohen, 1994; Morey
& Rouder, 2011). They routinely test all main effects and interactions, often
complete with post-hoc tests of which levels are significantly different. We
note that structure in data is sometimes not elucidated adequately by assess-
ment of effects in linear models, and that exploratory and graphical methods
often offer a more suitable alternative (Gelman, 2005; Wilkinson & the Task
Force on Statistical Inference, 1999). Researchers using testing, including
Bayes factors, should keep in mind that they are trying to divine structure
from comparisons among a set of models that are highly simplified represen-
tations of nature. The implicit justification for testing is that a comparison
among simplified models still yields useful insights into the structure of the
data and the relative applicability of various theoretical positions. This jus-
tification will not always be present, and when it is not, other methods of
analysis are better suited. Although we hope that researchers adopt Bayes
factor for their testing, we would find it problematic if they substituted a
fetishism with p-values for one with Bayes factor. In summary, the following
compact tag line, adopted from a current beer commercial8, seems highly
appropriate: “I don’t always test, but when I do, I prefer Bayes factors.”

7The development is generalized to a scaled Cauchy prior on standardized effects with
scale

√
h by placing a scaled inverse-χ2 prior on g with scale h (see Eq.21). The marginal

likelihood in (8) and Bayes factor in (9) correspond to the case that h = 1, but are easily
generalized for a scaled inverse-χ2 prior on g.

8The commercial for Dos Equis brand beer ends with the tag line, “I don’t always drink
beer, but when I do, I prefer Dos Equis.” See www.youtube.com/watch?v=8Bc0WjTT0Ps.
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Appendix

Proof of (8): We have the model specification and priors on µ, θ and σ2:

f(y | θ, µ, σ2) =
1

(2π)N/2(σ2)N/2
exp

(
− 1

2σ2
(y − 1µ−Xθ)′(y − 1µ−Xθ)

)
,

π(µ, σ2) = 1/σ2

π(θ | σ2, g) =
1

(2π)P/2(σ2)P/2|G|1/2
exp

(
− 1

2σ2
θ′G−1θ

)
,

where 1′ = (1, . . . , 1) is a vector of length p.
The required marginal likelihood, m, is

m =

∫
g1

· · ·
∫
gr

f(y | g)π(g) dg1 · · · dgr,

where

f(y | g) =

∫
σ2

∫
µ

∫
θ

f(y,θ, µ, σ2 | g) dθ dµ dσ2, (29)

with
f(y,θ, µ, σ2 | g) = f(y | θ, µ, σ2)π(θ | σ2, g)π(µ, σ2). (30)

The proof follows by showing that f(y | g) = Tm(g), where Tm is defined in
(8).

Combining terms,

f(y,θ, µ, σ2 | g) =
1

(2π)(N+P )/2(σ2)(N+P )/2+1|G|1/2
exp

(
− Q

2σ2

)
, (31)

where

Q = (y − 1µ−Xθ)′(y − 1µ−Xθ) + θ′G−1θ.

Now let P0 = 1
N

11′ and complete the square in µ to obtain

Q = (y − 1µ)′(y − 1µ) +N(µ− 1

N
1′(y −Xθ))2 − 1

N
(1′(y −Xθ))2 + θ′G−1θ

= (y − 1µ)′(I − P0)(y − 1µ) +N(µ− 1

N
1′(y −Xθ))2 + θ′G−1θ.
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Thus∫ ∞
−∞

f(y,θ, µ, σ2 | g) dµ =
1

(2π)(N+P−1)/2(σ2)(N+P−1)/2+1|G|1/2
√
N

exp
(
− Q2

2σ2

)
,

where
Q2 = (ỹ − X̃θ)′(ỹ − X̃θ) + θ′G−1θ,

with ỹ = (I − P0)y and X̃ = (I − P0)X. (We have used the fact that
(I − P0) is a perpendicular projection.)

Next, let Vg = X̃ ′X̃ +G−1 so that

Q2 = ỹ′ỹ + (θ − V −1g X̃ ′ỹ)′Vg(θ − V −1g X̃ ′ỹ)− ỹ′X̃ ′V −1g X̃ ′ỹ.

We then have∫ ∞
−∞

∫
f(y,θ, µ, σ2 | g) dµ dθ =

1

(2π)(N−1)/2(σ2)(N−1)/2+1|G|1/2
√
N |Vg|1/2

exp
(
− 1

2σ2
(ỹ′ỹ − ỹ′X̃ ′V −1g X̃ ′ỹ)

)
.

Finally, integrating out σ2 yields (8).

52



References

Aitkin, M. (1991). Posterior Bayes factors. Journal of the Royal Statistical
Society. Series B (Methodological), 53 , pp. 111–142.

Baayen, R. H., Tweedie, F. J., & Schreuder, R. (2002). The subjects as a
simple random effect fallacy: Subject variability and morphological family
effects in the mental lexicon. Brain and Language, 81 , 55–65.

Bayarri, M. J., & Garcia-Donato, G. (2007). Extending conventional priors
for testing general hypotheses in linear models. Biometrika, 94 , 135–152.

Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous
retroactive influences on cognition and affect. Journal of Personality and
Social Psychology , 100 , 407–425.

Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the illusion of
objectivity. American Scientist , 76 , 159–165.

Berger, J. O., Ghosh, J. K., & Mukhopadhyay, N. (2003). Approximations
to the Bayes factor in model selection problems and consistency issues.
Journal of Statistical Planning and Inference, 112 , 241–258.

Berger, J. O., & Sellke, T. (1987). Testing a point null hypothesis: The irrec-
oncilability of p values and evidence. Journal of the American Statistical
Association, 82 , 112–122.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block
designs, I. the method of paired comparisons. Biometrika, 39 , 324–355.

Campbell, D. T., & Stanley, J. (1963). Experimental and Quasi-Experimental
Designs for Research. Boston, MA: Houghton-Mifflin.

Carlin, B. P., & Chib, S. (1995). Bayesian model choice via Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society. Series B
(Methodological), 57 , pp. 473–484.

Chen, M.-H. (1994). Importance-weighted marginal Bayesian posterior den-
sity estimation. Journal of the American Statistical Association, 89 , 818–
824.

53



Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the
American Statistical Association, 90 , 1313–1321.

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of lan-
guage statistics in psychological research. Journal of Verbal Learning and
Verbal Behavior , 12 , 335–359.

Cohen, J. (1994). The earth is round (p < .05). American Psychologist , 49 ,
997–1003.

Cornfield, J., & Tukey, J. W. (1956). Average values of mean squares in
factorials. Annals of Mathematical Statistics , 4 , 907–949.

Cox, R. T. (1946). Probability, frequency and reasonable expectation. Amer-
ican Journal of Physics , 14 , 1–13.

De Finetti, B. (1992). Probability, induction and statistics : the art of guess-
ing . Wiley.

DeCarlo, L. M. (1998). Signal detection theory and generalized linear models.
Psychological Methods , 3 , 186–205.

Dehaene, S., Naccache, L., Le Clech, G., Koechlin, E., Mueller, M., Dehaene-
Lambertz, G., van de Moortele, P.-F., & Le Bihan, D. (1998). Imaging
unconscious semantic priming. Nature, 395 , 597–600.

Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp
hypotheses about chances, the order of a Markov chain. The Annals of
Mathematical Statistics , 41 , pp. 214–226.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical
inference for psychological research. Psychological Review , 70 , 193–242.

Estes, W. K. (1956). The problem of inference from curves based on grouped
data. Psychological Bulletin, 53 , 134–140.

Eves, H. (1980). Elementary Matrix Theory . Boston, MA: Allyn & Bacon.

Fechner, G. T. (1966). Elements of psychophysics . New York: Holt, Rinehart
and Winston.

54



Gallistel, C. R. (2009). The importance of proving the null. Psychological
Review , 116 , 439–453.

Gelfand, A., & Smith, A. F. M. (1990). Sampling based approaches to calcu-
lating marginal densities. Journal of the American Statistical Association,
85 , 398–409.

Gelman, A. (2005). Analysis of variancewhy it is more important than ever.
Annals of Statistics , 33 , 1–53.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian
data analysis (2nd edition). London: Chapman and Hall.

Gelman, A., & Shalizi, C. R. (in press). Philosophy and the practice of
Bayesian statistics. British Journal of Mathematical and Statistical Psy-
chology , .

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball:
On the misperception of random sequences. Cognitive Psychology , 17 ,
295–314.

Good, I. J. (1979). Studies in the History of Probability and Statistics.
XXXVII A. M. Turing’s Statistical Work in World War II. Biometrika,
66 , pp. 393–396.

Hacking, I. (1965). Logic of Statistical Inference. Cambridge, England: Cam-
bridge University Press.

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law re-
pealed: The case for an exponential law of practice. Psychonomic Bulletin
and Review , 7 , 185–207.

Jaynes, E. (1986). Bayesian methods: General background. In J. Jus-
tice (Ed.), Maximum-Entropy and Bayesian Methods in Applied Statistics .
Cambridge: Cambridge University Press.

Jeffreys, H. (1961). Theory of Probability (3rd Edition). New York: Oxford
University Press.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate
Distributions. Volume 2 (Second Edition). New York: Wiley.

55



Kass, R. E. (1992). Bayes factors in practice. Journal of the Royal Statistical
Society. Series D (The Statistician), 2 , 551–560.

Kotz, S., & Nadarajah, S. (2004). Multivariate t distributions and their
applications . Cambridge: Cambridge University Press.

Kruschke, J. K. (2011). Bayesian assessment of null values via parameter
estimation and model comparison. Perspectives on Psychological Science,
6 , 299–312.

Lee, M., & Wagenmakers, E. J. (2005). Bayesian statistical inference in
psychology: Comment on Trafimow (2003). Psychological Review , 112 ,
662–668.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mix-
tures of g-priors for Bayesian variable selection. Journal of the American
Statistical Association, 103 , 410–423.

Lindley, D. V. (1957). A statistical paradox. Biometrika, 44 , 187–192.

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model
generalizability. Journal of Mathematical Psychology , 56 , 362–375.

Lodewyckx, T., Kim, W., Tuerlinckx, F., Kuppens, P., Lee, M. D., & Wa-
genmakers, E.-J. (2011). A tutorial on bayes factor estimation with the
product space method. Journal of Mathematical Psychology , 55 , 331–347.

Logan, G. D. (1988). Towards an instance theory of automization. Psycho-
logical Review , 95 , 492–527.

Logan, G. D. (1992). Shapes of reaction time distributions and shapes of
learning curves: A test of the instance theory of automaticity. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 18 , 883–914.

Luce, R. D. (1959). Individual Choice Behavior . New York: Wiley.

Masin, S. C., Zudini, V., & Antonelli, M. (2009). Early alternative derivations
of Fechner’s law. Journal of the History of the Behavioral Sciences , 45 ,
56–65.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.).
London: Chapman & Hall.

56



Meng, X., & Wong, W. (1996). Simulating ratios of normalizing constants via
a simple identity: a theoretical exploration. Statistica Sinica, 6 , 831–860.

Min, X. (2011). Objective Bayesian inference for stress=strength models and
Bayesian ANOVA. University of Missouri, Department of Statistics.

Morey, R. D., Romeign, W.-J., & Rouder, J. N. (). The humble bayesian:
model checking from a fully bayesian perspective.

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing
interval null hypotheses. Psychological Methods , 16 , 406–419.

Morey, R. D., Rouder, J. N., Pratte, M. S., & Speckman, P. L. (2011). Using
MCMC chain outputs to efficiently estimate Bayes factors. Journal of
Mathematical Psychology , 55 , 368–378.

Mulder, J., Klugkist, I., van de Schoot, R., Meeus, W. H. J., & Hoijtink, H.
(2009). Bayesian model selection of informative hypotheses for repeated
measurements. Journal of Mathematical Psychology , 54 .

Murphy, S. T., & Zajonc, R. B. (1993). Affect, cognition, and awareness: Af-
fective priming with optimal and suboptimal stimulus exposures. Journal
of Personality and Social Psychology , 64 , 723–739.

Myung, I.-J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling
cognition: A Bayesian approach. Psychonomic Bulletin and Review , 4 ,
79–95.

Neter, J., Kutner, M. H., Wasserman, W., & Nachtschiem, C. J. (1996).
Applied linear regression models . Chicago: McGraw-Hill/Irwin.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and
the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition. (pp. 1–55). Hillsdale, NJ: Erlbaum.

Pratte, M. S., & Rouder, J. N. (2011). Hierarchical single- and dual-process
models of recognition memory. Journal of Mathematical Psychology , 55 ,
36–46.

57



Pratte, M. S., Rouder, J. N., & Morey, R. D. (2010). Separating mnemonic
process from participant and item effects in the assessment of ROC asym-
metries. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 36 , 224–232.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, F. P. (1992).
Numerical Recipes in C: The art of Scientific Computing.. (second edition
ed.). Cambridge, England: Cambridge University Press.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological
Methodology , 25 , 111–163.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review , 85 ,
59–108.

Ross, S. M. (2002). Simulation. (3rd ed.). London: Academic Press.

Rouder, J. N. (2005). Are unshifted distributional models appropriate for
response time? Psychometrika, 70 , 377–381.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical
models with an application in the theory of signal detection. Psychonomic
Bulletin and Review , 12 , 573–604.

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s
ESP claim. Psychonomic Bulletin & Review , 18 , 682–689.

Rouder, J. N., & Morey, R. D. (in press). Default bayes factors for model
selection in regression. Multivariate Behavioral Research, .

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009).
Bayesian t-tests for accepting and rejecting the null hypothesis. Psycho-
nomic Bulletin and Review , 16 , 225–237.

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. New York:
CRC Press.
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