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Abstract—Coverage is a fundamental problem in Wireless Sensor Networks (WSNs). Conventional studies on this topic focus
on 2D ideal plane coverage and 3D full space coverage. The 3D surface of a Field of Interest is complex in many real world
applications. However, existing coverage studies do not produce practical results. In this paper, we propose a new coverage
model called surface coverage. In surface coverage, the Field of Interest is a complex surface in 3D space and sensors can
be deployed only on the surface. We show that existing 2D plane coverage is merely a special case of surface coverage.
Simulations point out that existing sensor deployment schemes for a 2D plane cannot be directly applied to surface coverage
cases. Thus, we target two problems assuming cases of surface coverage to be true. One, under stochastic deployment, what
is the expected coverage ratio when a number of sensors are adopted? Two, if sensor deployment can be planned, what is the
optimal deployment strategy with guaranteed full coverage with the least number of sensors? We show that the latter problem is
NP-complete and propose three approximation algorithms. We further prove that these algorithms have a provable approximation
ratio. We also conduct extensive simulations to evaluate the performance of the proposed algorithms.

Index Terms—Wireless Sensor Networks, Surface Coverage, Expected Coverage Ratio, Optimal Coverage Strategy
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1 INTRODUCTION

COVERAGE problem is fundamental in Wireless
Sensor Networks (WSNs). Each sensor is de-

ployed to sense a section of a Field of Interest (FoI).
A FoI is considered fully covered if and only if
every point on the surface is covered by at least one
sensor. The quintessence of the coverage problem is
to use the least number of sensors to satisfy specific
service requirements, e.g. coverage ratio, network con-
nectivity and robustness. Solutions to the coverage
problem have important applications in base station
deployment in cellular networks, coverage in wireless
mesh networks, etc.

Existing works on coverage issues focus mainly on
2D plane coverage or 3D full space coverage. In 2D
plane coverage [16] [3], sensors are only allowed to
be deployed on an ideal plane. And, in 3D full space
coverage [10] [26], the FoI is assumed to be the 3D full
space where sensors can be positioned freely within
the whole FoI .

In many real world applications, however, the FoI
is neither a 2D ideal plane nor a 3D full space. Instead,
they are complex surfaces. For example, in the Tungu-
rahua volcano monitoring project [1] (Fig.1), sensors
are deployed on the volcano, which is a surface.
Existing 2D plane coverage solutions do not provide
a workable strategy. If the 2D uniform deployment
is adopted, there will be some coverage dead zone
on the complex surface as illustrated in Fig.2 (we
called Coverage Dead Zone Problem). Similarly, 3D
full space coverage solutions cannot be applied either,
because sensors in this case can only be deployed on
the exposed surface area, and not freely inside the

Fig. 1. A case study of the volcano monitoring project
by Harvard Sensor Networks Lab [1], which is a typical
surface coverage.

volcano or in the air. Three-dimensional full space
coverage solutions are not discussed in this paper
because they differ fundamentally from issues of com-
plex surface coverage.

In order to address the coverage solution in the
surface applications, we propose an innovative model
called surface coverage. The surface coverage in
WSNs (complex surfaces) is superior to solutions
derived from conventional 2D ideal plane and 3D
full space coverage methodologies. Nonetheless, the
advantages of surface coverage come with new chal-
lenges such as how to handle variations in the shape
of the surface. This paper studies two problems in
WSN surface coverage. One, computing the expected
coverage ratio when a given number of sensors are
scattered under stochastic deployment. Two, finding
the optimal deployment strategy with guaranteed full
coverage and the least number of sensors when sensor
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Dead Zone ! 

Fig. 2. The coverage dead zone problem occurs when
the traditional 2D plane solution ’uniform distribution’ is
directly adopted on a 3D surface (side view).

deployment is pre-determined. We prove that the
optimum surface coverage problem is NP-complete
when applied to complex surface. Then, we propose
three approximation algorithms with a provable per-
formance bound for coverage of complex surfaces.
The methodology used in this paper can be extended
to other issues in surface coverage, e.g. connectivity
problems and mobility problems.

The main results and contributions are summarized
as follows:

• To our best knowledge, this is the first work to
tackle the surface coverage problem in WSNs. We
propose a new model for the coverage problem.

• We derive analytical expressions of the expected
coverage ratio on surface coverage for stochas-
tic deployment. Simulation experiments are con-
ducted to verify the results.

• We formalize the planned deployment problem
and prove that it is NP-complete. Three approx-
imation algorithms are proposed with provable
approximation performance.

• We build the problem scope of surface coverage,
which includes diverse dimensions. We also dis-
cuss the availability of our methods in different
type of FoIs, sensors, distributions, and other
requirements.

The rest of the paper is organized as follows. In
Section 2, we summarizes the related works. In Sec-
tion 3, we discuss the assumptions and models used
throughout the paper. In Section 4, we present the
analytical results of the expected coverage ratio under
stochastic deployment. In Section 5, we describe the
solution to the optimum deployment strategy under
planned deployment. We evaluate our results in Sec-
tion 6. We discuss some practical issues in Section 7.
Section 8 concludes the paper. In the supplemental
material, Section 1 gives the detailed proofs of all
theorems in this paper and Section 2 extends our
method to other cases in the problem scope.

2 RELATED WORK

2.1 Coverage of the 2D Plane and the 3D Space

There are several ways to classify existing research
on the coverage problem. One is the type of FoI :
2D ideal plane FoI [22] [13] [18] [25] [20] [6] [16]
[11] [17] [7] [4] [24] [5] [3] or 3D full space FoI
[10] [26]. Early work on coverage for the 2D ideal
plane assumed that the plane was infinite so as to
avoid the edge effect [20] [16] [11] [3], but recent
findings have shown these results to be impractical
and offer tentative solutions to finite areas [17] [4].
As yet, fundamental problems for these finite areas
remain unanswered (e.g. optimum coverage policy
and mobile coverage), and coverage solutions for the
2D ideal plane continue to incite heated debate [24]
[3]. Still, proposed solutions to the 2D ideal plane
problem have found a wide range of applications and
some of them are easily applied to the case of 3D full
space. All of these results, derived from the 2D plane
and then applied to 3D complex surface, suffer from
the Coverage Dead Zone Problem.

Another way to classify existing work is by the
type of sensors. Some early works assumed that
sensors were static and homogeneous. More recent
work began to consider mobile sensors [20] [24][15]
and heterogeneous sensors [17]. For example, mobile
sensors were employed to cover a certain area so that
fewer static sensors were needed [20] [24]. Lazos [17]
applied a new mathematical tool called “Integral Ge-
ometry” to solve the coverage problem when sensors
are heterogeneous. Parts of our results are extended
from the results from this work [17].

A third way to classify previous research is based
on the deployment scheme. A deterministic scheme
[11] [3] is a planned deployment (e.g., manual deploy-
ment [8]) that needs fewer sensors to cover a given
area but is more time-consuming and labor intensive.
Another deployment scheme is by stochastic or ran-
dom deployment, which is advocated in [20] [17] [4]
[24]. This method deploys sensors by vehicles or air-
craft. We consider both of these cases.

Also, there is other work that focus on joint op-
timum coverage goals. Cardei et. al. [6] proposed a
scheduling policy to maximize the lifetime while cov-
ering. Paper [13] studied the relation between sensing
coverage and communication connectivity. And in
works [11] [3], the optimum coverage patterns for
an ideal infinite plane with designated connectivity
requirements were proposed. In particular, the recent
barrier coverage [16] [7] [4] considered intrusion de-
tection in a barrier area, which is quite different from
traditional 2D plane coverage. All these works are,
however, based on the 2D ideal plane and no complex
surface in 3D space has yet been considered.
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TABLE 1
Notations and Terms in Section 3

Symbol Definition
SP3 Space surface Poisson point process model;
PP3 Planar surface Poisson point process model;

OSCP The optimum surface coverage problem;
S The bounded area of the 3D surface;
P A set of points (positions in S) to deploy sensors;

g∗(P ) The union set of the coverage area
if sensors are deployed at P ;

C A feasible solution of P meets OSCP.

2.2 Coverage of the 3D Surface
Currently, several works started to study the surface
coverage problem.

A distributed algorithm [27] was proposed to pro-
duce a triangulation for any arbitrary 2D and 3D
sensor networks. Further, [12] studied the optimal
solution for 3D surface sensor deployment with min-
imized overall unreliability. It also designed a series
of excellent algorithms for practical implementation.
This study focused on the homogeneous sensors with
the deterministic deployment.

Liu et. al. [21] derived the expected coverage ratios
for regular terrains by cone/cos model and for irreg-
ular terrains by digital elevation model. This work
assumed that homogeneous sensors are stochastically
deployed.

Compared with the recent works, in our paper, we
build the problem scope of surface coverage, which
includes different type of FoIs, sensors, distributions,
and other requirements. Our analysis methods and
algorithms could be extended to these various dimen-
sions.

3 PROBLEM STATEMENT

In this section, the problem scope of surface coverage
is described. Then, sensor, surface and distribution
models are formulated. This is followed by a formal
statement of the surface coverage problem in WSNs.
And a brief summary of integral geometry and the
Poisson point process are presented.

3.1 Problem Scope
The problem scope of surface coverage can be divided
into several dimensions.
• The type of FoI : (i) The FoI is a bounded (finite)

surface in 3D space. (ii) The FoI has or has no hole
on the surface.
• The type of sensors: (i) The sensors are static

or mobile. (ii) The sensing areas of all sensors are
homogeneous or heterogeneous.
• The type of sensor distribution: deterministic

deployment or stochastic deployment.
• The coverage requirement: (i) full coverage or

multiple coverage. (ii) coverage with or without the
consideration of connectivity.

Throughout the main parts of this paper, we study
the case that the FoI is a finite surface in 3D space
without hole, the sensors are static and their sens-
ing areas are homogeneous, both deterministic and
stochastic deployment are studied, and the require-
ment is full coverage without connectivity limitation.
In Section 2 of the supplemental document, we extend
our method to other cases in the problem scope.

3.2 Sensor models
We assume that all sensors have the same sensing ra-
dius r in 3D Euclid space. They are statically deployed
and stationary after deployment. A point is said to be
covered by a sensor if it is located within the sensing
area of the sensor. The FoI is thus partitioned into
two regions: the covered region, which is covered by at
least one sensor and the uncovered region, which is the
complement of the covered region.

3.3 Surface models
The surface can be expressed as z = f(x, y) in a
Cartesian coordinate system, which is considered the
reference system for this surface. We assume that the
FoI is convex, i.e., z = f(x, y) is a single valued
function. A surface is a plane if and only if the function
is z = c where c is a constant. A surface is a slant if
and only if the function is z = ax + by + c where
a, b, c are constants. A sensor is said to be placed on
the surface if its position lies on the surface. In this
paper, we consider the FoI to be finite for practice.
Thus, the boundary effect will be taken into account
in all our calculations.

3.4 Sensor distribution models
Definition 3.1. The Z-projection of a point in 3D space
is its projection point along the Z axis on the xOy plane
in the reference system, i.e., if the Cartesian coordinates
of a point is (x, y, z), the coordinates of its projection is
(x, y, 0). The Z-projection of a set in 3D space is a planar
point set in xOy plane, which contains all the Z-projection
points in the set.

For stochastic deployment, we consider two sensor
distribution models. One is the space surface Poisson
point process model (SP3) and the other is the planar
surface Poisson point process model (PP3).

• SP3 is described as pm = (ρF )m

m! e−ρF .

• PP3 is described as pm =
(ρF ′)

m

m! e−ρF ′
.

Where pm is the probability that there are exactly m
sensors on a FoI , where F is the area of the surface
FoI , and F ′ is the Z-projection area of the FoI . It can
be seen that both models agree with the traditional
distribution model (i.e. Poisson Point Process) when
the surface is an ideal plane.

Fig.3 illustrates the difference between SP3 and
PP3 models from a side view. SP3 model is used
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Fig. 3. The difference between PP3 and SP3 models.
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Fig. 4. An example of a parallel convex set.

to describe that sensors are deployed by humans or
vehicles running on the surface. Hence, the sensors
follow the Poisson distribution according to the sur-
face. PP3 model is used to describe that sensors are
deployed by aircraft. The scattered sensors follow the
Poisson distribution according to the flight path. Fig.3
shows a typical example: 9 sensor nodes (SP3) are
isometric according to the surface, while thee nodes
(PP3) are isometric according to the flight line. When
the nodes (PP3) drop along with the arrows, the
deployed positions by two models are different.

3.5 Problem statements
Definition 3.2. Let z = f(x, y) be a surface S in 3D
space. Let ∥ S ∥ be the area of the surface S. The function
g : S → 2S is a function defined on the surface. Its
value is the point set which is covered by sensor when
the independent variable is the position of the sensor. The
function g∗ : 2S → 2S is a set function defined as: C ⊆ S,
g∗(C) =

∪
t∈C g(t).

Simply, the function g(P ) describes the coverage
area of a sensor if it is deployed at position P on the
surface, when P has only one point. g∗(P ) presents
the union set of the coverage area of sensors if they
are deployed at positions P , when P is a set of points.

Definition 3.3. The coverage ratio is defined as: Given
a point set P (P ⊆ S), the coverage ratio fc is a real value
expressed as

fc =
∥ g∗(P ) ∥
∥ S ∥

. (1)

Because fc depends on the deployment of sensors
P , we focus on the expected value of the coverage
ratio E(fc) when P follows some distribution.

Definition 3.4. A feasible solution to the coverage problem
is defined as a point set C that satisfies C ⊆ S, g∗(C) ⊇

S. The optimum surface coverage problem (OSCP) is
defined as: minimize|C|, C is a feasible solution.

3.6 Integral geometry and Poisson Point Process

Lemma 3.1. The Z-projection of a convex set C in 3D
space is a planar convex set.

Definition 3.5. Parallel convex sets. The parallel set Kr,
in the distance r of a convex set K is the union of all closed
circular disks of radius r, the centers of which are points of
K. The boundary ∂Kr, is called the outer parallel curve of
∂K in the distance r.

Fig.4 gives an example of a parallel convex set.

Lemma 3.2. Let the area of the convex set K be F and
perimeter of the convex set be L. Then the area Fr and
perimeter Lr of the parallel convex set Kr is:

Fr = F + Lr + πr2 (2)

Lr = L+ 2πr (3)

Definition 3.6. Poisson Point Process. Let D0, D be two
domains of the plane such that D ⊆ D0. Let F0, F be the
areas of D0, D. According to the density dP = dx∧dy, the
probability that a random point of D0 lies in D is F/F0. If
there are n points chosen at random in D0, the probability
that exactly m of them lie in D is a binomial distribution

pm =

(
n

m

)(
F

F0

)m (
1− F

F0

)n−m

(4)

If D0 expands to the whole plane and both n, F0 →∞
in such a way that n

F0
→ ρ, which is a positive constant,

we get

lim pm =
(ρF )

m

m!
e−ρF (5)

The right-hand side of Eqn. 5 is the probability function of
the Poisson distribution; it depends only on the product
ρF , which is called the parameter of the distribution.
This probability model for points in the plane is said to
be a homogeneous planar Poisson point process of
intensity ρ. In the following, we simplify it as Poisson
Point Process.

Lemma 3.3. Let A0 be a fixed convex set of area F0 and
perimeter L0, and let A1 be a convex set of area F1 and
perimeter L1. A1 is randomly dropped in the plane in such
a way that it intersects with A0. The probability that a
randomly selected point P ∈ A0 is covered by A1 is given
by:

p(P ∈ A1) =
2πF1

2π(F0 + F1) + L0L1
(6)

Lemma 3.4. Let A0 and A1 be two fixed convex set of area
F0, F1 and perimeter L0, L1, and A0 ⊆ A1. Let A2 be a
convex set of area F2 and perimeter L2, randomly dropped
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TABLE 2
Notations and Terms in Section 4

Symbol Definition
Af A field of interest (FoI);
Ff The area of Af ;
Lf The perimeter of Af ;
As A sensor;
r The sensing range of a sensor;

E(fc) The expected coverage ratio;
θ The angle between the slant and the xOy plane;
p The probability.

in the plane in such a way that it intersects with A1. The
probability that it intersects with A0 is given by:

p(A0

∩
A2 ̸= ∅ | A1

∩
A2 ̸= ∅) =

2π(F0 + F2) + L0L2

2π(F1 + F2) + L1L2
(7)

For more detailed proofs of Lemma 3.1, 3.2, 3.3, and
3.4, please refer to the book [23].

4 EXPECTED COVERAGE RATIO UNDER
STOCHASTIC DISTRIBUTION MODELS

4.1 Expected coverage ratio on a plane
Theorem 4.1. Let Af be a FoI of area Ff and perimeter
Lf on a plane, and let every sensor As have the same
sensing radius r. N sensors are stochastically placed on the
plane in such a way that it intersects with Af according
to PP3 model or SP3 model. The expected coverage ratio
E(fc) of the FoI Af is given by:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)N

(8)

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 4.1.

Corollary 4.1. Let Af be a FoI of area Ff and perimeter
Lf on a plane. Let the distribution of the sensors with
sensing radius r be PP3 model or SP3 model with intensity
λ. The expected coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)
(9)

Proof: Please refer to the supplemental document
for the detailed proof of Corollary 4.1.

4.2 Expected coverage ratio on a slant
Theorem 4.2. Let Af be a FoI of area Ff and perimeter
Lf on a slant. Let the distribution of the sensors with
sensing radius r be SP3 model with intensity λ. The
expected coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)
(10)

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 4.2.

Lemma 4.1. For any slant in reference system, if its
included angle with the xOy plane is θ, the ratio between
the area of any convex area and its Z-projection convex
area is a constant. Its value equals to sec θ.

Lemma 4.1 can be immediately obtained from
trigonometric function.

Theorem 4.3. Let Af be a FoI of area Ff and perimeter
Lf on a slant whose equation can be expressed as z =
ax+by+c. Let the distribution of the sensors with sensing
radius r be PP3 model with intensity λ. The expected
coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ cos θ(Ff+Lfr+πr2)

(11)
where

θ = arccos

(
1√

a2 + b2 + 1

)
0 ≤ θ <

π

2
(12)

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 4.3.

4.3 Results for general complex surface
We simplify the complex surface into many small
triangles as many small slants. From this, we are able
to obtain an approximate value for the coverage ratio
when sensors are stochastically deployed. Let Af be
the FoI with area Ff and perimeter Lf . We divide
Af into many small pieces of triangle Ai, with area
Fi and perimeter Li, where i varies from 1 to n.
We model the sensing area of the sensor as a sphere
with radius r. Let As be the sensing region of the
sensor with area Fs = πr2 and perimeter Ls = 2πr.
In this paper, we assume that the variations in the
surface are not significant within the sensing area of
a single sensor. As mentioned, we discuss two sensor
distribution models separately.

Theorem 4.4. (for space surface Poisson Point Process
model (SP3)) Let the sensor distribution be SP3 on a
general complex surface. The probability that a randomly
chosen point P in Af is covered by the sensor is given by:

p(P ∈ As) =
2π2r2

2π (πr2 + Ff ) + 2πrLf
(13)

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 4.4.

Corollary 4.2. Let the sensor distribution be SP3 with
intensity λ on a general complex surface, the expected
coverage ratio E(fc) of a FoI Af with area Ff and
perimeter Lf is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)
(14)

Proof: Please refer to the supplemental document
for the detailed proof of Corollary 4.2.
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(a) inner-projection (b) outer-projection

(c) topology for (a) (d) topology for (b)

Fig. 5. An example to show the difference between
inner-projection and outer-projection through top view
(a)(b) and topology graphs (c)(d).

Theorem 4.5. (for planar surface Poisson Point Process
model (PP3)) Let the sensor distribution be PP3 on a
general complex surface. The probability that a randomly
chosen point P in Af is covered by the sensor is given by:

∑
i

Fi

Ff

2π2r2

2π (πr2 + Fi) + 2πrLi

(
Fi + Lir + πr2

)
cos θi

F
′
f + Lfr + πr2

(15)
where θi is the included angle between Ai slant and xOy
plane of the reference system and F

′

f is the area of Z-
projection of Af .

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 4.5.

Corollary 4.3. Let the sensor distribution be PP3 with
intensity λ on a general complex surface; the expected
coverage ratio E(fc) of a FoI Af with area Ff and
perimeter Lf is:

E(fc) = 1− (1−
∑
i

Fi

Ff

2π2r2

2π (πr2 + Fi) + 2πrLi(
Fi + Lir + πr2

)
cos θi

F
′
f + Lfr + πr2

)
λ
(
F

′
f+Lfr+πr2

)
(16)

Proof: Please refer to the supplemental document
for the detailed proof of Corollary 4.3.

We can easily verify that the results of PP3 and SP3
are the same, and match precisely the previous result
when the surface is an ideal plane, i.e. θi = 0, F

′

f =
Ff =

∑
i Fi.

Our analysis provides the methods to compute the
expected coverage ratio when a given number of
sensors are randomly scattered on the 3D surface.
These methods could also give underlying insights for
determining the appropriate number of sensors that
achieves a required coverage ratio before deployment.

5 DETERMINISTIC DEPLOYMENT PROBLEM

The original optimum surface coverage problem is a
difficult continuous problem. So we convert it to a
discrete problem and then relate the results back to the
original continuous problem. We prove the hardness
of the problem and propose three algorithms offering
approximate solutions.

Definition 5.1. A Partition is a set defined on a surface S:
η = {S1, S2, . . . , Sk} which satisfies: Si ⊆ S(i = 1 . . . k),
Si

∩
i ̸=j Sj = ∅, and

∪k
i=1 Si = S. Let P be the set of

all the partitions. Use Gran(η) = maxi=1...k{∥ Si ∥} to
denote granularity of partition η. The relation ≼ is a partial
semi-order relation in P × P : ηi ≼ ηj if and only if ηj is
a finer partition than ηi. The function h : η → 2η is a
function defined on partition η. Its value is a partition set
that is covered by a sensor, where the independent variable
is the position of the sensor. The function h∗ : 2η → 2η is
a set function defined as: L ⊆ η, h∗(L) =

∪
t∈L h(t).

Definition 5.2. The topology graph of partition η is
a graph G(V,E), where a vertex vi corresponds to Si in
partition η. An edge is added between vertices vi and vj
if Si and Sj are neighbors to each other by sharing their
border or a common point. Fig.5(c) and Fig.5(d) show the
corresponding topology graphs of Fig.5(a) and Fig.5(b). The
distance between two pieces in a partition is defined as
the length of the shortest path between the corresponding
vertices. For a sensor positioned at any piece Si, its sensing
radius R is defined as the longest distance from vi to any
other vertex within its sensing area; whereas, its sensing
diameter D is defined as the longest distance between any
two vertices within its sensing area.

Definition 5.3. A feasible solution to the partition
coverage problem is defined as a set L satisfying L ⊆ η
and h∗(L) ⊇ η. The Optimum Partition Coverage
Problem (OPCP) is defined as: minimize |L|, L is a feasible
solution.

To solve the OSCP, we have converted the problem
from its original continuous form to a discrete one. If
function g in the continuous version and function h
in the discrete one are correlated, we can establish a
relationship between their corresponding solutions as
specified in the following lemmas.

Lemma 5.1. For every Si ∈ partition η, if there exists a
point k in Si to satisfy g(k) ⊇ h(Si), any feasible solutions
to the discrete version of the problem will be a feasible
solution to the continuous version; For any point k in Si,
if h(Si) ⊇ g(k), any feasible solutions to the continuous
version of the problem will be a feasible solution to the
discrete version.

In fact, due to the impact of the surface, the cov-
erage area of a sensor is no longer a unit disk. The
function g is determined by the characteristic of the
surface. For the discrete problem, there are two mech-
anisms to deal with the boundary: inner-projection
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and outer-projection. The values of an inner-projection
function are all the pieces located within the coverage
area, i.e., g(k) ⊇ h(Si). On the other hand, the values
of an outer-projection function include that of inner-
projection plus all the pieces located at the boundary,
i.e. h(Si) ⊇ g(k). Figs 5(a) and 5(b) show the instances
of the inner-projection and outer-projection for the
same function g. In order to satisfy the first part of
Lemma 5.1, we focus on the inner-projection function
from now on to ensure that our results for the discrete
problem are applicable to the continuous problem.

Lemma 5.2. Let Sopt be the solution to the OSCP, ηopt be
the solution to the OPCP under partition η, and function
h be an inner-projection of function g in the OSCP. Let
η1, η2, . . . , ηi, . . . be a sequence of partitions with ηi ≼
ηi+1 and limi→∞ Gran(ηi) = 0. We have ηiopt is mono-
tonically decreasing as i increases and limi→∞ ηiopt = Sopt.

The above two lemmas guarantee that when the
partition is fine enough, the result of the OPCP can
approximate the result of the OSCP precisely. To show
the hardness of the OPCP, we prove that a special case
of the OPCP, called Optimum Rectangular Grid Coverage
(ORGC) problem, is NP-complete. The ORGC problem
limits the shape of the sensing area and the shape
of the partition in the original partition coverage
problem. Since the ORGC problem is a special case
of OPCP, the latter is also NP-complete.

5.1 The hardness of the ORGC problem
Definition 5.4. The Optimum Rectangular Grid Cov-
erage (ORGC) problem is defined as: we consider an N×N
grid G, where each pane E(i,j) ∈ G is associated with four
numbers to specify its coverage rectangleO(i,j). The ORGC
problem is to find a subset G′ that minmizes |G′| while
satisfying: {

∪
E(i,j)∈G′ O(i,j)} ⊇ G.

Theorem 5.1. ORGC problem is NP-complete.

Proof: Planar 3SAT (P3SAT) is 3SAT restricted to
formulae B such that G(B) is planar. P3SAT is NP-
complete[19]. We divide the procedure of reducing
from P3SAT into two steps. Step I, we show that there
is a polynomial time computable function f which
converts an instance in P3SAT to an instance in ORGC.
Step II, we prove that:

w ∈ P3SAT ⇐⇒ f(w) ∈ ORGC (17)

where w is an instance in P3SAT.
Please refer to the supplemental document for the

detailed proof of Theorem 5.1.

5.2 Approximation algorithms for solving the Op-
timum Partition Coverage Problem (OPCP)
Since the OPCP is NP-complete, we propose three
algorithms to solve it approximately. Algorithm 1 is a
greedy algorithm. It selects a position that can increase
the covered region the most.

Algorithm 1: Greedy Algorithm for OPCP
Input : Partition P , function h of every pieces Si

Output: A subset P ′ of P
1 P ′ ← ∅; C ← ∅;
2 while C + P do
3 m← 0, x← 0;
4 for every Si in P − P ′ do
5 if |h(Si)− C| > m then
6 m← |h(Si)− C|;x← i;
7 end
8 end
9 P ′ ← P ′∪ {Sx}; C ← C ∪ h(Sx);

10 end

Algorithm 2: Approximation Algorithm for OPCP
Input : Partition P , the function h of every

pieces Si

Output: A subset P ′ of P
1 Divide P into vertical strips to generate l shifting

partitions η1, η2, . . . , ηl;
2 for each shifting partition ηi do
3 for each strip group ηij ∈ ηi do
4 Divide ηij into horizontal strips to generate

l shifting partitions Sη1, Sη2, . . . , Sηl;
5 for each shifting partition Sηu do
6 for each strip group Sηuv ∈ Sηu do
7 Algorithm 2(a): Using brute-force

algorithm to solve the subproblem
Sηuv and let the result be Ru

v ;
8 Algorithm 2(b): Using greedy

algorithm to solve the subproblem
Sηuv and let the result be Ru

v ;
9 end

10 Ru ←
∪⌈ m

l×D ⌉
v=1 Ru

v ;
11 end
12 Ri

j ← min|Ru| R
u;

13 end

14 Ri ←
∪⌈ n

l×D ⌉
j=1 Ri

j ;
15 end
16 P ′ ← min|Ri| R

i;

Theorem 5.2. Algorithm 1 is an O(|P|2) time log (|P|)-
approximation algorithm.

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 5.2.

Actually, if we assume the diameter of the sens-
ing area is D as defined in definition 5.2, then we
can make use of the “shifting strategy” proposed in
paper[9] to develop an polynomial-time approxima-
tion scheme(PTAS) algorithm to solve it. The approxi-
mation ratio can be (1+ 1

ϵ )
2. Since it is based on divide-

and-conquer idea, it can be easily implemented in a
distributed manner.
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The main idea of Algorithm 2 is to divide the FoI
into vertical strips of width D. These strips are then
considered in groups of l consecutive strips resulting
in strips of width l × D each. For any fixed division
into strips of width D, there are l different ways of
partitioning FoI into strips of width l × D. These
partitions can be ordered such that each can be de-
rived from the previous one by shifting it to the right
over distance D. We use the same method to solve the
subproblem and output the union of all positions. For
l different shifting partitions, we select the optimum
result as the final result.

The main framework and some symbols can refer
to [9]. Especially, Algorithm 2 includes two alternative
parts: Algorithm 2(a) and Algorithm 2(b). The most
pseudo-codes of these two algorithms are the same.
The difference is that Algorithm 2(a) only carries out
Line 7 but not Line 8 and Algorithm 2(b) only operates
Line 8 but not Line 7.

Theorem 5.3. Algorithm 2(a) is an O( |P|
D2 × 2l

2D2

) time
(1 + 1

l )
2-approximation algorithm.

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 5.3.

Although the performance ratio looks fine, it may
be not practical in real environments because even
l = 1 is a big cost since D is often larger than
five. We sacrifice some accuracy to reduce the cost
of calculation. This brings us to algorithm 2(b). It
mixes the core idea in algorithm 1 and algorithm
2(a) and simply uses the greedy algorithm (Line 8
in Algorithm 2) instead of the brute-force algorithm
(Line 7 in Algorithm 2). It can still be implemented in
a distributed manner. We call it algorithm 2(b).

Theorem 5.4. Algorithm 2(b) is an O(|P|l4D2) time
log(l2D2)× (1 + 1

l )
2-approximation algorithm.

Proof: Please refer to the supplemental document
for the detailed proof of Theorem 5.4.

6 PERFORMANCE EVALUATION
The main purpose of the evaluation is to: (i) point out
the limitation of the traditional methods, (ii) verify
our derived results, and (iii) make comparisons of
the three proposed algorithms in a comprehensive
manner.

We utilize Terragen [2], a professional terrain gen-
erating tool to simulate surface, and the widely-used
“Ridged Perlin Noise” to generate a natural, ridged
landscape. Glaciation is a widely-used parameter to
measure the steepness of a terrain [2]. A low Glacia-
tion generates a smoothly flat terrain as shown in
Fig.6(a). On the contrary, a high Glaciation generates
a sharply fluctuant terrain as shown in Fig.6(b). We
use triangularization to partition a surface for our
evaluation. Fig.6(c) depicts surface triangularization.

There are several methods for covering the FoI if
the FoI is an ideal 2D plane. The typical one is the

triangle pattern [14]. Thus, we take this method as the
representative pattern for performance evaluation. Six
different terrains are generated, whose Glaciation is
set 0, 20, 40, 60, 80, and 100 respectively. All sensors
can be only deployed on the surface. In this simula-
tion, the size of the FoI is set to be 1920×1920m2. The
height range is from 300m to 2000m and the sensing
radius is 30m. Finally, we calculate the coverage ratio.
Fig.7 presents the performance of the typical trian-
gle pattern. The number of sensors is set to satisfy
the minimum value for achieving full coverage (the
coverage ratio is 1) when Glaciation = 0. When
the parameter Glaciation increases, the coverage ra-
tio decreases quickly. It drops to about 60% when
Glaciation = 100. Hence, the conventional triangle
pattern does not work well on a complex surface. It is
necessary to find new methods to cover the complex
surface.

Fig.8 shows the coverage ratio under stochastic
distribution. The solid lines present the theoretical
results calculated by the proposed methods in Section
4. And the dash lines present the experimental results
obtained by our simulation, which we stochastically
deploy sensors on the surface and do the statistics of
the coverage ratio. We find that the theoretical results
match the experimental results precisely, no matter
the Glaciation is low or high. Fig.8 demonstrates the
validity of our method to calculate the coverage ratio
under stochastic distribution on complex surface.

Fig.9 compares the results of the three proposed
algorithms under deterministic deployment. We uti-
lize a square partition in our experiment because
the terrain file is a dot matrix and can be easily
converted to a square partition. The FoI is a N × N
grid, where N is the distance measured by partitions.
The X-axis is the side length of the FoI and the Y-
axis means how many sensors are needed to have a
complete coverage (coverage ratio is 1) of the FoI . The
performance of the simple greedy algorithm provides
the best result, which demands the minimum number
of sensors for complete coverage. Algorithm 2(a) has
the best theoretical performance bound when l (refer
to Section 5.2) is large enough. Unfortunately, the
time complexity is exponential as l increases. Thus,
it can only be executed effectively when l = 1 and
D ≤ 5 (refer to Definition 5.2). However, the small D
implicates that the size of the partition is large. We
must guarantee that the partition is detailed enough
to get a precise solution to the original OSCP as stated
in lemma 5.2. In Fig.9, D is set to be 3 so that we
can compare Algorithm 2(a) with other algorithms.
We find that the results of Algorithm 2(a) and 2(b)
(l = 1) is close. Furthermore, the number of sensors
decreases when l increases for Algorithm 2(b).

The experiment of Fig.10 is similar to Fig.9, but
the sensing diameter is changed to D = 7. Fig.10
also compares the three proposed algorithms. The
performance of algorithm 1 is still the best. Note that
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(a) (b) (c)

Fig. 6. (a) Terrain1 with Glaciation=20 generated by Terragen[2]. (b) Terrain2 with Glaciation=100. (c). Terrain2
after triangularization (Top view).
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Fig. 7. The sensors fully cover a plane FoI (Glacia-
tion=0). But the coverage ratio drops when Glaciation
increases. This simulation demonstrates that it is nec-
essary to study the surface coverage problem.
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Fig. 8. The expected coverage ratio in stochastic
distribution case. We compare the theoretical value
calculated by our proposed method and the experi-
mental value obtained in the simulation.

algorithm 2(a) and algorithm 2(b) can be implemented
in a distributed manner, and we propose algorithm
2(b) because the calculation cost of algorithm 2(a) is
too large.

The results tell us that algorithm 1 is the best choice.
Although its theoretical performance bound is not
very acceptable, its average approximation ratio is
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Fig. 9. In deteminstic deployment case, the minimum
number of sensors satisfies the full coverage of a FoI
with given side length. The results are obtained by our
proposed algorithms when sensing diameter D = 3.
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Fig. 10. In deteminstic deployment case, the minimum
number of sensors satisfies the full coverage of a FoI
with given side length. The results are obtained by our
proposed algorithms when sensing diameter D = 7.

precise enough.

7 DISCUSSIONS

In this section, we discuss some practical issues.
(i) Surface is not a single-valued function (i.e. not

convex). Note that our solution only depends on a
partition of the surface. If we have proper expressions
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of the surface when it is not a single-valued function,
we can partition it and our solution can still be
applied.

(ii) The errors between a smooth surface and a surface
with triangles. Due to discrepancy between a smooth
surface and a triangulated surface, unavoidable errors
that occur when converting a smooth surface into a
triangulated one are minimized when the triangles
are small. Since geographic information systems (GIS)
provide data in a dot matrix, accuracy is lost in
this data storage system, and not in the calculation
process.

(iii) Relationship between surface parameter and cov-
erage ratio. After a survey of the current surface pa-
rameters in the GIS, we have not found any relative
parameters. The impact on coverage ratio is the ratio
of the area to the projective area. In general, a terrain
with more mountains and densely populated with
mountains will have a relatively poor coverage ratio.

8 CONCLUSIONS AND FUTURE WORK

We have proposed a new model for the coverage
problem called surface coverage to better capture real
world application challenges. Two problems pertain-
ing to surface coverage were in focus: the expected
coverage ratio with stochastic deployment and the
optimal deployment strategy with planned deploy-
ment. Comprehensive simulation experiments show
that though the performance bound of the greedy
algorithm is not the best, it often outperforms the
other two algorithms. To our best knowledge, this is
the first attempt to describe and resolve the surface
coverage problem in WSNs.

Future research can be carried out following many
directions. For instance, our research considers only
static sensors. Mobile sensors for surface coverage is
worthy to further study. Moreover, the connectivity
problem is still an open problem in surface coverage
domain.
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1 PROOF

Theorem 4.1. Let Af be a FoI of area Ff and perimeter
Lf on a plane, and let every sensor As have the same
sensing radius r. N sensors are stochastically placed on the
plane in such a way that it intersects with Af according
to PP3 model or SP3 model. The expected coverage ratio
E(fc) of the FoI Af is given by:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)N

Proof: According to Lemma 3.3, when A1 and
A0 are intersected. The probability that a randomly
selected point P ∈ A0 is covered by A1 is

p(P ∈ A1) =
2πF1

2π(F0 + F1) + L0L1
.

Substitute A0 by Af and A1 by As in above equation.
The coverage area of a sensor Fs is πr2 and its perime-
ter Ls is 2πr. Thus, the probability that a randomly
selected point P ∈ Af is covered by As is:

2π2r2

2π(Ff + πr2) + 2πrLf
.

Then, the probability that a randomly selected point
P ∈ Af is not covered by As is

p(P /∈ As) = 1− 2π2r2

2π(Ff + πr2) + 2πrLf
.

Since N sensors are randomly scattered on Af , the
expected coverage ratio is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)N

.

Corollary 4.1. LetAf be a FoI of area Ff and perimeter
Lf on a plane. Let the distribution of the sensors with
sensing radius r be PP3 model or SP3 model with intensity
λ. The expected coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)

Proof: The main process to derive Corollary 4.1
is similar to Theorem 4.1. The only difference is to
replace ’random deploying N sensors’ by ’all sensors
are randomly distributed with intensity λ’. Hence, the
exponent is λ

(
Ff + Lfr + πr2

)
instead of N when

computing the expected coverage ratio. Then, this
Corollary is immediately obtained.

Theorem 4.2. Let Af be a FoI of area Ff and perimeter
Lf on a slant. Let the distribution of the sensors with
sensing radius r be SP3 model with intensity λ. The
expected coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)

Proof: SP3 in a slant is similar to PP3 in a plane
after some rotation of the reference system. So, the
result is same with Corollary 4.1.

Theorem 4.3. Let Af be a FoI of area Ff and perime-
ter Lf on a slant whose equation can be expressed as
z = ax + by + c. Let the distribution of the sensors
with sensing radius r be PP3 model with intensity λ. The
expected coverage ratio E(fc) of the FoI Af is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ cos θ(Ff+Lfr+πr2)

where

θ = arccos

(
1√

a2 + b2 + 1

)
0 ≤ θ <

π

2

Proof: PP3 with intensity λ can be considered as
SP3 with intensity λ cos θ. By combining Corollary 4.1
and Lemma 4.1, the result is obtained.

Theorem 4.4. (for space surface Poisson Point Process
model (SP3)) Let the sensor distribution be SP3 on a
general complex surface. The probability that a randomly
chosen point P in Af is covered by the sensor is given by:

p(P ∈ As) =
2π2r2

2π (πr2 + Ff ) + 2πrLf
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Proof:

p(P ∈ As)

=
∑
i

p(P ∈ As | P ∈ Ai)p(P ∈ Ai)

=
∑
i

Fi

Ff

2πFs

2π (Fs + Fi) + LsLi

2π (Fs + Fi) + LsLi

2π (Fs + Ff ) + LsLf

=
2π2r2

2π (πr2 + Ff ) + 2πrLf

Corollary 4.2. Let the sensor distribution be SP3 with
intensity λ on a general complex surface, the expected
coverage ratio E(fc) of a FoI Af with area Ff and
perimeter Lf is:

1−
(
1− 2π2r2

2π (πr2 + Ff ) + 2πrLf

)λ(Ff+Lfr+πr2)

Proof: Combining Theorem 4.2 and Theorem 4.4,
the result can be obtained.

Theorem 4.5. (for planar surface Poisson Point Process
model (PP3)) Let the sensor distribution be PP3 on a
general complex surface. The probability that a randomly
chosen point P in Af is covered by the sensor is given by:∑

i

Fi

Ff

2π2r2

2π (πr2 + Fi) + 2πrLi

(
Fi + Lir + πr2

)
cos θi

F
′
f + Lfr + πr2

where θi is the included angle between Ai plane and xOy
plane of the reference system and F

′

f is the area of Z-
projection of Af .

Proof:

p(P ∈ As) =
∑
i

p(P ∈ As | P ∈ Ai)p(P ∈ Ai)

=
∑
i

p(P ∈ Ai)

p(P ∈ As | P ∈ Ai,Ai ∩ As ̸= ∅)
p(Ai ∩ As ̸= ∅)

=
∑
i

Fi

Ff

2π2r2

2π (πr2 + Fi) + 2πrLi(
Fi + Lir + πr2

)
cos θi

F
′
f + Lfr + πr2

Corollary 4.3. Let the sensor distribution be PP3 with
intensity λ on a general complex surface; the expected
coverage ratio E(fc) of a FoI Af with area Ff and
perimeter Lf is:

E(fc) = 1− (1−
∑
i

Fi

Ff

2π2r2

2π (πr2 + Fi) + 2πrLi(
Fi + Lir + πr2

)
cos θi

F
′
f + Lfr + πr2

)
λ
(
F

′
f+Lfr+πr2

)

TABLE 1
Notations for NP-Complete Proof

Symbol Definition
N The length of the grid;
m The number of clauses in an instance of P3SAT;
n The number of variables in an instance of P3SAT;
ti The number of appearances of the ith variable,

where i satisfies 1 ≤ i ≤ n;
e The number of edges between clauses and literals,

which is calculated by
∑n

i=1 ti;
pj The number of panes on the jth path (1 ≤ j ≤ e).

Proof: Combining Theorem 4.2 and Theorem 4.5,
the result can be obtained.

Theorem 5.1. ORGC problem is NP-complete.
Proof: Before the proof of Theorem 4.1, a defini-

tion is given.
Definition 5.5. The k determination of the ORGC

problem: given a grid G, determine if there exists a cover
set G′ ⊆ G satisfying |G′| = k and {

∪
E(i,j)∈G′ O(i,j)} ⊇ G.

If pane E(x,y) associated with (a1, a2, a3, a4) is se-
lected, it can cover O(x,y), a rectangular area from
pane E(x−a1,y+a2) to pane E(x+a3,y−a4). For example,
if we have pane E(1,1) associated with (0, 1, 1, 1), it
can cover O(1,1), a rectangle from pane E(1,2) to pane
E(2,0) as shown in Fig.2(a).

Planar 3SAT (P3SAT) is 3SAT restricted to formulae
B such that G(B) is planar. P3SAT is NP-complete[4].
We divide the procedure of reducing from P3SAT into
two steps. Step I, we show that there is a polyno-
mial time computable function f which converts an
instance in P3SAT to an instance in ORGC. Step II,
we prove that:

w ∈ P3SAT ⇐⇒ f(w) ∈ ORGC

where w is an instance in P3SAT.
Step I in detail: we describe the polynomial time

computable function f . Fig.2(b) shows an instance of
formulae (x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z). It is made up of
three basic elements: clause nodes, variable nodes,
and edges. We convert them separately into gadgets
according to the following rules.
• We select a sufficiently large N to guarantee that

any two gadgets will not overlap and that their edges
can be substituted by rectilinear paths. The planarity
of P3SAT guarantees that no two paths will crossover.
For convenience, we use a rectangular area and a
point instead of the four numbers to indicate the area
to be covered.
• For each clause, we convert it to a gadget as

shown in Fig.1(a). A, B, C are three connection points
which must be connected with the path from the
literal occurring in the clause.
• For variable i which occurs ti times, we convert

it to a gadget shown in Fig.1(b) and 1(c) with length
of (6ti + 1).
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A B C

(a) clause gadget. (b) variable gadget1. (c) variable gadget2.

Fig. 1. Clause gadget and variable gadget in P3SAT problem.

(a)

x

x y y z z

(b) (c)

Fig. 2. (a) The concept of a covered region in ORGC. (b) The instance of P3SAT. (c) The instance of a converted
ORGC.

• For the paths, we convert them to a series of 1×2
dominos. If the length of a path is odd, we add a 1×3
domino to guarantee that the total dominos used to
propagate satisfiable assignment is ⌊pj

2 ⌋.
We use 1× 1 dominos to fill other blank areas. The

time complexity needed to convert the planar graph
to a rectangular grid coverage problem is polynomial.
The corresponding instance of ORGC is shown in
Fig.2(c).

Step II in detail: For the clause gadget, we can
easily verify the following properties:
• If any true assignment is not propagated to a

clause gadget (none of three connection points is
covered), it must be covered by three dominoes. Oth-
erwise, it can be covered by two dominoes.
• Even if all three variables are true, it still needs

two dominoes to cover the area.
For the variable gadget, the first case in Fig.1(b)

means Xi is assigned a true value; the second case
in Fig.1(c) means Xi is assigned a false value. We can
easily verify the following properties: for a gadget of
length (6ti + 1) (means total 2 × (6ti + 1) panes), it
needs at least (5ti+1) dominoes to cover the full area.
If each occurrence of a literal is consistent, we can use
(5ti +1) dominoes to fully cover the area. Otherwise,
more than (5ti + 1) dominoes are required to fully
cover the area.

For the paths, whatever its length, we can use∑e
j=1⌊

pj

2 ⌋ dominoes to propagate the satisfiable as-
signment.

Based on the above properties, for an instance of
P3SAT, there must be a consistent assignment to all

the variables that satisfy all the clauses. The total
number of dominoes is: R = N2 − [

∑n
i=1(7ti + 1)] −

3m −
∑e

j=1⌈
pj

2 ⌉. Next, if a grid can be covered by
selecting R panes, the minimum coverage of every
gadget is achieved. We know that each clause is
covered by two dominoes. It implies that there must
be no fewer than one satisfied assignment. So the
corresponding instance is satisfiable. Hence,

w ∈ P3SAT ⇐⇒ f(w) ∈ ORGC

is proved.

Theorem 5.2. Algorithm 1 is an O(|P|2) time log (|P|)-
approximation algorithm.

Proof: Let Ci denote the partition set C after the
ith turn selection of the algorithm 1. Let NCi denote
the set of newly covered panes in turn i. Actually,
NCi = h(Si) − Ci−1, where Si is the selected piece
of turn i. |P| is the total pieces of the partition P .
Popt is the optimal selection of panes, i.e. the optimal
solution to OPCP problem. Let P ′

opt be the current
optimal solution after some pieces has been covered.
Obviously, |P ′

opt| ≤ |Popt|. Then we have:

1

|NCi|
≤

|P ′
opt|

|P| − |Ci−1|
≤ |Popt|
|P| − |Ci−1|

Finally, for our solution k, we have

k =
k∑

i=1

|NCi|
1

|NCi|
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≤ |Popt|
|P|

+
|Popt|
|P| − 1

+ . . .+
|Popt|
1

= |Popt|
|P|∑
i=1

1

i

Since
∑N

i=1
1
i is the harmonic series, its value is ln(n+

1) + r where r is the Euler constant. Then we have:

k ≤ |Popt|(ln(|P|+ 1) + r) ≤ |Popt|(ln(|P|) + 1)

From this equation, we derive our conclusion.

Theorem 5.3. Algorithm 2(a) is an O( |P|
D2 ×2l

2D2

) time
(1 + 1

l )
2-approximation algorithm.

Proof: We analyze Algorithm 2(a) by dividing it
into two parts: shifting strategy part and optimum
searching part. In [2], the authors have proved that
the shifting strategy part is an O( |P|

D2 ) time (1 + 1
l )

2-
approximation algorithm. In Algorithm 2(a), the op-
timum searching part adopts the brute-force method.
This method can obtain the optimum result with no
error by enumeration and its time complexity is easy
to obtain O(2l

2D2

). Combining these two parts, the
time complexity and approximation of Algorithm 2(a)
are obtained.

Theorem 5.4. Algorithm 2(b) is an O(|P|l4D2) time
log(l2D2)× (1 + 1

l )
2-approximation algorithm.

Proof: Algorithm 2(b) is also divided into shift-
ing strategy part and optimum searching part. The
shifting strategy part is an O( |P|

D2 ) time (1 + 1
l )

2-
approximation algorithm, which is same with Theo-
rem 4.3. In Algorithm 2(b), the optimum searching
part adopts the greedy method. Its time complexity is
O((l2D2)2) and approximation is log(l2D2). Combin-
ing the time complexity and approximation of two
parts, Theorem 5.4 is proved.

2 PROBLEM EXTENSION

The above study focuses on the problem scope that
the FoI is finite surface without hole, the sensors
are static with homogeneous sensing area, the distri-
bution is deterministic or stochastic (PP3, SP3), the
requirement is full coverage without the limitation of
connectivity. In this section, we extend our methods
to other cases in the problem scope.

2.1 Extend to FoI with Holes

Fig.3(a) shows a mountain with a lake, which is a
typical case of a FoI with hole. Fig.3(b) shows its
topology projection from top view. FoIs with holes
are normal in the real WSN application such as lakes
and obstacles.

In the stochastic distribution case, the coverage ratio
is calculated based on the following Theorem.

(a) (b)

Fig. 3. (a) A mountain with a lake. (b) The topology
graph of FoI with a hole through top views.

Theorem S2.1. Let As denote a sensor of area Fs

and perimeter Ls. And let Af denote a FoI with holes,
with Af being the union of a finite number of separate
convex regions Ai

f ,i = 1, 2, · · ·ϕ, of total area Ff and
total perimeter Lf . The probability that a randomly selected
point P in Af is covered by As is given by

p(P ∈ As) =
2πϕFs

2π(Ff + ϕFs) + LfLs
. (1)

Proof: Book [5] gives the Theorem: Let A1 being
a convex set with the area F1 and perimeter L1. Let
A0 being the union of a finite number of separate
convex regions Ai

0,i = 1, 2, · · ·ϕ, of total area F0 and
total perimeter L0. The probability that a randomly
selected point P in A0 is covered by A1 is:

p(P ∈ A1) =
2πϕF1

2π(F0 + ϕF1) + L0L1
. (2)

SubstitutingA0 byAf andA1 byAs, the probability
is easily obtained.

Based on this probability, we can recalculate the
coverage ratios in Eqn.(9), (10), (11), and (15).

In the deterministic deployment case, the proposed
algorithms are effect for FoIs with holes. The only
change is the input: partition P = (Si) involves only
the effective area of the FoI not including the hole
(e.g., the area of the grey part in Fig.3(b)).

2.2 Extend to Other Sensors
(i) Sensors with heterogeneous sensing area.

Only if the heterogeneous sensing area As can be
modeled, i.e., As’s area and perimeter can be formu-
lated by mathematic function as a(As) and c(As) (e.g.,
the Quasi Model in [6]), our methods can still adopt to
calculate the coverage ratio in stochastic distribution
case. Replace πr2 by a(As) and replace 2πr by c(As)
in Eqn.(9), (10), (11), and (15), then the results in
different distributions are obtained. Moreover, in the
deterministic deployment case, our algorithms are
also available due to the modeled sensing area.

(ii) Mobile sensors.
Using mobile sensors to improve the surface cov-

erage ratio is an interesting problem. The surface
solution by mobile sensors is significantly different
from the static sensors. We leave it as our future work.
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2.3 Extend to Arbitrary Distribution
We considered the PP3 and SP3 distribution before.
We extend to arbitrary distribution Y (Af ), (e.g., the
distribution of sensors may follow a zero-mean two-
dimensional Gaussian distribution around the center
of Af .) with probability density function f(x, y) for
coverage ratio computation in the deterministic de-
ployment case. The following lemma is extended from
[3].

Lemma S2.1. Let FoI Af be a convex area of area Ff

and perimeter Lf . Let a certain sensor As be convex area
of area Fs and perimeter Ls. Sensors are dropped on the
FoI according to the distribution Y (Af ). The probability
that a randomly selected point P in Af is covered by As

is given by

p(P ∈ As) =
2π

∫
P∈Af

f(x, y)dx ∧ dy∫
Af∩Ai ̸=∅ f(x, y)dx ∧ dy ∧ dϕ

. (3)

With this Lemma, we can calculate the surface
coverage ratio for any arbitrary distribution as long
as the distribution of sensors is known.

2.4 Extend to Other Coverage Requirement
(i) The requirement of k-coverage

We considered the expected coverage ratio for full
coverage. i.e., any point of FoI is at least covered
by one sensor, which we also call 1-coverage. Our
method also can be extended to calculate the coverage
ratio for k-coverage that any point of FoI is at least
covered by k sensors. The following lemma is derived
from Eqn.(4).

Lemma S2.2. Let N sensors be randomly and indepen-
dently deployed on a FoI Af of area Ff and perimeter Lf .
Let a sensor As be a convex area of area Fs and perimeter
Ls. The probability p(β(P ) = k) that a randomly selected
point P ∈ Af is covered by exactly k sensors is given by

p(β(P ) = k)

N∏
s=1

(
2πFf+LfLs

2π(Ff+Fs)+LfLs

)
, k = 0,

(Nk)∑
s=1

(
k∏

j=1

2πFT (s,j)

N−k∏
z=1

(2πFf+LfLG(s,z))

)
N∏

r=1
(2π(Ff+Fr)+LfLr)

, k ≥ 1.

where T is a matrix. Each row j of T is a “k-choice” of
[1...N ] (i.e., a vector with k elements out of N ). And G
is another matrix. Each row j of G contains the elements
that do not appear in the j-th row of T .

The detailed proof of this lemma can refer to [5],
[3]. Then, the expected coverage ratio for k-coverage
is:
E(fc) = p(β(P ) ≥ k) =

1, k = 0,

1−
k−1∑
l=0

(Nk)∑
s=1

(
k∏

j=1

2πFT (s,j)

N−k∏
z=1

(2πFf+LfLG(s,z))

)
N∏

r=1
(2π(Ff+Fr)+LfLr)

, k ≥ 1.

In the deterministic deployment case, it is easy
to extend that deploys k sensors at every position
obtained by our algorithms. Consequently, the k-
coverage is achieved and it costs totally k times
sensors compared with the full coverage requirement.

(ii) The requirement of connectivity.
If rc

rs
≥ 2, the full coverage has satisfied the limita-

tion of connectivity [7], where rc is the communication
range and rs is the sensing range of a sensor. If rc

rs
≤ 2

and the FoI is an ideal plane, existing research [1]
proposes several deployment patterns to solve the
connectivity and coverage problem. But if rc

rs
≤ 2

and the FoI is a complex surface, the requirement
of connectivity remains an open problem.
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