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A General Framework for Weighted Gene
Co-Expression Network Analysis∗

Bin Zhang and Steve Horvath

Abstract

Gene co-expression networks are increasingly used to explore the system-level functionality
of genes. The network construction is conceptually straightforward: nodes represent genes and
nodes are connected if the corresponding genes are significantly co-expressed across appropri-
ately chosen tissue samples. In reality, it is tricky to define the connections between the nodes
in such networks. An important question is whether it is biologically meaningful to encode gene
co-expression using binary information (connected=1, unconnected=0). We describe a general
framework for ‘soft’ thresholding that assigns a connection weight to each gene pair. This leads us
to define the notion of a weighted gene co-expression network. For soft thresholding we propose
several adjacency functions that convert the co-expression measure to a connection weight. For
determining the parameters of the adjacency function, we propose a biologically motivated crite-
rion (referred to as the scale-free topology criterion).

We generalize the following important network concepts to the case of weighted networks. First,
we introduce several node connectivity measures and provide empirical evidence that they can
be important for predicting the biological significance of a gene. Second, we provide theoreti-
cal and empirical evidence that the ‘weighted’ topological overlap measure (used to define gene
modules) leads to more cohesive modules than its ‘unweighted’ counterpart. Third, we generalize
the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the
weighted clustering coefficient is not inversely related to the connectivity. We provide a model
that shows how an inverse relationship between clustering coefficient and connectivity arises from
hard thresholding.

We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray
data set.
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1 Introduction

Networks provide a straightforward representation of interactions between
the nodes. Intuitive network concepts (e.g. connectivity and module) have
been found useful for analyzing complex interactions.

Network based methods have been found useful in many domains, e.g.
gene co-expression networks (Stuart et al., 2003; Carter et al., 2004; Butte
and Kohane, 2000), protein-protein interaction networks (Jeong et al., 2001;
Rzhetsky and Gomez, 2001; Yook et al., 2004), cell-cell interaction networks
(Hartwell et al., 1999), the world wide web and social interaction networks
(Barabasi and Bonabeau, 2003; Csanyi and Szendroi, 2004).

In many real networks, the probability that a node is connected with k
other node (the degree distribution p(k) of a network) decays as a power law
p(k) ∼ k−γ, which is the defining property of scale-free networks (Barabasi
and Albert, 1999; Barabasi and Bonabeau, 2003; Jeong et al., 2000). More
details can be found in section 3. Scale-free networks are extremely hetero-
geneous, their topology being dominated by a few highly connected nodes
(hubs) which link the rest of the less connected nodes to the system. For
example, analysis of the yeast protein-protein interaction network revealed
that highly connected nodes are more likely to be essential for survival (Jeong
et al., 2001; Han et al., 2004; Carter et al., 2004)

The emergence of power-law distribution (scale free topology) is inti-
mately linked to the growth of the network in which new nodes are preferen-
tially attached to already established nodes, a property that is also thought to
characterize the evolution of biological systems (Barabasi and Albert, 1999;
Albert and Barabasi, 2000), e.g. there is evidence that the scale-free topology
of protein interaction networks originates from gene duplication (Barabasi
and Oltvai, 2004; Rzhetsky and Gomez, 2001). Scale free networks display a
surprising degree of tolerance against errors. For example, relatively simple
organisms grow, persist and reproduce despite drastic pharmaceutical or en-
vironmental interventions, an error tolerance attributed to the robustness of
the underlying metabolic network. The ability of nodes to communicate is
unaffected even by very high failure rates in scale free networks(Albert et al.,
2000). But error tolerance comes at a high price in that these networks are
extremely vulnerable to attacks, i.e. to the selection and removal of a few
nodes that play a vital role in maintaining the network’s connectivity (Albert
et al., 2000).

In this article, we focus on gene co-expression networks based on the tran-
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scriptional response of cells to changing conditions. Since the coordinated
co-expression of genes encode interacting proteins, studying co-expression
patterns can provide insight into the underlying cellular processes (Eisen
et al., 1998). It is standard to use the (Pearson) correlation coefficient as a
co-expression measure, e.g., the absolute value of Pearson correlation is often
used in a gene expression cluster analysis.

Recently, several groups have suggested to threshold this Pearson cor-
relation coefficient in order to arrive at gene co-expression networks, which
are sometimes referred to as ‘relevance’ networks (Butte and Kohane, 2000;
Carter et al., 2004; Davidson et al., 2001). In these networks, a node cor-
responds to the gene expression profile of a given gene. Thus nodes are
connected if they have a significant pairwise expression profile association
across the environmental perturbations (cell- or tissue- samples).

There are several questions associated with thresholding a correlation
to arrive at a network. On the simplest level, how to pick a threshold?
In section 4, we review several strategies for picking a ‘hard’ threshold (a
number) based on the notion of statistical significance. Drawbacks of ‘hard’
thresholding include loss of information and sensitivity to the choice of the
threshold (Carter et al., 2004). On a more fundamental level, the question
is whether it is biologically meaningful to encode gene co-expression using
binary information (connected=1, unconnected=0).

We propose a general framework for ‘soft’ thresholding that weighs each
connection by a number in [0,1]. Using simulated and empirical data, we
provide evidence that weighted networks can yield more robust results than
unweighted networks.

Below, we describe a general framework for constructing gene co-expression
networks. We introduce three adjacency functions for converting a co-expression
similarity measure into a connection strength. Then we propose a biologically
motivated criterion for estimating the parameters of an adjacency function.
Then, we generalize important network concepts (connectivity, clustering co-
efficient, topological overlap) to weighted networks. We use simulated and
empirical data to provide evidence that the proposed methods are useful.

2 Steps of the Network Analysis

In gene co-expression networks, each gene corresponds to a node. A flowchart
for constructing a gene co-expression networks is presented in Figure 1. We
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assume that the gene expression data have been suitably quantified and nor-
malized. For computational reasons, the network analysis is often restricted
to a subset of genes (e.g. the 4000 most varying genes).

As we will detail below, each co-expression network corresponds to an
adjacency matrix. The adjacency matrix encodes the connection strength
between each pair of nodes. In unweighted networks, the adjacency matrix
indicates whether or not a pair of nodes is connected, i.e. its entries are 1 or
0.

To begin with, one needs to define a measure of similarity between the
gene expression profiles. This similarity measures the level of concordance
between gene expression profiles across the experiments. The n×n similarity
matrix S = [sij] is transformed into an n × n adjacency matrix A = [aij],
which encodes the connection strengths between pairs of nodes. Since, the
networks considered here are undirected, A is a symmetric matrix with non-
negative entries. By convention, the diagonal elements of A are set to 0,
i.e. aii = 0. Without loss of generality, we assume aij ∈ [0, 1] for weighted
networks. The adjacency matrix is the foundation of all subsequent steps.
In particular, it is used to define node connectivity (as the row sum).

To define the adjacency matrix, one makes use of an adjacency function,
which transforms the co-expression similarities into connection strengths.
The adjacency function depends on certain parameters, which can be deter-
mined using different statistical or biological criteria. The resulting adjacency
matrix is used to define a measure of node dissimilarity (distance). The node
dissimilarity measure is used as input of a clustering method to define net-
work modules (clusters of nodes). Once the modules have been defined, one
can define additional network concepts, e.g. the intramodular connectivity.

Finally, the modules and their highly connected (hub-) genes are often
related to external gene information. For example, we show in section 5 that
the hub genes of a certain module are highly predictive of cancer survival
(Mischel et al., 2005). In section 6, we relate intramodular connectivity to
a binary variable which encodes whether or not a gene is essential for yeast
survival. Further, certain modules can be used to stratify the samples. We
provide more details on these steps in the following.

2.1 The Definition of a Gene Co-expression Similarity

First, one needs to define a measure of similarity between the gene expression
profiles. This similarity measures the level of concordance between gene
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Figure 1: Flowchart and illustration of gene co-expression network analysis.
A typical figure has been placed to the right of each step. The meaning of the
figures will be explained in the following sections.

expression profiles across the experiments. Specifically, for each pair of genes
i and j denote this similarity measure by sij. In the examples below, we
will use the absolute value of the Pearson correlation sij = |cor(i, j)|. To
protect against outliers, one could use a jacknifed correlation coefficient. To
preserve the sign of the correlation cor(i, j), one could use sij = 1+cor(i,j)

2
. The

only mathematical restriction on the similarity measure is that its values lie
between 0 and 1. We denote the similarity matrix by S = [sij].

2.2 The Definition of a Family of Adjacency Functions

To transform the similarity matrix into an adjacency matrix, one needs to
define an adjacency function. This choice determines whether the resulting
network will be weighted (soft-thresholding) or unweighted (hard threshold-
ing).

The adjacency function is a monotonically increasing function that maps
the interval [0, 1] into [0, 1]. The most widely used adjacency function is the
signum function which implements ‘hard’ thresholding involving the thresh-
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old parameter τ . Specifically,

aij = signum(sij, τ) ≡
{

1 if sij ≥ τ
0 if sij < τ

(1)

Below, we discuss several approaches for choosing the threshold parameter
τ .

Hard thresholding using the signum function leads to intuitive network
concepts (e.g. the node connectivity equals the number of direct neighbors)
but it may lead to a loss of information: if τ has been set to 0.8, there will
be no connection between two nodes if their similarity equals 0.79.

To avoid the disadvantages of hard thresholding, we propose two types of
‘soft’ adjacency functions: the sigmoid function

aij = sigmoid(sij, α, τ0) ≡
1

1 + e−α(sij−τ0)
(2)

with parameters α and τ0, and the power adjacency function

aij = power(sij, β) ≡ |sij|β (3)

with the single parameter β. The power adjacency function has the poten-
tially attractive factorization property (see section 7.2). If sij factors into
the contributions of nodes i and j (i.e. sij = sisj) then aij factors as well
aij = aiaj where ai = (si)

β.
The parameters of the adjacency functions can be chosen such that they

approximate each other, see Figure 2.
As illustrated in appendix A, we find that the power- and the sigmoid

adjacency functions lead to very similar results if the parameters are chosen
with the scale-free topology criterion proposed in section 4.2.

One potential drawback of soft thresholding is that it is not clear how to
define the directly linked neighbors of a node. A soft adjacency matrix only
allows one to rank all the nodes of the network according to how strong their
connection strength is with respect to the node under consideration. If a list
of neighbors is requested, one needs to threshold the connection strengths,
i.e. the values in the adjacency matrix. When dealing with an unweighted
network, this is equivalent to the standard approach of hard thresholding
the co-expression similarities since the adjacency function is monotonically
increasing by definition.
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(a) (b)

Figure 2: Adjacency functions for different parameter values. a) Sidmoid
and signum adjacency functions. b) Power and signum adjacency functions.
The value of the adjacency function (y-axis) is plotted as a function of the
similarity (co-expression measure). Note that the adjacency function maps
the interval [0,1] into [0,1].

2.3 Determining the Parameters of the Adjacency Func-
tion

The adjacency function depends on certain parameters, e.g. the signum
function depends on the threshold parameter τ and the power function on
the parameter β. How to determine these parameters is the subject of section
4. The choice of the parameters determines the sensitivity and specificity of
the pairwise connection strengths. For example, increasing the value of τ
leads to fewer node connections, which may reduce the noise in the network.
If τ is chosen too high the resulting network may be too sparse for detecting
the presence of gene modules (clusters of nodes).

2.4 Defining a Measure of Node Dissimilarity

An important aim of co-expression network analysis is to detect subsets of
nodes (modules) that are tightly connected to each other. It is important
to point out that authors differ on how they define gene modules. Here we
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will consider module identification methods that are based on using a node
dissimilarity measure in conjunction with a clustering method. Several such
dissimilarity measures have been proposed. In this paper, we will use the
topological overlap dissimilarity measure (Ravasz et al., 2002) since it was
found to result in biologically meaningful modules (see also our 2 real data
applications). In appendix A, we provide a limited comparison of different
node dissimilarity measures. A comprehensive comparison is beyond the
scope of this article.

The topological overlap of two nodes reflects their relative inter-
connectedness. The topological overlap matrix (TOM) Ω = [ωij] provides
a similarity measure (opposite of dissimilarity), which has been found use-
ful in biological networks (Ravasz et al., 2002; Ye and Godzik, 2004). For
unweighted networks (i.e. aij = 1 or = 0), Ravasz and colleagues report
the following topological overlap matrix in the methods supplement of their
paper (there is a typo in the main paper):

ωij =
lij + aij

min{ki, kj}+ 1− aij

(4)

where lij =
∑

u aiuauj, and ki =
∑

u aiu is the node connectivity, see equation
(6). In the case of hard thresholding, lij equals the number of nodes to
which both i and j are connected. Note that ωij = 1 if the node with
fewer connections satisfies two conditions: (a) all of its neighbors are also
neighbors of the other node and (b) it is connected to the other node. In
contrast, ωij = 0 if i and j are un-connected and the two nodes do not share
any neighbors.

Formula (4) does not require that the adjacency matrix A = [aij] contain
binary entries (1 or 0). We propose to generalize the topological overlap
matrix to weighted networks by simply using the real numbers 0 ≤ aij ≤ 1
in formula (4).

Since lij ≤ min(
∑

u 6=j aiu,
∑

u 6=i auj), it follows that lij ≤ min(ki, kj)−aij.
Therefore, 0 ≤ aij ≤ 1 implies 0 ≤ ωij ≤ 1.

The topological overlap matrix Ω = [ωij] is a similarity measure (Kaufman
and Rousseeuw, 1990) since it is non-negative and symmetric. To turn it into
a dissimilarity measure, it is subtracted from one, i.e, the topological overlap
based dissimilarity measure is defined by

dω
ij = 1− ωij. (5)
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When it comes to clustering gene expression profiles (module definition),
the TOM-based dissimilarity dω

ij leads to more distinct gene modules than
the current standard measure (1 minus the absolute value of correlation co-
efficient) as illustrated in appendix A (Figure 15).

2.5 Identifying Gene Modules

Authors differ on how they define modules. Intuitively speaking, we assume
that modules are groups of genes whose expression profiles are highly cor-
related across the samples. Our definition is slightly different from that of
Bergmann et al (Bergman et al., 2004). We adopt the definition of Ravasz et
al (Ravasz et al., 2002): modules are groups of nodes with high topological
overlap.

To group genes with coherent expression profiles into modules, we use
average linkage hierarchical clustering coupled with the TOM-based dissim-
ilarity dω

ij. As an aside, we mention that we have also used the TOM-based
dissimilarity in conjunction with partitioning around medoid clustering. A
discussion of alternative cluster procedures and node dissimilarity measures
is beyond the scope of this paper. In this article, gene modules correspond to
branches of the hierarchical clustering tree (dendrogram). The simplest (not
necessarily best) method is to choose a height cutoff to cut branches off the
tree. The resulting branches correspond to gene modules, i.e. sets of highly
co-expressed genes.

The choice of the height cut-off can be guided by the topological overlap
matrix (TOM) plot (Ravasz et al., 2002), which will be briefly reviewed in
the following.

Topological Overlap Matrix Plots: A TOM plot provides a ‘reduced’
view of the network that allows one to visualize and identify network modules.
The TOM plot is a color-coded depiction of the values of the TOM-based
dissimilarity [dω

ij] for which the rows and columns are sorted by the hierar-
chical clustering tree that used the TOM-based dissimilarity as input. As an
example, consider Figure 3b) where red/yellow indicate low/high values of
dω

ij. Both rows and columns of [dω
ij] have been sorted using the hierarchical

clustering tree. Since [dω
ij] is symmetric, the TOM plot is also symmetric

around the diagonal. Since modules are sets of nodes with high topological
overlap, modules correspond to red squares along the diagonal. As in all
hierarchical clustering analyses, it is a judgement call where to cut the tree
branches. Here the modules are found by inspection: a height cutoff value
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is chosen in the dendrogram such that some of the resulting branches corre-
spond to dark squares (modules) along the diagonal of the TOM plot. The
genes of the resulting modules correspond to the color-coded bands along the
rows and columns of the TOM plot, see Figure 3b).

2.6 Relating Network Concepts to Each Other

Once the network has been constructed (i.e. the adjacency matrix has been
defined), several biologically important network concepts can be defined. In
section 3, we generalize node connectivity and scale-free topology to weighted
networks. In section 7, we generalize the clustering coefficient to weighted
networks. The relationship between clustering coefficient and connectivity
has important implications on the overall organization of the network, see
Section 7.3. We have found that one can relate modules to each other by
correlating the corresponding module eigengenes (Horvath et al., 2005). If
two modules are highly correlated, one may want to merge them. These
types of analyses may allow one to define network ‘diagnostics’ that may aid
in the network construction.

2.7 Relating Network Concepts to External Gene or
Sample Information

A main purpose of many network analyses is to relate a connectivity measure
to external gene information. For example, in the yeast network application,
we show that intramodular connectivity in the turquoise module is highly
correlated with gene essentiality, which was determined by gene knock-out
experiments. In our cancer microarray application, we show that for brown
module genes intramodular connectivity is highly correlated with prognostic
significance for cancer survival. This facilitates novel strategies for screening
for therapeutic targets (Brummelkamp and Bernards, 2003; Sonoda, 2003;
Carter et al., 2004; Mischel et al., 2005). Standard statistical methods (e.g.
regression models or multi-group comparison tests) can be used for these
types of analyses.
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(a) (b)

(c) (d)

Figure 3: Modules in the cancer co-expression network. (a) Hierarchical clus-
tering tree using the topological overlap dissimilarity [1−ωij]. Tree branches
have been colored by module membership. b) Topological overlap matrix plot.
Genes in the rows and columns are sorted by the clustering tree in a). Clusters
correspond to squares along the diagonal. (c) The proposed classical multi-
dimensional scaling plots of the TOM-based dissimilarity. Genes are colored
according to the module membership defined in plot (a). (d) The gene ex-
pression profiles for the turquoise and blue module genes. Since the genes of
a module (rows) are highly correlated across microarray samples (columns),
one observes vertical bands. The expression profiles are standardized across
arrays. Red corresponds to high- and green to low expression values.
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3 Connectivity and Scale-free Topology

Connectivity in Weighted Networks

For simple (unweighted) networks the connectivity ki of node i equals the
number of its direct connections to other nodes. In terms of the adjacency
matrix, this can be expressed as follows

ki =
n∑

j=1

aij (6)

It is natural to use formula (6) to define the connectivity of node i in a
general, weighted network. In this case, ki is a non-negative real number.

A TOM-based Connectivity Measure

A key concept of network analysis is node connectivity (centrality). A cen-
tral node (referred to as hub) is one with many connections to other nodes.
The standard connectivity measure is given by equation (6), but many alter-
natives are possible, e.g. we propose the following TOM-based measure of
connectivity ωi

ωi =
n∑

j=1

ωij (7)

where ωij is the topological overlap between two nodes i and j. Thus, a node
has high TOM-based connectivity ωi if it has high overlap with many other
nodes. In our cancer network application (section 5), we provide empirical
evidence that ωi can be superior to the standard connectivity ki.

Intramodular Connectivity

A network connectivity measure can be defined with respect to the whole net-
work (whole-network connectivity) or with respect to the genes of a particular
module (intramodular connectivity). The distinction between whole-network
connectivity and intramodular connectivity can be made for the standard
connectivity measure of equation (6) and the topological overlap based con-
nectivity of equation (7). In obvious notation, we denote the standard and
TOM-based intramodular connectivity by k.in and ω.in, respectively.
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We find the distinction between intramodular and whole-network node
properties very important. In our applications, we provide evidence that the
intramodular connectivity measures are biologically more meaningful than
their whole-network analogs. But on a more theoretical level, it is not clear
to us whether it is meaningful to compare whole-network connectivities across
modules: a gene that is highly connected within a small but important mod-
ule may have far fewer whole-network connections than a moderately con-
nected gene in a large but unimportant module.

Generalized Scale-free Topology

As mentioned above, it has been found that the frequency distribution p(k)
of the connectivity follows a power law: p(k) ∼ k−γ. This definition naturally
generalizes to weighted networks where k takes on non-negative real numbers.

To visually inspect whether approximate scale-free topology is satisfied,
one plots log10(p(k)) versus log10(k). A straight line is indicative of scale-free
topology, see Figure 4).

To measure how well a network satisfies a scale-free topology, we propose
to use the square of the correlation between log(p(k))and log(k), i.e. the
model fitting index R2 of the linear model that regresses log(p(k)) on log(k).
If R2 of the model approaches 1, then there is a straight line relationship
between log(p(k)) and log(k). This R2 measure will play an essential role in
the scale-free topology criterion described below.

Many co-expression networks satisfy the scale-free property only approxi-
mately. Figure 4a) shows that for our yeast network application, the connec-
tivity distribution p(k) is better modelled using an exponentially truncated
power law p(k) ∼ k−γexp(−αk), see also (Csanyi and Szendroi, 2004). In
practice, we find that the 2 parameters α and γ provide too much flexibility
in curve fitting: as illustrated by column 5 in Table 1, the truncated expo-
nential model fitting index R2 tends to be high irrespective of the adjacency
function parameter. For this reason, we focus on the scale free topology
fitting index in our scale free topology criterion. Exploring the use of the
truncated exponential fitting index is beyond the scope of this article.
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(a) (b)

Figure 4: a) Scale free topology plot of the weighted yeast co-expression net-
work that was constructed with the power adjacency function power(s, β = 7).
This scatter plot between log10(p(k)) and log10(k) shows that the network
satisfies a scale free topology approximately (black linear regression line,
R2 = 0.87). But a better fit is provided by an exponentially truncated power
law (red line, R2 = 0.99). b) Analogous plot for the weighted cancer network
based on power(s, β = 6).

4 Choosing the Parameters of the Adjacency

Function

4.1 Choosing the Threshold τ of the Signum Adja-
cency Function

Currently, the signum function is most frequently used to convert pairwise
correlations into an adjacency matrix. The signum adjacency function leads
to an unweighted network.

The estimation of the adjacency function parameter τ is tricky. Several
authors have proposed to threshold the significance level of the correlation in-
stead of the correlation coefficient itself. The significance level of a correlation
coefficient can be estimated by using the Fisher transformation (Davidson
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et al., 2001) or by using a permutation test procedure (Butte and Kohane,
2000; Carter et al., 2004). Thus thresholding a correlation coefficient is re-
placed by thresholding the corresponding p-value. The significance level of a
given correlation coefficient is a monotonic function of the underlying sam-
ple size (the number of microarrays). The network size (total number of
connections) decreases as a function of the correlation threshold and its cor-
responding significance level. Thus when thresholding the significance level,
the network size is highly dependent on the number of samples (microarrays).
Another approach (Bergman et al., 2004) to choosing a threshold is based
on setting the network size equal a constant. Since the network size is a
monotonically decreasing function of the correlation threshold, this is easily
implemented.

Using statistical significance for determining the parameters of an adja-
cency function only works for hard thresholding. For soft thresholding, we
propose the following criterion for determining the parameters of an adja-
cency function.

4.2 The Scale-free Topology Criterion

Instead of focusing on the significance of the correlation or the network size,
we propose to pick the threshold by making use of the fact that despite sig-
nificant variation in their individual constituents and pathways, metabolic
networks have been found to display approximate scale free topology (Jeong
et al., 2000; Bergman et al., 2004). This may indicate that metabolic organi-
zation is not only identical for all living organisms, but also complies with the
design principles of robust and error-tolerant scale-free networks, and may
represent a common blueprint for the large-scale organization of interactions
among all cellular constituents (Jeong et al., 2000; Bergman et al., 2004;
Ravasz et al., 2002)

Most biologists would be very suspicious of a gene co-expression network
that does not satisfy scale-free topology at least approximately. Therefore,
adjacency function parameter values that give rise to networks that do not
satisfy approximate scale-free topology should not be considered.

Earlier, we have described that the linear regression model fitting index
R2 can be used to quantify how well a network satisfies a scale-free topology.
There is a natural trade-off between maximizing scale-free topology model
fit (R2) and maintaining a high mean number of connections: parameter val-
ues that lead to an R2 value close to 1 may lead to networks with very few
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connections. This trade-off is visualized in Figures 5 and 7 for our cancer-
and yeast network application, respectively. Actually, we consider a signed
version of the scale free topology fitting index. Since it is biologically im-
plausible that a networks contains more hub genes than non-hub genes, we
multiply R2 with −1 if the slope of the regression line between log10(p(k))
and log10(k) is positive.

These considerations motivate us to propose the following scale-free
topology criterion for choosing the parameters of an adjacency function:
Only consider those parameter values that lead to a network satisfying scale-
free topology at least approximately, e.g. signed R2 > 0.80. In addition, we
recommend that the user take the following additional considerations into
account when choosing the adjacency function parameter. First, the mean
connectivity should be high so that the network contains enough informa-
tion (e.g. for module detection). Second, the slope −γ̂ of the regression line
between log10(p(k)) and log10(k) should be around −1.

When considering the signum and power adjacency functions, we find the
relationship between R2 and the adjacency function parameter (τ or β) is
characterized by a saturation curve type of relationship (see Figures 5 and
7). In our applications, we use the first parameter value where saturation
is reached as long as it is above 0.8. In our microarray data applications
described in sections 5 and 6, we show that using an R2 value of 0.95 and
0.85, respectively, leads to a high biological signal.

Example Table 1 reports the results for varying the signum parameter τ
for the cancer microarray data (section 5). Here we focus on hard threshold-
ing since it allows us to attach a significance level (p-values) to each thresh-
old (using the Fisher transformation of the correlation coefficient). Values
of τ ≥ 0.3 correspond to significant correlations. In our opinion, it would
be difficult to use the p-values to argue that a parameter value of τ = 0.70
(p = 1.9 × 10−9) is superior to τ = 0.50 (p = 8.7 × 10−5) since both are
highly significant. However, the scale-free topology fitting index R2 clearly
favors τ = 0.70 (R2 = 0.97) over τ = 0.50 (R2 = 0.79). In this application,
we would choose τ = 0.70 since this is where the R2 curve starts to reach
its ‘saturation’ point, see Figure 5. It leads to a good scale-free topology
fit and also a high number of connections. There is indirect biological ev-
idence that τ = 0.70 leads to a network with a stronger biological signal
than the network corresponding to τ = 0.50. As can be seen from the last
column in the Table, τ = 0.70 and τ = 0.50 lead to networks for which the
intramodular connectivity ω.in has a Spearman correlation with prognostic
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signed signed Biological
τ p-value scalefree slope truncated mean(k) median(k) max(k) Signal

R2 exp. R2

0.20 1.4e-01 -0.68 1.79 -0.95 3530 3580 5520 0.08
0.30 2.5e-02 0.12 0.07 -0.95 1960 1890 4200 0.18
0.40 2.3e-03 0.60 -0.84 0.94 947 787 2940 0.40
0.50 8.7e-05 0.79 -1.21 0.90 395 232 1860 0.46
0.55 1.1e-05 0.85 -1.23 0.90 243 110 1410 0.51
0.60 1.0e-06 0.84 -1.24 0.87 145 43 1080 0.58
0.65 5.9e-08 0.95 -1.11 0.95 85.9 14 795 0.62
0.70 1.9e-09 0.97 -1.05 0.97 50.2 4 616 0.64
0.75 2.9e-11 0.98 -1.01 0.98 28.9 1 480 0.65
0.80 1.4e-13 0.95 -1.03 0.94 15.7 0 383 0.64
0.85 2.2e-16 0.97 -1.03 0.97 7.2 0 262 0.59
0.90 <1e-22 0.98 -1.09 0.98 2.2 0 154 0.55
0.95 <1e-22 0.93 -1.26 0.97 0.2 0 47 0.15

Table 1: Cancer network characteristics for different hard thresholds τ . The
asymptotic p-value for τ were calculated using the Fisher transform of the
correlation coefficient. The sign of the scale-free model fitting index R2 is
determined by minus the sign of the slope. The last column contains measures
the biological signal of interest in this analysis: the Spearman correlation
between intramodular gene connectivity ω.in and prognostic gene significance,
see Section 5.
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gene significance of r = 0.64 and r = 0.46, respectively. More details about
this example are presented in the following section.

We are hesitant of formulating the scale free topology criterion as an
optimization problem because noise affects the relationship between R2 and
the AF parameters (see Figures 5 and 7). These Figures and Table 1 show
that unlike the mean number of connections, R2 is not a strictly monotonic
function of τ . Although the biological findings are fairly robust with respect
to the R2 cut-off, Figures 5 and 7 and Table 1 provide empirical evidence
that the scale free topology criterion results in adjacency function parameter
estimates that result in networks with a high biological signal.

5 Application I: Cancer Microarray Data

The proposed framework was used to analyze microarray data of 55 brain
cancer microarray samples. The biological findings are described in (Mis-
chel et al., 2005). Here we focus on the statistical aspects of this analysis.
To eliminate noise and for computational convenience, the analysis was re-
stricted to the 8000 most varying genes (highest variance). The absolute
value of the Pearson correlation was used as co-expression similarity mea-
sure. The power and signum adjacency function were used to construct
weighted and unweighted networks, respectively. In appendix A, we discuss
the performance of the sigmoid adjacency function as well. Figure 5 shows
how the scale free topology fitting index R2 depends on hard (τ) and soft
thresholds (β). Since for the hard thresholds the R2 curve levels off at τ = 0.7
with R2 = 0.971, we used signum(s, τ = 0.7) to construct the unweighted
network. Since for the soft thresholds the R2 curve levels off at β = 6 with
R2 = 0.965, we used power(s, β = 6) to construct the weighted network.
Different choices of these parameters are discussed below.

For module detection, we used the topological overlap node dissimilarity
measure in average linkage hierarchical clustering.

The 6 major gene modules identified in the weighted network are color-
coded in Figure 3. The TOM plot guided the choice of the height cut-off of the
dendrogram. We found that the 6 modules were highly enriched for certain
gene ontologies (functions) and will report the biological details elsewhere
(Mischel et al., 2005). Figure 6a) shows that these modules are highly pre-
served when considering an unweighted network constructed with the scale
free topology criterion. Figure 6b) shows that the connectivities between
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(a) signum(s, τ)

(b) power(s, β)

Figure 5: Cancer network properties for different hard and soft thresholds.
For different hard thresholds (top row) and soft thresholds (bottom row), the
plots visualize the scale free topology fitting index (first column), the mean
connectivity (second column) and measures of biological signal (third column).
Points are labelled by the corresponding adjacency function parameter. There
is a trade-off between a high scale-free topology fit (R2) and the mean num-
ber of connections. The scale free topology criterion picks adjacency function
parameters that have a high biological signal (red vertical line in the third col-
umn). The biological signal is defined as the Spearman correlation between
intramodular gene connectivity in the brown module and prognostic signifi-
cance for patient survival. For the biological signal plot, the black and the
blue curves in the first row correspond to the connectivity measures k.in and
ω.in, respectively. Similarly, the red and orange curves in the second row
correspond to k.in and ω.in, respectively.
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(a) (b)

Figure 6: a) Topological overlap plot for the unweighted cancer network based
on signum(s, τ = 0.70). Here the genes (rows and columns) are colored by
the module assignment from the weighted network based on power(s, β = 6).
The plot shows that modules are highly robust with respect to the network con-
struction method used. b) Scatterplot of the unweighted (hard thresholding)
connectivity k versus the weighted (soft thresholding) connectivity colored by
soft module colors. The connectivities are highly correlated with a Pearson
correlation of 0.97.

weighted and unweighted network are highly correlated (Pearson correlation
r = 0.97). In appendix A, we show that the TOM-based dissimilarities that
result from the signum, sigmoid and power adjacency functions are highly
correlated if these networks were constructed using the scale free topology
criterion. Thus, constructing the networks using the scale-free topology cri-
terion leads to similar biological conclusions, which is reassuring.

A major goal of the analysis was to relate intramodular gene connec-
tivity to prognostic significance for cancer survival. To define prognostic
gene significance, we regressed patient survival on individual gene expres-
sions using a univariate Cox regression model (Cox and Oakes, 1990; Klein
and Moeschberger, 1997). Specifically, we defined the (prognostic) gene sig-
nificance as GS = −log10(p) where p denotes the univariate Cox regression
p-value.

Since the brown module was significantly (Pearson χ2 p-value < 0.05)
enriched with ‘prognostic’ genes, i.e. with genes whose univariate Cox p-value
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was smaller than 0.05), we focused our attention on the brown module genes.
Figure 5 shows that for brown module genes, the intramodular connectivities
k.in and ω.in (equation (7)) are highly correlated with gene significance, see
also the third column in Table 1. In this application, we find that ω.in
outperforms k.in. Further, connectivity measures from weighted networks
consistently perform better than those from unweighted networks. Thus, we
find that soft thresholding is superior to hard thresholding especially for low
values of the scale free topology R2. Soft connectivity measures are better
than hard measures because they are relatively robust with respect to the
parameter of the adjacency function. For soft thresholding even choosing a
power of β = 1 leads to a relatively high correlation. In contrast, choosing a
hard threshold of τ = 0.2 leads to a network for which the biological signal of
interest is reduced. Note that our proposed scale free topology criterion leads
to estimates of the adjacency function parameter that are nearly optimal in
this application.

For the biological signal plots in Figure 5, we compared the performance of
the different intramodular connectivity measures by fixing the brown module.
Since the module definition is highly variable due to its dependence on how
the branches of the dendrogram are cut-off, fixing the module allows for a
more direct comparison. In appendix B (Figure 16), we also report the results
when the brown module definition changes ‘adaptively’ with different values
of the adjacency function parameter. Our conclusions remain the same.

As mentioned before, we find that it is important to take a module centric
view when relating connectivity to gene significance: in this application, we
find no relation between whole network connectivity k and gene significance
(correlation r = 0.01, p-value p = 0.49).

6 Application II: Yeast Cell-Cycle Microar-

ray Data

The proposed framework was also used to analyze yeast cell-cycle microarray
data of 44 samples. This dataset recorded gene expression levels during
different stages of cell cycles in yeasts and has been widely used before to
illustrate clustering methods (Spellman et al., 1998). The analysis used the
4000 most varying genes (highest variance). Here our focus is to compare
the performance of intramodular connectivity measures as a function of the
adjacency function parameters. A discussion of the meaning of the modules
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is beyond the scope of this article.
The biological goals of the analysis were a) to identify gene modules and

b) to relate network connectivity to gene essentiality (gene knock-out effect)
coded as 1 if the gene is essential for yeast survival and 0 otherwise. Thus,
gene essentiality presents external information of gene significance, analogous
to prognostic significance in the cancer microarray application.

We used the scale-free topology criterion to choose the parameter values
of the two adjacency functions by requiring that the scale-free topology fitting
index R2 be larger than 0.85, see Figures 7 and 4a.

For module detection, we used the TOM-based dissimilarity measure in
average linkage hierarchical clustering, see Figure 8. Figure 8c) shows that
the module assignment of the unweighted network is highly preserved in the
weighted network. This shows that modules are robust with respect to the
network construction method when the scale-free topology criterion is used.

To study the relationship between connectivity and gene essentiality, we
focused on the turquoise module since it was significantly enriched with essen-
tial genes (chi-square p < 10−35). Figure 8c) related the biological signal to
the scale free topology fitting index R2 for different weighted and unweighted
networks. The biological signal is defined as the Spearman correlation be-
tween intramodular connectivity (turquoise module) and gene essentiality
(knock-out effect) information. Soft thresholding (weighted networks) leads
to results that are much more robust with respect to the threshold chosen
than those of hard thresholding.

Also we find that the intramodular connectivity has consistently higher
correlations with gene essentiality than the whole network connectivity mea-
sures. For example, in the weighted network based on power(s, β = 7), the
turquoise intramodular connectivity leads to Spearman correlation of 0.28
while the whole network connectivity leads to a Spearman correlation of
0.17.

Since we do not find that the TOM-based intramodular connectivity ω.in
performs better than k.in in this application, we do not report it here. But
details can be found in the corresponding R tutorial.
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(a) signum(s, τ)

(b) power(s, β)

Figure 7: Yeast network properties for different hard and soft thresholds. For
different hard thresholds (top row) and soft thresholds (bottom row), the plots
visualize the scale free topology fitting index (first column), the mean connec-
tivity (second column) and a measure of biological signal (third column). The
biological signal is defined as the Spearman correlation between intramodular
gene connectivity in the turquoise module and gene essentiality. The analo-
gous plots in the bottom row show the findings for the soft power adjacency
function parameter β. Points are labelled by the corresponding adjacency
function parameter. Clearly, there is a trade-off between a high scale-free
topology fit (R2) and a high mean number of connections.
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(a) (b)

(c)

Figure 8: a) Topological overlap matrix plot of the weighted yeast network
based on power(s, β = 7). b) TOM plot of the unweighted yeast network
based on signum(s, τ = 0.65). But the genes (rows and columns) are colored
by the weighted network module assignment. The plot shows that modules
are highly robust with respect to the network construction method used. We
chose a different color coding from that in figure a) to enhance the signal. c)
Scatterplot of the biological signal (intramodular correlation between connec-
tivity and gene essentiality) versus the signed scale free topology fitting index
for different hard (black) and soft thresholds (red). Points are labelled by
the adjacency function parameter. Note that soft thresholding leads to results
that are far more robust with respect to the choice of the adjacency function
parameter.
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7 The Clustering Coefficient For Weighted

Networks

The clustering coefficient of a node measures how ‘cliquish’ its neighbors are.
The clustering coefficient Ci of node i ranges from 0 to 1. It is equal to 1
for a node at the center of a fully interlinked cluster, and it is 0 for a node
whose neighbors are not connected at all. As an intuitive example consider
social interaction networks: the cluster coefficient of a person is 1 (or 0) if
all (or none) of their acquaintances know each other.

Let ni be the total number of direct connections among the nodes con-
nected to node i. For an unweighted network, ni can be computed using the
following formula

ni =
1

2

∑
u 6=i

∑
{v|v 6=i,v 6=u}

aiuauvavi. (8)

Since the diagonal elements of the adjacency matrix equal 0 by convention,
one could omit the index constraints in equation (8). But we report them
explicitly to emphasize that the definition of the clustering coefficient ignores
the diagonal elements (aii).

By definition, ni is smaller than or equal to πi, which is defined to be the
maximum number of possible connections between its neighbors:

πi =
ki(ki − 1)

2
(9)

where ki is the number of nodes directly connected to node i. As we will
show below, equation (9) is only valid for unweighted networks.

Then the clustering coefficient of node i is defined as

Ci =
ni

πi

. (10)

By definition, the clustering coefficient Ci of node i ranges from 0 to
1. The average clustering coefficient can be used to measure whether the
network exhibits a modular organization (Ravasz et al., 2002).

In the following, we generalize the ni and πi to the setting of weighted
networks. Generalizing ni is straightforward by using equation (8) with 0 ≤
aij ≤ 1.

Generalizing πi is more challenging. The key is to ensure that ni ≤ πi

and ni = πi for a fully interconnected network. Since aij ≤ 1 and aii = 0 by
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definition of the adjacency matrix, aij ≤ 1 − δij where δij equals 1 if i = j
and 0 otherwise. Thus,

ni =
1

2

∑
u 6=i

∑
{v|v 6=i,v 6=u}

aiuauvavi

≤ 1

2

∑
u 6=i

aiu(
∑
v 6=i

(1− δuv)avi)

=
1

2

∑
u 6=i

aiu((
∑
v 6=i

avi)− aui)

=
1

2
((
∑
u 6=i

aiu)
2 −

∑
u 6=i

a2
iu).

Therefore, we define πi for weighted networks as follows

πi =
1

2
((
∑
u 6=i

aiu)
2 −

∑
u 6=i

a2
iu). (11)

One can show that equation (11) reduces to equation (9) in the case of
unweighted networks since then ki =

∑
u 6=i aiu =

∑
u 6=i a

2
iu.

7.1 Soft Thresholding and the Clustering Coefficient

Figure 9: A simple network with three nodes. The clustering coefficient of
node 1 equals a23.

In the following, we provide a ‘toy’ example to illustrate the profound
effect that soft thresholding has on the definition of the clustering coefficient.
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Consider a network consisting of 3 nodes shown in Figure 9. Using formulas
(8) and (11), one finds that n1 = a12a23a13 and π1 = 1

2
((a12 + a13)

2 − (a2
12 +

a2
13)) = a12a13. Thus, C1 = a23. In the case of hard thresholding C1 takes

on values 0 or 1. Unlike the case of unweighted networks, C1 is a continuous
function of the underlying correlation coefficient if soft-thresholding is used.
Thus it is more robust with respect to the choice of the parameters of the
adjacency function.

7.2 The Clustering Coefficient for Factorizable Adja-
cency Matrices

Here we show that the weighted clustering coefficient is approximately con-
stant if the adjacency matrix A is factorizable, i.e. if aij = aiaj,∀i 6= j. In
this case, the vector a = (a1, . . . , an)τ is referred to as factorizability factor.
One can show that if such a factor exists, it is unique (up to sign) when n > 2
(Horvath et al., 2005). For factorizable networks (=A), the factorizability
factor is highly correlated with the connectivity since

ki = ai

∑
u 6=i

au. (12)

We have found that weighted sub-networks comprised of the high connec-
tivity genes of a particular module are approximately factorizable (Horvath
et al., 2005).

Using equations (8) and (11), the clustering coefficient Ci = ni/πi can be
rewritten with

ni =
1

2

∑
u 6=i

∑
v 6=i,v 6=u

aiuauvavi =
1

2

∑
u 6=i

∑
v 6=i,v 6=u

a2
i a

2
ua

2
v =

a2
i

2

(∑
u 6=i

a2
v

)2

−
∑
u 6=i

a4
u


and

πi =
1

2

(∑
u 6=i

auai

)2

−
∑
u 6=i

a2
ua

2
i

 =
a2

i

2

(∑
u 6=i

au

)2

−
∑
u 6=i

a2
u

 .

Therefore, we find that

Ci = ni/πi =

(∑
u 6=i a

2
u

)2

−
∑

u 6=i a
4
u(∑

u 6=i au

)2

−
∑

u 6=i a
2
u

. (13)
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In several examples (e.g Figure 10c), we find that Ci is approximately con-
stant:

Ci ≈
(
∑

u a2
u)

2 −
∑

u a4
u

(
∑

u au)
2 −

∑
u a2

u

. (14)

7.2.1 A Simple Simulated Network

Here we present a simple simulated network model for highlighting the dif-
ferences between hard- and soft thresholding. A more realistic simulation
can be found in section 8. We assume a network that is comprised of two
completely unconnected modules with n1 = 40 nodes (colored in blue) and
n2 = 80 nodes (colored in turquoise), respectively. Within each module,
the similarity between nodes i and j is given by s(i, j) = ij

n2 if i 6= j and
s(i, i) = 1. Thus the similarity matrix for the complete network is given by
the following 120× 120 matrix

S =

(
S1 0
0 S2

)
where Sm = [ ij

n2
m

].

The power adjacency function (power(s, β = 2) and the signum adjacency
function (signum(τ = 0.65) were used to define weighted and unweighted
networks, respectively. Incidentally, these adjacency parameter values lead
to approximate scale free topology: R2 ≥ 0.85. The TOM dissimilarity was
used in average linkage hierarchical clustering to identify 2 modules in each
network, see Figures 10a) and b).

This simulated example highlights a fundamental difference between un-
weighted and weighted networks when it comes to the relationship between
clustering coefficient and connectivity. In the unweighted network, the clus-
tering coefficient is anti-correlated with connectivity (r = −0.70) as shown
in Figure 10d). In contrast, the clustering coefficient is approximately con-
stant in the weighted network, as shown in Figure 10g). To elaborate on this
difference, note that the within module similarity is factorizable. The power
adjacency function preserves this property so that the cluster coefficient is
approximately constant (see equation 14). In contrast, hard thresholding
does not preserve the factorizability and the resulting adjacency matrix is
not factorizable. This leads to a ‘spurious’ dependency between the cluster
coefficient and the connectivity (Figure 10d)
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(a) (b)

(c) (d)

Figure 10: Simulated example for highlighting the difference between hard
and soft thresholding when it comes to the cluster coefficient. Figures (a)
and (b) show the TOM plots in the weighted and unweighted network, respec-
tively. There are two modules (turquoise and blue). Figures (c) and (d) show
the relationship between cluster coefficient and connectivity colored by mod-
ule membership. Note that hard thresholding gives rise to a strong inverse
relationship between the cluster coefficient and the connectivity.
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Cancer Network blue brown green grey turquoise yellow
weighted 0.24 0.48 0.06 0.14 0.73 0.48

unweighted -0.57 -0.76 -0.54 -0.21 -0.43 -0.91

Table 2: Correlation coefficients between connectivity and cluster coefficient
by cancer network module. The first row reports the correlations for the
weighted network based on power(s, β = 6). For the unweighted network
based on signum(s, τ = 0.70), the second row reports the correlations be-
tween k and C among genes with connectivity k > 100. For the unrestricted
relationship consider Figure 11.

Yeast Network black blue brown green grey purple red turquoise yellow
weighted 0.44 0.54 0.23 -0.05 0.06 0.61 0.57 0.45 0.29

unweighted -0.76 -0.60 -0.58 -0.74 -0.12 -0.78 -0.56 -0.67 -0.79

Table 3: Correlation coefficients between connectivity and cluster coefficient
by yeast network module. The first row reports the correlations for the
weighted network based on power(s, β = 7). For the unweighted network
based on signum(s, τ = 0.65), the second row reports the correlations be-
tween k and C among genes with connectivity k > 50. For the unrestricted
relationship consider Figure 11.

7.3 The Relationship between Cluster Coefficient and
Connectivity in Real Networks

The relationship between connectivity and cluster coefficient is of interest
since several authors have argued that it has implications for the over-
all structure of the network, (Ravasz et al., 2002; Bergman et al., 2004).
For unweighted metabolic networks, it has been found (Ravasz et al., 2002;
Bergman et al., 2004) that the clustering coefficient C is inversely related to
the connectivity k, i.e. C ∼ k−1. To explain this relationship, Ravasz and
colleagues proposed a ‘hierarchical’ network model that reconciles within a
single framework all the observed properties of metabolic networks: their
scale-free topology, high average clustering coefficient, and the power law
scaling of C (Ravasz et al., 2002). In contrast, non-hierarchical scale-free
and modular networks predict that there is no relationship between C and k
within a module.
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(a) (b)

(c) (d)

Figure 11: Scatter plot of C ∼ k in different networks. Genes are colored
by module membership. Figures in the the first row (a) and (b) correspond
to the cancer network. Figures in the second row (c) and (d) correspond to
the yeast network. Figures (a) and (c) in the first column correspond to soft
thresholding with the power adjacency function. The figures in the second
column correspond to hard thresholding using the signum function. Clearly,
the inverse relationship between clustering coefficient and connectivity can
only be observed for hard thresholding. For soft thresholding, the clustering
coefficient is roughly constant for highly connected module genes.
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In weighted gene co-expression network, we find a positive correlation
between connectivity and cluster coefficient in most modules, see Tables 2
and 3 and Figure 11. But the Figure also shows that for high connectiv-
ity nodes of a given module, the relationship between C and k is roughly
constant. This approximately constant relationship can be explained using
the fact that for highly connected genes inside a module, the correspond-
ing correlation matrix is roughly factorizable, see (Horvath et al., 2005). In
contrast, for unweighted networks, we find an inverse relationship between
cluster coefficient and connectivity in most modules. This is congruent with
the findings reported by other groups (Bergman et al., 2004; Ravasz et al.,
2002). The inverse relationship between C and k observed in unweighted
networks may be an artefact of hard thresholding.

8 A More Realistic Simulated Example

Here we present a simulated network model that has some of the properties
observed in real networks.

An R tutorial that describes this example in more detail can be found at
our webpage. The example exhibits a nearly optimal (simulated) signal for
weighted and unweighted networks constructed using the scale free topology
criterion. The network was simulated to consist of a brown, a blue and a
turquoise module with n1 = 100, n2 = 200, and n3 = 300 genes, respectively.
Further, it contained 500 grey (non-module) genes. For the genes of the
brown module, we simulated an external gene significance measure GS(i) =
vsignal(j) and vsignal(i) = (1− 0.3i/nm)5 where 1 ≤ i ≤ nm. One goal of the
analysis is to study how the Spearman correlation between gene significance
and intramodular connectivity in the brown module depends on different
hard and soft thresholds.

The similarity matrix between genes of a given module contained a sig-
nal and a noise part, see Figure 13a). Specifically, for i ≤ 0.95 × nm and
j ≤ 0.95 × nm, we assumed that the similarity was given by Sm(i, j) =
min(vsignal(i), vsignal(j)). The remaining 5 percent of (noise) genes were as-
sumed to have a moderate similarity with the true signal genes. Specifically,
for i > 0.95×nm and j ≤ 0.95×nm (or for i ≤ 0.95×nm and j > 0.95×nm),
we set Sm(i, j) = vnoise(i) × vnoise(j) where vnoise(i) = (0.85 + 0.1 × i/n)5.
Further, we assumed that the noise genes had a high similarity between each
other: for i ≥ 0.95× nm and j ≥ 0.95× nm the similarity matrix was set to
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Sm(i, j) = 0.955.
The whole network similarity, which includes noise, is visualized in Figure

13b). Note that that the structure of the whole network similarity matrix is
given by the 1100× 1100 block-diagonal matrix

S =


S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 0


Noise ε(i, j) was added to the entries S(i, j) such that the result remained
in the unit interval [0,1]. Specifically, ε(i, j) = (1−S(i, j))U(i, j)5 where the
U(i, j) followed independent uniform distributions on the the unit interval
[0, 1].

The scale free topology criterion was used to choose the hard and soft
threshold parameter of the signum (unweighted network) and the power
(weighted network) adjacency function, respectively. As can be seen from
Figure 12a), the R2 curve shows a kink above R2 > 0.80 at a hard thresh-
old of τ = 0.60 and a soft threshold of β = 3. These adjacency function
parameter values were used to define the corresponding topological over-
lap matrices. Average linkage hierarchical clustering was used to identify
the modules, see Figures 13b) and e). The module identification method
based on the weighted network recovers the underlying true module struc-
ture much better than an approach based on the unweighted network: while
the weighted network module assignment misclassified 89 of the 1100 genes,
the unweighted networks modules assignment misclassified 164 genes.

Figures 13e) and f) show the relationship between the cluster coefficient
C and the connectivity k. Similar to the real data applications, we find
a fundamental difference between the unweighted and weighted networks:
there is a strong inverse relationship between C and k for high connectivity
nodes in the unweighted network but not in the weighted network.

By construction, the simulated gene significance of the brown module
genes correlated with the standard intramodular connectivity measure k.in.
But for completeness, we also report the findings of correlating the TOM-
based connectivity ω.in and the intramodular clustering coefficient C.in with
the gene significance, see Figures 12b) and c). Interestingly, we find that the
TOM-based connectivity omega.in performs best in the weighted network.
By construction, we find that the adjacency function parameters chosen by
scale free topology criterion lead to nearly optimal biological signal when it
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(a)

(b) (c)

Figure 12: Simulated Network. a) Scale-free topology fitting index R2 as
a function of different hard (black curve) and soft (red curve) thresholds
Points are labelled by the thresholds. The horizontal line corresponds to R2 =
0.80. The scale free topology criterion leads us to choose power(s, β = 3)
for soft thresholding and signum(s, τ = 0.60) for hard thresholding. (b)
Spearman correlations between simulated gene significance GS and different
intramodular connectivity measures as a function of different values of the
power adjacency function parameter β. The red curve shows the correlations
for the standard intramodular connectivity measure k.in. The blue curve
reports the findings for the TOM-based connectivity measure ω.in. The green
curve corresponds to the intramodular clustering coefficient C. The black
curve reports the signed scale free topology model fitting index R2. Analogous
to b), figure c) shows the findings for the the hard threshold parameter τ .
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(a) (b)

(c) (d)

(e) (f)

Figure 13: (a) Color coded pictures of the brown module similarity matrix.
The bottom row color-codes the simulated external gene significance measure
GS for the brown module genes. (b) Whole-network similarity measure. The
bottom row color codes the simulated module membership. (c) TOM plot
of the weighted network restricted to nodes with connectivity k > 40. (d)
Corresonding TOM plot for the unweighted network. Figures (e) and (f)
depict the relationship between cluster coefficient C and connectivity k in the
weighted and unweighted networks, respectively.
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comes to the Spearman correlation between k.in and the gene significance.
Our simulated example shows that the correlations of the weighted network
are much more robust to the choice of the adjacency function parameter than
those of the unweighted network.

Soft thresholding can avoid arbitrary discontinuities that sometimes re-
sult from hard thresholding. As the reader can verify using our software
tutorial, we find that the results of a weighted network analysis are highly
robust to the choice of the soft parameter β when it comes to module identi-
fication, connectivity definition, and the relationship between intramodular
connectivity and an external gene significance measure. This is an attrac-
tive feature since it protects against (inadvertent) overfitting in a network
analysis.

Software Implementation

R software tutorials for the yeast network, the cancer network, and the sim-
ulated example can be obtained from the following webpage:
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork.

9 Conclusion

Unravelling the interactions between genes constitutes a major goal of biol-
ogy. The structure of resulting gene networks is relevant to the functioning of
the cell, for example, in development (Davidson et al., 2003). Network anal-
yses have shown a correlation between, on the one hand, the essentiality of a
gene and, on the other hand, either the number of connections that the gene
has (Jeong et al., 2001; Han et al., 2004; Carter et al., 2004) or the topology
of the metabolic network (Stelling et al., 2002; Forster et al., 2003). Further-
more, networks have been found useful to interpret synthetic lethal knockouts
(Brummelkamp and Bernards, 2003; Sonoda, 2003). Network modules im-
plement the classic idea that a cell can be divided into functional modules
(Snel et al., 2002; Yanai and DeLisi, 2002; Davidson et al., 2003).

We present a general framework for constructing and analyzing gene co-
expression networks. In order to construct weighted networks, we propose
to use soft thresholding techniques to convert a gene co-expression similar-
ity measure into a network connection strength. The parameters involved
in various thresholding functions are estimated based on a biologically mo-
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tivated criterion (referred to as scale-free topology criterion). We generalize
important network concepts (connectivity, clustering coefficient, scale-free
topology, topological overlap) from simple networks to weighted networks.
Further, we introduce a new centrality measure based on topological overlap
matrix. This new centrality measure is more predictive of gene importance
than the standard measure in the cancer network and in the simulated ex-
ample.

In this paper, we distinguish intramodular connectivity from whole net-
work connectivity. Roughly speaking, the intramodular connectivity mea-
sures how connected a gene is to the genes of its module. We show that
the intramodular connectivity is more strongly correlated with gene signif-
icance than the whole network connectivity. It is not clear to us whether
it is meaningful to compare connectivity of genes across modules (sets of
highly correlated genes): a gene that is highly connected within a small
but important module may have far fewer whole-network connections than
a moderately connected gene in a large but unimportant module.

We provide empirical evidence that the ‘within’ module clustering coef-
ficient C has a weak positive dependence on connectivity k in weighted net-
works. In contrast, it is inversely related to the connectivity in unweighted
networks. To understand this, we have derived an approximate formula for
the relationship between k and C in factorizable networks, see section 7.2.
It has been shown that the correlation matrix of genes from a ‘tight’ mod-
ule is approximately factorizable (Horvath et al., 2005). Soft thresholding
with the power adjacency function preserves this property and the result-
ing adjacency matrix remains factorizable. Thus, for highly connected genes
inside a module, one would expect a roughly constant relationship between
k and C. In contrast, hard thresholding does not yield a factorizable adja-
cency function and an inverse relationship results as shown in our simulated
example and in our real data applications. We find that the inverse rela-
tionship between clustering coefficient and intramodular connectivity derives
from hard thresholding. It is worth pointing out that the cluster coefficients
changes across modules. Genes belonging to different modules may have
very different cluster coefficient as seen in our real data analysis.

Our empirical studies involving two DNA microarray data sets show that
soft thresholding techniques, which result in weighted networks, lead to net-
works whose biological results tend to be highly robust with respect to the
adjacency function parameters. In contrast, unweighted networks are less ro-
bust with respect to the threshold chosen. We have proposed a biologically
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motivated criterion (referred to as the Scale-Free Topology criterion) that
yields networks with high biological signal.

As we show in appendix A, when this criterion is used to estimate the
parameters of the underlying adjacency functions, network concepts such as
connectivity measures, hub status, and modules are quite robust with respect
to the class of adjacency functions considered.
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Appendix A: Comparison of the Signum-, Sigmoid-

and Power Adjacency Function

Here we provide empirical evidence that the TOM-based measures dω
ij and

the whole network connectivities ki are highly correlated in networks that
are constructed using the scale-free topology criterion. For the cancer net-
work, the scale-free topology criterion was used to determine the parameters
in the following adjacency functions: signum(s, τ = 0.7), power(s, β = 6)
and sigmoid(0.9, 10). We also consider adjacency functions power(s, 1) and
power(s, 2), which do not lead to approximate scale free topology.

Figure 14a) shows that the whole network connectivities ki corresponding
to signum(0.7), power(s, 6) and sigmoid(0.9, 10) are highly correlated (corre-
lations bigger than 0.97). In contrast, these dissimilarities are less correlated
with the ad-hoc dissimilarities power(1) and power(2). Figure 14b) shows
that the TOM-based measures dω

ij corresponding to signum(0.7), power(s, 6)
and sigmoid(0.9, 10) are highly correlated. In contrast, these dissimilarities
are less correlated with the ad-hoc dissimilarities power(1) and power(2).

Note also that both the connectivity and the TOM-based dissimilarity
based on power(s, β = 6) have a correlation of 1.0 with the corresponding
quantities from the sigmoid adjacency function sigmoid(0.9, 10).

Figure 15 shows the multidimensional scaling plots for the dissimilarity
measure 1 − power(1) (which is widely used for clustering gene expression
profiles) and the TOM-based dissimilarities resulting from different adjacency
functions. The TOM-based measures lead to far more distinct modules than
(1−power(1)). This can be used to illustrate how module identification using
co-expression network analysis differs from standard gene clustering analysis.

Appendix B: Comparing the Biological Signal

for Adaptively Chosen Modules

In the main text, we compared the performance of the different connectiv-
ity measures by fixing the modules. Since the module definition is highly
variable due to its dependence on how the branches of the dendrogram are
cut-off, fixing the module allows for a more direct comparison. But here we
report results when the brown module definition is changed adaptively and
automatically for each value of the adjacency function parameter. Although,
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(a) (b)

Figure 14: The cancer microarray data are used to contrast different con-
nectivity measures (a) and TOM-based dissimilarity measures (b) that result
from different adjacency function. Above the diagonal are pairwise scatter
plots and below the diagonal are the corresponding Pearson correlation coef-
ficients. TOM-based dissimilaritys are preceded by the letter w for different
adjacency functions.

(a) (b) (c) (d)

Figure 15: Multi-dimensional scaling plots of the genes as a function of dif-
ferent dissimilarity measures. (a) 1− power(1), which is a widely used mea-
sure for clustering gene expression profiles; (b) TOM dissimilarity based on
signum(s, τ = 0.7); (c) TOM dissimilarity based on power(s, β = 6); (d)
TOM dissimilarity based on sigmoid(s, α = 10, τ0 = 0.9).
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the results are more variable, one could argue that this comparison is more re-
alistic. Figure 16 relates different intramodular connectivity measures of the
brown module to prognostic gene significance in the cancer network. Again,
we find that the biological signal is nearly optimal if the adjacency function
parameter is chosen with the scale free topology criterion.

(a) (b)

Figure 16: Spearman correlations between gene (prognostic) significance and
different intramodular connectivity measures for different values of adjacency
function parameters: a) correlations for the power adjacency function param-
eters β; b) the corresponding plot as a function of the hard threshold param-
eter τ . The black curve reports the signed scale free topology model fitting
index R2. The red curve shows the correlations for the standard intramod-
ular connectivity measure k.in. The blue curve reports the findings for the
TOM-based connectivity measure ω.in. The green curve corresponds to the
intramodular clustering coefficient. In contrast to the results reported in the
main text, the brown module definition changed adaptively for each value of
the adjacency function parameter.
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