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ABSTRACT 
Embodied Conversational Agents that can express emotions are a 
popular topic. Yet, despite recent attempts, reliable methods are 
still lacking to assess the quality of facial displays. This paper 
extends and refines the work in [6], focusing on the role of the 
upper and the lower portions of the face. We analysed the 
recognition rates and errors from the responses of 74 subjects to 
the presentations of dynamic (human and synthetic) faces. The 
results points to the possibility of: a) addressing the issue of the 
naturalness of synthetic faces, and b) a greater importance of the 
upper part. 

Categories and Subject Descriptors 
H.1.2 [Information Systems]: User/Machine Systems – human 
factors.  

General Terms 
Measurement, Performance, Design, Experimentation, Human 
Factors. 

Keywords 
User study, synthetic faces, expressiveness, emotion recognition, 
face regions. 

1. INTRODUCTION 
In the last years there has been a great effort towards developing 
embodied conversational agents (ECAs) — i.e., artificial agents 
able to communicate by means of nonverbal (gestures and facial 
displays), and verbal behaviour, and to exhibit emotional and 
conversational behaviour as a function of communicative goals 
and personality [4]. Parallel to that, interest has raised on 
methodologies and protocols for evaluating ECAs. Most of the 
studies conducted so far have addressed the end-to-end evaluation 
of systems exploiting ECAs, and focusing on dimensions such as 
the effectiveness and quality of the resulting interaction, the 
ECA’s believability, etc.; see [12], and [13] for a review of 
relevant studies and an attempt at providing a general framework. 

Very few works have addressed the quality of facial displays, and 
those ‘low levels’ dimensions that arguably determine it: lip-
speech synchronisation, facial gestures signalling emotions, or 
emphasis, punctuation and other discourse-level regulatory 
characteristics. In particular, despite the current interest in the 
topic, and the many efforts towards endowing ECAs with the 
capabilities of expressing emotional states, neither benchmarks 
nor agreed methodologies are available to assess this dimension. 
Arguably, though, they would provide important information for 
testing and development purposes, and for comparatively 
evaluating different platforms. In many respects, the measurement 
of selected dimensions into which the ‘quality of facial display’ 
can be articulated — e.g., the recognisability of emotional 
expressions — can be expected to play a role similar to that 
played by the Word Error Rate for speech recognisers, or the 
recall/precision pair for Information Retrieval and Information 
Extraction: measures that are easy to use and interpret for 
development and comparative purposes.  

Pursuing the development of benchmarks and protocols for the 
assessment of emotional expressions can also positively affect our 
understanding of the field itself, and help us in better designing 
systems exploiting ECAs. For instance, the many studies in the 
psychological literature addressing this topic have mostly resorted 
to static stimuli (pictures), with a substantial neglect of the richer 
and more complex dynamic stimuli — e.g., videos portraying the 
expression of emotions by humans or synthetic faces. Since it is 
the latter that we are mostly interested in for the purposes of 
evaluating ECAs, we can expect the research towards benchmarks 
and protocols to advance our knowledge, by further articulating 
the relevant questions, and by providing new insights. For 
instance, a proper understanding of the quality of a synthetic face 
requires that we be able to chart the effect of varying conditions 
on recognition judgments: the use of acted vs. spontaneous 
expressions as stimuli; the use of actors vs. laymen for producing 
stimuli; the role of gender of the face and/or of the subject; the 
contribution and role of different portions of the face (does 
recognition change when only the upper or the lower part of the 
face are available? If it does, how are those changes related to the 
recognition of the whole face?); the effect of executing concurrent 
tasks during the expression of the emotions, most notably, 
uttering something; the role of cultural and linguistic differences 
on recognising emotional expressions; etc. 

In this paper we address some of the above mentioned issues in 
the context of an exploration of the methodologies for the 
evaluation of the expressiveness of synthetic faces. In particular, 
we capitalise on, and further refine a recent proposal, [6], where 
the emotional expressions produced by synthetic faces are 
assessed against those produced by humans (actors) in terms of 
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both the correct recognitions and the similarities/differences of the 
corresponding error distributions. While doing so, we will also 
investigate the role of the upper and lower part of the face in the 
recognition task, for both human and synthetic faces.  

This paper is structured as follows: in the next section we discuss 
some of the relevant literature; then we present the study design 
and procedure; the remaining sections report on the results 
focusing on the recognition rates and the analysis of errors. The 
last section draws the conclusions. 

2. PREVIOUS WORKS 
Ahlberg et al. [2] were the first to use the expressions performed 
by humans as a golden standard against which to assess the 
expressivity of synthetic faces in a recognition task. They were 
interested in how well a given face model can express emotions 
when controlled by MPEG-4 FAPs (Facial Animation Parameters) 
captured from people acting the emotions. The expressiveness 
was measured through the recognition rate of human observers 
classifying stimuli. The latter consisted of videos of human and 
synthetic faces expressing Ekman’s [8] 6 basic emotions: fear, 
anger, surprise, sadness, joy, disgust. Stimuli consisting of human 
faces were obtained by recording people (laymen) acting different 
emotions through video camera. During the same recordings, the 
3-D motion of the head, and a subset of 22 MPEG-4 facial feature 
points were tracked through motion capture equipment. This way, 
MPEG-4 FAP files were created, which were then fed into two 
different Facial Animation Engines to produce the synthetic video 
sequences. The results showed significant differences between the 
synthetic and the human faces, but no differences between the two 
synthetic faces.  

Ahlberg et al.’s proposal to compare the expressiveness of 
synthetic faces with that of humans suggests that the best 
synthetic face is the one whose performances are the closest to 
those of human faces. In a way, this provides for an operational 
definition of the naturalness of synthetic faces. Not of ‘perceived’ 
naturalness, of course, but a more ‘objective’ measure in terms of 
the similarities in human behavior across the two conditions. For 
these comparisons to be meaningful, however, they cannot be 
limited to successful recognitions, but should extend to errors and 
the way they distribute among confusion classes. According to the 
proposed notion, in fact, a naturalistic synthetic face should 
reproduce both the correct recognitions and the errors of the 
human model. 

Costantini et al. [6] took up some of those concerns, and proposed 
a more refined procedure, in the context of a comparative 
evaluation of two different animation conditions for synthetic 
faces: a) FAP files recorded from the actor through a 
methodology similar to that exploited by Alhberg et., and then fed 
into the synthetic faces; and b) the ‘proprietary’ FAP files of the 
synthetic faces, produced from scripts specified by the developer 
(the Script Based, or SB-condition). The testbed consisted of 
expressions performed by the same professional actor who 
provided the FAP files. Subjects were presented with expressions 
of Ekman’s six emotions plus the neutral one. An important 
difference with respect to most previous works was that the 
expression of each emotional state co-occurred with the utterance 
of the Italian phonetically rich sentence “Il fabbro lavora con 
forza usando il martello e la tenaglia” (The smith works with 
strength using the hammer and the pincer). The audio was not 
available. Given the categorical nature of the data, Costantini et 
al. exploited a log linear analysis for the recognition rate, and an 
information-theoretic approach for errors. The results indicated a 

tendency for synthetic faces in the SB condition to perform better 
than the human and the FAP conditions. With respect to the 
human model, however, the FAP method was closer to it in terms 
of both the recognition rates and the way errors distributed among 
confusion classes. According to the considerations made above, 
the FAP methods yielded more naturalistic faces. 

Kätsyri et al. [10] compared the identification of emotional 
expression of a synthetic face with those of natural faces, 
exploiting both static (pictures) and dynamic stimuli. The latter 
were short (1-1.5 secs.) videos showing the expression from the 
neutral position till the apex. As to the human stimuli, they 
exploited the Cohn-Kanade’s database, and a proprietary one, 
consisting of expressions acted by professional actors trained to 
perform them in accordance to Ekman’s FAUs [8]. The subjects 
had to rate how much each expression (static or dynamic) 
contained/realised each of the six Ekman’s basic emotions. They 
found that the overall levels of identification for the synthetic face 
were lower than the human one.  

Concerning the role of the upper and the lower part of the face on 
emotion recognition, Bassili’s [3] review of the literature on the 
topic noticed the absence of agreement amongst published works, 
most probably due to the different approaches and methodologies. 
The only clear fact was that different parts of the face turned out 
to be important for different emotions. In his own study, Bassili 
[3] found that the lower region of the face was associated with a 
higher recognition rate than the upper part on joy, surprise and 
disgust, whereas the reverse obtained for sadness and fear. No 
differences were found for anger. From this, Bassili directly 
concluded that the bottom of the face is ‘more useful’ for the 
recognition of joy, surprise and disgust, whereas the upper part is 
more useful for sadness and fear. It is not clear, however, that this 
particular conclusion is warranted, at least if we take ‘more 
useful’ as meaning that in the recognition task with the whole face 
the information provided by the bottom part of the face is more 
important to correct recognitions than that provided by the upper 
part. To establish this point, the simple comparison of recognition 
rates for the separate face regions does not seem to suffice. 
Rather, more direct ways are needed to explore the extent to 
which the information used during the recognition task for a given 
face region is re-used when the subject is confronted with the 
whole face. 

3. THE STUDY 
3.1 Objectives 
The present study had two main goals: a) to further refine and 
advance the methodology of [6] while b) investigating the role the 
different regions of the face play in the recognition tasks for 
emotional expressions. Hence we systematically compared the 
performances and the error distributions obtained with whole 
faces (henceforth whole) with those resulting from the 
presentation of the upper (henceforth: eyes) and of the lower 
(henceforth: mouth) regions of the face.  

3.2 Experimental Design  
A within-subjects design was adopted: subjects were presented 
with 3 blocks (ACTOR, FACE1 and FACE2) of stimuli (video 
files). For synthetic faces, the proprietary SB mode of animation 
was used, see [6].  

Each block consisted of video files covering the 6 emotions of 
Ekman’s set plus ‘neutral’. As in [6], each emotion was expressed 
by the faces while uttering the Italian phonetically rich sentence 



“Il fabbro lavora con forza usando il martello e la tenaglia” (The 
smith works with strength using the hammer and the pincer). The 
audio was not made available to subjects.  

Stimuli were varied according to three conditions: ‘whole’, ‘eyes’ 
and ‘mouth’. Hence, each block contained 3(CONDITIONS) × 
7(EMOTIONS)=21 stimuli, for a total of 63 stimuli per 
participant.  

3.3 Video stimuli 
The actor (male, 30 years old) was recorded through the Elite 
system [9], which uses two cameras with a frame rate of 100 Hz 
to capture 28 markers. The video camera recordings of the actor 
were digitized and edited to be used for the Actor condition of the 
experiment.  

Two synthetic 3D face models were used, Face1 [5] and Face2 
[11], both enforcing the MPEG-4 Facial Animation (FA) 
standard. The synthetic video files were produced by screen-
capturing of the synthetic faces playing the relevant script.  

The stimuli for the ‘eyes’ and the ‘mouth’ conditions were 
obtained by cutting the videos for whole faces into two halves by 
means of VirtualDub. Following Vanger et al. [15], we included 
the chin, the lips, the nostril and the nose tip in the lower part (the 
‘mouth’); the nose bridge, the eyes, the eyebrows, the brow and 
the hair in the upper part of the face (the ‘eyes’). This way, each 
stimulus in the ‘whole’ condition had one corresponding stimulus 
in the ‘mouth’, and one corresponding stimulus in the ‘eyes’ 
condition.  

Table 1. Format of the video files 
 whole eyes mouth 
Actor 320×360 160×360 128×360 
Face1 320×360 160×360 160×360 
Face2 320×360 176×360 112×360 

The video format used for presentation to the subjects were AVI 
file, with Indeo-5.10 compression, see Table 1. The video stimuli 
had different durations: 4 seconds for the human face and 7 
seconds for the synthetic ones.1  

3.4 Participants and procedure 
Subjects were 74 (32 males and 42 females) students from the 
Department of Psychology, University of Trieste (Italy), rewarded 
through credits. They were individually tested in a silent lab. 
Before the experimental session, they were given written 
instructions and went through a short training session to 
familiarize with the task. The training session consisted in 9 
stimuli, different from those of the experimental session. They 
were: for the Actor condition: anger × mouth, disgust × whole, 
neutral × eyes; for Face1: fear × mouth, neutral × whole, joy × 
eyes; for Face2: neutral × mouth, surprise × whole face, sadness × 
eyes. 

The experimental session started immediately after the training 
one. Video files were presented on the computer screen, through 

                                                                 

1 The differences were related to the computationally expensive 
process of generating the expression for synthetic faces. We could 
not investigate whether the durations of the stimuli had any 
effects on the experimental variables.  

Microsoft Power Point ®, with each of them presented only once. 
Each block had three different presentation orders that were 
randomly created and balanced across conditions and participants. 
Participants were asked to watch at each video file and to express 
their judgment on a paper form, choosing from the 7 available 
labels for emotional states (corresponding to the 7 presented 
emotional expressions).  

4. RESULTS – RECOGNITION RATES 
In this section we will first consider the role of the upper vs. the 
lower part of the face; then we will compare the recognitions rates 
across the various FACE*CONDITION combinations. 

4.1 The role of the eyes and of the mouth 
While discussing [3], we argued that more refined methods than 
the simple comparison of recognition rates should be used to 
address the relative importance of the upper and lower regions of 
the face. In this paper we take advantage of the pairing of the 
stimuli for the ‘whole’ condition with those for the ‘eyes’ and the 
‘mouth ones, and use Jaccard similarity index. For each face, and 
each comparison class (‘eyes-whole’ and ‘mouth-whole’) Jaccard 
index is defined as d/(b+c+d), with respect to the crosstabulation 
of the data exemplified in Table 2 (0=wrong and 1=correct). 

Table 2. Example of the crosstabulation used to compute the 
Jaccard index. 

  eyes 
 0 1 
0 a b 

 

whole 
1 c d 

Jaccard index is a weighted estimate of the conditional probability 
that a given stimulus yields a correct response on the row 
dimension (e.g., ‘whole’) given that the corresponding stimulus 
yields a correct response in the column dimension (e.g., ‘eyes’).2 
Hence, it provides a measure of the contribution of the eyes (the 
column dimension of Table 2) to the correct responses in the 
‘whole’ condition (the row dimension). Table 3 reports the values 
of the Jaccard index for global comparisons, abstracting away 
from single emotions. 3 

Table 3. Values of Jaccard index for global comparisons 
 Actor Face1 Face2 

Eyes-whole .516 .430 .482 

Mouth-whole .528 .419 .352 

The only significant differences concern a) Face2, where the eyes 
contribute more to ‘whole’ than the mouth, (z=3.67) and b) the 
fact that the contribution of the mouth to ‘whole’ is higher with 
Actor than with Face1 (z=2.89) and Face2 (z=4.75). Hence, for a 

                                                                 
2 It penalises the cases in which the number of successes on the 

column dimension is low with respect to the number of all 
successes, and rewards the cases when it is high.  

3 The comparison of two Jaccard indices was performed through 
their confidence intervals, with p<.01. Variances and standard 
errors were derived through the delta method [1]. 

Henceforth, and whenever possible, we will use standardised 
scores to discuss our results. Notice that a significance level of 
p<.01 correspond to z>|2.58|. 



given face, the eyes and the mouth tend to globally contribute 
similar amounts of information to the correct recognitions of the 
whole face; the only exception is Face2, whose mouth 
contributes less than the eyes. At the same time, the contribution 
of the eyes remains globally stable across faces, whereas that of 
the mouth tends to decrease with synthetic faces.  

Table 4 summarises the results of a finer-grained analysis, 
addressing the differences due to emotions (only statistically 
significant differences are reported). 

Table 4. Comparing the contribution of the eyes (e) and of the 
mouth (m) to the correct responses in the ‘whole’ condition. 

Italics indicate close-to-significance data 
 Actor Face1 Face2 
Disgust = m>e = 
Joy = m>e m>e 
Sadness e>m = e>m 
Fear = = e>m 
Anger m>e e>m e>m 
Surprise e>m e>m e>m 
neutral e>m = = 

With Actor, the differences between the contribution of the eyes 
and of the mouth to the correct recognitions in the ‘whole’ 
condition reach the chosen level of significance (p<.01) only for 
sadness (z=3.76) and surprise (z=3.18); in two other cases they go 
very close to doing so: z=-2.49, p=.0128 for anger, and z=2.53, 
p=.0114 for neutral.4 Hence, in at least two cases the contribution 
of the eyes to the correct recognition in the ‘whole’ condition is 
higher than the mouth’s.  

With Face1 the variability increases. The mouth contributes more 
than the eyes on joy (z=5.19), whereas the eyes are more 
important for anger (z=4,097) and surprise (z=4.79). Finally, the 
comparison on disgust yields a close-to-significance value (z=-
2.485, p=.0130), indicating a tendency for the mouth to be more 
important than the eyes on this emotion.  

With Face2 the mouth contributes more to the correct responses in 
the whole condition on joy (z=6.64); the eyes’ contribution is 
greater on sadness (z=3.22), fear (z=2.65), anger (z=6.42) and 
surprise (z=6.33). 

In conclusion, the data for Actor confirms Bassili’s observation 
that, with human faces, the importance of face regions depends 
on the emotion. Concerning the synthetic faces, the increasing 
differences between the face regions and Actor might prove 
important in the assessment of their naturalness. Moreover, the 
frequent advantage of the eyes points to the possibility that the 
articulatory movements due to the speech negatively affect the 
contribution of the mouth in the recognition of complex 
expressions. 

4.2 Comparing recognition rates 
In the next two subsections we study how successful recognitions 
depend on FACES, CONDITIONS and EMOTIONS. We first ran 
a loglinear model selection procedure. The variables 
CONDITIONS (recognition rates: whole=58.8%, eyes=49%, 
mouth=40.2%) and EMOTIONS (neutral=71.8%, joy=63.1%, 
sadness=55.3%, anger=50.6%, surprise=47%, fear=36%, 
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greater for ‘whole-mouth’ than for ‘eyes-whole’. 

disgust=21.5%) yielded significant main effects, but not FACES 
(Actor=50.5%, Face1=47.8, Face2=49.6). All the interactions 
were significant and needed to adequately fit the data. Therefore, 
a saturated logit model was computed with the correct/ wrong 
responses as the dependent variable, and FACES, CONDITIONS 
and EMOTIONS as the independent variables. Comparisons of 
the performances of the different FACES*CONDITION 
combinations were accomplished by computing the standardized 
log-odds ratios from the parameters of the model, along with their 
Wald confidence intervals (level of confidence: p<.01). See [1] 
for details. 

4.2.1 Face-internal comparisons. 
For each emotion and each face, we compared the recognitions in 
the whole condition, to those in the ‘eyes’ and in the ‘mouth’ 
conditions. Table 5 summarises the results (only statistically 
significant differences are reported). 

The recognition of Actor’s face in the three conditions shows a 
limited degree of variation: only in two cases for ‘mouth’, and 
only in one for ‘eyes’ do recognition rates significantly differ 
from those obtained with whole faces. Concerning the synthetic 
faces, the variation in much higher than with Actor, in most cases 
consisting in a superiority of ‘whole’ with respect to ‘mouth’. 
Moreover, their patterns are very similar.  

Table 5. Summary of the face-internal comparison of the 
recognitions– e=eyes, w=whole, m=mouth 

 Actor Face1 Face2 
Disgust e>w  m>w 

Joy  w>e w>e 

Sadness w>m w>m 
w>e w>m 

Fear  w>m 
w>e 

w>m 
w>e 

Anger  w>m w>m 
Surprise w>m w>m w>m 
Neutral   m>w 

According to these data, the recognition of emotional 
expressions is quite a robust phenomenon with human faces and 
much less so with the synthetic ones. 

Table 6 summarises the results of the comparison between the 
recognitions in the ‘eyes’ and those in the ‘mouth’ conditions, for 
each emotion and each face. Bassili’s [3] data are also reported 
(only significant results are reported). 

Table 6. Comparison between the recognitions of the eyes (e) 
and the mouth (m) 

 Actor Face1 Face2 Bassili 
Disgust e>m m>e m>e m>e 

Joy  m>e m>e m>e 
Sadness e>m  e>m e>m 
Fear  e>m e>m e>m 
Anger   e>m  
Surprise e>m e>m e>m m>e 
Neutral    not avail. 

Our data for Actor don’t agree with Bassili’s. In particular, Actor 
never shows any advantage of the mouth over the eyes. At the 
same time, Bassili’s data show a good agreement with the 
synthetic faces. A possible explanation for these differences 



exploits the role of Ekman’s Facial Action Units (FAUs), [8]. The 
scripts that produce the emotional expressions of our two 
synthetic faces are based on FAUs decomposition. Moreover, the 
resulting facial movements are linearly combined with those for 
lip-speech synchronisation. Hence, it can be expected that the 
gesture components due to FAUs be perceivable in our synthetic 
faces. Bassili’s stimuli, on the other hand, were the non-uttering 
faces of actors trained on the use of FAUs. Hence, both with our 
synthetic faces and with Bassili’s, the FAUs component was 
present, and we can hypothesise that this is what underlies the 
similarities between Bassili’s data and those of our synthetic 
faces. Finally, the same reasoning could explain also the 
differences between Actor and both Bassili’s data and the 
synthetic faces.  

4.2.2 Cross-face comparisons 
Let’s take now Actor as a reference category against which to 
compare the recognitions of the emotions expressed by the other 
FACES, for fixed CONDITIONS. This will give us a measure of 
the performances of synthetic faces, and their regions, with 
respect to the human counterparts. Table 7 summarises the results 
(only statistically significant differences are reproduced). 

Table 7. Comparing the human with the synthetic faces. 
 whole eyes mouth 

Disgust  Actor>Face1 
Actor>Face2 Face2>Actor 

Joy  Actor>Face1 
Actor>Face2  

Sadness Face1>Actor 
Face2>Actor Face2>Actor Face1>Actor 

Face2>Actor 
Fear Face1>Actor   

Anger Actor>Face1 
Actor>Face2 Actor>Face1 Actor>Face1 

Actor>Face2 

Surprise Face1>Actor 
Face2>Actor 

Face1>Actor 
Face2>Actor  

Neutral   Face2>Actor 

In the ‘whole’ condition, the two synthetic faces behave very 
similarly with respect to Actor: both do better on sadness and 
surprise, worse on anger, and are equal to Actor on the remaining 
emotions. These data are consistent with those of [6]. 

The similarities between the two synthetic faces with respect to 
Actor are slightly weakened when we turn to the eyes. Both faces 
tend to be worse than Actor on disgust and joy, and better on 
surprise. Moreover, Face1-eyes does worse than Actor-eyes on 
anger, and Face2-eyes is superior to Actor-eyes on sadness.  

With the mouth, the general pattern does not change much: the 
two synthetic faces behave in a very similar way with respect to 
Actor. Both do better than the latter on sadness, and worse on 
anger. Moreover, Face2 has better performances than Actor on 
disgust. 

The two synthetic faces behave in a very similar way with 
respect to Actor: in most cases (8 out of 13) the different 
performances between Actor and one of the two synthetic faces 
co-occur with similar differences between Actor and the other 
synthetic face. Moreover, the direction of the differences 
remains constant: it never happens that for a given emotion 
Actor is superior to Face1 but inferior to Face2.  

5. RESULTS - RECOGNITION ERRORS 
5.1 A comparison of error distributions 
In this section we study errors, investigating whether the way they 
distribute is affected by our independent variables: FACES, 
CONDITIONS and EMOTIONS. We will resort to different 
techniques than in the previous section. Log-linear analysis can be 
easily extended to address the greater number of response 
categories (7 instead of 2) that is now required; however, the 
increased number of combinations would make hard to draw 
significant conclusions. Moreover, in this section we prefer to use 
simpler, but easier to manipulate tools to succinctly characterize 
and compare error distributions. To this end, we will exploit an 
information-theoretical approach [14] that factors out various 
contributions to the global information/uncertainty of confusion 
matrices, turning some of them into the tools we need.5 Here, we 
will focus on the effective number of confusion classes, and on 
the amount of shared errors.  

For completeness of information, Table 8 reports the global 
confusion matrix.  

Table 8. Overall confusion matrix (percentages). 
 Disg. Joy Neut. Fear Ang. Surp. Sad. 
disgust 21% 3% 32% 6% 12% 6% 19% 
joy 3% 63% 15% 2% 7% 4% 6% 
neutral 4% 3% 72% 1% 6% 3% 10% 
fear 12% 1% 6% 36% 10% 25% 10% 
anger 8% 2% 23% 8% 51% 4% 5% 
surprise 4% 8% 13% 14% 13% 47% 3% 
sadness 15% 1% 8% 5% 10% 6% 55% 

We start from indices ds and dr, suggested in [14].6 The former 
measures the effective mean number of error (confusion) classes 
per stimulus, discounting (normalizing for) the error rate. When ds 
increases, so do the possible confusion categories for a given 
stimulus category (presented emotion), hence its ambiguity. dr, in 
turn, informs about the mean number of stimulus categories a 
response category collects confusion from, again normalizing for 
the error rate. A high value of dr for a given response class, c, 
corresponds to a high number of stimulus categories c can collect 
errors from. Hence, dr signals the amount of uncertainty as to the 
identity of the stimulus originating the response. Table 9 reports 
the values of ds and dr for the various FACES*CONDITIONS 
combinations.  

Table 9. Values of dr and ds for various FACE*CONDITION 
combinations 

 whole mouth eyes 
 ds dr ds dr ds dr 
Actor 2.26 2.64 2.51 3.6 3.35 3.52 
Face1 2.55 3.04 1.92 2.8 2.52 3.64 
Face2 2.98 3.46 2.79 3.7 2.55 3.58 

                                                                 
5 The price to pay to the information theoretic approach is the lack 

of the rich inferential apparatus that other techniques have. 
Hence we will not be able to anchor our conclusion to tests of 
statistical significance. 

6 For the formal definition and properties of ds and dr, see [14].  



It could be expected that, since less information is available, the 
ambiguity of facial expressions, ds, and the uncertainty on 
responses, dr, increase in the ‘eyes’ and ‘mouth’ conditions with 
respect to ‘whole’. On the stimulus dimension, this expectation 
seems to be fulfilled by Actor, but not by the two synthetic faces, 
whereby the stimulus ambiguity tends to decrease or to remain 
stable. In other words, the mouth and the eyes of the synthetic 
faces give rise to stronger biases rather than to increased 
uncertainty. Along the response dimension, on the other hand, 
the uncertainty increases in all conditions from the whole to the 
eyes/mouth presentation.  

To perform direct comparisons across FACE*CONDITION 
combinations, we exploit two other indices suggested in [14], both 
computed on pooled confusion matrices. For matrices M1 and M2 
pooled into M=M1+M2 the indices δs and δr yield the effective 
fraction of errors in M that fall outside the error categories shared 
by M1 and M2. These indices are corrected for the overall 
differences in the distribution of stimuli, δs, and responses, δr, and 
are useful to quantify the extent to which the error distributions of 
two confusion matrices agree.7 Suppose that M1 is the confusion 
matrix for actor-whole and M2 that for actor-eyes; δs gives the 
fraction of errors in the pooled matrix that do not belong to 
stimulus error categories that are common to the actor-whole and 
the actor-eyes matrices. The higher δs, the lower is the number of 
errors in common confusion classes, hence the more different are 
the error distributions of M1 and M2 along the stimulus dimension. 
Similarly, δr yields the fraction of errors that do not belong to 
response error categories that are common to actor-whole and 
actor-eyes. The relevant values for comparisons targeting the 
various FACE*CONDITION combinations are reported in Table 
10. We limit our discussion to δs. 

Table 10. Value of δr and δr for whole vs. mouth and whole vs. 
eyes comparisons 

 

 

 

 

 

For any face, the whole-eyes comparison yields lower δs values 
(hence, a higher number of shared errors) than the corresponding 
whole-mouth pair. In a way, ‘eyes’ accounts for a very high 
portion of the errors subjects make when classifying ‘whole’ 
faces. Moreover, the lower values of δs are those for Actor, and 
the higher ones those for Face2.  

Hence, it is not only the case that the eyes contribute more to the 
correct recognitions in the ‘whole’ condition, as we saw above; 
they also account for a larger portion of errors than the mouth. 
Furthermore, with synthetic faces the error distributions of the 
eyes and the mouth differ more from that of ‘whole’ than with 
Actor. 

Table 11 targets the amount of errors that are not shared between 
Actor and the two synthetic faces. The former shares similar 
amounts of errors with the two synthetic faces, especially in the 
‘whole’ and in the ‘eyes’ conditions. The differences are higher 
on mouth, where Face2 is closer to Actor than Face1. 

                                                                 
7 For the definitions and formal properties of δs and δr, see [14]. 

Interestingly, the condition with the lowest figures, hence the 
highest amount of shared errors between the two synthetic faces 
and Actor is ‘eyes’. 

Table 11 – Errors shared between Actor and the two synthetic 
faces 

 Actor vs. Face1 Actor vs. Face2 
 δr δs δr δs 

Whole .449 .531 .425 .507 
Eyes .275 .424 .305 .405 
Mouth .397 .555 .306 .441 

5.2 Error classes 
In this section we analyse actual error classes, limiting our 
discussion to the stimulus dimensions.  

Table 12 reports the most common error category for each 
stimulus category.8 There is a substantial stability of the error 
classes for Actor, especially with ‘whole’ and ‘eyes’. Moreover, 
the typical stimulus error classes for Face1-mouth and Face2-
mouth are almost identical: similar stimulus classes give rise to 
similar confusions. 

Table 12. Most frequent error categories. Boldface indicates 
classes that reciprocate. 

 Actor Face1 Face2 
 w e m w e m w e m 
Dis sa sa sa+a n n n n+sa n n+a 

Joy a a a n n n n sa n 

Sad n n a d su d  d d 

Fe su su a d+su su d+sa su su d+sa 

An  d  n+f n+f n sa d n 

Su f+a f n j+f f n+a j f j+n 

neu
t

a sa sa+a  su sa sa sa sa 

Finally, there are few cases of pairs of emotions that reciprocate 
their (main) error classes. That is, pairs in which one emotion 
tends to be mistaken for the other and vice versa. This is the case 
of fear-surprise for actor-whole: the most common error class for 
a fear-type stimulus is surprise, and that for surprise is fear. Five 
of the reciprocal class pairs involve surprise and fear (with actor-
whole, actor-eyes, face1-whole, face1-eyes and face2-eyes); one 
involves neutral and sadness (with actor-eyes). The first pattern is 
particularly interesting, since it involves all the three faces in the 
‘whole’ and in the ‘eyes’ conditions (with the exception of Face2-
whole). On the one hand, this looks as another confirmation of 
the closeness of the ‘eyes’ to the ‘whole’. On the other hand, this 
datum highlights a pattern of confusion that seems to be 
independent of the particular face, be it human or synthetic. 

6. CONCLUSIONS 
This paper had two goals: a) investigating a methodology to 
assess an important dimension that contributes to define the 
quality of facial displays — namely, the recognisability of 
emotional expressions — and b) studying the roles of facial 
regions in the same task. The first goal was pursued through the 
systematic comparison of the performances of two synthetic faces 
(Face1 and Face2) with those of a human model (Actor) on a 
                                                                 
8 The methodology is the same as for Table 12. In some cases we 

reported the two highest ranking categories. 

 whole-eyes whole-mouth 
 δr δs δr δs 
Actor .106 .126 .222 .307 
Face1 .109 .187 .172 .316 
Face2 .119 .194 .224 .389 



recognition task involving Ekman’s six basic emotions plus the 
neutral expression. As observed, such a procedure makes it 
possible to address the issue of the naturalness of synthetic faces: 
the closer the synthetic face to the human model, the more natural 
it is. In our case, according to Table 7, both faces differ from 
Actor on 11 out of the 21 possible comparisons involving 
recognition rates. The analysis of the error distributions reported 
in Table 11 also indicates a substantial similarity between the two 
faces in their closeness to Actor. True, Face2 and Actor share 
more errors than Face1 and Actor, but this is mostly because of 
the mouth, and much less so with the eyes or the whole face. 
Finally, Table 5 shows that the recognition task is equally less 
robust with the two synthetic faces than with the actor. So it 
seems fair to conclude that our synthetic faces are equally 
‘natural’ according to the proposed definition. This is as it should 
be, for the two faces have been developed by largely overlapping 
research groups, and according to very similar principles. 

One might expect that at least some of the results presented here 
depend on the particular choice of the human model. In order for 
us to be able to use them to inform the development and/or 
improvement of synthetic faces, we need to know how strong 
such dependence is. For instance, one might replicate the present 
study by using a standard database of human expressions, 
whereby the degree of variation is known in advance and/or 
controlled for. We have collected such a data-base, comprising 
expressions from 8 actors, and we are currently investigating its 
degree of variability. 

With respect to the role of facial regions in the recognition task, 
the eyes turn out to be more important than the mouth along many 
of the considered dimensions:  

• they most often affect the correct recognitions of whole 
faces, Table 4;  

• they more often yield recognition rates that are similar to 
those obtained with whole faces, Table 5, and higher than 
those of the mouth, Table 6;  

• their error distributions are always closer to those of the 
‘whole’ condition, sharing a higher number of effective error 
classes with it than the mouth, Table 10; 

• the few pairs of reciprocal confusion classes observed occur 
in ‘whole’ and ‘eyes’ on similar emotion pairs (fear and 
surprise, see Table 12); 

The comparison with the data in the literature suggests that the 
greater importance of the eyes could at least in part be due to the 
fact that our faces are uttering ones, a condition that might 
weaken the contribution of the mouth to the expression of 
emotions. It is also possible that the same factor explains some 
differences between our recognition rates for the human face and 
those in the literature. For instance, [3] reports higher recognition 
rates for human dynamic stimuli (above 70%). In [15] the results 
varied according to the used data base, but, in general, the 
tendency was towards higher recognition rates. As far as we 
know, our study is the first one to consider the role of articulatory 
movements in a recognition task for emotion, so firm conclusions 
might be premature. However, the topic is of the utmost interest, 
especially for applicative purposes, and deserves being pursued 
through the systematic comparison of face(s) in the uttering and in 
the non-uttering modes. 

Other future lines of investigation concern the role of gender. Our 
sample had both males and females, but we failed in detecting any 
significant effect of gender. Other studies, most notably [3], did 
detect gender-related difference. So this issue requires more 

effort, addressing not only the effects of the gender of the 
subjects, but also the effects of the gender of the faces.  

Finally, an issue that we have largely left untouched concerns the 
relationships between objective and subjective measures, for 
instance those relating to pleasantness and attractiveness, and to 
the perceived facility to decode emotions. Preliminary data, not 
presented here, suggest that the latter might be, at least in some 
cases, related to objective measures, such as recognition rates, but 
more must be done in this direction.  

To this same rubric belongs the issue of the relationships between 
the operational notion of naturalness exploited here, and the 
perceived naturalness of emotional expressions. On the one hand, 
one might suspect the existence of some form of dependency of 
our measure of naturalness on the particular human model(s) 
exploited. This issue can be investigated by extending the study 
presented here to comparisons involving more than one human 
model. On the other hand, the investigation of the perceived 
naturalness of emotional expressions requires a systematic 
comparison of judgments concerning human and synthetic faces. 
By combining the sets of obtained data, we would then be able to 
draw conclusions about the relationship between the operational 
and the subjective notions of naturalness. 
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