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Introduction

Fakt 48: Fakts still exist even if

they are ignored.

(Harvie Krumpet)

Light is all around us and it’s one of the principal means by which we perceive the
world. Already Euclid [1] realized that light in free space propagates in straight lines1

but the light that we see seldom has made a straight path from its source to our eyes.

The light coming from the sun (or from another source) is reflected, refracted, diffracted,
absorbed, re-emitted and scattered from every single piece of matter (including molecules
forming the air) encountered on its path. The part that reaches our eyes most likely
has undergone a huge amount of such events and is sensibly different from the original
white light. Extracting information from this mess is something that our brain does
so automatically that we often forget about it. Nevertheless it remains a formidable
task to deal with. In particular the multiply scattered component of the light carries,
hidden in its apparent smoothness, a huge amount of information that is often desirable
to retrieve.

Diffusion proves to be a very useful model to describe the multiple scattering regime
that take place in opaque media [2]. In these systems light undergoes a large amount
of independent scattering events from randomly positioned particles and therefore in-
terference between different paths is smoothed out by the disorder. The final transport
properties become mostly independent both from the wave nature of light and from the
particular nature of the scatterers.

The history of diffusion dates back to the first observations of irregular motion of small
particles in an apparently still fluid; in particular, although some descriptions of this
phenomena already existed, it is usually considered that the first scientific description is
due to Robert Brown, who studied the motion of pollen in water [3]. This phenomenon
remained at the level of curiousness until the famous 1905 paper from Einstein [4] that
made both a mathematical and a physical description of this irregular motion, now
known as Brownian random walk, and used it as a proof for the existence of atoms2.

Brownian motion has a lot of interesting and, apparently, bizarre characteristics. Since
the direction of each step is chosen randomly (for this reason it is sometimes called
drunkard’s walk) the starting position and the average position after a large number of
steps will be the same. Nevertheless the walker, i.e. the particle undergoing the random
walk, will explore all the available space, although the average distance explored increases

1He believed that visual rays were actually coming out from our eyes to probe the world around us and
not coming in from an outside source, but this does not spoil the validity of his intuition.

2At the time the existence of atoms was still debated.
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Figure 0.1: Examples of Brownian random walks with unit step size. All walkers start
at the origin of axis and then perform a random walk of 20 (left panel), 500
(central panel) and 104 (right panel) steps.

quite slowly (with the square root of the time). The path of a Brownian motion also has
the interesting properties to be a fractal with Hausdorff dimension 2 [5]. This means
that, while a Brownian motion in one or two dimensions will eventually fill all the space
and will pass an arbitrary number of times across the same point, this is not true for
three dimensions. Instead, in 3D, only a subset of the available space will be filled and
the walker will never come back to a point where it already passed.

The evolution of the probability to find, at a given point and at a given time, a particle
that undergoes a Brownian random walk is the diffusion equation. This equation does
not describe the microscopic irregular motion of each particle, but is a macroscopic
description of the average motion. A qualitative, albeit picturesque, visualization of
the diffusion process is given by a drop of ink in a glass of water. Looking carefully it
is possible to distinguish ink filaments and droplets that evolves in a very complicate
way, but the average behavior (after a short time transient) is given by a ink cloud that
expands slowly.

Multiple scattering of light

In classical electrodynamics light is described as a wave, therefore there is no stochastic
force that can be applied to generate a random walk. Nevertheless light is scattered
by inhomogeneities in the medium and, when such inhomogeneities are randomly dis-
tributed, the multiple scattering path can be described as a random walk. In such
systems the light intensity diffuses in much the same way as ink in water.

Light diffusion was first studied by astrophysicists in the attempt to understand and
extract information from interstellar light passing through nebulae and other masses
of dust present in the outer space. This task required a comprehensive understanding
of how light propagates in a strongly inhomogeneous medium where a lot of scattering
events take place. Nowadays these studies allowed to develop techniques for image
reconstruction [6] and non-invasive diagnostic tools [7]. The study of multiple scattering
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of light also paved the way to understand how other kinds of waves, like mechanical or
matter waves, behave in disordered media [8, 9]. All these different waves bear strong
similarities and the equations that describe their evolution can be, formally, written in
a similar way. As a tool to study the fundamental physics of multiple scattering light
offers over other waves, the advantage of being nearly independent from temperature
effects or vibrations. Also, photon-photon interaction is negligible at optical frequencies
[10] making experiments easier to interpret and virtually artifact-free.

Beyond diffusion

Despite its huge range of applications the diffusion equation cannot describe the full
range of phenomena that emerge from the multiple scattering of light. As we will show
in this thesis, diffusion theory relies on some hypothesis that, albeit very general, restricts
its applicability range and there are many physical phenomena where a modified or even
a totally different theory is needed to describe the transport properties.

In this thesis we analyze three different situations where the transport of light goes
beyond the standard diffusion model. The work is organized as follows:

• In Chapter 1 we look in some detail into the diffusion theory. We start analyzing
the single scattering of light from a point particle and then we obtain the diffusion
equation for light from a macroscopic point of view (i.e. by the mean of the Central
Limit Theorem). This equation can be easily solved both for a bulk system and
for a slab geometry and we briefly discuss the problem of the boundary conditions
(here we follow the approach of Zhu, Pine and Weitz [11] and we do not consider
the corrections to the Green function due to the internal reflection [12]). Then
we derive the diffusion equation (and in particular the stationary diffusion equa-
tion) from a microscopic point of view starting from the Helmholtz equation and
employing an expansion of the full Green function in successive scattering orders
[13, 14]. We end the chapter with a brief discussion on two well known cases where
interference makes the diffusion equation unsuitable to describe the propagation:
speckle and the coherent backscattering cone.

• In Chapter 2 we deal with resonant transport, i.e. with multiple scattering from
finite sized particles that can sustain electromagnetic modes. In particular we
consider the case of spherical scatterers for which a complete analytical treatment
of the single scattering exists (Mie theory) [15, 16]. After an outline of the theory
and the explicit calculation of the scattering coefficients, the electric and magnetic
field components and the scattering cross section, we discuss briefly the effect of
scattering anisotropy on the transport parameter. Afterward we consider how the
size dispersion of the spheres and the short range position correlations, due to the
finite size of scatterers, influence the transport. Then we show how a disordered
system with high packing fraction and composed of spheres with low size dispersion
can be realized and we experimentally characterize the effect of resonances on the
transmission. Following the theoretical analysis of van Tiggelen et al. [17, 18, 14]
we introduce the concept of a transport velocity of light, called energy velocity, that
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in resonant disordered media strongly differ from both the group and the phase
velocity. This new quantity takes into account the delays due to the residence times
of light inside each scatterer, leading to a much slower transport than it would be
expected from a point-sized particle analysis. We present the first experimental
evidence for the energy velocity and we show its frequency dependence. We also
briefly discuss the limit of the independent scattering approximation in systems
with high packing fraction. The results presented in this chapter were obtained
in strict collaboration with the CSIC (Madrid) where the samples were fabricated
and the transmission measurement preformed.

• Chapter 3 is dedicated to Anderson localization, a breakdown of the diffusion ap-
proximation due to interference between paths in a disordered system. In this
regime the electromagnetic eigenmodes are no more extended over the whole sys-
tem (as they are in the diffusive regime) but are exponentially localized with a
characteristic length ξ called localization length [13]. We concentrate on 1D sys-
tems where most of the transport properties of two and three dimensional systems
are retained but where localization is easier to obtain. We employ the general-
ized scattering matrix formalism developed by Pendry [19] to derive a analytical
formula for the frequency dependence of ξ and to study the statistical proper-
ties of transmission. Afterward we characterize experimentally a set of multilayer
structures (realized at the University of Trento) measuring directly their spectral
features and their (spectrally averaged) localization length. We also show the
first experimental evidence for the existence of Necklace states in the Anderson
localized regime. These states are extended modes that form spontaneously in the
localized regime due to the spectral superposition of spatially separated modes. We
discuss their importance and characterize them both with time-resolved and phase-
resolved measurements (the latter were performed at the University of Pavia). We
also study the appearance statistics of Necklace states of various order and we
propose an analytical model that is in good agreement with the experiment.

• In Chapter 4 we consider the case where the step length distribution in a random
walk is taken from a distribution with infinite variance (e.g. a distribution with
a power-law tail). In this case the Central Limit Theorem is no more valid in its
classical formulation and the resulting motion is no more described by the diffusion
equation. The resulting random walk is known as a Lévy flight [20] and presents a
superdiffusive behaviour that must be described with a fractional diffusion equa-
tion [21]. We present a study on how to obtain controlled superdiffusion of light
and a system where, due to the strong fluctuations of the scatterers’ density, this
transport regime is reached. We show experimental evidence of superdiffusion in
the scaling of total transmission with thickness (in the form of a deviation from
the Ohm’s law for light) and we study how the fluctuations in the transmitted
profile from one realization of the disorder to another change from the diffusive to
the superdiffusive regime.
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1 Diffusion

Physicists use the wave theory

on Mondays, Wednesdays and

Fridays and the particle theory

on Tuesdays, Thursdays and

Saturdays.

(Sir William Henry Bragg)

While the concept of diffusion is somehow familiar to most of us, we are more used
to apply it to gases or particles in liquid suspensions than to light. After all, light is
commonly described as a wave and we don’t expect it to behave as a small particle
that bounces forth and back in a Brownian motion. Nevertheless both the random walk
picture and the diffusion model turn out to be perfectly able to describe, with good
accuracy, the propagation of light trough most opaque media. This result has his roots
into the celebrated Central Limit Theorem. This theorem states that the sum of a large
number of independent distributions with finite variance will eventually converge to a
Gaussian independently of the particular nature of the distributions themselves (see
appendix B). Since successive scattering events of light inside an opaque medium can
be considered independent in most practical cases this means that the step distribution
between two scattering events can be, at least at a macroscopic level, always considered
to be Gaussian. This directly implies (as we will show later) a diffusive transport.

An everyday example of light diffusion can be found in clouds. Clouds are masses
of water droplets or ice crystals with an average dimension of a few microns. Each
water drop scatters light in a complicated but nearly frequency independent way, but
we seldom notice it. What we see is a smooth white color that is very nearly equal
even for clouds of very different altitude and composition. What actually happens is
that the complicated scattering function is averaged out by the multiple scattering and
the disorder; what is left is a smooth and isotropic Gaussian transport that give rise to
diffusion of light inside the cloud. The fact that thick clouds look darker if seen from
below is due to the fact that the sun light comes from above and most of it is reflected
back, making the upper part bright white but making the bottom part dark gray.

1.1 Single scattering of light

While most of the information of the single scattering events are averaged out in the
multiple scattering regime it is still useful to know them. In fact it is often necessary
to extract the microscopic parameters, like the scattering cross section, from the macro-
scopic observables of the transport.
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Figure 1.1: While each single water droplet is itself transparent the clouds appear white.
This is due to the fact that the (white) light coming from the sun undergoes
a diffusion process so that we see the light as coming, more or less uniformly,
from the whole cloud. Darker zones corresponds to areas from which less
light is coming out.

The simplest model for single scattering is the case of a dielectric object with dimen-
sions much smaller than the wavelength λ (the actual shape is not important in this
limit). In this case we can assume the polarization p, induced by the incident light, to
be uniform over the particle and to be equal to

p = α Eincident, (1.1)

where α is the material polarizability1 and Eincident is the incident electric field.

In spherical coordinates the time-averaged intensity of the radiation emitted by the
induced dipole is given by [22]

Iout =
|p|2 ω4 sin2 θ

32π2ǫ0c3r2
r̂ =

α2Iinω
4 sin2 θ

16π2ǫ20c
4r2

r̂. (1.2)

We can therefore obtain the scattering cross section as:

σ =

∫ 2π

0

∫ π

0

Iout

Iin
r2 sin θdθdφ =

∫ 2π

0

∫ π

0

α2ω4 sin3 θ

16π2ǫ20c
4
dθdφ =

α2ω4

6πǫ20c
4
. (1.3)

1Here we make the implicit assumption that the material is not birefringent (i.e. α is a scalar and not
a tensor) and that the incident field is small enough to rule out non linear effects.
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Figure 1.2: Differential cross section for a point scatterer (represented as a black dot).
A linear dipole cannot radiate on his axis and so the cross section in that
direction vanishes.

This solution is known as Rayleigh scattering and is widely used as a first-order ap-
proximation for most scattering problems. We will see in chapter 2 what happens when
this approximation is no more true but, otherwise, we will make an extensive use of it.

1.2 Macroscopic theory of diffusion

In most opaque media light undergoes a large number of scattering events before leaving
the system. Even knowing exactly the cross section and the scatterers distribution it is
not generally possible to solve the multiple scattering problem exactly. Nevertheless it
is possible to develop a transport theory using a few realistic assumptions.

The probability to find a given amount of energy at the position x at a time t+ δt is
the energy density ρ(x, t+ δt) that can be written as

ρ(r, t+ δt) =

∫

ρ(r1, t)P (r− r1, δt|r1, t) dr1 (1.4)

where P (r− r1, δt|r1, t) is the conditional probability to be scattered from x1 to x in a
time interval δt.

From a macroscopic point of view P is given by the superposition of a large number of
scattering events. In order to apply the Central Limit Theorem two hypothesis must be
fulfilled: the distributions must be independent and all the moments of the distribution
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must be finite. The first hypothesis reduce to the fact that scattering events must be
independent (i.e. the scattering process is Markovian) and is well verified experimentally
for most available structures2. To justify the second hypothesis we consider a system
where all the scatterers have the same cross section σ and their density N is uniform;
with these assumptions the path length distribution between two successive scattering
events is given by P (x) = Nσe−Nσx, independently from the actual form of the cross
section. We can see that all moments of this distribution are finite. For later convenience
we dub the first moment ℓs = 1

Nσ scattering mean free path.

Applying the Central Limit Theorem (see appendix B) we obtain

ρ(r, t+ δt) =

∫

ρ(r1, t)
1

8 (πDδt)
3
2

e
|r−r1|

2

4Dδt dr1. (1.5)

If we expand ρ(r1, t) around r at the second order and perform the integral we get

ρ(r, t+ δt) = ρ(r, t) +Dδt∇2ρ(r, t) → ∂

∂t
ρ(r, t) = D∇2ρ(r, t) (1.6)

that is the well known diffusion equation.

1.2.1 Diffusion in the bulk medium

The solution of the diffusion equation in the bulk medium (i.e. using as boundary
conditions lim

r→∞
ρ(r, t) = 0) is straightforward. Applying a Fourier transform (F) with

respect to the spatial coordinates leads to

∂

∂t
F [ρ(r, t)] = −Dk2F [ρ(r, t)] → ∂F [ρ(r, t)]

F [ρ(r, t)]
= −Dk2∂t→ F [ρ(r, t)] = Ae−Dtk2

,

(1.7)
where A is an arbitrary constant to be determined using the boundary conditions. Trans-
forming back and imposing that ρ(r, t = 0) = ρ0δ(t)δ(r) (where δ is a Dirac delta) we
get

ρ(r, t) = ρ0
1√

4πDt
e−

|r|2

4Dt (1.8)

and
〈

r2
〉

=

∫ ∞

−∞
r2ρ(r, t)dr = 2ρ0Dt. (1.9)

We can see that exciting the system with a spike in the origin of axes the energy spread
as a 3D Gaussian and that the size of this cloud of light expands with the square root
of the time.

2We will discuss in chapter 3 what does it happens when this is no more the case.
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1.2.2 Diffusion in a slab geometry

Realistic systems can seldom be assimilated to an infinite one and is often necessary to
solve the diffusion equation in more complicated geometries. A common geometry in
experimental conditions is the slab geometry, where we can, ideally, divide the space in
two sides and, therefore, define clearly a transmission and a reflection from the system.
Although never attained in the real world this geometry can be well approximated by
flat sample with lateral dimension much bigger than the thickness and the incident spot.

We will focus our attention on cw properties of diffusion in a slab. This allow us to
deal with a simplified version of the diffusion equation, namely

D∇2ρ(r) + S(r) = 0, (1.10)

where S(r) is a source function. In particular we will search for the Green function
f(r, r1) that satisfy the differential equation

D∇2f(r, r1) = −δ(r − r1). (1.11)

The general solution for an arbitrary source will be than recovered as (see appendix C)

ρ(r) =

∫

f(r, r1)S(r1)dr1. (1.12)

A further simplification occurs if we assume the incident wave to be a plane wave
that impinges perpendicular to the slab surface. In this case we can neglect the lateral
dimensions and solve the diffusion equation in one dimension:

D
∂2

∂z2
f(z, z1) = −δ(z − z1). (1.13)

This equation can be solved Fourier transforming it

−Dk2
zF [f(z, z1)] = −e

ikzz1

√
2π

→ F [f(z, z1)] =
eikzz1

√
2πDk2

z

→

→ f(z, z1) = −(z − z1)sign(z − z1)

2D
.

(1.14)

In order to get the full solution we must now impose the boundary conditions. Naively
one could think to impose f(0, z1) = f(L, z1) = 0 (where L is the sample thickness) but
this would mean that no energy can enter and no energy can come out from the system
[23]. The solution is to impose that the intensity goes to zero outside the sample, at a
distance ze, called the extrapolation length, from the surface.

Boundary conditions and internal reflections

To describe the effect of boundaries we follow the approach developed by Zhu, Pine and
Weitz [11] and we look at the energy fluxes on the interfaces. The total flux Φ of light
scattered directly from a volume dV to a surface dS in a time interval dt is given by the
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energy U present in the given dV volume element, the solid angle between the volume
and the surface (dS/πr2) and the loss due to the scattering between dV and dS (e−r/ℓs).

ΦdSdt = U
dS

4πr2
cos θe−r/ℓs =

∫

V
ρ(r)dV dS

4πr2
cos θe−r/ℓs =

=

∫ π
2

0
dθ

∫ 2π

0
dφ

∫ v dt

0
ρ(r)

dS

4πr2
cos θe−r/ℓSr2 sin θdr

(1.15)

where vdt is the maximum distance that light can cover in a dt time. The energy density
ρ can be expanded in a Taylor series (in Cartesian coordinates) as

ρ(r) ∼= ρ0 + x(
∂ρ

∂x
)0 + y(

∂ρ

∂y
)0 + z(

∂ρ

∂z
)0 =

= ρ0 + r sin θ cosφ(
∂ρ

∂x
)0 + r sin θ cosφ(

∂ρ

∂y
)0 + r cos θ(

∂ρ

∂z
)0.

(1.16)

Since the integral on φ is between 0 and 2π all terms containing either x or y vanish
and we obtain

Φ · dt =
1

2

∫ v dt

0

(

ρ0

2
e−r/ℓs + (

∂ρ

∂z
)0
r

3
e−r/ℓs

)

→ Φ =
ρ0

4
+
vℓs
6

(
∂ρ

∂z
)0. (1.17)

Calling this flux Φ− we can calculate in the same way the flux on the other side Φ+, just
integration with respect of θ from −π/2 to 0 obtaining

Φ+ =
ρ0

4
− vℓs

6
(
∂ρ

∂z
)0. (1.18)

These two fluxes are related to each other by an efficient reflection coefficient R

Φ+ = R Φ− ⇒ ρ0

4
− v ℓs

6
(
∂ρ

∂z
)0 = R

ρ0

4
+R

vℓs
6

(
∂ρ

∂z
)0 ⇒ ρ0 =

2

3
ℓs

1 +R

1 −R
(
∂ρ

∂z
)0. (1.19)

A linear extrapolation tell us that the field goes to zero at a distance from the physical
boundaries equal to

ze =
2

3
ℓs

1 +R

1 −R
. (1.20)

Fresnel equations give us the value of the reflection coefficient as a function of the
incident angle θ. In order to obtain the efficient reflection coefficient R we write

Φ+ =
1

2

∫ π
2

0
dθ

∫ v dt

0
drR(θ) sin θ cos θ

(

ρ0 + r cos θ

(

∂ρ

∂z

)

0

)

=

=
v

2
ρ0C1 +

v ℓs
2
C2

(

∂ρ

∂z

)

0

(1.21)

where

C1 =

∫ π
2

0
R(θ) sin θ cos θdθ

C2 =

∫ π
2

0
R(θ) sin θ cos2 θdθ.

(1.22)
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Figure 1.3: Dependence of R (black solid line) and ze/ℓs (gray dashed line) from the
refractive index contrast. For the index matched case R is zero and ze = 2

3ℓs
(a more accurate value obtained with Milne theory would be ze ∼= 0.7104ℓs
[23]) but it increase rapidly even at modes contrasts.

Comparing this formula for Φ+ with the previous one we obtain

ρ0 + ℓs

1
3 + C2

1
2 − C1

(
∂ρ

∂z
)0 = 0 → ze = ℓs

1
3 + C2

1
2 − C1

. (1.23)

And therefore

R =
2C1 + 3C2

2 − 2C1 − 3C2
. (1.24)

Ohm’s law for light

Now we can impose the boundary conditions f(−ze, z1) = f(L+ ze, z1) = 0 to obtain

f(z, z1) =
1

D

(z + ze) (L+ ze − z1)

L+ 2 ze
+ (−z + z1) H(z − z1) (1.25)

where H(z − z1) is the Heaviside step function. The simplest source we can think of is
a point-like source located at a depth ℓs inside the sample. In this case we get

ρ(z) =
1

D

(z + ze) (L+ ze − ℓs)

L+ 2 ze
+ (−z + ℓs) H(z − ℓs) (1.26)
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L Lze ze ze ze

Figure 1.4: Energy density distribution for a 1D diffusive system in the case of a delta-
like source (left panel) and in the case of an exponential source (right panel).
The gray shaded zone represent the region where the sample is present and
the gray dashed lines show the linear extrapolation of the intensity out of
the sample itself.

and, using the Fick’s law for the current J = −D∇I [24], we can write the sample
transmission as

T =
Jout

Jin
=
Jz=L

Jz=0
=

ℓs + ze
L− ℓs + ze

. (1.27)

In the limit where L≫ ℓs and L≫ ze we obtain:

T ∼= ℓs
L

(

1 +
2

3

1 +R

1 −R

)

(1.28)

i.e. the total transmission decay linearly with thickness. This property is equivalent
to the Ohm’s law for electrons in resistive systems, where the resistance (whose optical
analogue is 1/T ) increase linearly with the thickness.

A more realistic source is obtained considering that the incident light propagates
ballistically until it makes the first scattering event and only then it enters the diffusion
process. This does not happens at a given depth but is distributed following the Lambert-
Beer law S(z1) = e−z1/ℓs . Therefore we get:

ρ(z) =

∫ ∞

0
f(z, z1)e

−z1/ℓsdz1 =

=
e−

z
ℓs ℓs

(

e
z
ℓs (L− ℓs + ze)(z + ze) + d

(

e
z
ℓs (ℓs − z) − ℓs

)

(L+ 2ze)H(z)
)

D(L+ 2ze)

(1.29)

and

T =
L+ ℓs + ze − e

L
ℓs (ℓs + ze)

ℓs − ze + e
L
ℓs (L− ℓs + ze)

. (1.30)

In the limit where L≫ ℓs we recover the same result as in eq. 1.28.
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Solution of the 3D diffusion equation

The 1D diffusion equation is often ill-suited to describe the propagation of light in three
dimensional systems. A solution of the full 3D diffusion equation is therefore necessary
for most applications. To take advantage of the symmetries of the slab geometry it
is convenient to rewrite the diffusion equation in cylindrical coordinates. We search
solutions in the form f(r, r1) = R(r, r1)Z(z, z1) (because of the symmetries of the system
we don’t expect the solution to depend on φ). Using a short-hand notation the diffusion
equation then reads

D

[

Z
1

r

∂

∂r

(

r
∂R

∂r

)

+R
∂2Z

∂z2

]

= δ(r, r1) =
δ(r − r1)

r
δ(z − z1). (1.31)

In order to decouple the radial and the longitudinal part of this equation we perform a
Hankel transform (see Appendix D) with respect to radial coordinates. In particular we
write

R(r, r1) =

∫ ∞

0
sg(s, r1)J0(sr)ds (1.32)

where J0 is a Bessel function of the first kind of zero order. Since

1

r

∂

∂r

(

r
∂J0(sr)

∂r

)

= −J0(sr) (1.33)

and
∫ ∞

0
sJ0(sr)J0(sr1)ds =

δ(r − r1)

r
(1.34)

we obtain
∫ ∞

0
sJ0(sr)

[

Dg(s, r1)

(

∂2Z(z, z1)

∂z2
− s2Z(z, z1)

)]

ds =

∫ ∞

0
sJ0(sr) [−δ(z − z1)J0(sr1)] ds. (1.35)

This equation is verified if and only if the two part in square brackets are equal. Therefore
we obtain g(s, r1) = J0(sr1) and we reduce our problem to a 1D equation:

D

(

∂2Z(z, z1)

∂z2
− s2Z(z, z1)

)

= −δ(z − z1). (1.36)

This equation can be solved in a similar way as we did for eq. 1.14 and we get

Z(z, z1) = −e
−s(z+z1)

4Ds
(coth(s(L+ 2ze)) − 1)

((

e2sz1 − e2s(L+ze)
)(

−1 + e2s(z+ze)
)

+

(

e2sz − e2sz1
)

(

−1 + e2s(L+2ze)
)

H(z − z1)
)

(1.37)

where the energy density is finally given by

ρ(r) =

∫

V

(∫ ∞

0
sJ0(sr)J0(sr1)Z(z, z1)ds

)

S(r1)dr1. (1.38)
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Figure 1.5: Numerical solution of eq. 1.38 at the exit surface (black solid line). While
ρ(r, L) is often approximate to a Gaussian a fit (gray dashed line) shows that
this is not exactly true.

1.3 Microscopic theory of diffusion

In the macroscopic theory for diffusion that we just built, light was always threated on
the same ground as a small particle in a thermically agitated medium. In particular we
totally disregarded the wave nature of light. Although this can be heuristically justified
by the fact that all equations we derived are well in agreement with experimental results
we cannot be satisfied with it and therefore we search for a microscopic justification for
the diffusion equation. Even though a microscopic treatment requires a slightly more
sophisticated mathematical arsenal, it turns out to clarify many ambiguous points and,
in the end, to give at the first order the same diffusion equation as the macroscopic
approach. This will allow us to discuss applications and limits of the diffusion approxi-
mation. Here we will not consider the vector nature of light but we will limit ourself to
the scalar field.

The evolution of the electric field E in a linear dielectric is given by the wave equation

∇2E =

(

n(r)

c

)2 ∂2E

∂t2
(1.39)

where c is the speed of light in vacuum and n(r) the (position dependent) refractive
index. Assuming that solutions of the wave equation have the form E(r, t) = E(r)eiωt
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we obtain the scalar Helmholtz equation

∇2E +

(

n(r)ω

c

)2

E = 0 → ∇2E + k2
0E = VeffE (1.40)

where Veff = (1 − n(r)) k2
0 can be interpreted as an effective potential for the electric

field.
In principle, given an arbitrary refractive index distribution, it is always possible to

solve the Helmholtz equation to get the modes of the electromagnetic field. In practice,
however, an explicit solution is available only for very simple geometries and we cannot
hope to solve it directly in our multiple scattering regime. Anyhow we can approach
this problem using a perturbative theory [13]. In particular we can look for the Green
function of eq. 1.40, defined as:

∇2g0(r1, r2) + k2
0g0(r1, r2) = δ(r1 − r2). (1.41)

The solution to this equation in three dimensions is (see appendix C)

g0(r1, r2) = − eik0|r1−r2|

4π |r1 − r2|
(1.42)

and the full solution to eq. 1.40 can be formally written as:

E(r1) =

∫

g0(r1, r2)Veff (r2)E(r2)dr2 + E0(r1), (1.43)

where E0(r1) is a solution of the homogeneous equation. This integral equation, known
as the Lippman-Schwinger equation [25], is not easily solvable but can be iterated to get
the recursive equation

E(r1) = E0(r1) +

∫

g0(r1, r2)Veff (r2)E0(r2)dr2+
∫ ∫

g0(r1, r2)Veff (r2)g0(r2, r3)Veff (r3)E0(r3)dr3dr2 + . . . (1.44)

1.3.1 The T-matrix

Defining the operator T (known as the T -matrix) as

T (r, r′) = Veff (r)δ(r − r′) + Veff (r)g0(r, r
′)Veff (r′)+

∫

Veff (r)g0(r, r1)Veff (r1)g0(r1, r
′)Veff (r′)dr1 + . . . (1.45)

eq. 1.44 can be rewritten in the compact form

E(r1) = E0(r1) +

∫ ∫

g0(r1, r2)T (r2, r3)E0(r3)dr2dr3. (1.46)
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This operator maps the incident light into the scattered state and therefore describe
fully the scattering properties of the medium.

In order to go further we must make some assumptions on Veff . Let’s assume to
have a discrete set of identical point-like scatterers with arbitrary refractive index and
position in an homogeneous medium with n = 1. If we count the scatterers with the
index α we can write Veff =

∑

α Vα =
∑

α V δ(r − rα) and the equation for T can be
solved explicitly as

T =
∑

α

(

(V δ(r − r′)δ(r − rα) + V δ(r − rα)g0(r, r
′)V δ(r′ − rα)+

+

∫

V δ(r − rα)g0(r, r1)V δ(r1 − rα)g0(r1, r
′)V δ(r′ − rα)dr1 + . . .

)

=

=
∑

α

(

V δ(r − r′)δ(r − rα) + V 2g0(r, r
′)δ(r − rα)δ(r′ − rα)+

+V 3g0(r, rα)g0(rα, r
′)δ(r − rα)δ(r′ − rα) + . . .

)

=

= V δ(r − r′) + V 2g0(r, r
′)δ(r − r′) + V 3g2

0(r, r
′)δ(r − r′) + . . . =

= V δ(r − r′)

[

1 +
∑

i

(

V g0(r, r
′)
)i

]

=
V δ(r − r′)

1 − V g0(r, r′)
.

(1.47)

We can see that for r = r′ the T -matrix diverges. This is due to the fact that we are
dealing with unphysical point-like scatterers; this divergence can be eliminated giving to
scatterers a small but finite dimension or, equivalently, introducing a cut-off length [26].

Feynman diagram for the T-matrix

While the integral formulation that we used up to now allows to clean mathematic it
also obfuscate a bit the physics behind it and therefore it is useful to rewrite those series
as Feynman diagrams (see appendix A). In this notation the T -matrix reads as

T = × = • + • • + • • • + • • • • + . . . (1.48)

where solid lines represent the free space Green function g0, black dots represent a single
scatterer, dotted lines connects identical scatterers and integration over intermediate co-
ordinates is assumed implicitly. Since the Green function g0 is the free space propagator
for the electromagnetic field the T -matrix operator has a very intuitive interpretation:
in fact it can be seen as the superposition of all possible recurring scattering events on
the same scatterer. Of course there is actually no light coming out from a scatterer,
traveling around and coming back on the same scatterer. There is even no real discrete
scattering event since the electromagnetic field and the potential interact all the time.
This picture comes out from the fact that we expanded our problem on the basis of
the free space propagator [27]. A more accurate interpretation for the T -matrix is that
the field induces a polarization, this polarization changes the local field that, in turns,
changes again the polarization and so on.
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1.3.2 The full propagator

Even with the knowledge of the T -matrix we do not have a full solution for the multiple
scattering problem of the electromagnetic field yet. In fact we need to find the full Green
function of the Helmholtz equation g(r, r′) that is defined as:

(

∇2 + k2
0 − Veff (r)

)

g(r, r′) = −δ(r − r′). (1.49)

In the language of many-body physics (and in quantum field theory) this function is
know as the dressed Green function. In fact it can be seen as the propagator of a
fictitious particle (a quasi-particle) that is created by the interaction with the potential.
This new quasi-particle does not in fact scatter at all (although, as we will see, it has a
finite life-time) and therefore, once we know g(r, r′) we can directly propagate the initial
states into the outgoing states [27].

The dressed Green function can be formally obtained noticing that the solution for
the equation

(

∇2 + k2
0(r)

)

g(r, r′) = −δ(r − r′). (1.50)

is exactly g0(r, r
′) and therefore

g(r, r′) = g0(r, r
′) +

∫

g0(r, r1)Veff (r1)g(r1, r
′)dr1. (1.51)

This is known as the Dyson (or Schwinger-Dyson) equation and is an iterative equation
for g(r, r′). For point scatterers we can write:

g(r, r′) = g0(r, r
′) +

∑

α

∫

g0(r, r1)V δ(r − rα)g(r1, r
′)dr1 =

= g0(r, r
′) +

∑

α

(

g0(r, rα)V g(rα, r
′)
)

=

= g0(r, r
′) +

∑

α

(

g0(r, rα)V g0(rα, r
′)
)

+

+
∑

α

∑

β

(

g0(r, rα)V g0(rα, rβ)V g0(rβ, r
′)
)

+ . . . =

= g0(r, r
′) +

∑

α

(

g0(r, rα)T (rα, rα)g0(rα, r
′)
)

+

+
∑

α

∑

β

(

g0(r, rα)T (rα, rα)g0(rα, rβ)T (rβ , rβ)g0(rβ , r
′)
)

+ . . .

(1.52)

Beside the obvious difficulties that one can encounter in trying to solve this equation
directly, we notice that it would require the exact knowledge of the position of every
single scatterer. This is, in fact, the full propagator for a single realization of the disorder,
and it turns out to be very sensitive on the particular position rα of each scatterer, the
frequency of the incoming wave and the k-vector of the outgoing wave [28]. For our aims
it is much more interesting to look at the average properties of the transport. Therefore
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we perform an ensemble average, that we will denote with the angular brackets 〈. . .〉,
averaging over all possible position for every scatterers. If we assume our system to
be homogeneous (as we will see in chapter 4 this is not always the case) all averaged
functions cannot depend independently from r and r′ but must depend on r − r′. We
can then define

G0(r − r′) =
〈

g0(r, r
′)
〉

G(r − r′) =
〈

g(r, r′)
〉 (1.53)

and write

G(r − r′) = G0(r − r′) +

∫

G0(r− r1)Σ(r1 − r2)G(r2 − r′)dr1dr2 , (1.54)

that can be diagrammatically depicted as

= + Σ , (1.55)

and the operator Σ, known as the mass operator or as the self-energy, is defined by

Σ(r− r′) =

〈

∑

α

T (rα, rα) +

+

∫

∑

α6=β

g0(r, rα)T (rα, rα)g0(rα, rβ)T (rβ , rβ)g0(rβ , rα)T (rα, rα) + . . .

〉

=

=

∫

V

∏

α

drα

V

(

∑

α

T (rα, rα) +

+

∫

∑

α6=β

g0(r, rα)T (rα, rα)g0(rα, rβ)T (rβ , rβ)g0(rβ , rα)T (rα, rα) + . . .





(1.56)

where V is the total integration volume. Its representation as Feynman diagrams is:

Σ = ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ + . . . (1.57)

where ⊗ = 〈×〉 = 〈T 〉 is the averaged T -matrix.
To calculate explicitly the averaged full propagator we neglect recurrent scattering

i.e. we keep just the first term in the expansion of Σ. Making use of the fact that
all scatterers are equal and that their scattering properties do not depend on position
we obtain Σ ≈ ⊗ = NT where N is the scatterer density. Since our T -matrix has
a singularity for r = r′ we use the so called second Born approximation (that is an
expansion of T around r = r′ keeping just the first two terms and neglecting the real
part of g0) that gives g0 ≈ ik0

4π and T ≈ V + V 2 ik0
4π .

Fourier transforming eq. 1.54 we obtain

G(k) = G0(k)Σ(k0)G(k) → G(k) =
(

G−1
0 (k) + Σ(k0)

)−1
(1.58)
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and therefore

G(r) =
eiK|r|

4π |r| (1.59)

where

K =
√

k2
0 +NT ≈ k0 +

NT

2k0
=

(

k0 +
Nℜ(T )

2k0

)

+ i

(

Nℑ(T )

2k0

)

. (1.60)

We can see that the real part of the T -matrix acts as a renormalization of k0. i.e. it acts
as a correction to the effective refractive index, while the imaginary part determines the
lifetime of the quasi-particle. We can interpret ℓs = k0/ (Nℑ(T )) as the typical length
after which the light, described as a quasi-particle, is scattered away from the freely
propagating beam and therefore as the mean free path.

1.3.3 Intensity propagator

At optical frequencies measuring directly the electromagnetic field require interferometric
techniques; standard detectors (including our own eyes) are only sensitive to intensity.
It is therefore necessary to move from the field propagator G to the intensity propagator
P(r1, r2, r3, r4, t) = 〈g(r1, r2, t)g

∗(r3, r4, t)〉. Fourier transforming it with respect to time
and using the convolution theorem yields

P(r1, r2, r3, r4, ω) =

∫ ∞

0
〈g(r1, r2,Ω)g∗(r1, r2, ω − Ω)〉 dΩ =

=

∫ ∞

0

〈

g(r1, r2,Ω +
ω

2
)g(r1, r2,Ω − ω

2
)
〉

dΩ.

(1.61)

In this equation Ω is the characteristic frequency of the field (that is integrated out) while
ω is the proper conjugate variable to the travel time t and represent the frequency of the
envelope and, therefore, the frequency associated with the intensity transport. The two
Green function can be easily interpreted as the advanced and retarded propagators and
will be denoted as g+(r1, r2) and g−(r1, r2) respectively. In the same way, and making
use of the fact the after ensemble averaging P cannot depend on the absolute value of
position but only on r− r′, we can Fourier transform with respect of spatial coordinates
obtaining

P(q, ω) =

∫ ∞

0

∫ ∞

0

〈

g+(k +
q

2
)g−(k − q

2
)
〉

dΩdk (1.62)

where k is the (spatial) frequency of the field and q the (spatial) frequency of the
intensity. In the following we will study the quantity φ =

〈

g+(k + q
2 )g−(k− q

2 )
〉

. It is
clear that, once we know φ, we can obtain P just integrating over the internal degrees
of freedom and Fourier transforming back to real space. In turn P, once integrated with
a source function, directly yields the energy distribution and thus the solution we seek.
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Using eq. 1.52 we see that φ can be diagrammatically expanded as

φ = +

⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗

⊗ ⊗
+

+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+ . . . =

= + R

(1.63)

where the operator R can be expressed in function of the full irreducible vertex U as

R = U + U R (1.64)

where

U =

⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗
+

⊗

⊗ ⊗ ⊗
+ . . . . (1.65)

This expansion is equivalent to the Bethe-Salpeter equation:

φ =
〈

g+(k +
q

2
)
〉〈

g−(k − q

2
)
〉 [

1 + Uφ
]

= G+G−
[

1 + Uφ
]

. (1.66)

In order to rewrite eq. 1.66 in a more manageable form we use of the identity

G+G− =
G+ −G−

1
G− − 1

G+

=
2i∆G

1
G− − 1

G+

(1.67)

whose denominator can be written explicitly as

1

G−
− 1

G+
=
(

G−
0

)−1 − Σ− −
(

G+
0

)−1
+ Σ+ = 2kq − 2Ωω + 2i∆Σ. (1.68)

To calculate the numerator we must rely on the low-density approximation, that allows
us to write ∆G = ∆G0 and q ≪ k (i.e. every scatterer see other scatterers in the far
field). We will also limit ourself to the stationary (cw) regime, that is obtained putting
ω = 0. With these approximations we obtain:

2i∆G = G(k +
q

2
,Ω +

ω

2
) −G(k − q

2
,Ω − ω

2
) ≈

≈ G0(k,Ω) −G0(k,Ω) =

(

Ω2

c2
− k2 + iǫ

)−1

−
(

Ω2

c2
− k2 − iǫ

)−1 (1.69)

where the imaginary part iǫ was introduced to avoid singularities and the limit ǫ → 0
must be taken. This limit can be performed with the help of the relation

lim
ǫ→0

1

a+ ibǫ
= PV

(

1

a

)

− ibπδ(a) (1.70)
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where PV represent the Cauchy principal value. Performing the limit we get:

∆G ≈ πδ

(

k2 − Ω2

c2

)

. (1.71)

Now the Bethe-Salpeter equation can be rewritten as:

(−ikq + ∆Σ)φ = πδ

(

k2 − Ω2

c2

)

[

1 + Uφ
]

. (1.72)

The ladder approximation

Even now, after all these approximations, eq. 1.72 cannot be solved exactly. In fact the
operator U is still much too complicated; to simplify it we can, similarly to what we did
for the self-energy, neglect all terms but first. This is called the ladder approximation
because it is equivalent to make the approximation

R ≈ L =

⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . . (1.73)

and amount to neglect all interference effects.
The first term of U is composed just by two T -matrices for the same scatterer that

must be averaged over all possible positions. Since T does not depend on position this
average just lead to U = NTT ∗ and our final form for the Bethe-Salpeter equation is

(−ikq + ∆Σ)φ = πδ

(

k2 − Ω2

c2

)

[

1 +NTT ∗φ
]

. (1.74)

To obtain the diffusion equation we just need a few steps more. First we notice that
∆Σ = Nℑ(T ) and we apply the optical theorem ℑ(T ) = ω

c
TT ∗

4π . Second we expand φ in
orders of k keeping just the first two moments and then we integrate over the internal
degrees of freedom. Now we must just Fourier transform back to real space (noticing
that for each k we obtain a ∇), obtaining an equation for the intensity propagator P
and lastly we multiply everything for a source function S and integrate over r1 to obtain
an equation for ρ(r). Identifying ℓ−1 = NTT ∗ and vp = 〈Ω/k〉 we finally obtain [14]

ℓvp

3
∇2ρ(r) + S(r) = 0 (1.75)

that is the stationary diffusion equation with D = ℓvp/3.

1.4 Limits of the diffusion theory

Despite its wide applicability the diffusion theory, as we showed, relies on a long series of
approximations. The fact that it works so well in describing light transport in disordered
materials is due either to the fact that most of these approximations are quite reasonable
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a) b)

Figure 1.6: Panel a: Calculated speckle pattern for a fully diffusive system in the far
field. Bright and dark regions appear in seemingly random fashion. Panel
b: Calculated angular distribution of reflected light from a semi-infinite dif-
fusive system. Over the incoherent contribution (that can be approximately
described as Lambertian reflectance) a narrow cone of higher intensity appear
around the backscattering direction.

for typical systems (just like the low density approximation) or that they can be relaxed
a lot without loosing the basic feature of diffusion (like the homogeneity hypothesis).
Anyhow, when using it, it’s always wise to check that all approximations are duly verified,
as many interesting effects arise when when one or more hypothesis are not satisfied.

A, relatively simple, example is given by speckle. In order to move from the Helmholtz
equation (where light is described as a wave) to the diffusion equation (where the wave
nature of light is lost) we obtained a major simplification making an ensemble average.
In the real world doing this is justified only if the system somehow performs this average
alone like a glass of milk, where the small fat droplets continuously move under thermal
agitation, or when the light source is itself not coherent (like a light bulb). But for solid,
still samples this is not the case and, unless the averaging process is obtained artificially
(e.g. moving the system), we must deal with a single realization of the disorder. In such
cases, since to different path correspond different phase shift, when the light emerges
from the sample at each point of the exit surface both the real and the imaginary part
of the field can be seen as the sum of many independent contribution. Because of the
Central Limit Theorem we can regard both ℜ(E) and ℑ(E) to be Gaussian random
variables. The far field is then obtained Fourier transforming this 2D set of random
values: the result is an image composed by a random alternation of bright and dark spot
(known as speckle) [28]. The actual distribution of these spots is extremely sensitive on
the realization of the disorder and moving a single scatterer a wavelength apart alter
significantly the pattern. Speckle can anyhow be an important investigation tool since
a lot of information on the transport parameters can be extracted from its distribution
and correlations [29, 30, 31, 32].

Another, more complex, example arises from the low density approximation. Using
this approximation we limited our expansion of Σ and U to the first order, without
considering that there is a second term in U that do not contain any recurrent scattering
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event. This second term is of the same order in the expansion over density as the first
and, therefore, cannot be neglected in the low density approximation. Including this
term is equivalent to consider in R also all terms of the form

C =

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . . (1.76)

These terms represent the interference two paths that hit the same set of scatterer but
in reverse order. Since Maxwell equations are time-reversal symmetric these two paths
accumulate the same phase shift and therefore, when they exit the system, they are
in phase and their interference is always constructive. In reflection measurements this
means that the speckle pattern always have a higher intensity in the exact backscatter
direction (two times higher than predicted by the diffusion theory) and averaging over
disorder realization do not smooth out this feature. The net result is that in a narrow
cone around the exact backscattering direction there is more light than it would be
expected using the ladder approximation [33, 34, 35]. Another effect is that these most-
crossed diagrams renormalize the diffusion constant D lowering its value more and more
with increasing disorder [13].

In both these examples we have a macroscopic effect that is not included in the
diffusion equation, but that cannot be a priori neglected. In the next chapters we
will address some specific examples of what happens when some of the assumptions and
approximations we made cease to be valid.
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2 Resonant transport

Whereas the mathematics of the

Mie theory is straightforward, if

somewhat cumbersome, the

physics of the interaction of an

electromagnetic wave with a

sphere is extremely complicated.

(Craig F. Bohren)

There are two main reasons why it is convenient to investigate in some depth what
happens when the point-scatterer approximation does not hold. The first one is that,
obviously, no real scatterer is a zero dimensional point. The second (and more impor-
tant in our perspective) is that limiting ourself to point-like particles we loose a lot of
interesting physics. In fact a finite size scatterer can sustain electromagnetic modes and
thus presents resonances in the scattering parameters. Formally the diffusive behavior
can be recovered with the same mathematical formalism we developed in the previous
chapter using a new T -matrix. But in the presence of resonances some basic aspects like
the scattering mean free path or the transport velocity need to be reconsidered.

In real systems the scattering particles may have the most diverse shape, e.g. water
droplets in clouds are mostly spherical but ice crystals, that also form clouds, have
complicated geometrical shapes. Instead of trying to deal with every possible realistic
shape we will focus on a simple geometry that will allow us to identify the important
transport properties. In particular, we will consider a system composed of identical
spherical scatterers; this has the major advantage that the scattering theory for a single
sphere is well known. Such a system was already studied in the framework of colloidal
systems [36] but recently, structures composed of almost monodisperse spheres with a
relatively high refractive index contrast became available [37]. A higher contrast and the
low polydispersity allows for a systematic study of resonance effects on transport that
are usually very small in liquid-based colloidal systems.

2.1 Mie scattering

The problem of a plane wave scattering from a sphere is one of the few scattering
problems that allows a full analytical solution (albeit in the form of an infinite series).
This solution take its name from Gustav Mie whom obtained it1 [38]. In the following

1Peter Debye and Ludvig Lorenz independently found the same solution starting from slightly different
perspectives.
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we will limit ourself to the case of a dielectric medium with no absorption, but the full
Mie solution can be applied also to metal particles [15, 16].

In a linear, isotropic and homogeneous medium the electric field E and the magnetic
field H follow the wave equation

∇2E + n2k2E = 0

∇2H + n2k2H = 0
(2.1)

where k is the wave vector and n the refractive index. If we construct the vector M =
∇× (rψ) we can see that it satisfies the equation

∇2M + n2k2M = ∇×
[

r
(

∇2ψ + n2k2ψ
)]

. (2.2)

Therefore M satisfies the wave equation as soon as ∇2ψ + n2k2ψ = 0. Also the vector
N = (∇× M) /nk satisfies the wave equation.

In conclusion we have that, as long as ψ satisfies the scalar wave equation, we can
construct two independent, zero divergence and mutually orthogonal solutions to the
vector wave equation. This simplifies our task since it allows us to deal with a single
scalar equation instead of two vector equations. In spherical coordinates the equation
for ψ reads

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂φ2
+ n2k2ψ = 0. (2.3)

We search solutions in the form ψ = R(r)Θ(θ)Φ(φ) so that

1

Rr2
∂

∂r

(

r2
∂R

∂r

)

+
1

Θr2 sin θ

∂

∂θ

(

sin θ
∂Θ

∂θ

)

+
1

Φr2 sin2 θ

∂2Φ

∂φ2
+ n2k2 = 0. (2.4)

Multiplying everything by r2 sin2 θ we can separate this equation as















1

Φ

∂2Φ

∂φ2
= −m2 → ∂2Φ

∂φ2
= −m2Φ

sin2 θ

R

∂

∂r

(

r2
∂R

∂r

)

+
sin θ

Θ

∂

∂θ

(

sin θ
∂Θ

∂θ

)

+ n2k2 = −m2

(2.5)

that can be further separated dividing by sin2 θ obtaining


































∂2Φ

∂φ2
+m2Φ = 0

1

sin θ

∂

∂θ

(

sin θ
∂Θ

∂θ

)

+

[

l(l + 1) − m2

sin2 θ

]

Θ = 0

∂

∂r

(

r2
∂R

∂r

)

+
[

n2k2r2 − l(l + 1)
]

R = 0

(2.6)

where the choice of the form −m2 and l(l + 1) for the separation constants is done for
later convenience.
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The first equation is the easiest to solve and gives the linearly independent solutions

Φe = cos(mφ) Φo = sin(mφ) (2.7)

where the subscripts stands for even and odd. Imposing Φ(φ) = Φ(φ + 2π) we obtain
that m must be a positive integer (zero included).

The second equation has the form of a general Legendre equation whose solution
are the associated Legendre functions of the first kind Pm

l (cos θ) where l ≥ m. The
associated Legendre functions of the second kind are also solutions but they are divergent
at θ = 0 and θ = π and must be rejected.

Finally the third equation can be put in the form of a Bessel equation introducing the
dimensionless variable r = nkr and defining the function Z =

√
rR(r) obtaining

r
∂

∂r

(

r
∂Z
∂r

)

+

[

r
2 −

(

l +
1

2

)2
]

Z = 0 (2.8)

whose linearly independent solutions are the Bessel function of the first and second
kind Jl+ 1

2
(r) and Yl+ 1

2
(r). The linearly independent solution of the equation for R are

therefore the spherical Bessel function of the first and second kind

jl(r) =

√

π

2r
Jl+ 1

2
(r)

yl(r) =

√

π

2r
Yl+ 1

2
(r).

(2.9)

We can write the complete solution for ψ as

ψe = cos(mφ)Pm
l (cos θ) zl(r)

ψo = sin(mφ)Pm
l (cos θ) zl(r)

(2.10)

where zl is any linear combination of jl and yl. Now that we have ψ we can, in principle,
obtain M and N explicitly.

2.1.1 The scattering coefficients

If we write the incident plane wave in polar coordinates as

Eincident = E0e
ikr cos θx̂, (2.11)

where x̂ is the unit vector for the direction x, we can expand it as a function of M and
N as

Eincident =

∞
∑

m=0

∞
∑

l=0

(BeMe +BoMo +AeNe +AoNo) (2.12)

where Me, Mo, Ne and No represent the vector function obtained from, respectively, ψe

and ψo. To obtain the coefficients we must impose the orthogonality between the vector
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functions and, after some lengthy calculations [16], we obtain that all coefficients vanish
unless m = 1 and that

Eincident = E0

∞
∑

l=1

il
2l + 1

l(l + 1)

(

M(j)
o − iN(j)

e

)

(2.13)

where the superscript (j) represents the fact that the vector functions were obtained
choosing zl = jl. This choice was made because yl is singular in the origin. Analogously,
using ∇× E = iωµH we get

Hincident = − k

ωµ
E0

∞
∑

l=1

il
2l + 1

l(l + 1)

(

M(j)
e + iN(j)

o

)

. (2.14)

When making the expansion for the scattered field we notice that the choice of using
zl = jl is not the wisest. In fact we expect, asymptotically, the scattered field to behave
as a spherical wave. To that end we define the spherical Hankel functions

h+
l = jl + iyl

h−l = jl − iyl
(2.15)

whose asymptotic expansions is

h+
l (r) ≈ (−i)leir

ir

h−l (r) ≈ −(i)le−ir

ir
.

(2.16)

We can see that the expansion of h+
l corresponds to an outgoing spherical wave while

the expansion of h−l corresponds to an ingoing one. It is therefore natural to choose
zl = h+

l when expanding the scattered fields. The fact that h+
l is singular in the origin

should not bother us since the origin, being inside the sphere, is excluded from the space
where the scattered field exists.

The scattered fields Es and Hs and the fields inside the sphere Ein Hin can be ex-
panded, respectively, as

Es =
∞
∑

l=1

El

(

ialN
(h+)
e − blM

(h+)
o

)

Hs =
k

ωµ

∞
∑

l=1

El

(

iblN
(h+)
o + alM

(h+)
e

)

(2.17)

and

Ein =
∞
∑

l=1

El

(

clM
(j)
o − idlN

(j)
e

)

Hin = −nk

ωµ

∞
∑

l=1

El

(

dlM
(j)
e + iclN

(j)
o

)

(2.18)
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where El = ilE0 (2l + 1) / (l(l + 1)) and n is the refractive index of the sphere. We as-
sumed that the magnetic permeability of the sphere is equal to the magnetic permeability
of the surrounding medium (in our case vacuum).

These four coefficients can be obtained imposing the boundary conditions on the
surface of the sphere. If the sphere has a radius a we have that, for r = a,

E
(θ)
incident + E(θ)

s = E
(θ)
in E

(φ)
incident + E(φ)

s = E
(φ)
in

H
(θ)
incident + H(θ)

s = H
(θ)
in H

(φ)
incident + H(φ)

s = H
(φ)
in

where the superscripts (θ) and (φ) denotes the field components along the angular di-
rections.

The final result takes a simple form if we define: x = nka = (2πna) /λ, m = nmedium/n
and the Riccati-Bessel functions

ψl (r) = rjl (r)

ζl (r) = rh+
l (r) .

(2.19)

Finally we obtain [16]

al =
ψ′

l(mx)ψl(x) −mψl(mx)ψ
′
l(x)

ψ′
l(mx)ζl(x) −mψl(mx)ζ

′
l(x)

bl =
mψ′

l(mx)ψl(x) − ψl(mx)ψ
′
l(x)

mψ′
l(mx)ζl(x) − ψl(mx)ζ

′
l(x)

cl =
i

ψ′
l(mx)ζl(x) −mψl(mx)ζ

′
l(x)

dl =
i

mψ′
l(mx)ζl(x) − ψl(mx)ζ

′
l(x)

.

(2.20)

2.1.2 The scattering cross section

The next step is to write down explicitly the fields. We have all ingredients to do it so,
defining

πl =
P 1

l (cos θ)

sin θ
τl =

∂P 1
l (cos θ)

∂θ
(2.21)

we can write

Mo =





0
cosφπlzl
− sinφτlzl



 Me =





0
− sinφπlzl
− cosφτlzl



 (2.22)

No =







l(l + 1) sinφ sin θπl
zl

nkr

sinφτl
[nkrzl]

′

nkr

cosφπl
[nkrzl]

′

nkr






Ne =







l(l + 1) cosφ sin θπl
zl

nkr

cosφτl
[nkrzl]

′

nkr

− sinφπl
[nkrzl]

′

nkr






(2.23)
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and therefore the fields can be obtained (in components) as:

E
(r)
incident =

cosφ sin θ

nkr

∞
∑

l=1

El (−il(l + 1)πljl)

E
(θ)
incident =

cosφ

nkr

∞
∑

l=1

El

(

πlψl − iτlψ
′
l

)

E
(φ)
incident =

sinφ

nkr

∞
∑

l=1

El

(

iπlψ
′
l − τlψl

)

(2.24)

H
(r)
incident = − k

ωµ

sinφ sin θ

nkr

∞
∑

l=1

El (il(l + 1)πljl)

H
(θ)
incident = − k

ωµ

sinφ

nkr

∞
∑

l=1

El

(

iτlψ
′
l − πlψl

)

H
(φ)
incident = − k

ωµ

cosφ

nkr

∞
∑

l=1

El

(

iπlψ
′
l − τlψl

)

(2.25)

E(r)
s =

cosφ sin θ

nkr

∞
∑

l=1

El (iall(l + 1)πlhl)

E(θ)
s =

cosφ

nkr

∞
∑

l=1

El

(

ialτlζ
′
l − blπlζl

)

E(φ)
s =

sinφ

nkr

∞
∑

l=1

El

(

blτlζl − ialπlζ
′
l

)

(2.26)

H(r)
s =

k

ωµ

sinφ sin θ

nkr

∞
∑

l=1

El (ibll(l + 1)πlhl)

H(θ)
s =

k

ωµ

sinφ

nkr

∞
∑

l=1

El

(

iblτlζ
′
l − alπlζl

)

H(φ)
s =

k

ωµ

cosφ

nkr

∞
∑

l=1

El

(

iblπlζ
′
l − alτlζl

)

(2.27)

E
(r)
in =

cosφ sin θ

nkr

∞
∑

l=1

El (−idll(l + 1)πljl)

E
(θ)
in =

cosφ

nkr

∞
∑

l=1

El

(

clπlψl − idlτlψ
′
l

)

E
(φ)
in =

sinφ

nkr

∞
∑

l=1

El

(

idlπlψ
′
l − clτlψl

)

(2.28)
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H
(r)
in = −nk

ωµ

sinφ sin θ

nkr

∞
∑

l=1

El (icll(l + 1)πljl)

H
(θ)
in = −nk

ωµ

sinφ

nkr

∞
∑

l=1

El

(

iclτlψ
′
l − dlπlψl

)

H
(φ)
in = −nk

ωµ

cosφ

nkr

∞
∑

l=1

El

(

iclπlψ
′
l − dlτlψl

)

(2.29)

Let’s now consider the scattered electric field in the far field. For big r the radial
component vanishes faster than the angular components (that have both the form of
spherical waves as expected). Using the asymptotic expansion

ζ(r) ≈ −ieir ζ ′(r) ≈ eir (2.30)

we can write

E(θ)
s ≈ i

eir

r
cosφ

∞
∑

l=1

El (alτl + blπl) = E0
eikr

r
cosφS1(θ)

E(φ)
s ≈ −ie

ikr

r
sinφ

∞
∑

l=1

El (blτl + alπl) = −E0
eir

r
sinφS2(θ)

(2.31)

where S1(θ) and S2(θ) are the scattering amplitude functions.
The scattering amplitude function is directly related to the total scattering cross

section via the optical theorem

σMie =
4π

k
ℑ (S(0)) . (2.32)

Since πl(0) = τl(0) = l(l + 1)/2 we have

S1(0) = S2(0) = i

∞
∑

l=1

2l + 1

2k
(al + bl) (2.33)

and therefore

σMie =
2π

k2

∞
∑

l=1

(2l + 1)ℜ (al + bl) . (2.34)

2.1.3 Scattering anisotropy and the transport mean free path

Having obtained the scattering cross section for a sphere we can define the usual scatter-
ing length as ℓs = (NσMie)

−1 but, differently from the Rayleigh scattering problem, this
quantity does not describe in a satisfactory way the transport. In fact, in the Rayleigh
limit, scattering is almost isotropic but in the Mie case the scattering amplitude functions
have a complicated structure and, moreover, is strongly peaked in the forward direction;
this means that after a single scattering event the light will most likely continue in the
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a)

b)

Figure 2.1: Panel a: Modulus of the scattering amplitude function S1(θ) on a resonance.
As it can be seen the scattering is strongly forward-peaked and smaller lobes
are present in other directions. Panel b: scattering cross section (normalized
to the geometrical cross section) for a sphere with n = 2 as a function of
the ratio between the sphere radius (a) and the wavelength (λ). In the limit
λ≫ a the Rayleigh limit (dashed gray curve) is recovered.
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Figure 2.2: Comparison between the scattering mean free path ℓs (gray line) and the
transport mean free path ℓt (dark line). The calculation was performed for
spheres with a = 1 µm and n = 2 at f = 0.5. While the resonances in the
transport are in the same position ℓt is systematically bigger than ℓs.

same direction. To take into account this characteristic we can define a rescaled cross
section as

σ
(t)
Mie =

∫

∂σMie

∂Ω
(1 − cos θ) dΩ (2.35)

and define a transport mean free path as ℓt =
(

Nσ
(t)
Mie

)−1
. While ℓs measures the typical

distance between two scattering events, ℓt measure the typical distance after which light
completely loose memory of his initial direction. This is the quantity of interest in most
multiple scattering problems and must be substituted to ℓs in all diffusion equation in
chapter 1.

It is possible to solve eq. 2.35 [15] and the result is

σ
(t)
Mie =

2π

k2

∞
∑

l=1

(2l + 1)
(

|al|2 + |bl|2
)

− 4π

k2

∞
∑

l=1

l(l + 2)

l + 1
ℜ
(

ala
∗
l+1 + blb

∗
l+1

)

+

− 4π

k2

∞
∑

l=1

2l + 1

l(l + 1)
ℜ (alb

∗
l ) . (2.36)
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2.2 Multiple scattering from Mie spheres

Scattering from a single sphere is described completely from the Mie theory and finds
various applications in the realization of high Q-factor microcavities [39] and the study
of whispering gallery modes [40]. This theory works for the multiple scattering regime
but only in the low density approximation; if two spheres are too close they will interact
modifying the electromagnetic modes and therefore modifying the dependence of σ with
the wavelength. One approach to study the multiple scattering regime could be to create
a suspension of spheres, but a low density translate into a long transport mean free path
ℓt. Since, for eq. 1.28 to be valid, we need L≫ ℓt this means we would need a very thick
sample making the absorption non negligible. In order to limit the effect of absorption
we need the effect of Mie resonances to appear for thin systems and therefore we need to
increase the density. There is no exact theory available to describe the scattering from
spheres in the high density regime. Most often the problem is handled introducing an
effective refractive index for the medium around the sphere that takes into account the
fact that the space around the sphere is not empty. The exact choice for this effective
refractive index is a delicate matter and various approach (e.g. the coherent potential
approximation [41]) were developed to deal with it. In the following be interested in
showing the presence or the absence of effects due to resonances and we will not need an
exact match between the prediction of Mie theory and the experimental results. We are
also somehow justified in neglecting the nearby spheres while calculating the scattering
properties from the fact that, at resonance, most of the field is confined inside the sphere
and therefore the mode is only weakly effected by other particles.

The effect of polydispersity

In real samples we must take into account that the spheres composing it cannot have
all the very same diameter. Therefore each sphere will sustain its own modes, that will
be slightly shifted with respect to the modes of the neighbor spheres. If we assume that
the radii are normally distributed we can define a polydispersity index as the variance of
the distribution in units of a. This distribution of radii will have to be convoluted with
the analytical solution for a single sphere to yield the expected, macroscopic, frequency
dependence of the scattering parameters. As it is shown in fig. 2.3 a polidispersity of 5%
is enough to average out most spectral features even for high refractive index contrasts.
Therefore, in order to show how the Mie resonances inflence the transport, we must take
care to minimize the polydispersity index in the fabrication process.

2.2.1 Partial order and the structure factor

When, in chapter 1, we performed the average over disorder configurations we made
the implicit assumption that no correlation whatsoever existed between the position
of scatterers. This assumption was reasonable because we were dealing with point-
like particles arranged in a random fashion but, when we move to finite size spherical
scatterers, we must reconsider it with care. Since the spheres composing our system are
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Figure 2.3: Analytical calculations of the transport mean free path for four different
values of the polydispersity index and for two values of the sphere’s refractive
index. All calculations were made for spheres with 1 µm average radius and
f = 0.5. We can see that, even in the case of high refractive index contrast
a polydispersity of 5% already smooths out most of the spectral features.

rigid there is zero probability that, given a sphere, there is a second sphere centered at
a distance smaller than a diameter from the center of the first one. This introduce the
so called excluded volume correlation, a short range correlation in the relative position
of two given scatterers.

In order to describe the effect of correlations in the disorder let’s consider the function
H(r), defined to be equal to 1 if at the position r there is a scatterer and zero elsewhere,
and a detector at the position R0. The field radiated by a single scatterer at the position
ri will be given by

Ei ∝ eikinriH(ri)
eikout[R0−ri]

R0 − ri
, (2.37)

where the first term represent the incident wave.

If the detector is in the far field (i.e. R0 ≫ r) we can write the total detected field as

Etot ∝
eikoutR0

R0

∫

H(r)e−i(kout−kin)rdr =
eikoutR0

R0

∫

H(r)e−iqrdr. (2.38)
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With the same reasoning we can write the total detected intensity as

I ∝
∫

H(r1)H(r2)e
−iq(r1−r2)dr1dr2. (2.39)

If we assume that the scatterers are fixed in position H(r) can be expressed as a sum of
delta functions obtaining

I ∝
∫

∑

i

δ(r1 − ri)
∑

j

δ(r2 − rj)e
−iq(r1−r2)dr1dr2 =

=

∫

∑

i

δ(r + r2 − ri)
∑

j

(r2 − rj)e
−iq(r1−r2)dr1dr2 =

=

∫

∑

i,j

δ(r + rj − ri)e
−iqrdr,

(2.40)

where we performed the change of variables r = r1 − r2. The sum can be rewritten as

∑

i,j

δ(r + rj − ri) =
∑

i6=j

δ(r + rj − ri) +NVδ(r) = NV [g(r) + δ(r)] (2.41)

where N is the scatterer density, V the total volume (i.e. NV is the total number of
scatterers) and we defined the radial distribution function

g(r) =
1

NV
∑

i6=j

δ(r + rj − ri) (2.42)

leading to

I ∝ NV
[

1 +

∫

g(r)e−iqrdr

]

= NVSf (q) (2.43)

where we have defined the structure factor Sf (q). We can see that Sf acts as a modu-
lation of the outgoing intensity. Since Sf depends on q = 2k sin(θ/2) it may limit the
number of frequency and directions that can be transmitted.

In the case of a fully periodic structure there will be a scatterer only in some fixed
positions rs and therefore we can write [42]

Sf (q) = 1 +
∑

rs

δ(r − rs)e
−iqrdr = 1 +

∑

rs

e−iqrs . (2.44)

The position rs of each scatterer can be written as rs = n1a1 + n2a2 + n3a3, where
a1, a2 and a3 are the primitive vectors of the Bravais lattice and n1, n2 and n2 are
integers number. We can expand the exchanged momentum on the same basis as q =
π (m1a1 +m2a2 +m3a3) and we get

Sf (q) = 1 +
∑

n1,n2,n3,m1,m2,m3

(−1)(m1a1+m2a2+m3a3)·(n1a1+n2a2+n3a3) , (2.45)
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Figure 2.4: Calculated structure factor for a = 1 µm at f = 0.5. For small spheres the
diffraction inhibits the transmission of light (notice that in the limit a ≪ λ
the light cannot resolve the structure anymore and the medium become,
effectively, homogeneous) while Sf goes to one in the limit a≫ λ.

that is nonzero only for some choice of the triplet m1,m2,m3 i.e. at a given frequency is
nonzero only for some directions. This leads to the diffraction pattern typical for every
crystalline structure.

We are interested in studying disordered structures formed by a random packing of
solid spheres. Since there is no preferred direction g must depend only on r (not on the
full vector r) and therefore Sf must depend only on k and not on q. Contrary to the
periodic case there is no easy analytical way to determine the structure factor but it can
be obtained in the Percus-Yevick approximation for hard spheres to be [43]

Sf (k) = 1 + (2π)3
6f

πa3

C(k)

1 − (2π)3 6f
πa3C(k)

(2.46)

where a is the sphere radius, f is the filling fraction (with f = (Nπa3)/6), i.e. the
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fraction of volume occupied by spheres2, and

C(k) =
4πa3

f2 (2π)3

[

α+ β + δ

(2ka)2
cos(2ka) − α+ 2β + 4δ

(2ka)3
sin(2ka)+

−2
β + 6δ

(2ka)4
cos(2ka) +

2β

(2ka)4
+

24δ

(2ka)5
(cos(2ka) − 1)

]
(2.47)

α =
(1 + 2f)2

(1 − f)4

β = −6f

(

1 + f
2

)2

(1 − f)4

δ =
f (1 + 2f)2

2 (1 − f)4
.

(2.48)

2.2.2 Photonic glasses

The realization of a disordered sample made of monodisperse (or almost monodisperse)
spheres at high filling fraction needs some care [37]. If we let just sediment the spheres
from a suspension their natural tendency will be to minimize the free energy and thus to
form a face centered cubic (fcc) structure. This fact is widely used to produce photonic
crystals, structures where the refractive index is periodically modulated on a length scale
comparable with the wavelength [44]. These systems attracted a lot of attention due
to the fact that, due to the periodicity, it is possible to produce structures where the
modes, described as Bloch modes, present a gap in the band diagram, i.e. a frequency
interval where light propagation is forbidden, analogue to the electronic band-gap in
semiconductors [45]. A lot of effort was put into trying to obtain the most possible
perfect and monodomain crystalline structure out of monodisperse spheres. Contrary
to intuition, the techniques developed to grow good photonic crystals do not, even if we
willingly go against all prescriptions, result in a disordered systems. All that is obtained
is a bad photonic crystal composed by a lot of small ordered domains. In order to obtain
a true disordered structure we need to make the fcc structure less energetically favored.
Such a structure was dubbed photonic glass because of its similarities both with photonic
crystals (the elementary building block is the same) and to amorphous glasses, which
are solid but not crystalline.

The first step to realize a photonic glass is to choose the spheres. Not every material
is suitable to produce spheres, not every material is suitable to make monodisperse
particles and not every material is suitable for optics. Most optical experiment on
disordered systems are made using titania (titanium dioxide, T iO2) for its high refractive
index (n ∼= 2.7) and low absorption, but it is hard to make high quality spherical
particles with it, since it tends to form irregular-shaped particles. Also silicon is a favored

2The highest possible value of the filling fraction for monodisperse spheres is obtained, following the
Kepler conjecture, for a regular fcc arrangement and is f ∼= 0.74048
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Figure 2.5: Carefully deposited polystyrene spheres form a fcc crystalline structure (left
panel). Dielectric structures periodic on the same length scale as the wave-
length are known as photonic crystals because of their strong resemblance
with atomic crystals. The same spheres, deposited with the aid of some elec-
trolytes, form a totally disordered system (right panel) that resembles the
amorphous structure of atomic glasses. Such photonic glasses do not have
any long-range correlation in the position of the spheres.

material in optics but the technology to make monodisperse spheres is, nowadays, not
yet mature. Our material of choice was polystyrene (PS) that has a moderate refractive
index (n ∼= 1.58) and can be produced in large quantities with a diameter dispersion as
low as 2%.

The electro-chemical interaction of colloidal particles in a solution is a very compli-
cated subject that is way beyond the scope of this thesis. As a simplified picture we
can consider that the two major contribution to particle to particle interaction are the
electrostatic repulsive force and the Van der Waals (attractive) force. In a neutral solu-
tion the electrostatic repulsion dominates and particles do not stick together until they
are deposited. If we add some electrolytes (in the form of a salt) to the solution the
electrostatic repulsion is attenuated and particles flocculates while still in suspension.
This way small disordered aggregates, made of many spheres, are formed and, when
they deposit, they have different shapes and cannot form an ordered structure. The
final result is a totally disordered aggregate of sphere touching each other. The filling
fraction can be estimated measuring the weight and the volume of a sample; repeating
such measurements on many samples realized with the same technique and the same
parameters lead to an average value of f = 0.55 ± 0.05.
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2.2.3 Resonances in transmission
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Figure 2.6: Experimental and theoretical transmission from a 150 µm thick photonic
glass. The sphere radius is 550 nm and n = 1.58. The dotted line show the
calculated structure factor.

The most macroscopic feature of photonic glasses appears in their transmission spec-
trum. While standard diffusive systems show an almost flat transmission, photonic
glasses present a complicated structure of maxima and minima (see fig. 2.6). The struc-
ture factor alone cannot be appointed as the source of these spectral features since it
produces a small and smooth modulation of T . We can instead identify the origin of
the frequency dependence of the transmission in the Mie resonances inside each sin-
gle scatterer; the transmission spectrum expected for Mie scattering can be calculated
starting from eq. 2.36 and presents a good, yet qualitative, agreement. The lack of a
perfect agreement can be easily understood from the fact that, in our calculations, we
are totally neglecting any interaction among electromagnetic modes inside each sphere.
The exact effect of this interaction is not yet completely clear but we can expect that
it will be more pronounced at longer wavelength where the Q-factor of a Mie sphere is
smaller and the confinement of the field less effective. We must also remember that our
knowledge of the structure factor is based on the Percus-Yevick approximation [43] and
is not directly measured; a more accurate knowledge of Sf may improve the agreement
between the experiment and the theory.

In conclusion we managed to produce a system that diffuses light but where the
scattering properties come from Mie scattering albeit the high filling fraction. This is
an optimal candidate to study the effect of Mie resonances on the multiple scattering
process.



2.3 The energy velocity problem 37

2.3 The energy velocity problem

When we derived the microscopic diffusion theory in cap. 1 we were interested only
in steady state properties of diffusion and we didn’t look thoroughly at the transport
velocity. If we look at the averaged full propagator for the field we get

G =
1

Ω2

c2 − k2 − Σ
=

1
1
c2 − k2

Ω2 − Σ
Ω2

=
1

(

1
c2 − Σ

Ω2

)

− k2

Ω2

=
1

1
c21

− k2

Ω2

, (2.49)

where we defined the velocity c1. The imaginary part of c1 describe the lifetime of the
quasiparticle we used to describe the motion in the multiple scattering regime i.e. it
describes the losses from the coherent beam. On the other side the real part acts as a
renormalized velocity vp:

1

v2
p

= ℜ
(

1

c1

)

=
1

c2
− ℜ (Σ)

Ω2
→ c

vp
=

√

1 − c2ℜ (Σ)

Ω2
=

√

1 − c2Nℜ (T )

Ω2
. (2.50)

This velocity vp is the well known phase velocity of the field. While it is well suited
to describe the intensity propagation in the case of point scatterers, if the scatterers
can sustain resonances it is necessary to take into account the time needed to build
up the mode before the field get re-emitted. Also the group velocity cannot properly
describe the intensity propagation; in fact vg describes the coherent part of the beam
while we want to keep track of the diffused component. Therefore we need to define a
new transport velocity, called the energy velocity ve, that takes into account the dwell
time inside the scatterers [17, 18, 14].

In order to obtain an expression for the energy velocity ve we must start from the
Bethe-Salpeter equation (eq. 1.66) without imposing the stationary regime, i.e. without
imposing ω = 0:

(

−2
Ωω

c2
+ 2q · k + ∆Σ

)

φ = ∆G [1 + Uφ] . (2.51)

Expanding Σ and U to the lower order in N and following the same procedure as we did
in chapter 1 we obtain (in the frequency-momentum space) the equation

−i ω
c2
ρ

(

1 −N
∂2

∂k2
ℜ (T ) +N

∫

∂σ

∂Ω

∂φ

∂k
dΩ

)

+ i
q · J
vpve

= constant, (2.52)

where in the integral Ω represents the solid angle (not the frequency) and J is the current
associated to variations in ρ. This equation takes the form of a continuity equation only
if we define the energy velocity as

ve =
c2

vp

(

1 −N
∂2

∂k2
ℜ (T ) +N

∫

∂σ

∂Ω

∂φ

∂k
dΩ

)−1

. (2.53)

This general formula can be solved in the case of scattering from dielectric spheres
making use of the fact that for Mie scattering

T = −i4π
k

(

S∗
1(θ) cosφ 0

0 S∗
2(θ) sinφ

)

(2.54)
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Figure 2.7: Calculated energy and phase velocity for a system with n = 2 anf f = 0.5.
While vp and ve are equal in the Rayleigh limit the energy velocity is always
smaller than the phase velocity and can be even very small at high energy
resonances where the Q-factor of each sphere is high. On the other side vp

can be bigger than c and, therefore, cannot be appointed as the transport
velocity.

and the result is

ve

c
=

c

vp

[

1 +
3

4

f

(ka)2

∞
∑

l=1

(2l + 1)

(

∂αl

∂(ka)
+

∂βl

∂(ka)

)

− 1

2
fC
]−1

(2.55)

where

tanαl = −al

tan βl = −bl
vp =

c√
1 + fC

C =
3

2(ka)3

∞
∑

l=1

(2l + 1) (ℑ(al) + ℑ(bl)) .

(2.56)
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2.4 Measurement of the energy velocity

While, after some initial controversy [46, 47], the idea that dwell times inside scatterers
lower the transport velocity of diffusing light becomes generally accepted, experimental
evidences were mainly indirect (like the measurement of a low diffusion constant D [48]).
In particular it is still not clear what is the effect of a moderate and high filling fraction
on the resonances in the transport velocity (the formula for ve is obtained at the lower
order of scatterer density). It is obvious that, at f = 1, there is no more scattering and
therefore all resonances must vanish and ve = vp; we expect some smooth transition
between the low f limit (where the theory is rigorous) and the high f limit where no
resonances are expected, but it is not clear when and how this transition should happen.
Mean field theories, like the CPA theory [41], predict that resonances in the transport
velocity should vanish even at moderate filling fractions but experimental evidences are
contradictory.

Since we have a solid sample composed by Mie spheres with high filling fraction where
resonances appear in transmission, we can use it to test the validity of the theory in
these conditions. The energy velocity cannot be measured directly but can be inferred
with the use of D = 1

3veℓt where D and ℓt can be, respectively, obtained with a dynamic
and a static independent measurement of transmission.

2.4.1 Transport mean free path measurements

In principle eq. 1.28 allows us to identify ℓt(λ) with just one transmission measurement
from a well characterized sample. In practice this is not possible since the thickness L
is not known with arbitrary precision and, moreover, the system is never a perfect slab
and small variation in L may occur. A much more reliable technique is to measure T at
various thicknesses and to obtain ℓt from a fit.

We produced a set of 25 samples with thickness ranging from 50 µm to 1.6 mm and
sphere radius 610 nm and measured the total transmission with the aid of an integrating
sphere. We illuminated the sample with white light and the collected signal was passed
in a spectrometer to obtain T (λ). To fit the data we used the Ohm’s law for light
generalized to take absorption into account [49]:

T (λ) = Sf (λ)
sinh [2αze] sinh [αze]

sinh [α (L+ 2ze)]

ze =
1

2α
ln

(

1 + αz0
1 − αz0

)

z0 =
2

3
ℓt(λ)

(

1 +R

1 −R

)

α =
1

ℓi
,

(2.57)

where ℓi is the ballistic (or inelastic) absorption length that measures the typical total
distance traveled by light before being absorbed. From the fit procedure we obtain ℓt
as a function of the wavelength. We can see (fig. 2.8, right panel) that the resonant
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Figure 2.8: Left panel: fit of the transmission values for two value of wavelength. If there
was no absorption 1/T would appear as a straight line. At higher thicknesses
is visible a deviation from this behavior that indicates the presence of losses.
Right panel: ℓt as obtained by the fitting process.

behavior is well visible in the transport mean free path. The absorption turns out, as
we assumed, to be negligible; in fact from the fit we obtain ℓi ≈ 10 m.

2.4.2 Diffusion constant measurements

The diffusion constant can be obtained through a dynamical measurement e.g. a time
resolved measurement of the transmission of a short pulse crossing the sample. As
source we used a Ti:Al2O3 laser with 2 ps pulses tunable from 700 to 900 nm and we
detected the signal with a streak camera. At each wavelength the time profile of the
transmission was fitted with the solution, in the slab geometry, of the time-dependent
diffusion equation (eq. 1.6)

T (t) =
I0e

− t
τi

4t
√

(4πD)3

∞
∑

j=−∞

[

Ae−
A2

4Dt −Be−
B2

4Dt

]

A = (1 − 2j)(L + 2ze) − 2(ze + ℓt)

B = (2j + 1)(L+ 2ze)

τi =
ℓtℓi
3D

,

(2.58)

where τi can be interpreted as an absorption time.
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Figure 2.9: Diffusion constant for different laser frequencies. The error bars are obtained
from the statistics of repeated fits, while the frequency precision (given by
the width of the laser line) is smaller than the symbol size.
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Figure 2.10: The energy velocity, both the measured value (upper panel) and the theo-
retical vale (bottom panel), is plotted against the wavelength. Comparison
measurements made on a TiO2 sample are shown in gray. The theoretical
value for ve in the TiO2 system are obtained assuming 15% of polydispersity.

2.4.3 Energy velocity

Once we have measured independently the transport mean free path and the diffusion
coefficient as functions of the wavelength we can easily obtain the energy velocity as
ve = 3D/ℓt. As shown in fig. 2.10 we obtain a frequency dependent velocity. In
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contrast the very same measurements made on a sample made of small TiO2 particles
(where the scattering is in the Rayleigh limit) do not show any spectral feature. Mie
theory predicts similar oscillation in ve but a quantitative comparison shows a limited
agreement between theory and experiment. The reason can be found in the high filling
fraction of our samples: the dwell time inside a scatterer is very sensitive to the exact
electromagnetic mode that is formed at a given frequency. When two sphere touch
(as it is in our case) the mode is shifted and split and becomes a two-sphere mode.
Naively one could imagine that, when the number of touching spheres grows, the modes
are smoothed out and the final many-sphere mode is spectrally featureless. Our result
instead shows clearly that this is not the case; interaction among spheres takes place
and the modes are changed but, even a very large number of spheres with a high filling
fraction, do not make resonances vanish. This leads to a macroscopic energy velocity
from the cumulative microscopic dwell time and, therefore, to a transport velocity that
depends on collective resonances of the system.
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3 Anderson localization

No real atom is an average atom,

nor is an experiment ever done

on an ensemble of samples.

(P.W. Anderson)

In chap. 1 we made use of the low density approximation to simplify the Bethe-Salpeter
equation. In particular we disregarded all Σ and U terms containing recurring scattering;
this was consistent with our aim to obtain the diffusion equation from a microscopic
picture since it is known that, in a 3D Brownian random walk (in an infinite system),
there is zero probability that the walker passes twice on the same scatterer. One may
wonder how the transport properties of light are affected if we relax this approximation,
i.e. if we consider the case of strong disorder. A way to have some insight is to consider
the second term in U ; this term still do not contain recurrent scattering and, as we said in
chapter 1, has the net effect to increase the reflected light by a factor 2 around the exact
backscattering direction. If we solve the Bethe-Salpeter equation (eq. 1.72) including
also this term we still find a diffusion equation but with an important difference: the
diffusion coefficient D now depends on the system size L and, therefore, is no more an
intensive quantity [13]. The most striking consequence of this dependence of D on L
is that, for 1D and 2D systems , limL→∞D = 0. This means that, at least for low
dimensional systems, the diffusive process may come to a halt because of interference
effects.

The explicit inclusion of higher order terms into the Bethe-Salpeter equation is not
straightforward, also because it’s not trivial to decide which diagrams contribute to
the next order in the density expansion. A partial answer to what happens in three
dimensional systems in the high disorder regime was provided by P.W. Anderson [50].
He studied a linearized tight-binding model of non-interacting particles where the excited
states can jump from one lattice site to the next; if the lattice is perfectly periodic the
eigenstate of the system are no more the single excited states confined on a site but
are the Bloch modes, extended over the whole sample. As is well known, Bloch modes
give rise to band-gaps, i.e. energy ranges where no mode is present. In the presence
of disorder the periodicity is broken and we can describe the system as a series of local
excited modes that perform a random walk over the lattice. On a macroscopic scale
this transport can be described with the diffusion equation; in this case the eigenstates
are extended over the whole system but no band-gap is possible and these eigenstates
form a continuum in energy. Anderson demonstrated that, if the disorder is sufficiently
high, the eigenstates are no more extended but they decay exponentially outside a given
spatial region. In an infinite sample these states form a dense point spectrum but if the
system has a finite size the number of non-spatially-overlapping modes is limited [51].
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It is worth to stress the novelty of this effect. It is relatively easy to realize an optical
cavity where the field is strongly confined in a limited region of space; even a single defect
in an otherwise periodic structure produces a mode localized around the defect itself.
If we introduce one more defect in a periodic structure we will obtain one more state
around the new defect. When the number of defects is high enough it will be possible for
energy to tunnel from a defect state to another and the transport will become diffusive.
In the Anderson localization regime the situation is quite different: if we reach the
localization regime we will get a number of non-superimposing modes that span over a
large amount of scatterers. Of course the fact that all modes are exponentially localized
and not extended does not prevent transport (in much the same way as it does not
impede light to be transmitted from an optical cavity) but gives rise to a different (and
new) transport regime that is profoundly different from diffusion.

3.0.4 Dependence on dimensionality

As we showed in chap. 1, in the diffusive regime the intensity propagates with the square
root of time. Therefore the characteristic time scale that is needed for an excitation to
propagate across the sample is proportional to L2; this induces a minimum natural
width for the modes δω ∝ L−2. The average frequency separation between neighboring
eigenvalues ∆ω scales as L−d (where d is the dimensionality of the system) so we can
study the quantity

γ =
δω

∆ω
∝ Ld−2. (3.1)

In the case of one dimensional systems (d = 1) γ ∝ L−1 and so limL→∞ γ = 0; this
means that, when the sample is thick enough, the modes of a 1D system will always
be much narrower than their spacing and the overlap integral between two given modes
will be negligible making them, effectively, localized. Therefore Anderson localization is
bound to happen in every disordered 1D system irrespectively on the amount and the
origin of the disorder. The reason why we do not usually see localization is twofold:
first 1D systems are immersed in a three dimensional space. If the field is confined and
cannot propagate in the other two dimensions, like in a waveguide, we cannot integrate
out these dimensions and the system in only quasi-1D. The second reason is that the
thickness L needed for the modes to separate can be extremely big making, de facto,
localization hard to obtain in practice.

The case of three dimensional systems is more complicated: if the system is diffusive
for small samples (γ ≫ 1) then it stays diffusive for any value of L, but if it is localized
for small samples (γ ≪ 1) then δω will scale as e−L and γ will go to zero for large L. It
is reasonable to assume that there exists a critical value of γ at which the two behaviors
cross and, therefore, that there is some disorder threshold that discriminate the diffusive
to the localized transport regime. When d = 2 γ is constant for the extended states case
and so it can go either way.
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3.0.5 Obtaining the Anderson localization

The direct observation of Anderson localization for electrons is made difficult by coulomb
interaction. At room temperature electrons have a very short coherence time and there-
fore the effect of interference on transport properties is limited. Besides electron-electron
interaction induces a Mott transition [52], a conductor to insulator transition that may
screen the insurgence of Anderson localization.

Although the original work from Anderson dealt with transport of electrons it was
soon realized that the very same reasoning could be applied to any wave in a disordered
medium [53, 54]. In particular, the localization of light attracted a lot of interest because
photon-photon interaction is completely negligible at optical frequencies [10] and the
coherence length of light can be extremely long. Despite the large number of optimistic
theoretical papers, Anderson localization for light in 3D systems proved to be difficult to
observe and only recently appeared unambiguous and generally accepted experimental
proofs [55, 56]. One of the main problems is the difficulty to achieve the necessary amount
of disorder: we expect the low density approximation to break down when the wavelength
becomes comparable with the average distance between two successive scattering events,
i.e. when it is no more true that a particle sees the waves coming from other scatterers
in the far field. We can formalize it with the Ioffe-Regel criterion kℓs ≈ 1 [13]. We can
see that, apparently, this criterion is easily fulfilled in the low energy (long wavelength)
limit. This is true for electrons, that are efficiently scattered from impurities when their
energy goes to zero, but for light (as we can see from eq. 1.40) the effective potential
Veff goes to zero as k2 and the scattering process becomes ineffective. Therefore, to
reach the localization regime, we cannot lower k but we must select a material where
the scattering strength is high in order to lower ℓs. The realization of samples with such
a low scattering mean free path is not an easy task and the lowest kℓs ever reported is
1.5 for finely ground GaAs (n = 3.48) [57].

It was proposed to search for Anderson localization in photonic crystals with some
disorder [54]. In the band gap the k-space available to light to propagate is strongly
reduced (it is zero in a perfect photonic crystal) and this should make localization easier
to obtain. But, up to now, no experimental evidence is available.

3.1 Anderson localization in 1D

Given the difficulties to obtain localization in three dimensional systems the transport
properties of this regime are not yet well known 50 years after the original paper from
Anderson. Studying 1D systems has a twofold advantage: first localization can be obtain
with relative ease using multilayer structures and second the use of a transfer matrix
formalism (see appendix E) allows to solve numerically the Maxwell equations for any
structure. This permits to study transport in a simplified geometry that still retains
most of the features of a full fledged 3D structure.

To describe the transmission properties of one dimensional structures we start from
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the scattering matrix for the lth layer (see appendix E)

Sl =

(

1
t∗

r
t

r∗

t∗
1
t

)

(3.2)

where t and r are, respectively, the transmittance and the reflectance of the lth layer.
The complete system is described by the matrix

S̃ =

N
∏

l=1

Sl, (3.3)

where N is the total number of layers. The average over realizations can be greatly
simplified making some (reasonable) assumptions on the disorder’s statistic: if we assume
that each layer follows the same statistics and that each layer is statistically independent
from each other we obtain

〈

S̃
〉

i,j
=

〈

N
∏

l=1

Sl

〉

i,j

=

[

N
∏

l=1

〈Sl〉
]

i,j

=
[

〈Sl〉N
]

i,j
(3.4)

where i and j enumerate the elements of the matrix; this equation allows us to get the
average value of any quantity that is present in an element of the scattering matrix.
At first sight this does not look so useful since the elements of S contain only the
transmittance and the reflectance while we would be more interested in the transmission
coefficient T = |t|2 or the optical resistance R = T−1 = |t|−2. We can overcome this
problem if we notice that eq. 3.4 is also valid for a generalized scattering matrix S(M)

defined as the Kronecker product1 of M scattering matrices. Since we are dealing with
square matrices the Kronecker product between a m×m and a l × l matrix reads

[A⊗B]m(i−1)+i1,l(j−1)+j1
= Ai,jBi1,j1. (3.5)

In particular the optical resistance is contained in the second order generalized scattering
matrix

S(2) ≡ S ⊗ S =

(

1
t∗

r
t

r∗

t∗
1
t

)

⊗
(

1
t∗

r
t

r∗

t∗
1
t

)

=

















1
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(
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. (3.6)

To simplify S(2) (and, more generally, to simplify any S(M)) we can exploit the sym-
metry properties of the generalized scattering matrices. While the direct product is not,

1The Kronecker product, also known as the direct matrix product, is a special case of tensor product
between two matrices. The result of the Kronecker product A⊗B is a block matrix where each block
is given by the whole matrix B multiplied by an element of A.
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in general, commutative we are dealing with the particular case where we are multiply-
ing M identical matrices; therefore the exchange of two of them cannot change the final
result. We can define a permutation operator P̂ that, when applied to S(M), exchange
two given S; since applying two times this operator is the same as applying the identity
operator we deduce that P̂ can have just the eigenvalues +1 and −1. These eigenvalues
correspond to a fully symmetric and a fully antisymmetric eigenstates Ss and Sa. If we
rewrite S(M) on this basis we will obtain the form

S(M) =

(

Ss 0
0 Sa

)

. (3.7)

To obtain the form of the symmetrized and antisymmetrized products it is necessary
a group theory treatment that is beyond the scope of this thesis. We therefore state,
without demonstrating, that the fully symmetrized product can be written as [19]

[

S(M)
s

]

i,j
=

min{i,j}
∑

p=0

i!

(i− p)!p!

(M − i)!

(M − i− j + p)!(j − p)!

(r∗)i−p (r)j−p

(t)j (t∗)M−j
, (3.8)

so that the second order scattering matrix is

S(2) =













1
(t∗)2

2r
|t|2

(

r
t

)2
0

r∗

(t∗)2
2
|t|2

− 1 r
t2 0

(

r∗
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)2 2r∗

|t|2
1
t2

0

0 0 0 1













. (3.9)

The 3 × 3 upper submatrix is S(2)
s while S(2)

a is equal to 1.

3.1.1 The average resistance

In order to calculate explicitly 〈R〉 we must decide a specific kind of disorder. Since
our goal is to compare the theoretical results with experiments made on multilayer
structures, we opted to vary randomly the parameters of the layers. In particular we
chose a (apparently) simple model where we define two kind of layers: A and B, each
characterized by a fixed refractive index (nA and nB) and a thickness (dA and dB) with
the condition 4nAdA = 4nBdB = λ0, where λ0 is a constant. If such layers are stacked
in an ordered fashion we obtain a Bragg mirror and, in this case, λ0 is the central
wavelength of the Bragg peak. We introduce the disorder giving to each layer a 50%
chance to be of type A or type B.

For later convenience we notice that, at each realization of the disorder, each sequence
of N equal layers are indistinguishable from a single super-layer with the same refractive
index but a thickness N times bigger than the single one. This way of looking at the
disorder has the advantage that each super-layer of kind A is always sandwiched between
two layers of kind B. This fact allows us to use the transfer matrix formalism to calculate
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the transmittance and the reflectance as a function of N and λ:

tA =
1

cos
(

2πN nAdA
λ

)

− i
(

n2
B+n2

A
2nAnB

)

sin
(
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(
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(
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(
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(
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)

(3.10)

tB =
1
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(
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(
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(
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(
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(
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(
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− i
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A
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λ

) .

(3.11)

Now we have all the ingredients to calculate the average optical resistance. The
procedure is to average eq. 3.9 over the kind of layer and over all possible N , to calculate
its Nth power (where N is the total number of layers) and, finally, to take the element
that contains R. With our choice of disorder we see that r is antisymmetric in the
exchange of the kind of layer (i.e. exchanging nA with nB); therefore all terms in eq. 3.9
linear in either r or r∗ vanish after the average leaving us with

〈

S(2)
〉

=
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〉
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. (3.12)

This form of the second order scattering matrix has the advantage that, when we make
the Nth power, the term

〈

S(2)
〉

2,2
do not mix with the other terms and, therefore, we

can write

2 〈R〉 − 1 =

[

〈

S(2)
〉N
]

2,2

=

[

(

2

〈

1

|t|2
〉

− 1

)N
]

2,2

. (3.13)

The average over the kind of layer is obtained trivially as (|tA|−2 + |tB |−2)/2 but the
average over N require some more attention. The (unnormalized) probability to find a
super-layer composed by N layers is 2−(N−1) and so

〈

1

|t|2
〉

=

(

∞
∑

N=1

2−(N−1) |tA|−2 + |tB|−2

2

)/(

∞
∑

N=1

2−(N−1)

)

. (3.14)

From eq. 3.12 we can see that 〈R〉 increases exponentially with the sample thick-
ness L (determined by the total number of layers N and the average layer thickness
(dA + dB) /2). We can therefore define a characteristic length ξ so that

〈R〉 = e
2L
ξ ; (3.15)
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ξ is known as the localization length and gives the characteristic length scale of the
localization regime2. It is worth to stress that in the diffusive regime we had 〈R〉 ∝ L
so that the optical resistance was growing linearly with thickness (this is the Ohm’s law
for light that we discussed in chapter 1); this is the most macroscopic, and probably the
most widely known, difference between the diffusive and the localized regime but is not
the only one, as we shall see. We also notice that ξ do not gives directly the average
spatial extension of a mode since any localized state decay exponentially only outside a
given region.

Substituting eq. 3.15 into eq. 3.13 and performing the averages we obtain an explicit
formula for the localization length:

ξ (λ) =
2 (dA + dB)
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− 5













− 2 ln (4nAnB)













. (3.16)

This formula contains some interesting features: as we should expect it has a minimum
for λ = λ0 and it grows steadily as the wavelength grows making the localization length
infinite in the long wavelength regime where the disorder cannot be resolved anymore
by the wave. A less intuitive feature is that ξ has a divergence each time λ0/λ is an
integer bigger than one; this is due to the fact that, for the kind of disorder we chose,
this condition corresponds to an integer number of half wavelength to fit into each layer
(all layers have the same optical thickness) making all layers effectively transparent.
Therefore there is an infinite, but discreet, set of λ where the sample is fully transparent
for any realization of the disorder and no localization can take place.

A somehow counterintuitive property of the disorder we chose for our system can
be spotted if we use the transfer matrix formalism to compute numerically the total
transmission T (λ). If, for a given choice of refractive indexes and layer thicknesses, we
compute T for many values of N and many realization of the disorder we can fit eq. 3.15
and obtain a value for ξ at each λ. If we plot such data together with our analytical
formula (see fig. 3.1) we see that the general behavior of the two is the same except
for a sharp spike present in the numerical evaluation at λ = λ0. This effect can be
explained noticing that, because of the quarter wavelength condition we imposed on on
the layer thicknesses, a hidden order is contained in the system. At λ0, each pair of
equal layers (like AA or BB) has an optical thickness of λ/2 making them effectively
transparent to light. Therefore, at this wavelength, the disordered structure can be
simplified into an optically equivalent one by removing pairs of layers AA and BB;
i.e. a random sequence like BAABBAABBABAAAABAAABBBBBBABAB can be
simplified to BABBAABAB and subsequently to BABAB. The simplifying process
stops only when there are no more couples of neighbor equal layers and the final result

2The factor 2 in the definition of ξ is arbitrary and different authors use different values. The choice of
this factor has the advantage that, as we shall see, 〈ln T 〉 = −L/ξ.
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Figure 3.1: The analytical formula for ξ (gray line) is compared with the numerical
results obtained with the transfer matrices (black dots). The parameter used
are the same as in the real samples (see section 3.1.3) so that a comparison
with the experimental result will be possible.

is always a periodic structure. This hidden order in the structure produces an anomaly
in the localization length in a narrow wavelength band around λ0.

3.1.2 Resistance fluctuations

When dealing with random systems it is limiting (if not dangerous) to consider only
average quantities. Doing experiments we are always studying a limited set of disorder
realization and our results will invariably be effected by the fluctuations from a realiza-
tion of the disorder to another. It is therefore worth to take at least a qualitative look
to the higher moments of the resistance distribution.

We can obtain the mth moment searching the symmetrized scattering matrix of order
M for a term that contains it, averaging and making the Nth power. If we look at
equation 3.8 we see that, if we take M = 2m and i = j = m we get

[

S(2m)
]

m,m
=

m
∑

p=0

(

m!

(m− p)!p!

)2

|t|−2m |r|−2(p−m) =

=
m
∑

p=0

(

m!

(m− p)!p!

)2

(

1 − |t|2
)m−p

(

|t|2
)m

(3.17)

that is a polynomial in |t|−2 of order m. Notice how, for m = 1 we get exactly 2R− 1 as
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in eq. 3.12. We can therefore iteratively obtain Rm from the knowledge of all Rs with s
from 1 to m. After a lot of calculation the result is [19]

〈Rm〉 ≈ e
Lm(m+1)

ξ , (3.18)

where we recognize the moments of a log-normal distribution

P (R) =

√

ξ

4πL

e
− [ln(R)−L/ξ]2

4L/ξ

R
or (equivalently) P (lnR) ∝ e

− [ln(R)−L/ξ]2

4L/ξ . (3.19)

If we take a close look at P (lnR) we can see that it has a maximum at R = eL/ξ while
the average is much bigger. This discrepancy between the typical and average value of
R has the consequence that all averaged quantities that depends on R will be dominated
by the tail of the distribution and not from the low-R behavior. This also include the
moments of the distribution (that we obtained in an approximate form) and therefore
we are not allowed to take P (T ) directly from P (R) since, doing so, we would neglect
the high transmission part of the distribution.

Both generalized scattering matrices and random matrix theory allows to calculate
explicitly the transmittance distribution and the result is that, in the limit L≫ ξ, also
T is log-normally distributed [19, 58]:

P (lnT ) =

√

ξ

4πL
e−

ξ
4L

[ln(T )−L/ξ]2 . (3.20)

This means that the transmission spectrum of a 1D localized system has an exponentially
small typical value (Ttypical

∼= e−L/ξ) but a much higher average (〈T 〉 ∼= e4L/ξ) that is
dominated by a few very high points.

3.1.3 Porous silicon multilayers

The two fundamental conditions that must be fulfilled to realize a 1D structure that
shows clearly Anderson localization are: a limited amount of lateral inhomogeneities
(to make the 1D approximation valid) and L ≫ ξ. While the technology to produce
high quality multilayers is well developed the second condition requires more attention.
Eq. 3.16 shows that the localization length can be lowered increasing the refractive
index contrast between the two kind of layers but, even at high contrasts, will lead to
a localization length of a few microns. This must be compared with the average layer
thickness

〈d〉 =
dA + dB

2
= λ0

nA + nB

8nAnB
, (3.21)

that, for all reasonable refractive index, lies roughly in the interval λ0/10, λ0/5. Also
the choice of λ0 is limited by practical considerations since most dielectric materials are
opaque or strongly absorbing in the visible regime. Therefore we need a system that have
a number of layers N ≫ ξ 〈d〉, that amounts to tens or hundreds of layers (depending on
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parameters). Most techniques commonly used to make high quality multilayer structures
are not capable of that many layers and so we opted for porous silicon structures [59].

Porous silicon is obtained starting from a wafer of (100)-oriented p+ doped silicon
immersed in a HF (fluoridric acid) aqueous solution (48 wt.%). Applying an electric
potential to the wafer the free carriers (in this case holes) are brought to the surface
making it reactive to the F− ions. Since carriers tend to concentrate on the bottom of a
pre-formed hole, whenever the etching process will start it will continue digging a pillar-
shaped hole instead of attacking the whole surface, thus forming a series of randomly
positioned pillars. Since the etching process takes place almost only at the bottom of
the hole and that the width of the hole itself is determined by the applied current, we
can modulate the pillar width at any given depth inside the wafer, i.e. we can decide
the average porosity, and therefore, the effective refractive index, as a function of depth.
The structure can then be detached and made free stanging applying a strong pulse of
current that makes the average width of holes as big as their average distance.

Porous silicon structures have the advantage that up to 300-350 layers can be built with
good accuracy but gives us a limited refractive index contrast and introduce scattering
losses. We choose λ0 = 1.5 µm, nA = 1.45 and nB = 2.13. Because of the condition
4nAdA = 4nBdB = λ0 the resulting layer thicknesses were dA = 258.6 nm and dB =
176.0 nm. As shown in fig. 3.1 with these parameters we expect a localization length of
10-12 µm in the wavelength range from 1 µm to 2 µm.

3.1.4 Characterization of the localization regime

We obtained the transmission spectra of the samples in the 1-2 µm wavelength range
using a tungsten Halogen lamp and focusing to a 300 µm diameter spot on the surface.
The spectra were recorded with 1 nm wavelength resolution using a monochromator
coupled to an infrared photosensitive resistor. As shown in fig. 3.2 the qualitative fea-
tures are the same as we expected from our theoretical treatment. While the thickness
increases the typical value of T becomes lower and lower and the transmission peaks
become sharper and more spaced. We also see that transmission peaks seems to became
lower while the thickness increase; this is partially an artifact due to the limited spectral
resolution, that does not permit to fully resolve the sharpest resonances, and partially
an effect of losses. In fact porous silicon has a non-zero absorption coefficient in the near
infrared and also scattering losses must be considered. From literature [59] we estimated
an extinction coefficient κe ≈ 100 cm−1.

The localization length can be determined looking to the behavior of 〈T 〉 as a function
of the thickness L; but, in the localized regime, T is not a self averaging quantity,
i.e. increasing the amount of realization of disorder used to perform the average the
fluctuations do not become smaller. This problem can be overcame studying 〈lnT 〉 that
is a self-averaging quantity. Since both localization and absorption dump exponentially
the transmitted light we cannot discriminate the two effects in these measurements and
we need to correct the exponent for the absorption coefficient to obtain the localization
length. We were limited to a relatively small set of samples, that didn’t allow for a true
ensemble average at each frequency; therefore we performed a wavelength average of lnT
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Figure 3.2: Total transmission spectra of four samples with different thickness.

for each sample and fitted these value with the formula

〈lnT 〉 = − L

ξ + κ−1
e

(3.22)

obtaining a value of ξexp = 14.9 ± 2.4 µm, that is in good agreement with both our
analytical and numerical predictions.

3.2 Extended states in the localized regime

From our analysis of spectral features emerges a quite clean (but, as we shall see, quite
incomplete) picture of transport properties in the localized regime. On open system has
a discreet point spectrum with the number of modes that increases linearly with the
sample thickness; these modes decay exponentially outside a given spatial region and,
since the sample has a finite thickness, they have a finite width. This width can be
estimated if we model the resonance as a cavity trapped between two barriers. Inside

the barrier, of thickness L/2, transmission goes down as T = e−
L
2ξ and therefore the
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Figure 3.3: Spectral average of the logarithm of the measured transmission versus sam-
ple thickness. The error bars are obtained by repeating the measurement
in various spots on the sample and therefore reflect lateral sample inhomo-
geneities.

transmittance goes down as t = e−
L
4ξ . In the limit L ≫ ξ the resistance can be written

as

r =

√

1 − |t|2 =

√

1 − e
− L

2ξ ∼= 1 − e−
L
2ξ

2
, (3.23)

and therefore the scattering matrix for the barrier has the form

Sbarrier =

(

1
t∗

r
t

r∗

t∗
1
t

)

=





e
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2ξ 2 sinh

(

L
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)
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(

L
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)
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2ξ



 . (3.24)

Inside the cavity, of thickness a, the field just experience a phase shift:

Scavity =

(

e−ika 0
0 eika

)

(3.25)

where k = 2π/λ. Total transmission can be obtained by the total scattering matrix of
the system Sbarrier · Scavity · Sbarrier as

Ttot = ttott
∗
tot =

[

6 + 2
(

e
L
2ξ

)2
cos (2ka) − 8 cosh

(

L

2ξ

)

+

+ 3cosh

(

L

ξ

)

+ sinh

(

L

ξ

)]−1

(3.26)
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that has a maximum when 2ka = π:

Tmax = Ttot|k= π
2a

=
e

L
ξ

(

1 − 2e
L
2ξ

)2 . (3.27)

Assuming that the transmission peak is narrow we can expand cos (2ka) around the
maximum to get

Ttot
∼=
[

6 + 2
(

e
L
2ξ

)2
(

2k2a2 − 1
)

− 8 cosh

(

L

2ξ

)

+ 3cosh

(

L
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)

+ sinh

(

L

ξ

)]−1

(3.28)

that has a Lorentzian line shape. From this form we can easily obtain the full width half
maximum (in the limit L≫ ξ)

∆k ∼= 2e
− L

2ξ

a
, (3.29)

i.e. the width of a transmission peak decreases exponentially with the total thickness.
We already know that the ensemble average of the transmission is not dominated by the
typical values but by the tail of the distribution, i.e. by rare modes with high transmis-
sion. Although it would look reasonable to think that the transmission is dominated by
the sharp peaks that we just described, Pendry [60] and Tartakovskii [61] proved that
this is not actually the case and that 〈T 〉 must be dominated by broad transmission
peaks.

These wide peaks can be formed when two or more (spatially separated) modes are de-
generate in energy. When this happens they hybridize to form a transmission miniband.
These new modes, called Necklace states, are somehow exotic since they are extended
modes created in the Anderson localization regime (where we would expect only expo-
nentially confined states). The width of such a state can be estimated noticing that,
while for a single resonance placed in the center of the structure, the light must cross
a distance L/2 to exit, if there are l, roughly spaced, resonances the distance will be
shorter. We can approximatively write

∆kl
∼= 2e

− L
(l+1)ξ

a
(3.30)

where ∆kl is the spectral width of a Necklace state composed by l resonances. The
parameter a describes the average spatial extension of a resonance but this quantity is
not easily accessible in optical measurements; in order to eliminate it we can write

∆kl
∼= e

L
2ξ

l−1
l+1 ∆k1; (3.31)

this relation shows that a Necklace is, on average, a factor e
L
2ξ

l−1
l+1 wider than a single

resonance.
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Figure 3.4: Calculated intensity distribution inside the sample. The internal resonances
are localized modes. In rare occasions multiple resonances couple and lead
to extended necklace modes. A 4-resonance necklace state can be observed
around λ = 1855 nm.

3.2.1 Evidence for Necklace states in the time domain

In principle is possible to distinguish single resonances from Necklace states in a spec-
trally resolved transmission measurement. As we showed the line shape of a single
resonance is, as expected from a cavity model, Lorentzian; for a Necklace state, assum-
ing that the various resonances composing it are independent (i.e., assuming that their
spatial separation is much bigger than ξ), we expect the line shape of necklace states
to be a product of Lorentzians. Therefore from a fitting procedure of the spectrum we
should obtain directly the number of resonances that give rise to a single transmission
peak. But this procedure is far from being ideal; even neglecting the practical problem
of discriminating clearly how many Lorentzians we need to fit a given peak, when the
sample thickness increases the typical width of resonances becomes exceedingly small
making an accurate fit very difficult.

On the other side we expect that small differences in the sharp spectral features to
translate in big differences in the time domain (i.e. the Fourier transformed space).
Since a single resonance is Lorentzian shaped its time response will be characterized by
an exponential tail (at long times) and by a time delay due to the residence time of light
inside the resonance itself. Of course both these properties of the time behavior will
depend on the Q factor of the mode. A high Q factor (corresponding to a mode in the
middle of the sample) corresponds to a long time decay and a marked delay. Conversely
a low Q factor (corresponding to a mode close to the sample surface) corresponds to a
fast decay and to a negligible delay. For a Necklace state we expect the typical behavior
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Figure 3.5: Time resolved measurements on three different transmission peaks. For the
single resonance case are shown both the high and the low Q factor case
(respectively panels a and b). In panel c it is shown the case, character-
istic of a Necklace state, where a long delay is found together with a very
fast decay. The gray curves represent the instrumental response, i.e. the
cross-correlation between the residual of the pump and the output of the
parametric oscillator, corrected for the trivial delay introduced by the effec-
tive refractive index neff = (nAdA + nBdB) / (dA + dB) of the sample.

of a series of coupled cavities: a strong delay, determined by the time needed to build the
mode in all resonances, and a fast decay due to the fact that the distance from the last
resonance and the sample surface is, on average, much smaller than the single resonance
case.

Optical gate measurements

To measure the time response of a disordered multilayer we used an optical-gating tech-
nique. A Ti:sapphire laser, with central wavelength 810 nm and a pulse duration of
130 fs, was used to pump a optical parametric oscillator tunable in the range 1300-
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Figure 3.6: Diagram of the phase resolved setup. The phase difference between the two
arms of the Mach-Zender interferometer is given by ∆ϕ(ω) = ϕ(ω)−(ω/c)L+
(ω/c)∆x, where ∆ϕ is the total phase shift, ϕ is the phase shift introduced
by the sample and ∆x is the phase shift introduced by the delay in the
second arm of the interferometer (that can be precisely measured removing
the sample). The absolute phase delay is then measured with a scanning
Fourier-transforming Michelson interferometer.

1600 nm. The signal from the oscillator was used to excite the sample while the residual
from the pump was sent to a delay line. The signal and the residual from the pump were
then superimposed on a BBO non linear crystal where the sum frequency was generated.
The time-averaged intensity of the generated harmonic is

I ∝
∫ ∞

−∞
Isignal (t) Iresidual (t+ τ) dt (3.32)

where τ is the time delay. Varying τ we can measure the time profile of the signal (or
better: the convolution of the signal with a known function Iresidual(t)) without relying
on ultrafast detectors.

Due to the fact that a short pulse is spectrally wide (in our case roughly 20 nm) the
amount of peaks that can be investigated with this technique is limited. If two separated
peaks are close enough that the pump pulse excite them both the measured signal will
be dominated by the beating between these two peaks. Therefore we can study only
those peaks that are reasonably isolated from the others. On 10 samples we managed
to identify 14 isolated peaks and two of them showed a clear Necklace behavior (see
fig. 3.5).

3.2.2 Phase measurements

Another technique to investigate Necklace states is to measure at the same time the
absolute value of the transmission coefficient and his phase. In non absorbing systems
a resonance is always associated with a π phase shift across its spectral width indepen-
dently from the height of the transmission peak. This allows us to identify easily even
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Figure 3.7: Example of a measure of amplitude (black dots) and phase (solid line) of the
transmission spectrum. The two single resonances in this example present a
very low transmission and could be easily lost looking only to the transmis-
sion spectra. Nevertheless the π phase shift is clearly visible. The Necklace
state can be identified by the 2π phase jump across the transmission peak
and a fit with the product of two Lorentzians (dashed line) shows a very
good agreement with the experiment.

very low transmission peaks and to discriminate from peaks due to single resonances and
Necklace states that, being formed by more than one resonance, are associated with an
integer number of π phase shift.

To measure at once amplitude and phase of the transmission coefficient, we performed
white light interferometry in the wavelength range 0.8-2.5 µm. The cross-correlation
interferogram of the light passing through the sample, which contains both phase and
amplitude information, was measured using a fixed Mach-Zehnder interferometer cou-
pled to a scanning Fourier-transform spectrometer [62]. Continuous phase spectra were
obtained by Fourier transform of the measured interferogram followed by a standard
unwrapping algorithm. The measured phase was then corrected for the delay (in vac-
uum) corresponding to the sample thickness, which was measured independently by a
1 µm-resolution comparator. This yields the absolute phase delay introduced by the
sample with a maximum experimental error of order of 10−2 rad at 1.5 µm wavelength.

When the amplitude becomes zero the phase is undefined and, therefore, in spectral
regions where the total transmission is very low (i.e. when there is a big spacing be-
tween neighbor peaks) the measured phase becomes noisy and do not permit to clearly
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characterize the phase shift. Nevertheless, over three samples, we managed to define
unambiguously the nature of 114 peaks, finding 32 second order and eight third order
necklace states (see fig. 3.7).

3.2.3 Necklace statistics

1 2 3 4

1

10

100

Pr
ob

ab
ili

ty
 (%

)

Necklace order

 expected
 measured

Figure 3.8: Comparison between the experimental and expected (calculated) probabil-
ities Pl of finding a Necklace mode of order l in a single 250-layer sample.
Note the logarithmic scale. The error bars on the calculated values are
obtained by the propagation of the uncertainty of microscopic sample pa-
rameters through the formula, while the error bar on each measured value is
given by the square root of the value itself.

The large number of fully characterized peaks allow us to make some considerations
on the statistical properties of Necklace states. In literature Necklace states are referred
to as “exceedingly rare events” [19] but their relative abundance was never quantitatively
discussed. A first-order estimation of the probability Pl that a transmission peak, when
there is one, is produced by the superposition of l modes can be obtained neglecting
the mode repulsion, i.e. assuming that the resonances are spatially well separated, that
is equivalent to assuming L ≫ ξ. In this limit Pl is given by the probability that, in
the spectral range S, l of the M resonance present are superimposed within the average
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Figure 3.9: Observed distribution, in a single 250-layer sample, of transmission peaks
as a function of the full width at half maximum ∆k for single resonances
(squares) and second and third order necklace states (respectively, dots and
triangles) together with the qualitative behavior obtained from the theory
(lower solid line for the single cavity, middle dashed line for the double cavity,
and upper dotted line for the triple). The theoretical model has no free fitting
parameters.

width of the lth order Necklace state:

Pl
∼=
(

∆kl
M

S

)l−1
∼=
(

e
L
2ξ

l−1
l+1 ∆k1

M

S

)l−1

∝
(

e
L

ξ(l+1)L
)l−1

(3.33)

where we used eq. 3.31 and eq. 3.29. We also made use of the fact that the number
of modes M increase linearly both with the thickness L and the spectral region S that
we take into account. This simple formula tells us that there is an optimal thickness
that maximizes the probability to find a Necklace of order l, i.e. Pl is maximum when
L = ξ (1 + l) (notice that eq. 3.33 is still unnormalized). The predicted amount of
necklace states can be compared with the experimental one; an example is shown in
fig. 3.8.

In section 3.2.1 we made use of the, somehow qualitative, fact that a single resonance
near the center of the sample has a higher Q factor that a resonance near the surface.
Between these two extreme there is a whole continuum of possibilities; since the exact
position of the resonance in the sample is not experimentally accessible we can charac-
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terize it by studying the correlation between the maximum of a transmission peak and
its width. Modeling a single resonance as a cavity the relation between the transmission
coefficient T and the peak width ∆k1 can be obtained in the paraxial approximation
(i.e. assuming that the the angular displacement of rays is small) in a parametric form
[63]:
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where α is a running parameter in the interval [ξ, L]. From eq. 3.31 we know that a

Necklace state is, on average, a factor e
L
2ξ

l−1
l+1 wider than a single mode and the must be

shifted, correspondingly, at higher width when the order number increases. In fig. 3.9
a comparison (without any free parameters) between the theory and the experiment is
shown. Although we do not have enough statistics to determine exactly the experimental
width distribution, and therefore to make a quantitative check of the theory, fig. 3.9
clearly shows that the presence of Necklace states indeed produces a strong deviation
(circles and triangles) from the single resonance distribution (squares) and a shift toward
larger ∆k.
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4 Lévy flights and superdiffusion

Lévy distributions are ubiquitous

in nature

(C. Tsallis)
It sometimes happens that some ideas are so widely used and find application in so

many different fields that are often kept for granted and applied without really thinking
about their implications. One of them is the concept that any random walk is, or
can be suitably approximated to, a Brownian random walk. At first sight this is far
from unreasonable, if we look at it from a pragmatic point of view. Brownian motion
and diffusion describe accurately the transport of very diverse systems: from light in
biological systems to heat flow, from osmosis through a membrane to pollutants in fluids.
This universality, as we saw in section 1.2, comes from the Central Limit Theorem: as
long as the step distribution has finite moments it will always converge toward a normal
distribution and we will always obtain a Brownian random walk. On the contrary if the
step length distribution has some diverging moments (if the nth moment diverges all
moments of order bigger than n will diverge) the sum of many such distributions will
not converge to a Gaussian and the resulting random walk will not be Brownian.

The study of what happens when we sum a large number of distributions with diverg-
ing moments was started by Paul Pierre Lévy, who studied the problem of distribution
stability [64]. A distribution is said to be stable if the sum of an arbitrary large num-
ber of its copies still follows the same probability law. The most widely known stable
distribution is the normal distribution but it’s not the only one: other simple examples
are given by the Cauchy distribution and the Dirac delta centered on zero. The most
general family of stable distributions, known as the α-stable Lévy distribution1, does not
have an easy analytical representation but it can be defined via the Fourier transform
of its characteristic function as [65]

P (x) =

∫ ∞

−∞
e−ikxeikµ−|γk|α(1−iβ sign(k)Φ)dk, (4.1)

where α ∈ (0, 2] is an exponent that describes how fast the tails decay, β ∈ [−1, 1] define
the skewness (asymmetry), µ represent a shift on the x-axis, Φ = tan (πα/2) for all α
except that for α = 1 where Φ = − (2/π) ln |k| and γ is a positive constant that defines
the width of the distribution.

In the following we will limit ourself to symmetric (β = 0) and centered (µ = 0)
distributions so that all α-stable Lévy distributions are the Fourier transform of e−|γk|α .

1Not to be mistaken with the Lévy distribution P (x) =
p

γ
2π

e−γ/2x

x3/2
that is a particular (non-

symmetric) case of the α-stable Lévy family.
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Figure 4.1: Simulation of two different random walks (50000 steps) characterized by
different step distributions. Panel a: a Brownian motion where the steps
follow a normal distribution. Panel b: a Lévy flight where the steps follow
a Cauchy distribution. Despite the fact that the two distribution have the
same full width half maximum the two resulting random walk behave in a
very different way. The axis are in FWHM units.

It is easy to see that the case α = 2 yields a normal distribution, α = 1 a Cauchy
distribution and α = 0 is a degenerate case yielding a Dirac delta. In the following we
will discard this last case since, for β = µ = 0, it would amount to a delta-distributed
step length centered around zero and such a random walk has no physical meaning.

The importance of the parameter α comes from the generalized form of the Central
Limit Theorem (due to Gnedenko and Kolmogorov) [66] stating that the sum of a large

number of random variables whose distribution asymptotically decays as |x|−(α+1), with
0 < α < 2, will converge to a stable Lévy distribution with parameter α. If the random
variables decay with α ∈ [2,+∞) their variance will be finite and the sum will converge
to a normal distribution (α = 2). It is worth to notice that, for 0 < α < 2, the leading

term of the asymptotic expansion is proportional to |x|−(α+1). This means that, with
the notably exception of the normal distribution, all α-stable Lévy distributions decay
asymptotically as a power law2 and are, therefore, scale invariant, i.e. it is not possible
to define a characteristic length (like we defined ℓs or ℓt in the diffusive case) but the
step distribution looks the same at each length scale.

The properties of a random walk where the step length distribution is scale invariant
were first studied by Benôıt Mandelbrot in the framework of a random walk on fractals
[20]. In fig. 4.1 we can see that a random walk where the step distribution has no
finite variance has a qualitatively different behavior from a Brownian motion. The
motion seems to consist of cluster of small steps spaced by extremely long single steps.
Mandelbrot named this category of random walks Lévy flights.

This new category of random walks was first used by Mandelbrot himself to model

2Sometimes a distribution with power decaying tails is said to be heavy-tailed.
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the fluctuations of the cotton price [67] (like Bachelier used the Brownian random walk
to model the price of stock options in France five years before the famous work from
Einstein [68]). Nowadays Lévy flights are widely used to model all those systems that
presents large fluctuations (i.e. long tails in the distribution) like universal earthquake
patterns [69], economy indexes [70, 71] or even the spreading of bank notes [72].

4.1 Beyond the diffusion equation

We can obtain a generalization of the diffusion equation for a Lévy flight considering
the case of a particle subject to a stochastic force composed by uncorrelated pulses [73].
After each pulse there will be a balance between the particle inertia and the medium
viscosity that, after a transient, will make the particle move at constant speed until the
next pulse. We can neglect this transient time and consider the approximate case where
each rectilinear step is covered at constant speed obtaining the Langevin-like equation

ṙ(t) = f(t) ⇒ r(t) = r(0) +

∫ t

0
f(τ)dτ, (4.2)

where r(t) is the instantaneous position of the particle and f(t) is the stochastic force
divided by the friction coefficient. Our aim is to obtain an equation that describes the
time evolution of the distribution function P (x, t) = 〈δ (x− r(t))〉 in the case where the
intensity of the stochastic force is distributed as a α-stable Lévy distribution. Denoting,
respectively, the Fourier transform and its inverse with F and F−1 we have

P (x, t) = 〈δ (x− r(t))〉 =
〈

F−1
[

eikr(t)
]〉

= F−1
[〈

eikr(t)
〉]

; (4.3)

we can assume, without lack of generality, that r(0) = 0 and use eq. 4.2 to write

P (x, t) = F−1
[〈

eik
R t
0
f(τ)dτ

〉]

. (4.4)

Let’s consider the case where f(t) is composed by a series of equally spaced pulses3:

f(t) =
m
∑

j=0

fj η δ(t − tj), (4.5)

where m is the total number of pulses in the total time t, η is the (constant) time interval
between two successive pulses, tj = ηj (N.B. t0 = 0 and tm = ηm = t) and the intensity
of the pulses fj is distributed as a stable Lévy distribution with parameter α. The
characteristic function ϕf of fj distribution (defined as the expectation value of eikfj)
equals

ϕf =
〈

eikfj

〉

= e−η|γk|α . (4.6)

3This hypothesis is not strictly necessary for the following derivation but makes it easier.
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We can then rewrite the probability to find the particle at a position x at the time t
as

P (x, t) = F−1
[〈

eik
Pm

j=0 fj

〉]

= F−1





m
∏

j=0

〈

eikfj

〉



 =

= F−1
[〈

eikfj

〉m]

= F−1
[

e−η m |γk|α
]

= F−1
[

e−t|γk|α
]

,

(4.7)

where we used the fact that the pulses are statistically independent. From this relation
we get:

dP (x, t)

dt
= F−1

[

− |γk|α e−t|γk|α
]

. (4.8)

If α is an integer, has a very straightforward interpretation. Let’s take the case α = 2: for
each multiplicative k the inverse Fourier transform yields a spatial derivative (multiplied
by the imaginary unit i) and we get

dP (x, t)

dt
= γ2∇2F−1

[

e−t|γk|α
]

= γ2∇2P (x, t) = D∇2P (x, t), (4.9)

where we identified γ2 with the diffusion coefficient D.

Since α is a real number and not an integer, the generalization of this process requires
the introduction of fractional derivatives. Fractional derivatives (and fractional integrals)
are a generalization of standard derivatives (and integrals) to non integer orders: this
generalization is not unique and many different, but equivalent, definitions exist [74, 75].
In the following we will use the most widely used form, known as the Riemann-Liouville
differintegral:

aD
ν
bf(x) =

1

Γ(m− ν)

dm

dxm

∫ b

a
(b− β)m−ν−1f(β)dβ (4.10)

where m is the smallest (positive) integer bigger than ν. This operator is called a
differintegral since it is equivalent to integration if ν is a negative integer and is equivalent
to differentiation if ν is a positive integer. We notice that, when ν is positive, the
differentiation procedure is a local operation only when ν is an integer. When the
differentiation has a fractional order it does involve a definite integral in the region [a, b]
making the operator a non-local one.

The Laplace transform (L) of this operator is

L [Dνf(x)] = sνL [f(x)] −
m−1
∑

j=0

sm−j−1
D

j−m+νf(x)

∣

∣

∣

∣

∣

∣

x=0

, (4.11)

and has a simple form only when ν is negative (i.e. D
ν represent an integration) or

when ν < 1. In these cases the summation vanishes and we recover the familiar form
L [Dνf(x)] = sνL [f(x)].
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Since α ∈ (0, 2], we can define the left and the right hand fractional derivatives

D
α/2
+ f(x) =

1

Γ
(

1 − α
2

)

d

dx

∫ x

−∞

f (τ)

(x− τ)α/2
dτ

D
α/2
− f(x) = − 1

Γ
(

1 − α
2

)

d

dx

∫ ∞

x

f (τ)

(x− τ)α/2
dτ

(4.12)

that, being of order one or less, behave in a simple way under Laplace and Fourier
transforms. We can therefore write a generalized diffusion equation valid for every α:

dP (x, t)

dt
= −D D

α/2
+ D

α/2
− P (x, t) (4.13)

where D is a multiplicative constant with dimensions mα/s.

4.1.1 Superdiffusion

The generalized diffusion equation is a complicated integro-differential equation and
admits a compact solution only in very few cases. Apart from the standard diffusion
case we can obtain a simple analytical result only when α = 1 (other solutions are
possible for non-symmetric distribution with β 6= 0 [73]); in this instance the solution,
with the initial condition P (x, 0) = δ(x), can be obtained directly from eq. 4.8

dF [P (x, t)]

F [P (x, t)]
= −D |k| dt→ F [P (x, t)] ∝ e−Dt|k| → P (x, t) =

Dt

π

1

|x|2 +D2t2
, (4.14)

i.e. the distribution has the form of a Lorentzian; the variance of this distribution
diverges but we can see that its width increases linearly with time, instead of that with
the square root of time as it happens in the case of standard diffusion. The fact that the
probability density function to find a particle in a given position at a given time (i.e. in
the case of light, the energy density) spreads faster than in the diffusive case is known
as superdiffusion.

As we saw for the α = 1 case for a Lévy flight it is not, strictly speaking, possible to
define a variance, since all the moments of order bigger than α diverge. Nevertheless we
can write the converging moments as

〈xµ〉 =

∫ ∞

−∞
xµP (x, t) dx =

∫ ∞

−∞
xµF−1

[

e−D|k|α
]

dx =

=
1

2π

∫ ∞

−∞
dx xµ

∫ ∞

−∞
e−D|k|αdk .

(4.15)

Making the change of variables

x1 = k
α
√
αDt x2 =

x
α
√
αDt

, (4.16)

we obtain
µ
√

〈xµ〉 ∝ α
√
αDt ∝ t

1
α (4.17)
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where the proportionality constant is a complicated function of α and µ but does not
depend on time. Therefore all (converging) moments of the distribution have the same
scaling behavior with time and we can conclude that the width of the distribution scales
with time as t1/α. This relation poses some problems when 0 < α < 1, since it will
lead to a propagation that is faster than ballistic. In fact Lévy flight are defined to
take a constant time for each step. While this is often mathematically convenient it
is an unphysical model since arbitrary long steps are possible and, therefore, arbitrary
high velocities are required. When we sought to obtain a generalized diffusion equation
we considered a model where arbitrary strong pulses would impress to the particle an
arbitrary high speed. A much more physical model, known as Lévy walk, considers that
each step is made at constant speed. A more accurate treatment shows that the mean-
square displacement

〈

r2(t)
〉

for a step length distribution that decay asymptotically as

x−(α+1) scales (for large times) as [76]

〈

r2(t)
〉

∝







































t2 0 < α < 1

t2

ln t
α = 1

t3−α 1 < α < 2

t ln t α = 2

t α > 2

(4.18)

so that no propagation faster than the ballistic regime is possible.

4.2 Lévy walk for light

In order to obtain a Lévy walk it is necessary to have a step length distribution with
diverging moments, i.e. a step distribution that decays asymptotically as a power law.
But, in a homogeneous opaque system, both the scatterers density N and the scattering
cross section σ are position independent and therefore the distribution of the step length
between two successive scattering events is given, as we saw in section 1.2, by P (x) =
Nσe−Nσx = (1/ℓs) e

−x/ℓs whose moments are all finite.

Since Lévy flights were originally introduced by Mandelbrot as a random walk on
a fractal, one may, naively, expect that a multiple scattering process on a fractal 3D
structure will produce a Lévy walk for light. Although examples of fractal structures
in nature are well known, from coral reefs to coastlines to broccoli (see fig. 4.2), it is
difficult to implement directly this approach. In fact light, like all waves, cannot resolve
features that are much smaller than its wavelength and therefore all fine structures
(that define the fractal dimension) behave as an effective, homogeneous, medium. Much
more important are the large spacing between scattering events, i.e. regions where the
scatterers density N is low and therefore the mean free path is long, separated by regions
where the scattering probability is much higher.

To illustrate this concept we can consider a simplified model having a step distribution
that is still given by an exponential decaying function, like in the homogeneous system
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Figure 4.2: “Romanesco broccoli” show a fractal-like shape but light transport in such
structure is still diffusive.

case, but with an empty region where scattering does not occur (see fig. 4.3 panel a).
We can therefore write the new step distribution as

P ∗(x) =
1

ℓs

(

H(a− x)e−
x
ℓs +H(x− (a+ b))e−

x−b
ℓs

)

(4.19)

where H(x) is the Heaviside step function, a is the distance after which the void is
encountered and b the width of the void.

If b is constant the net effect of the voids is to renormalize ℓs and the Central Limit
Theorem still holds. But if b is distributed as P (b) we must reinterpret eq. 4.19 as P (x|b),
i.e. the conditional probability of x with fixed b. The joint probability P (x, b) is then
given by P (x|b)P (b) and therefore the moments µm of the step distribution are given by

µm =

∫ ∞

0
xmP (x)dx =

∫ ∞

0
xm

(
∫ ∞

0
P (x, b)db

)

dx =

=

∫ ∞

0
xm

(∫ ∞

0
P (x|b)P (b)db

)

dx.

(4.20)

If we write P (b) = 1/bα+1 with 0 < α < 2, we see that all moments µm with m ≥ α
diverge, unless we are in the limit of a≫ ℓs. In this latter case we have µ1 = ℓs for any
α > 0 and the presence of a void distribution has no net effect since the propagation
can be separated in regions of Brownian random walk separated by rare long jumps.
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Figure 4.3: a) Step length distribution in the presence of a void of size b. Inside the
void no scattering is possible. b) A ray of light entering a spherical void of
diameter d will see an empty region of size b ≤ d, so that P (b) 6= P (d). c)
The total solid angle Ω subtended by a sphere determines the probability
that the light will encounter that particular spherical void.

For α ≥ 2, on the other hand, all moments of the distribution are finite and the sum
converges toward a Gaussian. We can therefore obtain a Lévy walk with a given α
correctly choosing P (b).

Experimentally we cannot directly access the distribution P (b) but only P (d), the size
distribution of the voids. For simplicity we will assume voids to be spherical and d to
be their diameter. Since any ray of light impinging not perfectly perpendicular on the
sphere surface will make a step smaller than d (see fig. 4.3 panel b) this effect needs to be
taken into account. To obtain a relation between P (b) and P (d) we can write b = d cos θ
with P (θ) = 1 and θ ∈

[

−π
2 ,

π
2

]

so that we can apply the following transformation

{

b = d cos θ

θ = θ
⇒







d =
b

cos θ
θ = θ

⇒ ‖J‖ = sec θ (4.21)

where ‖J‖ is the determinant of the Jacobian matrix of the transformation. We can
then write

P (b, θ) =‖J‖P (d)P (θ) = sec θP (d) → P (b) =

∫ π
2

−π
2

sec θP (d)dθ. (4.22)

If we choose P (d) ∝ 1
1+dα+1 we obtain

P (b) ∝
∫ π

2

−π
2

sec θ
1

1 +
(

b
cos θ

)α+1 dθ =

∫ π
2

−π
2

sec(θ)
(

1 + (b sec(θ))α+1
) dθ. (4.23)

In the limit of large b this integral can be solved and we get P (b) ∝ 1/bα+1, i.e. if P (d)
asymptotically decays as 1/dα+1, also P (b) asymptotically decays as 1/bα+1.

In 3D we need to take into account also the probability that a step starting at an
average distance ℓs from a given spherical void will actually enter that void and will not
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go in another direction. To do that we can calculate the solid angle Ω subtended by the
sphere (see fig. 4.3 panel c) as a function of d. Some simple geometry considerations

show that Ω =
(

d
2

)2
/
(

ℓ2s + d ℓs
)

so that asymptotically Ω scales as d. Therefore, in
order to obtain a Lévy walk with parameter α, we need a diameter distribution of voids
that asymptotically decays as d−(α+2).

4.2.1 Sample preparation

Diameter (µm) Quantity (mg) Diameter (µm) Quantity (mg)

550 15 ± 0.75 100 15 ± 0.75
480 15 ± 0.75 70 15 ± 0.75
400 15 ± 0.75 50 15 ± 0.75
330 15 ± 0.75 40 15 ± 0.75
280 15 ± 0.75 30 15 ± 0.75
230 15 ± 0.75 20 15 ± 0.75
200 15 ± 0.75 15 15 ± 0.75
170 15 ± 0.75 10 15 ± 0.75
140 15 ± 0.75 8 15 ± 0.75
120 15 ± 0.75 5 15 ± 0.75

Table 4.1: Weight used for each sphere diameter in a typical sample.

We prepared samples suspending Rutile Titanium Dioxide (T iO2) in liquid Sodium
Silicate (SiO2 : Na2O). In the suspension, soda lime glass microspheres of different
diameter were introduced with a controlled diameter distribution. In order to simplify
the data analysis and the theoretical modeling we choose α = 1 for which we have an
analytical form for the propagation in bulk (eq. 4.14). We used glass spheres of 20 dif-
ferent diameters and we weighted them to obtain a distribution P (d) = d−3 (i.e. we
need a constant weight for each diameter family); the sphere diameter and the weights
used are shown in table 4.1. The amount of titanium dioxide and sodium silicate were
chosen empirically: the concentration of T iO2 must be enough to allow a multiple scat-
tering transport regime for light (i.e. enough to make the sample optically opaque) but
also low enough to make the scattering mean free path ℓs much larger than the average
distance between spheres. The sodium silicate should be kept at minimum to maintain
the sphere density high, but must be enough to act as a glue for the sample and keep it
together. We found that 10 mg of titanium dioxide and 57 ml of sodium silicate were a
good compromise. The samples were then kept half an hour pressed between two glass
plates. This way, the sample thickness was given by the diameter of the biggest sphere
family.

4.2.2 Truncated Lévy walks

Since any physical system is finite sized me must deal with the fact that, in real samples,
it is not possible to make arbitrary long steps. We must therefore deal with a step
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Figure 4.4: Monte Carlo simulation of the mean-square displacement for a truncated
Lévy walk. We used a Lorentzian step distribution with unit width and
the truncation was chosen to be, respectively, equal to 102 (panel a), 5 · 102

(panel b), 103 (panel c) and 104 (panel d) times the step distribution width.
On the horizontal axis of all panel is plotted the product of the velocity
by the elapsed time and, on the vertical axis, is plotted the mean-square
displacement. Both are in units of the step distribution width. The gray
dashed lines are a fit of the short and, respectively, long time part of the
calculation to a power function and show the change in the slope. Notice the
log-log scale.
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distribution that follows a α-stable Lévy distribution only up to a given truncation
length ℓmax and is identically zero from that point on. Such a distribution has finite
moments and, therefore, will eventually converge to a normal distribution creating a
transition from a (short time) superdiffusive regime to a (long time) diffusive regime.
While distributions like the exponential one, that appears when N and σ are spatially
uniform, converge to a Gaussian very fast a α-stable Lévy distribution has large moments
even when truncated and this convergence is much slower (see appendix B).

To investigate this transition in the transport regime we performed a series of Monte
Carlo simulations for a Lévy walk with α = 1 and different truncation lengths. As it is
shown in fig. 4.4 the transition is smooth but occurs approximately when the product of
the light velocity in the medium by the elapsed time is equal to the truncation length,
i.e. when the light has had time to explore all possible path length. Since in our samples
the truncation length is determined by the biggest sphere category, we expect this to
be also the characteristic length scale for a Lévy-like transport. For this reason it is
important to take care that the total thickness of the samples is not bigger than ℓmax.

4.3 Total transmission

Because of the possibility to make long steps across the system we expect that a sample
where the transport follows a Lévy walk will deviate from the Ohm’s law that we obtained
in section 1.2.2. In particular we expect that the total transmission will decrease slower
with the thickness than in the diffusive regime. While solving the generalized (fractional)
diffusion equation 4.13 with realistic boundary condition is not trivial, scaling reasoning
[77] allows to generalize the Ohm’s law to

T =
1

1 +A Lα/2
(4.24)

for completely absorbing boundaries and no absorption. This relation can be used as
a test to show that our samples actually support a Lévy-like transport. To do that we
realized a series of samples with different thicknesses in the range from 30µm to 550µm
keeping constant the volume ratio of glass spheres, sodium silicate and titanium dioxide
but changing the number of sphere families used. We took care to carefully press all
samples between two microscope slides to make sure that the truncation length was
equal to the total thickness. We performed total transmission measurements impinging
orthogonally on the sample with a collimated He-Ne laser (λ = 632.8 nm) with a 1 mm2

spot. The total transmission was then collected by means of an integrating sphere and
a standard lock-in technique was employed to reduce the noise. Each measurement was
repeated 10 times on different parts of the sample to improve the ensemble average over
disorder. A fit of the data (shown in fig. 4.5) to eq. 4.24 yield α = 0.948± 0.09 that is in
excellent agreement with the nominal value α = 1 that we used to decide the diameter
distribution to use in our samples. This shows clearly that our recipe indeed results in
a system that present a Lévy walk transport regime with, in principle, a controllable
parameter α.
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Figure 4.5: Total transmission measurements as a function of the slab thickness. The
error bars represent the standard deviation of measurements repeated on
different spots on the sample. The solid line represent the fit to eq. 4.24 and
shows a good agreement with data, whereas the dashed line represent the fit
to the Ohm’s law for light.

On very thick samples (L ≫ 500µm) the presence of a small amount of absorption,
that can be ascribed to the titanium dioxide used as a scattering medium, starts to effect
the total transmission and, in the absence of a more complete theory on Lévy walks, we
cannot compare measurements made on such samples with eq. 4.24.

4.4 Transmission profile in the superdiffusive regime

A Lévy walk transport regime will not influence only the scaling of total transmission
with the thickness. Due to the long tail in the step length distribution we expect fluc-
tuations in transmission to be much more important in the case of a Lévy walk than in
the diffusive regime. In the total transmission profile one should therefore observe large
differences from one disorder realization to another while, in comparison, in a common
diffusive sample we expect the differences to be limited to the speckle patterns, which
average out quite rapidly. We illuminated the sample with a He-Ne laser focused on a
2 µm spot size and imaged the output surface on a Peltier cooled CCD camera. We
placed the sample between crossed polarizers to suppress the ballistic light and observe
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Figure 4.6: Examples of transmitted profiles for different realization of the disorder in
the case of a sample showing a Lévy transport (panel a) and a completely
diffusive test sample (panel b).
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Figure 4.7: Distribution of the width and intensity (normalized to the average) of the
transmission profiles for the diffusive and the superdiffusive case. The dis-
tributions are normalized to have unitary integral.

only the scattered component and repeated the measurement on different point of the
surface; if these points are much further apart than the transmitted profile we can regard
them as coming from different realization of the disorder. Fig. 4.6 shows a few examples
of such measurements on a 220µm thick sample showing a Lévy transport and on a test
diffusive sample of the same thickness. We can see that, while in the diffusive regime
the fluctuations are small, in the case of a Lévy walk the transmitted intensity and the
dimension of the transmitted profile changes a lot from one realization of the disorder to
another. We can quantify somehow this empirical observation defining, for each image,
a width R as the full-width at half maximum of the radial average around the incoming
laser position and a total intensity as the integral over the image. In fig. 4.7 it is shown
how these two quantities (normalized over their average 〈R〉 and 〈I〉) are distributed.
While the distribution are a bit noisy the qualitative difference between the diffusive
and the superdiffusive case are striking.

Also the ensemble averaged transmission profile shows marked differences between the
two cases. We know from eq. 1.38 that in the diffusive regime the intensity distribution
on the exit surface is a rounded bell-shaped curve quite close to a Gaussian (although
in fig. 1.5 we already marked the differences), but Monte Carlo simulations suggests (as
shown if fig. 4.8 panel b) that in the superdiffusive regime it should have a very different
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Figure 4.8: Panel a: Average measured transmission on the sample output surface versus
radial distance from the center for the Lévy and the diffusive case. Panel
b: Monte Carlo simulations with the same nominal parameters than the
experiment.
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Figure 4.9: Radial intensity profile in the case of a single category of spheres used to
fabricate the sample.

shape. Due to the strong fluctuations it is necessary to average over a large number of
different realizations of the disorder in order to observe a convergence; we performed
3000 measurements on independent spots, averaged them and performed an angular
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average to obtain a intensity vs. radius profile. Our measurements show (fig. 4.8 panel
a), in agreement with Monte Carlo simulations, a very marked cusp and slow decaying
tails that are not present in the diffusive case. The small discrepancy with the Monte
Carlo simulations in the overall width of the profile can be explained by the influence of
internal reflections at the interface at the sample, which were not taken into account in
the Monte Carlo simulations. As a test measurement we also studied a sample that was
prepared using only one category of spheres; such sample presents big fluctuations in
the transmitted profile when one sphere is close to the incoming laser position but, over
ensemble average, the intensity profile of the diffusive case is recovered (fig. 4.9). This
has to be expected since, as we saw from eq. 4.19, if the diameter of voids inside the
system is a constant the net effect amount to a renormalization of ℓs without producing
any anomalous diffusion.
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A Style and notation

Through this thesis we tried to be as consistent as possible with the International System
of Units (SI) and to always make a clear difference between scalar and vectorial quantities
typing the latter in bold.

List of used symbols and their meanings

Notation Meaning

A Arbitrary constant.
a Radius of a sphere (in section 2.1).
al Mie scattering coefficient (in section 2.1).
b Size of the voids (in chapter 4).
bl Mie scattering coefficient (in section 2.1).
c Speed of light in vacuum. In SI units c = 299, 792, 458 meters per

second.
cl Mie scattering coefficient (in section 2.1).
D Diffusion constant.

aD
ν
b Differintegral of order ν and extermes a and b (in chapter 4).
d Thickness of a layer (in chapter 3).
dl Mie scattering coefficient (in section 2.1).
F Fourier transform.
f Filling fraction (in chapter 2).
G Dressed Green function averaged over disorder realization (in section

1.3).
G0 Free space Green function averaged over disorder realization (in section

1.3).
g Dressed Green function (in section 1.3).
g0 Free space Green function (in section 1.3).
g Radial distribution function (in section 2.2.1).
dS Infinitesimal surface element.
dV Infinitesimal volume element.
E Electric field (as a vector).
H Magnetic field.
H Heaviside step function (in section 1.2).
h+

l Spherical Hankel function of first kind of lth order.
h−l Spherical Hankel function of second kind of lth order.
I Intensity of the electromagnetic field.
ℑ Imaginary part.
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Notation Meaning

J Current associated with the intensity flux (in section 1.2).
Jl Bessel function of the first kind of lth order.
‖J‖ Determinant of the Jacobian matrix.
jl Spherical Bessel function of the first kind of lth order.
K Angular wavenumber renormalized for the multiple scattering (in sec-

tion 1.3).
k Momentum (as a vector).
k Angular wavenumber (k = 2π/λ).
k0 Angular wavenumber in vacuum.
κe Extinction coefficient (in chapter 3).
L Total thickness of a sample.
L Laplace transform. Ladder diagrams (in chapter 1).
ℓmax Truncation length (in chapter 4).
ℓs Scattering mean free path.
ℓt Transport mean free path.
M Vector harmonic (in section 2.1).
m Refractive index contrast (in section 2.1).
N Vector harmonic (in section 2.1).
N Scatterers density.
n Refractive index.
PV Cauchy principal value.
P Probability density function.
Pl Probability for a transmission peak to be a Necklace state (in chapter

3).
Pm

l Associate Legendre function.
p Induced dipole moment (in section 1.1).
q Exchanged momentum.
r Position vector in polar, cylindrical or spherical coordinates.
r Dimensionless radial coordinate r = nkr in cylindrical coordinates (in

section 2.1).
R Reflection coefficient.
ℜ Real part.
r Radial coordinate in polar, cylindrical or spherical coordinates. Re-

flectance (in chapter 3).
S Source function (in section 1.2).

S1(θ) Scattering amplitude function (in section 2.1).
S2(θ) Scattering amplitude function (in section 2.1).
Sf Structure factor (in section 2.2.1).
Sl Scattering matrix for the lth layer (in chapter 3).
SM Generalized scattering matrix of order M (in chapter 3).
sign Sign function, defined to be +1 if its argument is positive, −1 if its

argument is negative and 0 if its argument is zero.
T Transmission coefficient. T-matrix (in section 1.3).
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Notation Meaning

t Time. Transmittance (in chapter 3).
U Electromagnetic energy in a volume element (in section 1.2). Set of

the irreducible vertex for the (dressed) intensity propagator (in section
1.3).

V Effective potential for a single, point-like, scatterer (in section 1.3).
V Total volume.
Veff Effective potential for an electromagnetic wave (in section 1.3).
v Speed of light in the medium.
vp Phase velocity.
ve Energy velocity.
x Position vector in cartesian coordinates.
x Position along one axis in cartesian coordinates. Dimensionless size

parameter x = nka (in section 2.1).
Yl Bessel function of the second kind of lth order.
yl Spherical Bessel function of the second kind of lth order.
y Position along one axis in cartesian coordinates.
z Position along one axis in cylindrical or cartesian coordinates.
ze Extrapolation length (in section 1.2).
zl Linear combination of spherical Bessel functions of the first and second

kind of lth order.
α Dielectric polarizability (in section 1.1). Lévy exponent (in chapter 4).
γ Width of the α-stable Lévy distribution (in chapter 4).

∆kl Typical width of a transmission peak composed by l resonances (in
chapter 3).

δ Dirac delta.
δt Infinitesimal time interval.
ǫ0 Vacuum permittivity. In SI ǫ0 ≈ 8.854187817 · 10−12 farad per meter.
ζl Riccati-Bessel function of the second kind of lth order.
η Time elapsed between successive pulses (in chapter 4).
θ Angular coordinate ∈ [0, 2π) in polar, cylindrical or spherical coordi-

nates.
λ Wavelength.
µ Magnetic susceptibility.
ξ Localization length.
ρ Energy density.
Σ Self-energy operator (in section 1.3).
σ Scattering cross section.

σMie Scattering cross section for a sphere (in section 2.1).
Φ Flux of the electromagnetic field.
φ Angular coordinate ∈ [0, π) in spherical coordinates.
ψl Riccati-Bessel function of the first kind of lth order.
Ω Solid angle. Characteristic frequency of the field (in section 1.3).
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Notation Meaning

ω Frequency. Characteristic frequency of the envelope (in section 1.3).

Feynman notation

Notation Meaning

• Single scatterer potential V δ (r− rα).
× Single particle T -matrix.
⊗ Averaged T -matrix.
Σ Self-energy (or mass operator).

Free space Green function g0(r, r
′).

Connection between identical scatterers.
Dressed Green function g(r, r′).
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B The central limit theorem

The Central Limit Theorem states that, if xi (with i from 1 to N) is a set of independent
random variables distributed as P (x) and all moments of P (x) are finite (in particular
its variance σ), then xs, defined as

lim
N→∞

N
∑

i=1

xi , (B.1)

will be normally distributed. A simple demonstration of this theorem can be obtained
considering the variable yi = (xi − 〈x〉) /σ that has zero average and unit variance. The
standard score of xs can be then written as

zN =
xs −N 〈x〉√

Nσ
=

N
∑

i=1

yi√
N
. (B.2)

Since, by Taylor’s theorem, the characteristic function of y can be expanded as

ϕy =
〈

eikyi

〉

= 1 − k2

2
+ o(k2) (B.3)

we can write the characteristic function of zN as

ϕz =

N
∏

i=1

ϕy

(

k√
N

)

=

[

ϕy

(

k√
N

)]N

=

[

1 − k2

2N
+ o(

k2

N
)

]N

. (B.4)

Therefore
lim

N→∞
ϕz = e−k2/2 (B.5)

which is exactly the characteristic function of a (standardized) normal distribution.
With some minor modifications the Central Limit Theorem holds also for the sum of

random variables with different distributions and its hypothesis can be relaxed to include
all distributions with finite variance (although a finite third moment is necessary for the
convergence to be uniform).
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Figure B.1: The convergence to a normal distribution can be observed sampling a large
amount of numbers from a uniform distribution between zero and one, that
has finite moments, and plotting their frequency distribution (panel a). Then
we can look at the frequency distribution of the sum between two numbers
sampled from the same uniform distribution (panel b) and so on. Already
for the sum of three uniform distribution (panel c) the curve appear bell-
shaped and for the sum of four (panel d) the differences with a Gaussian
(gray dashed line) are negligible. All frequency distribution are normalized
to one.
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C The Green function

If L̂ is a linear differential operator we can associate to the differential equation

L̂f(r) = S(r) (C.1)

the Green function g(r, r′) defined as the solution of

L̂g(r, r′) = δ(r − r′) . (C.2)

The Green function has the property that

∫

L̂g(r, r′)S(r′)dr′ =

∫

δ(r − r′)S(r′)dr′ = S(r) = L̂f(r) →

→L̂f(r) = L̂

∫

g(r, r′)S(r′)dr′ → f(r) =

∫

g(r, r′)S(r′)dr′ .

(C.3)

Therefore, once the Green function is known, we can obtain the solution of the differential
equation for any source function S(r) just by mean of integration.

The Green function for the Helmholtz equation (eq. 1.40) in three dimensions is defined
as the solution of

∇2g0(r1, r2) + k2
0g0(r1, r2) = δ(r1 − r2) = δ(q) (C.4)

where q = r1 − r2. Fourier transforming with respect to q yields

k2F [g0(r1, r2)] − k2
0F [g0(r1, r2)] =

1
(√

2π
)3 →

→F [g0(r1, r2)] =
1

(√
2π
)3 (

k2 − k2
0

)

.

(C.5)

We can perform the inverse Fourier transform noticing that the function to be trans-
formed do not depends on the angular components of q but only on its modulus q = |q|
and we obtain

g0(r1, r2) = − eik0|r1−r2|

4π |r1 − r2|
. (C.6)
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D Hankel transform

If we consider the function f(r) its two-dimensional Fourier transform (in polar coordi-
nates) can be written as

F [f(r)] =
1

2π

∫

f(r)e−ik·rdr =
1

2π

∫ ∞

0

∫ 2π

0
rf(r, θ) e−ikr cos(θ) dθ dr . (D.1)

If f does not depend on the angular coordinate the integration on the variable θ can be
carried carried out and we obtain

F [f(r)] =

∫ ∞

0
r J0(kr) f(r)dr . (D.2)

This is known as the Hankel transform of zeroth order. The Hankel transform of lth
order is defined as

Hl [f(r)] =

∫ ∞

0
r Jl(kr) f(r)dr . (D.3)
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E Transfer matrices

Figure E.1: Diagram of refractions and diffractions of the electromagnetic field between
two interfaces of a multilayer. For clearness all rays are depicted with an
angle.

If we have a multilayer structure composed of non magnetic, homogeneous, isotropic
and linear materials we can employ a matrix formalism to calculate the transport pa-
rameters. For simplicity we will consider only the case where all refractive indexes are
real and the incidence is perpendicular to the surface.

Let’s consider the two interfaces that separate three layers of refractive index, respec-
tively n0, n1 and n2: the total electric field on these interfaces is given by

Ea = E0 +Er1 = Et1 + Ei1

Eb = Ei2 +Er2 = Et2
(E.1)

where the quantities used are defined in fig. E.1. In the very same way we can write the
total Magnetic field B (perpendicular to the electric field) on the two interfaces

Ba = B0 −Br1 = Bt1 −Bi1

Bb = Bi2 −Br2 = Bt2 .
(E.2)

Since, for plane waves propagating in a uniform medium, E = vB = (c/n)B eq. E.2 can
be rewritten as

Ba =
n0

c
(E0 − Er1) =

n1

c
(Et1 − Ei1)

Bb =
n1

c
(Ei2 − Er2) =

n2

c
Et2 .

(E.3)
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Using the fact that

Ei2 = Et1e
in1k0d

Ei1 = Er2e
in1k0d ,

(E.4)

where d is the thickness of the layer, we can write, for the fields on the interface a







Ea = Ei2e
−in1k0d + Er2e

in1k0d

Ba =
n1

c

(

Ei2e
−in1k0d − Er2e

in1k0d
) ⇒



















Ei2 =
ein1k0d

2

(

Ea +
c

n1
Ba

)

Er2 =
e−in1k0d

2

(

Ea −
c

n1
Ba

)
. (E.5)

Therefore the fields at the interface b can be written as

Eb = Ei2 + Er2 = Ea
ein1k0d + e−in1k0d

2
+Ba

c

n1

ein1k0d − e−in1k0d

2
=

= Ea cos(n1k0d) + iBa
c

n1
sin(n1k0d)

Bb =
n1

c
(Ei2 − Er2) = Ea

n1

c

ein1k0d − e−in1k0d

2
+Ba

ein1k0d + e−in1k0d

2
=

= Ba cos(n1k0d) + iEa
n1

c
sin(n1k0d)

(E.6)

or, equivalently, in the matrix form
(

Eb

Bb

)

=

(

cos(n1k0d) i c
n1

sin(n1k0d)

in1
c sin(n1k0d) cos(n1k0d)

) (

Ea

Ba

)

= M
(

Ea

Ba

)

. (E.7)

The matrix M, known as the transfer matrix, relate the field on a interface with the
field at the previous interface and can be used to relate the field at the two sides of the
sample. In fact

(

EN

BN

)

= MN−1

(

EN−1

BN−1

)

=
N
∏

i=1

Mi

(

E1

B1

)

= Mtot

(

E1

B1

)

. (E.8)

Substituting into eq. E.7 the conditions

Ea = E0 + Er1 Eb = Et2

Ba =
n0

c
(E0 −Er1) Bb =

n2

c
Et2

and defining the transmittance t ≡ Et2/E0 and the reflectance r ≡ Er1/E0 we can solve
the system to get

t =
2n0
c

n2
c m1,1 − n0n2

c2 m1,2 −m2,1 + n0
c m2,2

r = −
n2
c m1,1 + n0n2

c2 m1,2 −m2,1 − n0
c m2,2

n2
c m1,1 − n0n2

c2
m1,2 −m2,1 + n0

c m2,2

(E.9)

where
(

m1,1 m1,2

m2,1 m2,2

)

= M . (E.10)
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E.0.1 The scattering matrix

Figure E.2: Diagram of the entering and exiting electric field from a layer. The + and −
superscripts the direction of the wave propagation and the index l enumerate
the layers.

Another, complementary, matrix formalism to describe the transmission properties of
a 1D multilayer system is to consider, instead of the interfaces, the field that enter and
exit from the two sides of a layer. We can write the electric field at the two sides of the
layer as (see fig. E.2)

E+
l−1 = r−E+

l−1 + t−E−
l

E+
l = r+E−

l + t+E−
l−1 .

(E.11)

Since this is a linear system of equations we can rewrite it as

(

1 −r+
0 t−

)(

E+
l

E−
l

)

=

(

t+ 0
−r− 1

)(

E+
l−1

E−
l−1

)

⇒

⇒
(

E+
l

E−
l

)

=

(

t+ − r+r−

t−
r+

t−

− r−

t−
1
t−

)

(

E+
l−1

E−
l−1

)

= Sl

(

E+
l−1

E−
l−1

)

.

(E.12)

The form for the scattering matrix Sl can be simplified if we notice that t+ = t− = t
(while r+ and r− may differ for a phase term) and that r+t∗ + t(r+)∗ = 0. In a non
absorbing system |t|2 + |r|2 = 1 and so we get

1

t∗
= t− r+r−

t
(E.13)

that, substituted into eq. E.12, yields (writing r = r+)

Sl =

(

1
t∗

r
t

r∗

t∗
1
t

)

. (E.14)
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potuto dare tantissimo.


