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MORTALITY PORTFOLIO RISK MANAGEMENT

ABSTRACT

In this paper, we offer a new method of managing the risk of unexpected changes in mor-

tality underlying annuities and life insurance. This method maximizes the insurer’s profit

margin, subject to constraints on its downside mortality risk. We also show how to deter-

mine bounds on mortality margins when information on the moments of the distributions is

known. We provide numerical examples to illustrate how to apply these methods and to use

them to take advantage of natural hedging effects of annuity and life insurance mortality.

1. INTRODUCTION

Life insurance companies sell a wide variety of life insurance and annuity products. The in-

surer’s liability for these products depends on future interest and mortality rates, which explains

why company managers and regulators focus on these risks. Unanticipated mortality improvement

(as well as a decline in interest rates) can be very serious. For example, unanticipated mortality

improvement was a factor in the failure of Equitable Life, once a highly-regarded United Kingdom

life insurer (see Ombudsman (2008)).

During recent years, economic and policy changes have made mortality projection and risk

management more important than ever. On the one hand, pension plans and annuity providers un-

derestimated life expectancy for ages 60 and older in the past decade (Cowling and Dales, 2008).

Cowling and Dales (2008) find that companies in the UK’s FTSE100 index underestimated their

aggregate pension liabilities by more than £40 billion. On the other hand, the recent findings of

genetic analysts spur fears of a worldwide epidemic by confirming that today’s “bird flu” is similar

to the 1918 “Spanish flu” which killed more than 40 million people (Juckett, 2006). According to

Toole (2007), losses due to a severe pandemic could amount to 25% of the US life insurance in-

dustry’s statutory capital. While the great majority of US life insurance companies would weather

such a pandemic, it is clear that these companies should be interested in mitigating the risk.

Date: July 10, 2009.
1
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We describe a method life insurance companies can use to adjust their portfolio of life insurance

and annuities to better manage mortality extreme outcomes while maintaining a relatively efficient

risk-return relationship. This method is called the “mean-variance with conditional value at risk

constraint”, denoted “MV+CVaR”. The MV+CVaR approach combines Markowitz portfolio the-

ory and conditional value-at-risk (CVaR) by optimizing the tradeoff between mean and variance

subject to a lower bound on CVaR. Although the MV+CVaR portfolios are suboptimal relative

to Markowitz counterparts in terms of the mean-variance efficiency, they have lower downside

risk. Therefore this approach may be more appealing to insurance companies that are required to

meet various solvency requirements. Our approach is empirical with all calculations based on the

company’s mortality experience.

Once a mortality portfolio has been determined, the corresponding empirical returns can be

used to estimate moments of the returns. We show how such moment information can be used

to determine semi-parametric upper and lower bounds on the actual underlying portfolio return.

Knowledge about the underlying mortality distribution may be limited. The literature on mortality

forecasts uses a variety of stochastic processes to model mortality or longevity risk. The semi-

parametric approach is based solely on moments, not a distributional assumption. This method

gives bounds on portfolio return that will be satisfied by any distribution with the same moments.

This method provides a mechanism for checking the downside risk of a MV+CVaR efficient mor-

tality portfolio valid for any distribution with the same moments.

The remainder of this paper is organized as follows. The next section describes how to calculate

profit margins of mortality portfolios. Section 3 discusses the MV+CVaR mortality optimization

model. A numerical example illustrates how to implement the approach. Section 4 describes the

semi-parameteric bounds method. We show how to compute the semiparametric upper and lower

bounds for MV+CVaR efficient portfolios and then perform the bound analysis on those portfolios.

In Section 5, we study the natural hedging effect by adding an annuity to a portfolio with only life

insurance. Section 6 extents the analysis to different MV+CVaR efficient mortality portfolios.

Section 7 is our conclusion.
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2. MORTALITY RISK PORTFOLIOS

Consider an insurer selling n lines of business at times t = 0, . . . ,T . For simplicity, we assume,

for each line of business i, the insurer collects a single premium at time t and pays a death or

survival benefit at the end of the year.1 These business lines include various life insurance and

annuity products. The insurer calculates the present value of expected life insurance or annuity

payments, so called net premium, based on its forecasted mortality rates.

Consider a contract based on a life (x) at time t. The company has forecasts of annual death and

survival rates for (x) in future years, qx+s,t+s and px+s,t+s, for s = 0,1, . . . . The j-year survival rate

for (x) determined at t is j px,t where

j px,t =


1 for j = 0

px,t× px+1,t+1×·· ·× px+ j−1,t+ j−1 for j ≥ 1
(1)

The net single premium for a k-year term life insurance on age (x) issued at time t is calculated as

A1
x:k ,t =

k−1∑
j=0

v j+1
j px,tqx+ j,t+ j (2)

where v is the 1-year discount factor. The calculation of the whole life insurance net single pre-

mium Ax,t is similar; just let k→ ∞.

The net single premium for an annual payment immediate life annuity written on (y) at time t is

calculated as

ay,t =
∞∑

j=1

v j
j py,t . (3)

Actual mortality results are observed in the years following t. For example, after k years, the

company will have observed the actual death rates q̃x+s,t+s for s = 0,1, . . . , j−1. Define the present

1Our techniques can also be applied to policies with monthly or annual premiums. It is only to save space that we
consider single premium polices.
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value of the actual death benefits or survival payments, L̃i,t , as

L̃i,t =


Ã1

x:k ,t
=
∑k−1

j=0 v j+1( j p̃x,t)(q̃x+ j,t+ j) for life insurance;

ãy,t =
∑

∞

j=1 v j( j p̃y,t) for life annuity,

(4)

where j p̃x,t (or j p̃y,t) represents the actual j-year survival rate for the age x (or the age y) at time t,

and q̃x+ j,t+ j is the actual one-year death rate for the age x+ j during year t + j.

For the business line i written in year t, in principle, we have E[L̃i,t ] = Pi,t , where the net single

premium

Pi,t =


A1

x:k ,t
=
∑k−1

j=0 v j+1( j px,t)(qx+ j,t+ j) for life insurance;

ay,t =
∑

∞

j=1 v j( j py,t) for life annuity.

(5)

However, in most cases the realized L̃i,t , differs from the expected amount Pi,t , the lump-sum

premium charge by the insurance company at t when the policy i was written. To illustrate, we

define

r̃i,t =
Pi,t

L̃i,t
−1. (6)

If r̃i,t > 0, it indicates that the insurer pays a benefit lower than its expectation, and vice versa. We

call r̃i,t the “pure margin” for line i, which is known at the expiration of the policy but is random

at time t. Denote the weight vector of n lines of business as w = [w1,w2, . . . ,wn]. The total pure

margin of the insurer across n lines of business written at time t equals

r̃t(w) =
n∑

i=1

wir̃i,t . (7)

In general, the insurer charges a risk premium over and above the expected mortality or longevity

payments. The risk premium covers the insurer’s costs of bankruptcy and information asymmetry

associated with the assumed risk (Jean-Baptiste and Santomero, 2000). Assume the insurer charges

a risk premium πi on line i, which is a convex function of the random pure margin r̃i,t ,

πi = a+
c
2

E
[
r̃2

i,t
]
, (8)
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where a is a positive constant. The random margin r̃i,t acts as a proxy for the probability of financial

distress caused by line i, and the constant c/2 is the distress cost factor with c > 0. That is, all else

equal, a higher business risk is associated with a higher cost of financial distress. As such, the

insurer charges a higher risk premium.

Consequently, the profit margin m̃i,t of line i is the sum of the pure margin in equations (6) and

the risk premium in (8),

m̃i,t = πi + r̃i,t = a+
c
2

E
[
r̃2

i,t
]
+ r̃i,t . (9)

Then it is straightforward to obtain the total profit margin m̃t(w) across n lines of business written

at time t,

m̃t(w) = π(w)+ r̃t(w) = a+
c
2

n∑
i=1

wiE
[
r̃2

i,t
]
+

n∑
i=1

wir̃i,t . (10)

3. MORTALITY PORTFOLIO OPTIMIZATION

Markowitz portfolio optimization (Markowitz, 1952) originally applied to investors who are

holding a portfolio and seeking to maximize expected return for a given level of risk, measured

by the variance of return. More recently portfolio optimization techniques have been applied to

corporation management, helping find optimal business strategies to maximize business profits. We

show how to apply this approach to mortality and/or longevity risks subject to capital constraints.

Life insurers are motivated to search for optimal business compositions that could maximize profits

and minimize downside risks. In this section, we propose the MV+CVaR approach to achieve this

goal.

3.1. Portfolio Optimization with CVaR Constraints. As a measure of risk, conditional value-

at-risk (CVaR) is defined as the expected loss/return exceeding a given value-at-risk (VaR). There

are several applications of the CVaR methodology to portfolio optimizations. For example, Rock-

afellar and Uryasev (2000) consider minimizing CVaR, while requiring a minimum expected re-

turn. They generate an efficient CVaRβ -mean frontier by considering different expected returns.

Krokhmal et al. (2002) suggest minimizing the negative expected return subject to a CVaR con-

straint. However, the existing literature does not explicitly consider the tradeoff between mean
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and variance subject to CVaR constraints. This paper fills the gap by adding one or more CVaR

constraints to the traditional Markowitz problem. We call it the MV+CVaR approach.

Let σi j the covariance of margins of business lines i and j. Our MV+CVaR problem is to solve

for portfolio weights w = [w1,w2, . . . ,wn] in terms of the margins, so as to

Minimize
n∑

i=1

n∑
j=1

σi jwiw j

subject to CVaRβ (w)≥ ζ

w ∈W,

(11)

where CVaRβ (w) is the β -level CVaR of mortality portfolio margin calculated as

CVaRβ (w) = E
[
m̃(w)|m̃(w)≤ VaRβ (w)

]
.

VaRβ (w) is the β -level value at risk (VaR) that defines the minimal value such that the proba-

bility of portfolio margin not exceeding this value is β . Here, m̃(w) =
∑n

i=1 wim̃i is the random

variable of portfolio margin. As the observed value of m̃(w) in year t (t = 1, . . . ,s), m̃t(w) equals∑n
i=1 wim̃i,t . We enforce a left-tail constraint to management downside risk by setting β at 0.05.

The CVaR constraint in (11) ensures the tail expectation CVaRβ (w) no lower than a pre-specified

value ζ , thus reducing downside risk. W is the subset of the mortality business composition feasi-

ble set. Specifically, any w in W satisfies

n∑
i=1

wiE[m̃i] = m0

n∑
i=1

wi = 1

wi ≥ 0, i = 1,2, . . . ,n,

(12)

where m̃i is the random margin of line i and n is the number of business lines in the mortality

portfolio and m0 is a pre-specified level of profit margin. Assume no short selling for all lines, that

is, wi ≥ 0 for each i.
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Rockafellar and Uryasev (2000) show that the β -level CVaR can be realized as the solution to

the problem

max
α∈R,w

G(α,w) = α− 1
β

E
[
[α− m̃(w)]+

]
. (13)

If a pair (α∗,w∗) achieves the maximization of (13), G(α∗,w∗) will return β -level CVaR and α∗

will give the corresponding β -level VaR.

Theorem 1. Problem (11) is equivalent to the following problem (14) in the sense that their ob-

jectives achieve the same minimum values.

min
α∈R,w

n∑
i=1

n∑
j=1

σi jwiw j

subject to α− 1
β

E
[
[α− m̃(w)]+

]
≥ ζ

w ∈W.

(14)

The proof of Theorem 1 is provided in the Appendix A.

We can calculate E [[α− m̃(w)]+] by using the empirical values:

E
[
[α− m̃(w)]+

]
=

1
s

s∑
t=1

[α− m̃t(w)]+,

where s is the number of observations. By using auxiliary variables vt , t = 1, . . . ,s, the constraint

α− 1
β

E [[α− m̃(w)]+]≥ ζ can be realized as

α− 1
β

1
s

s∑
t=1

vt ≥ ζ

vt ≥ α− m̃t(w) ∀t = 1, . . . ,s

vt ≥ 0 ∀t = 1, . . . ,s.

(15)

Below we proceed with an example to illustrate our MV+CVaR approach.

3.2. Numerical Illustration. Assume an insurer sells three types of life insurance in year t: 5-

year term life insurance (i = 1) on a male aged x = 35, 10-year term life insurance (i = 2) on male

aged x = 25, and whole life insurance (i = 3) on a male aged x = 40. Further we assume (a) the
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TABLE 1. Summary Statistics – Profit Margin of Three Types of Life Insurance

Lines Mean Variance Skewness Kurtosis

m̃A1
35:5

0.0070 0.0078 0.3197 0.5024

m̃A1
25:10

0.1114 0.0216 0.4906 -0.2144

m̃A40 0.0371 0.0003 0.5992 -0.8741

insurer applies the Renshaw et al. (1996) model to predict future mortality rates, with which it

uses to determine the premium Pi; and (b) the insurer has the same mortality experience as the US

population, which determines its payment L̃i.

Table 1 shows the descriptive statistics for the profit margins of these three lines of life insurance.

Please refer to Appendix B for details on how we estimate those values. In particular, the 10-year

term life insurance on male aged 25, A1
25:10

, has the highest expected profit margin and variance.

The whole life insurance on male aged 40, A40, has a higher expected margin but lower variance

than the 5-year term life insurance on male aged 35, A1
35:5

. In practice, the insurer may not have

the same profit margins as what we use in this paper. Nevertheless, the same techniques discussed

below can be applied to a given insurer’s situation.

Suppose originally these three types of life insurance generate the same amount of premiums.

That is, 33.33% of total premium comes from the 5-year term life insurance, 33.33% from the 10-

year term life insurance, and 33.33% from the whole life insurance (w0 = [33.33%, 33.33%, 33.33%]).

beginning of year t equals

m̃t(w0) =
3∑

i=1

1
3

m̃i,t , (16)

with the summary statistics shown in the row called “Original” of Table 2.

TABLE 2. Summary Statistics of Profit Margins of Original and MV+CVaR 3-Line Portfolios

m̃(w) Mean Variance Skewness Kurtosis Mode CVaR5%
Original 0.0518 0.0057 0.5292 0.1647 0.0264 -0.0749
MV+CVaR 0.0518 0.0008 0.2077 -0.5352 0.0696 0.0068
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To search for an optimum business strategy, we solve the MV+CVaR optimization problem (14).

We specify

m0 =
3∑

i=1

wiE[m̃i] = 0.0518,

and

ζ = CVaR0.05(m̃(w0))+0.05|CVaR0.05(m̃(w0))|, (17)

where CVaR0.05(m̃(w0)) is the 5%-level CVaR of the original portfolio. Then we get the following

weights for the MV+CVaR optimal business composition:

wMV+CVaR = [0, 19.81%, 80.19%].

This means the insurance company should stop writing the 5-year term life insurance, put around

20% of its business on the 10-year life insurance, and underwrite the rest 80% on the whole life

insurance. The row called “MV+CVaR” in Table 2 shows the summary statistics for the MV+CVaR

efficient mortality portfolio. The MV+CVaR efficient portfolio significantly reduces the variance

from 0.0057 to 0.0008. Notably, in Figure 1, the distribution of the MV+CVaR portfolio’s profit

margin is tightly grouped around the mean relative to that of the original portfolios. Furthermore,

Table 2 shows that, although the new portfolio’s skewness decreases a little bit, its 5%-CVaR

increases dramatically from -0.0749 to 0.0068. In sum, we conclude the MV+CVaR portfolio has

a better mean-variance tradeoff and a lower downside risk than the original one.

4. BOUNDS ANALYSIS WITH MOMENT METHODS

How well does the optimal business strategy suggested by the MV+CVaR approach in section

3 secure an insurer’s financial position? In this section, we apply the moment methods to address

this question. Specifically, rather than managing only the first two moment of the portfolio with

portfolio optimization techniques, we incorporate the higher moment information to the mortality

risk management.

The moment problem was first studied by Tchebyshev, Markov and Stieltjes in the 1870’s. The

classical Hausdorff moment problem, named after Felix Hausdorff, examines the necessary and
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sufficient conditions that a given sequence µ0,µ1,µ2, . . . be the sequence of moments of a proba-

bility distribution f (z),∫ +∞

z=−∞

zi f (z)dz =
∫ 1

F(z)=0
zidF(z) = µi, ∀i = 0,1, . . . ,

with the cumulative distribution function F(z) constant outside the closed unit interval [0,1]. So

dF(z) does not contribute any mess on the interval {(−∞,0)
⋃

(1,∞)}2. Since
∫

z∈R f (z)dz = 1

for all feasible distributions, µ0 = 1 in all moment problems. By setting φ(Z) = I(−∞,d](Z) as the

indicator function for the event Z ≤ d, E[φ(Z)] = Pr(Z ≤ d) produces the cumulative distribution

function of Z. In our paper, Z is the profit margin m̃(w) of a MV+CVaR efficient mortality portfolio.

The solving the following problem yields the upper bound of Pr(Z ≤ d):

max EF [φ(Z)]

subject to EF [Zi] = µi, ∀i = 0,1, . . . ,n,

F(z) is a probability distribution on Q, Q⊂ R.

(18)

Similarly, the primal problem for the lower bound optimizes the following objective subject to

the same constraints as (18):

min EF [φ(Z)]. (19)

Notice that in the above upper and lower bounds problems, the only constraints given are the

moment constraints. Therefore, these semiparametric bounds, called the “arbitrary bounds”, are

robust bounds that any feasible distribution with same moments must satisfy. If we set d = VaRβ ,

problems (18) and (19) are able to solve for a 100% confidence interval for the β -level VaR.

This moment problem can be solved by some newly developed semidefinite programs such as

SOSTOOLS (Prajna et al., 2004). In this paper, we will not go into details about the derivation

of the dual problems and the application of the SOS programming solvers. Please refer to Parrillo

(2000), Popescu (2005), Bertsimas and Popescu (2005) for details.

2Akhiezer (1965) notes: “two solutions are not taken to be distinct if their difference is a constant at all points at which
it is continuous, and the moment problem is called determinate if it has a unique solution in this sense.”



MORTALITY PORTFOLIO RISK MANAGEMENT 11

4.1. Unimodal Bounds. By adding some distribution assumption such as a unimodal distribu-

tion assumption to problems (18) and (19), we can narrow down the bounds on Pr(Z ≤ d). A

unimodal distribution is a distribution that has only one mode. As long as the distribution is uni-

modal, including this constraint can substantially narrow the range of the bounds. Many financial

and insurance data have unimodal distributions, but some care must be exercised in applying this

assumption. If the sample, is not in fact from a unimodal distribution, important tail behavior may

be missed. To solve the moment problem with the unimodal constraint, which is called the “uni-

modal bounds” problem, we convert it to an arbitrary bounds problems (18) and (19) by applying

Khintchine (1938)’s representation.3

The idea here is to transfer the unimodal bounds problem to its equivalent arbitrary bounds

problem. Specifically, the objective function φ(Z) for the bounds on Pr(Z ≤ d) is transferred

to φ∗(Y ) for the bounds on Pr(Y ≤ d−m)4. The unimodal bounds are obtained by solving the

following problem:

max( or min) EF∗[φ∗(Y )]

subject to EF∗[Y i] = µ
∗
i , ∀i = 0,1, . . . ,n,

F∗(y) is a probability distribution on Q∗, Q∗ ⊂ R,

(22)

where m is the mode of unimodal random variable Z = m+UY in the Khintchine’s Representation.

The moment of Y , µ∗i , is calculated from the corresponding moments of Z as follows:

µ
∗
i = E[Y i] = (i+1)

i∑
j=0

 i

j

E[Z j](−m)i− j.

3Khintchine’s Representation: Z is unimodally distributed if and only if there are two independent random variables U
and Y such that Z = m+UY , where U is uniformly distributed on (0,1) and m is the unique mode of the distribution.
4Considering the relationship between d and m, the function φ ∗(Y ) has the following two possible expressions:

(1) In this case of d ≥ m,

φ
∗(Y ) =

1 Y ≤ d−m
d−m

Y
Y ≥ d−m.

(20)

(2) In this case of d < m,

φ
∗(Y ) =

1− d−m
Y

Y ≤ d−m

0 Y ≥ d−m.
(21)
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The “max” in (22) finds the upper bound and the lower bound is obtained by applying “min”. For

detail of the transferring procedure, please refer to Tian (2008)’s thesis.

4.2. Maximum-Entropy Distribution. Every probability distribution has some “uncertainty” as-

sociated with it. For example, an insurer may have some confidence in its estimates of moments of

its margins, but not know exactly what the distribution is. The concept of “entropy” was introduced

to provide a quantitative measure of this uncertainty. The maximum-entropy method has its theo-

retical basis in the work of Shannon (1948) in information theory and Jaynes (1957) in statistical

physics.

As a special case of the general maximum entropy problem, we find the representative distribu-

tion given moments. The solution to the following problem, f ∗(z), is called the maximum-entropy

distribution function.

max
f (z)

−
∫ b2

b1

f (z) log f (z)dz

subject to
∫ b2

b1

zi f (z)dz = µi, ∀i = 0,1, . . . ,n

f (z)≥ 0,

(23)

where µ0,µ1, . . . ,µn are the given sequence of moments. The support [b1,b2] is a subset of R.

The maximum-entropy distribution f ∗(z) is sensitive to the support interval, which is specified in

advance. In practice, the trial-and-error experiments can help to generate an appropriate support.

The solution of problem (23) is a probability distribution, consistent with the given information,

with maximal uncertainty. Accordingly, the maximum entropy probability is the “most likely”,

“most unbiased”, “least prejudiced”, or “most uniform” distribution we can have. We regard it as

an extension of our bound analysis because this problem incorporates only the moment information

and yields a valid probability distribution, optimal in the sense that it uses as little information as

possible. We will use this to illustrate our conclusions from the moment method on the risk analysis

of MV+CVaR mortality portfolio.

4.3. Numerical Illustration. Now we extend the numerical example in Section 3.2 to include

the moment method. Figure 1 shows the histograms of the original and the MV+CVaR 3-line
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FIGURE 1. Histograms of the original and the MV+CVaR optimal life insurance portfolios.

portfolios based on 10 bins. From the histograms, it’s not clear whether the original portfolio

has a unimodal distribution. Adding the unimodal constraint are significantly narrows the bounds,

as shown in Figure 2 for the case of 4-moment semi-parametric and the equally weighted 3-line

mortality portfolio. For example, consider the 5%-VaR. Draw a horizontal line through the 0.05

level on the vertical axis. It intersects the solid curves at d values of -0.075 and -0.010. So if the

original portfolio has unimodal distribution, the best we can say is that

−7.5%≤ VaR0.05 ≤−1.0%. (24)

We should be very careful to make a unimodal assumption. If the actual data are not unimodal the

5%-VaR range is

−14.0%≤ VaR0.05 ≤ 2.5%, (25)

as determined by the intersection of the horizontal line with the −o−curves. Theoretically, the

normal distribution (the dotted lines in Figure 2) with the same mean and variance as the origi-

nal mortality portfolio will fall between the 2-moment upper and lower arbitrary bounds. In our

example, the normal curve is even within the 4-moment unimodal bounds. Under the normal

assumption, the business’s VaR5% hits its lower bound, which is -7.5%.
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FIGURE 2. Bounds of the original 3-line life insurance portfolio. The lines with
−o− are the upper and lower arbitrary bounds with 4 moments. The solid lines
show the unimodal bounds with 4 moments and the unimode 0.0264, and the dot-
ted line in the middle represents the normal distribution with the same mean and
variance as those of the original 3-line portfolio. The vertical axis stands for the
cumulative probability Pr(m̃(w)≤ d), and the horizontal axis represents the portfo-
lio’s profit margin d.

FIGURE 3. 4-moment Arbitrary and unimodal bounds of the original 3-line life
insurance portfolio and its MV+CVaR optimum. The left plot draws the arbitrary
bounds and the unimodal bounds are shown in the right plot. In both plots, the lines
with −x− represent the upper and lower bounds of the original business. Bounds
on the optimal MV+CVaR business strategy are shown in the −4− curves. The
vertical axis stands for the cumulative probability Pr(m̃(w)≤ d), and the horizontal
axis represents the portfolio’s profit margin d.
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Figure 3 shows the 4-moment arbitrary and unimodal bounds of the original life insurance

business with w0 = [33.33%, 33.33%, 33.33%] and its MV+CVaR optimum with wMV+CVaR =

[0, 19.81%, 80.19%]. Notably, the bounds for the MV+CVaR life insurance business strategy are

very narrow since its variance is low at 0.0008. No matter whether the arbitrary or the unimodal

bounds are investigated, by applying the MV+CVaR approach, the downside risk is greatly de-

creased. To illustrate, similar to what we did in Figure 2, we draw a horizontal line through the

0.05 level on the vertical axis to analyze the 100% confidence bounds on 5%-VaR. If we assume

both the original and optimized portfolios are unimodally distributed, the bounds of portfolio profit

margin on VaR0.05 rises to

0.60%≤ VaR0.05 ≤ 1.25%, (26)

by adding 5% CVaR constraint to the traditional Markowitz optimization. Thus the lower bound

is greatly improved to a positive number, which means that there is only 5% probability that the

business annual profit margin will fall below 0.5%. This is very attractive to insurance companies,

especially those who are seriously worry about the downside risk during the economy recession.

To take our discussion one step further, we solve the maximum-entropy problem (23). The

results are shown in Figure 4, which compares the maximum-entropy distributions of the original

and the MV+CVaR mortality portfolios. In particular, the distribution of the MV+CVaR efficient

3-line portfolio shifts to the right of original portfolio distribution. The optimized portfolio has a

higher mean and lower variance than the original portfolio, which is consistent with the conclusion

of the moment method.

5. NATURAL HEDGING EFFECTS

Cox and Lin (2007) argue that an insurer selling both life insurance and annuities is exposed

to lower one-directional changes in mortality. This effect is called “natural hedging”. As such,

adding annuities to a portfolio that is only composed of life insurance may lower the portfolio’s

mortality risk. In this section, we examine how natural hedging improves the MV+CVaR optimal

business composition and decreases downside risk with the moment methods.
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FIGURE 4. 4-moment maximum-entropy distributions of the original 3-line life
insurance portfolio and its MV+CVaR optimum. The left plot graphs the density
functions and the right one graphs the cumulative distribution functions. The curves
−o− are for the distributions of the original portfolio’s profit margin and the curves
−4− are for the distributions of the MV+CVaR portfolio’s profit margin. The ver-
tical axis stands for the probability, and the horizontal axis represents the portfolio’s
profit margin d.

TABLE 3. Summary Statistics – Profit Margin of Single Premium Immediate Life Annuity

Lines Mean Variance Skewness Kurtosis

m̃a65 0.0635 0.0002 -0.8590 0.4792

To illustrate the natural hedging effect, we add an annuity to the 3-line life insurance portfolio

analyzed in Section 3.2. Specifically, in addition to selling the 5-year term life insurance on male

aged 35, the 10-year term life insurance on male aged 25, and the whole life insurance on male

aged 40, the insurer also underwrites a single-premium immediate life annuity on male aged 65.

Following equations (3) and (4) and the same assumptions as what we use to calculate the profit

margins of the three lines of life insurance, we obtain the summary statistics for m̃a65 , as shown in

Table 3.

Assume originally the insurer puts an equal weight (i.e. 25%) in each of these four lines of

business. The expected margin of this equally weighted portfolio is 0.0547. To optimize this

mortality portfolio, we specify a 5%-CVaR constraint with ζ in (11) determined by equation (17)

and the objective profit margin m0 = 0.0547. We get the MV+CVaR efficient 4-line mortality
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FIGURE 5. Histograms of the original and the MV+CVaR optimal 4-line portfolios.

portfolio with the weights,

wMV+CVaR = [0, 2.52%, 37.71%, 59.77%]. (27)

That is, the insurer should stop selling the 5-year life insurance on male aged 35, and adjust its

business to make 2.52% of its total premium from the 10-year life insurance on male aged 25,

37.71% from the whole life insurance on male aged 40, and 59.77% from the single premium

immediate life annuity on male aged 65. Table 4 compares the original and MV+CVaR mortality

portfolios. The MV+CVaR portfolio has a lower variance and skewness but a higher kurtosis,

mode and 5%-CVaR. Figure 5 shows the histograms of the original and the MV+CVaR optimal

4-line portfolios based on 10 bins. According to the histograms, it seems that both the original

and the optimized 4-line portfolios are unimodally distributed. So our following bounds analysis

is performed based on the unimodal assumption.

TABLE 4. Summary Statistics of Profit Margins of Original and MV+CVaR 4-Line Portfolios

m̃(w) Mean Variance Skewness Kurtosis Mode CVaR5%
Original 0.0547 0.0031 0.6107 0.1452 0.0385 -0.0363
MV+CVaR 0.0547 2.6E-05 -1.2334 0.7888 0.0575 0.0422
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FIGURE 6. 4-moment unimodal bounds and maximum-entropy probability density
of the original and MV+CVaR portfolios with 4 lines of business. The left plot
shows the unimodal bounds of the original mortality portfolio and its MV+CVaR
optimum. The right plot shows the maximum-entropy probability density of these
two portfolios. The curves with −x− in the left plot represent the bounds of the
original portfolio. The −o− curve in the right plot stands for the distribution
of the original mortality portfolio. In both graphs, the unimodal bounds and the
maximum-entropy probability distribution of the MV+CVaR portfolio are repre-
sented by the −4− curves.

Figure 6 shows the 4-moment unimodal bounds and the maximum-entropy probability density of

the original and MV+CVaR portfolios with 4 lines of business. The variance of the optimal 4-line

portfolio is almost zero (see Table 4), so the upper and lower unimodal bounds of the MV+CVaR

portfolio are very close to each other and its maximum-entropy probability density is approaching

a dirac delta function.5

To explore the natural hedging effect, we compare the bounds of the MV+CVaR 3-line and 4-

line portfolios. If we assume both optimized portfolios have the unimodal distributions, the right

plot in Figure 7 shows how the 100% confidence interval of the 5%-level VaR improves by adding

an annuity to the 3-line pure life insurance portfolio. Specifically,

0.6% < VaR3L
0.05 < 1.25% ⇒ 4.1% < VaR4L

0.05 < 5.1%. (28)

5The dirac delta function is a generalized function representing an infinitely sharp peak bounding unit area: a “func-
tion” δ (x) that has the value zero everywhere except at x = 0 where its value is infinitely large in such a way that its
total integral is 1.
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FIGURE 7. 4-moment Arbitrary and unimodal bounds of the MV+CVaR efficient
3-line and 4-line mortality portfolios. The left plot draws the arbitrary bounds and
the unimodal bounds are shown in the right plot. In both plots, the curves with−x−
represent the upper and lower bounds of the MV+CVaR portfolio with three lines
of life insurance. Bounds on the optimal 4-line mortality portfolio are shown as the
−4− curves. The vertical axis stands for cumulative probability Pr(m̃(w) ≤ d),
and the horizontal axis represents the portfolio’s profit margin d.

That is, the confidence interval of VaR4L
0.05 stays at a much higher level of profit margin range than

that of VaR3L
0.05. It highlights the benefits of natural hedging: by including both annuity and life

insurance in a portfolio, natural hedging increases profit but decreases mortality risk.

Discussion. In practice, it may be difficult for an insurer to directly accomplish an MV+CVaR

optimal business composition, for example, the mortality portfolio weights in (27). Furthermore,

for an insurer specializing in life insurance, entering the annuity business may not be practical

(Cox and Lin, 2007). If an insurer is able to take advantage of the MV+CVaR approach and

natural hedging at a low cost, it will gain from a higher profit margin. To achieve this goal, we

recommend two possible solutions. First, the insurer can buy or sell reinsurance to rebalance its

weights in various business lines. Second, the insurer can issue or purchase mortality or longevity

securities from capital markets. The mortality-linked securities are new in the financial markets

but have attracted a lot of attentions from insurers, investors, pension plans, and academia. As
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the mortality-linked security markets develop, the insurer can cede or assume risk to realize the

MV+CVaR efficient mortality portfolio at a lower cost.

6. FRONTIERS OF EFFICIENT MORTALITY PORTFOLIOS

So far our analysis has focused on improving an insurer’s existing mortality portfolio with the

MV+CVaR approach and used the moment method to examine whether and how this MV+CVaR

portfolio could control downside risk. Can these techniques be applied to any insurance business

composition? How superior is the MV+CVaR approach to the traditional Markowitz optimization

method? How does the natural hedging reduce mortality risk for different MV+CVaR portfolios?

To answer these questions, in this section, we extend our analysis to all efficient portfolios, not just

a particular efficient portfolio given a level of profit margin. Specifically, we compare

(1) the frontiers of the Markowitz and MV+CVaR efficient portfolios;

(2) the frontiers of the 3-line and 4-line efficient portfolios.

6.1. Frontiers of Markowitz and MV+CVaR optimized Portfolios. Suppose an insurer sells

the aforementioned four lines of business: A1
35:5

, A1
25:10

, A40 and a65. We solve (a) the traditional

Markowitz portfolio problem, and (b) the MV+CVaR problem (14) with a 5%-CVaR constraint,

respectively, to obtain a set of efficient portfolios with different expected profit margins. Then, we

compare their optimization results. To illustrate, we plot the mean-variance, skewness-variance,

CVaR5%-variance, and CVaR95%-variance graphs. Each graph in Figure 8 is a piecewise linear

interpolation based on 10 solved efficient portfolios.

While the top left graph of Figure 8 shows that the MV+CVaR efficient frontier somewhat devi-

ates from the Markowitz efficient frontier in terms of the mean-variance tradeoff, the MV+CVaR

approach effectively increases the skewness of low-variance portfolios shown in the skewness-

variance graph. A higher skewness is desirable because it increases the likelihood of obtaining

higher profit margins. The CVaR5%-variance curves in the bottom left graph demonstrate that, for

the same variance, the portfolios constructed from the MV+CVaR approach are able to reach a

higher 5%-CVaR, implying a lower downside mortality risk. However, the impact of adding CVaR

constraint to the Markowitz model on the high-variance portfolios is not as significant as that on



MORTALITY PORTFOLIO RISK MANAGEMENT 21

FIGURE 8. Efficient frontiers of optimal mortality portfolios with 4 lines of busi-
ness. The mean-variance, skewness-variance, CVaR5%-variance, and CVaR95%-
variance plots are shown in the top left, top right, bottom left, and bottom right
graphs, respectively. Each graph is a piecewise linear interpolation based on 10
points. The curves with −o− represent the traditional Markowitz frontiers. The
MV+CVaR efficient frontiers obtained by adding a 5%-level CVaR constraint are
shown as −4− curves in all graphs.

the low variance portfolios. It is because the low-variance portfolio has more compact distribution,

which makes it more sensitive to the tail-distribution management.

It is worth noting that the MV+CVaR approach aims at reshaping the left tail of the profit margin

distribution, which corresponds to high losses. The approach does not account for the right tail

representing high profits. This is confirms by the bottom right graph in Figure 8, which shows

that the CVaR95% curve of the MV+CVaR portfolios just barely differs from that of the Markowitz

counterparts. It suggests that the MV+CVaR approach has no significant effect on changing the

right tail of the distribution.

6.2. Natural Hedging for Efficient Portfolios. We investigate the natural hedging effect for var-

ious MV+CVaR efficient portfolios to extend our analysis in Section 5. With the same setup as



22 MORTALITY PORTFOLIO RISK MANAGEMENT

FIGURE 9. Efficient frontiers of MV+CVaR 3-line and 4-line portfolios with a 5%-
CVaR constraint. The mean-variance, skewness-variance, CVaR5%-variance, and
CVaR95%-variance plots are shown in the top left, top right, bottom left, and bottom
right graphs, respectively. Each graph is a piecewise linear interpolation based on
20 points. The curves with −o− represent the 3-line frontiers and the −4− curves
stand for the frontiers of the 4-line efficient portfolios.

the example in Section 5 but setting a series of different expected profit margins, Figure 9 shows

that the 4-line portfolios (−4− curves) including both life insurance and annuity lines outperform

the portfolios that only contain life insurance (−o− curves). Given the same variance, the 4-

line efficient portfolio achieves higher profit margin, higher skewness, higher CVaR5%, and higher

CVaR95% than their 3-line counterparts. Therefore, the inclusion of annuities in the mortality port-

folio offsets the effect of longevity risk on the life insurance policies. This provides a new evidence

to support the benefits of natural hedging. Specifically in our example, the improvement of frontier

by adding an annuity can be explained by the negative correlation between the annuity a65 and the

three lines of life insurance, i.e. A1
35:5

, A1
25:10

, and A40, as shown in Table 5.
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TABLE 5. Correlation of of Annuity and Life Insurance Profit Margins

m̃A1
35:5

m̃A1
25:10

m̃A40

m̃a65 -0.16094 -0.12171 -0.68109

7. CONCLUSION

This paper incorporates the moment methods and the portfolio theory for mortality risk manage-

ment. It contributes to the mortality risk management literature in two ways. First, we propose the

MV+CVaR approach to manage mortality portfolio risk with a reasonable sacrifice of the mean-

variance efficiency. Specifically, the MV+CVaR approach controls the tail risk by specifying the

mean value of the lowest β% profit margin to be no less than some pre-specified value. At the same

time, it optimizes the tradeoff between mean and variance. This method, in general, is effective in

obtaining an optimal mortality risk portfolio while controlling its downside risk.

Second, we apply the moment methods in mortality risk management. Without assuming any

arbitrary distribution, we calculate the semiparametric upper and lower bounds on the cumula-

tive probability of profit margins for mortality portfolios. The bounds are used to illustrate the

100% confidence interval of the downside risk, which is measured by β -level VaR. In particular,

we propose how to use the moment methods to investigate downside risk of MV+CVaR efficient

mortality portfolios. In addition, as an extension to the moment methods, we derive the maximum-

entropy distribution of mortality portfolios. We use the maximum-entropy approach to provide a

robustness check for the moment methods because the maximum-entropy approach provides us a

representative distribution that is the most unbiased one given moment information.

Although we illustrate our MV+CVaR and moment methods with up to four lines of business and

based on the annual observations, these methods can be easily extended to more lines of business

and high frequency data. Furthermore, our approaches can be refined by incorporating asset risks

to examine an life insurer’s overall expected shortfall. We leave this for future research.
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APPENDIX A

Proof of Theorem 1. For a given time horizon, β -level VaR is defined as

VaRβ (w) = αβ (w) = min{α ∈ R : Pr(m̃(w)≤ α)≥ β},

where, m̃(w) =
n∑

i=1

E[m̃i]wi, is the random variable of mortality portfolio margin. The correspond-

ing β -level CVaR is the expected value of profit margin given the margin being not greater than

the β -level VaR, αβ (w).

CVaRβ (w) = θβ (w) = E
[
m̃(w)|m̃(w)≤ αβ (w)

]
,

Define Gβ as a function on W×R that satisfies:

Gβ (w,α) = α− 1
β

E
[
[α− m̃(w)]+

]
,

where [g]+ = max{g,0}. Rockafellar and Uryasev (2000) proved that αβ (w) is determined by

maximizing Gβ (w,α):

αβ (w) = max
α∈R

Gβ (w,α).

Therefore, if the set consisting of αβ (w) is nonempty, one always has

αβ (w) ∈ argmax
α∈R

Gβ (w,α) and θβ (w) = Gβ (w,αβ (w)).

With the notations and equivalency discussed above, we have

minw∈W [
∑n

i=1
∑n

j=1 σi jwiw j], s.t. CVaRβ (x)≥ ζ

m

minw∈W [
∑n

i=1
∑n

j=1 σi jwiw j], s.t. ζ −θβ (w)≤ 0

m

minw∈W [
∑n

i=1
∑n

j=1 σi jwiw j], s.t. ζ −maxα∈R [Gβ (w,α)]≤ 0

m

minw∈W [
∑n

i=1
∑n

j=1 σi jwiw j], s.t. minα∈R [ζ −Gβ (w,α)]≤ 0,

(P1)
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where W = {
n∑

i=1

E[m̃i]wi = m0}
⋃
{

n∑
i=1

wi = 1}
⋃
{wi ≥ 0, i = 1,2, . . . ,n.} is a subset of the

mortality business composition feasible set.

Therefore, to prove Theorem 1 is to prove the last equation in (P1) is equivalent to

min
w∈W,α∈R

[
n∑

i=1

n∑
j=1

σi jwiw j], s.t. [ζ −Gβ (w,α)]≤ 0, (P2)

in the sense that their objectives achieve the same minimum values.

According to the Karush-Kuhn-Tucker conditions, the necessary conditions for the problem

(P2) are stated as follows:[∑n
i=1
∑n

j=1 σi jw∗i w∗j
]
+λ [ζ −Gβ (w∗,α∗)]≤

[∑n
i=1
∑n

j=1 σi jwiw j

]
+λ [ζ −Gβ (w,α)]

m[∑n
i=1
∑n

j=1 σi jw∗i w∗j
]
−λGβ (w∗,α∗)≤

[∑n
i=1
∑n

j=1 σi jwiw j

]
−λGβ (w,α),

(i)

and

λ [ζ −Gβ (w∗,α∗)] = 0, λ ≥ 0, w ∈W. (ii)

To make conditions (i) and (ii) be the sufficient condition as well, we should prove

h1(w) =

 n∑
i=1

n∑
j=1

σi jwiw j

 and h2(w,α) = ζ −Gβ (w,α)

are convex functions, and

h3(w) =
n∑

i=1

E[m̃i]wi−m0 and h4(w) =
n∑

i=1

wi−1

are affine functions. It is obvious that h3(w) and h4(w) are affine functions. As for h1(w) and

h2(w), given ρ ∈ [0,1],

h1(ρw+(1−ρ)w′) =E
[
(ρw+(1−ρ)w′)2]− [E[ρw+(1−ρ)w′]

]2
=ρ

2E(w2)+(1−ρ)2E(w′2)+2ρ(1−ρ)E(ww′)

−ρ
2[E(w)]2− (1−ρ)2[E(w′)]2−2ρ(1−ρ)E(w)E(w′),

(29)
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and

ρh1(w)+(1−ρ)h1(w′) =ρE(w2)−ρ[E(w)]2 +(1−ρ)E(w′2)− (1−ρ)[E(w′)]2. (30)

Then we have

h1(ρw+(1−ρ)w′)− [ρh1(w)+(1−ρ)h1(w′)] = ρ(1−ρ)
[
[E(w)−E(w′)]2−E[(w−w′)2]

]
≤ ρ(1−ρ)

[
[E(w)−E(w′)]2− [E(w−w′)]2

]
= 0.

(31)

So h1(w) is convex on w. The inequality above follows from the Jensen’s inequality: E(w2) ≥

[E(w)]2.

Let the vector (w,α) = g, for ρ ∈ [0,1],

Gβ (ρg+(1−ρ)g′) =ρα +(1−ρ)α
′
− 1

β
E
[
[ρα +(1−ρ)α

′
− m̃(ρw+(1−ρ)w′)]+

]
, (32)

and
Gβ (g)+(1−ρ)Gβ (g′) =ρα− 1

β
E
[
[ρα− m̃(ρw)]+

]
+(1−ρ)α

′
− 1

β
E
[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]
.

(33)

So we get

Gβ (ρg+(1−ρ)g′)− [Gβ (g)+(1−ρ)Gβ (g′)]

=
1
β

E
[
[ρα− m̃(ρw)]+

]
+E

[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]
− 1

β
E
[
[ρα +(1−ρ)α

′
− m̃(ρw+(1−ρ)w′)]+

]
.

(34)

Since m̃(w) =
n∑

i=1

E[m̃i]wi is a linear transformation on w,

m̃(ρw+(1−ρ)w′) = m̃(ρw)+ m̃((1−ρ)w′).
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Following [a+b]+ ≤ [a]+ +[b]+, we have

E
[
[ρα +(1−ρ)α

′
− m̃(ρw)− m̃((1−ρ)w′)]+

]
≤ E

[
[ρα− m̃(ρw)]+

]
+E

[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]
.

(35)

Therefore,
Gβ (ρg+(1−ρ)g′)− [Gβ (g)+(1−ρ)Gβ (g′)]

=
1
β

{
E
[
[ρα− m̃(ρw)]+

]
+E

[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]}
− 1

β

{
E
[
[ρα +(1−ρ)α

′
− m̃(ρw)− m̃((1−ρ)w′)]+

]}
≥ 1

β

{
E
[
[ρα− m̃(ρw)]+

]
+E

[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]}
− 1

β

{
E
[
[ρα− m̃(ρw)]+

]
+E

[
[(1−ρ)α

′
− m̃((1−ρ)w′)]+

]}
=0.

(36)

So Gβ (w,α) is concave on (w,α) and h2(w,α) = ζ −Gβ (w,α) is a convex function on (w,α).

Thus (i) and (ii) are not only the necessary and but also the sufficient conditions of problem (P2).

First suppose that w∗ is a solution of (P1) and α∗ = argmaxα∈R Gβ (w∗,α). Next us show that

(w∗,α∗) is a solution of (P2). n∑
i=1

n∑
j=1

σi jw∗i w∗j

−λGβ (w∗,α∗) =

 n∑
i=1

n∑
j=1

σi jw∗i w∗j

−λθβ (w∗)

≤

 n∑
i=1

n∑
j=1

σi jwiw j

−λθβ (w) =

 n∑
i=1

n∑
j=1

σi jwiw j

−λ max
α∈R

Gβ (w,α)

≤

 n∑
i=1

n∑
j=1

σi jwiw j

−λGβ (w,α),

(37)

and

λ [ζ −Gβ (w∗,α∗)] = λ [ζ −θβ (w∗)] = 0, λ ≥ 0, w ∈W.

So conditions (i) and (ii) are satisfied and (w∗,α∗) is a solution of (P2).
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Second, suppose the (w∗,α∗) achieves the minimum of (P2) and λ ≥ 0. For fixed w∗, the point

α∗ minimizes the function [
∑n

i=1
∑n

j=1 σi jw∗i w∗j ]−λGβ (w∗,α∗), and, consequently, the function

Gβ (w∗,α∗) is maximized. Then α∗ = argmaxα∈R Gβ (w∗,α). We have n∑
i=1

n∑
j=1

σi jw∗i w∗j

−λθβ (w∗) =

 n∑
i=1

n∑
j=1

σi jw∗i w∗j

−λGβ (w∗,α∗)

≤

 n∑
i=1

n∑
j=1

σi jwiw j

−λGβ (w,αβ (w)) =

 n∑
i=1

n∑
j=1

σi jwiw j

−λθβ (w),

(38)

and

λ [ζ −θβ (w∗)] = λ [ζ −Gβ (w∗,α∗)] = 0, λ ≥ 0, w ∈W.

Therefore conditions (i) and (ii) are satisfied, and w∗ is a solution of (P1). If a pair (w∗,α∗)

achieves the maximization of equation (P2), Gβ (w∗,α∗) returns β -level CVaR and α∗ gives the

corresponding β -level VaR.

APPENDIX B

Estimating Profit Margins Summarized in Table 1. Assume the insurer uses the Renshaw et al.

(1996) model to forecast its future mortality rates. The Renshaw et al. (1996) model incorporates

both the age variation and the underlying time trend of the force of mortality µx,t . The force of

mortality µx,t of age x in year t in Renshaw et al. (1996) is modeled as

µx,t = exp

β0 +
h∑

j=1

β jL j(x′)+
r∑

g=1

αgt ′g +
r∑

g=1

v∑
l=1

γglLl(x′)t ′
g

 , (39)

where t ′ and x′ are the transformed times and ages mapped onto the interval [−1,+1]. For example,

if we have mortality experience data for individual ages x ranging from 65 to 100 years for the

period t = 0 to t = 104 years, t ′ and x′ have the values,

t ′ =
t−52

52
and x′ =

x−82.5
17.5

.
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L j(z) and Ll(z) in model (39) are the Legendre polynomials defined as follows:

L0(z) = 1

L1(z) = z

L2(z) = (3z2−1)/2

...

(m+1)Lm+1(z) = (2m+1)zLm(z)−mLm−1(z),

where j and l = 0,1,2, ...,m+1, and z = t ′ or x′.

The insurer uses the US population mortality tables, observed each year from 1901 to 2005

from the Human Life Table Database and the Human Mortality Database, to estimate model (39).6

The age range is x = 25,26,27, . . . ,100 for US males from t = 0,1,2, . . . ,104 (corresponding to

calendar years 1901−2005). Younger ages have different mortality change patterns from those of

older ages (Cox and Lin, 2007). Thus, to improve the model’s goodness of fit, the insurer estimates

model (39) for the age range 25-64 and the age range 65-100 separately. Following Lin and Cox

(2005), the insurer fits model (39) with h = 3, r = 1 and v = 1. Details of the parameter estimates

for two age ranges are given in Table 6.

Assume constant force of mortality within each year of age. After forecasting µx,t based on

equation (39), the insurer predicts the one-year survival rate for each age x in year t as follows

px,t = exp(−µx,t).

As such, the probability that the age x at the beginning of year t will die within one year equals

qx,t = 1− px,t = 1− exp(−µx,t).

6The tables for years 1901 to 1999 are from the Human Life Table Database and the tables for 2000 to 2005 are from
the Human Mortality Database, published by the University of California, Berkeley (USA), and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data
downloaded on June 8, 2008).
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TABLE 6. The model (39) with h = 3, r = 1 and v = 1, fits the US Male Population
data from 1901 to 2005. All of the coefficients are significant at the 1% level.

Panel A: Ages 25-64
Coefficient Estimate Standard Error Coefficient Estimate Standard Error

β0 -4.8979 0.0023 β3 -0.0831 0.0057
β1 1.3029 0.0040 α1 -0.6841 0.0040
β2 0.1916 0.0050 γ11 0.3240 0.0067

Adjusted R2 0.9713

Panel B: Ages 65-100
Coefficient Estimate Standard Error Coefficient Estimate Standard Error

β0 -1.9971 0.0012 β3 -0.0237 0.0030
β1 1.3816 0.0021 α1 -0.3055 0.0021
β2 -0.0449 0.0026 γ11 0.0751 0.0035

Adjusted R2 0.9921

Following equation (2), the net premiums (or the expected payments) of aforementioned three

types of life insurance charged at the beginning of year t equal

P1,t =A1
35:5 ,t =

5−1∑
j=0

v j+1( j p35,t)(q35+ j,t+ j),

P2,t =A1
25:10 ,t =

10−1∑
j=0

v j+1( j p25,t)(q25+ j,t+ j),

P3,t =A40, t =
∞∑

j=0

v j+1( j p40,t)(q40+ j,t+ j).

(40)

Following equation (1), the j-year survival rate for age x at the beginning of year t in equation

(40), j px,t , is calculated based on the projected mortality tables from year t to year t + j− 1. For

example, the 3-year survival rate for age 35 at the beginning of year t,

3 p35,t = (p35,t)× (p36,t+1)× (p37,t+2),

where the one-year survival rates p35,t , p36,t+1, and p37,t+2 are read from the projected mortality

tables in year t, t +1, and t +2, respectively. Similarly, qx+ j,t+ j is the one-year death rate for age

x+ j based on the mortality table in year t + j. In sum, as the insured at the age of x in year t gets
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j years older (i.e. x + j years old in year t + j), the insurer shifts to or refers to the mortality table

for year t + j to locate px+ j,t+ j and qx+ j,t+ j.

Equation (4) suggests the present value of actual death payments of three types of life insurance

sold in year t equal

L̃1,t =Ã1
35:5 ,t =

5−1∑
j=0

v j+1( j p̃35,t)(q̃35+ j,t+ j),

L̃2,t =Ã1
25:10 ,t =

10−1∑
j=0

v j+1( j p̃25,t)(q̃25+ j,t+ j),

L̃3,t =Ã40, t =
∞∑

j=0

v j+1( j p̃40,t)(q̃40+ j,t+ j).

(41)

To illustrate the MV+CVaR method with reasonable margins, we assume the insurer has the

same mortality experience as that of the U.S. population. Accordingly, L̃1,t , L̃2,t , and L̃3,t can be

calculated from the actual U.S. mortality tables with the shifting method. When we use those

historical mortality tables, we notice the 1918 worldwide flu epidemic pushed up the one-year

death rates for different ages unevenly. The flu struck ages 0-50 more seriously than older ages,

due to immunity that the older people had acquired as survivors of earlier flu epidemics (Cox and

Lin, 2007). Since we have not experienced an epidemic for about a century, no one has immunity

to epidemics, such as a deadly H1N1 flu. If an epidemic breaks out, it may have the same impact

at all ages equally. To mimic a more realistic 1918-type flu in the future, when we calculate L̃i,t ,

we adjust the 1917 and 1918 U.S. population mortality tables by setting one-year mortality rate

changes in ages above 60 equal to the average mortality deterioration in ages 25-60. In addition,

we suppose a = 0.06 and c = 6 in equation (9) and the interest rate 0.06. Then the total margin of

life insurance i in year t equals

m̃i,t = 0.06+3E[r̃2
i,t ]+ r̃i,t ,

where r̃i,t = Pi,t
L̃i,t
−1. As noted earlier, there are 105 realized U.S. population mortality tables from

1901 to 2005 (t = 0,1,2, ...,104). If we assume the terminal age is 100, we need 60 of those
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mortality tables to calculate one Ã40, t observation and then get a m̃A40,t .
7 Therefore, we have 45

observations for m̃A40,t where t = 0,1,2, ...,44. To make consistent moment calculations, we also

calculate m̃1
A

35:5 ,t and m̃1
A

25:10 ,t for t = 0,1,2, ...,44. Then we obtain the summary statistics in Table

1.
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