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Learning Computational Verb Rules
Tao Yang

Abstract— Computational verb rules are efficient tools to
transform dynamical experiences in natural languages into
mathematical expressions. Based on human experiences, we can
easily construct computational verb rules. However, due to the
limits of human perceptions, it is impossible to design accurate
computational verbs based on human perceptions. To calibrate
the parameters of computational verbs in computational verb
rules, we need to train them by using measurements that are
much more accurate than human perceptions. Different kinds
of learning algorithms of computational verb rules, of which
the consequents and antecedents are static or dynamical, are
presented. Copyright c© 2007 Yang’s Scientific Research Institute,
LLC. All rights reserved.

Index Terms— Computational verb rules, learning, physical
linguistics, minimization.

I. INTRODUCTION

IN PHYSICAL linguistics, the Universe consists of BEING’s
that are represented as nouns in natural languages. Each

noun is associated with attributes and actions. The essential
difference between physical linguistics and conventional lin-
guistics is that in the former each noun is not only a symbol but
also a measurable and computable entity called computational
noun. Each computational noun is modeled by its attribute
values together with its action values.

1) An attribute value is a mathematical function defined
in some measurable domains that are usually physical
in engineering contexts. Some examples of attribute
values are: Characteristic functions of sets, membership
functions of fuzzy sets, and probability density functions
of events.

2) An action value is a mathematical function defined in
some measurable domains and time, therefore, an action
value is an observation of the dynamics of processes and
actions. An action value is closely related to the relations
or configurations among computational nouns. Action
values are mathematically represented as computational
verbs.

Computational verb logic[14], [23] is a logic consisting
of computational verbs as its essential building blocks. In
engineering applications, we use computational verb rules
to represent knowledge and perform the computation among
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computational verb rules based on principles presented in com-
putational verb logic. Computational verb rules play critical
roles in many applications such as computational verb con-
trol, computational verb image processing, computational verb
database and computational verb knowledge representation.

Coupling with the accurate measurements from different
types of sensors, computational verb rules can efficiently root
knowledge structures coded in natural language into accurate
measurements in numbers. However, since computational verb
rules are usually constructed based on human experiences, we
need to calibrate the parameters of all computational verbs
before applying them to accurate measurements. There are
at least the following ways to calibrate the parameters of
computational verbs in computational verb rules.
• To apply clustering algorithms to find template computa-

tional verbs from historical records as reported in [37].
• To choose standard computational verbs based on knowl-

edge of the underlying system to model. This method is
only useful when we have enough knowledge about the
underlying system. For example, if we use computational
verbs to model lumped models of electronic circuits, the
most typical dynamics are already known.

• To learn computational verbs in computational verb rule
by training samples.

Here we will study the third method mentioned above.
In general, since computational verbs are dynamical sys-

tems, it is extremely difficult to design the learning algorithm
in the form of evolving functions. To reduce the difficulty, the
technology that will be used is to construct all computational
verbs based on a few canonical computational verbs. By doing
so, a computational verb can be fully defined by a set of
canonical computational verbs and a parameter vector. By
using this technology, to choose a computational verb from a
function space is simply to choose a parameter vector from a
parameter space. Since a parameter space is of finite number of
dimensions, the learning problems of computational verb rules
are degenerated from infinite dimensions to finite dimensions.

The method presented in this paper can be easily applied to
the design of a new type of neural networks called computa-
tional verb neural networks(VNN) because a VNN structure
is an interconnected structure of implementing computational
verb rules. The learning algorithm of VNN will be the same as
those used to train computational verb rules. The same as the
learning algorithm for conventional rules or neural networks,
the learning algorithms for computational verb rules will most
likely take local minimums as solutions; namely, can only find
sub-optimal solutions.

The organization of this paper is as follows. In Section II,
the brief history of computational verb theory will be given.
In Section III, the learning algorithms for single- and multi-
input computational verb rules with real number consequents
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and computational verb antecedents will be exploited. In
Section IV, the problems of learning computational verb rules
based on training samples will be recast into solving nonlinear
equations in parameter spaces. In Section V, the learning
problems will be transformed into finding minimum points
of the error functions and some tools will be given with il-
lustrating examples. In Section VI, the learning algorithms for
computational verb rules with computational verb consequents
and static antecedents will be presented. The cases of real
number antecedents and fuzzy set antecedents will be studied.
In Section VII, the learning algorithm for computational verbs
with computational verb antecedents and consequents will be
studied. In Section VIII, some concluding remarks will be
presented.

II. A BRIEF HISTORY OF COMPUTATIONAL VERB THEORY

As the first paradigm shift for solving engineering problems
by using verbs, the computational verb theory and physical
linguistics have undergone a rapid growth since the birth of
computational verb in the Department of Electrical Engineer-
ing and Computer Sciences, University of California at Berke-
ley in 1997[9], [10]. The paradigm of implementing verbs
in machines were coined as computational verb theory[23].
The building blocks of computational theory are computational
verbs[18], [13], [11], [19], [24]. The relation between verbs
and adverbs was mathematically defined in [12]. The logic
operations between verb statements were studied in [14]. The
applications of verb logic to verb reasoning were addressed in
[15] and further studied in [23]. A logic paradox was solved
based on verb logic[20]. The mathematical concept of set
was generalized into verb set in[17]. Similarly, for measurable
attributes, the number systems can be generalized into verb
numbers[21]. The applications of computational verbs to pre-
dictions were studied in [16]. In [25] fuzzy dynamic systems
were used to model a special kind of computational verb that
evolves in a fuzzy space. The relation between computational
verb theory and traditional linguistics was studied in [23], [26].
The theoretical basis of developing computational cognition
from a unified theory of fuzzy and computational verb theories
is the theory of the Unicogse that was studied in [26], [31].
The issues of simulating cognition using computational verbs
were studied in [27]. A way to implementing feelings in
machines was proposed based on grounded computational
verbs and computational nouns in [33]. In [40] a new definition
of the similarity between computational verbs was studied.
The theory of computational verb has been taught in some
university classrooms since 20051.

The latest active applications of computational verb theory
are listed as follows.

1) Computational Verb Controllers. The applications of
computational verbs to different kinds of control prob-
lems were studied on different occassions[22], [23].
For the advanced applications of computational verbs

1Dr. G. Chen, EE 64152 - Introduction to Fuzzy Informatics and Intelligent
Systems, Department of Electronic Engineering, City University of Hong
Kong. Dr. Mahir Sabra, EELE 6306: Intelligent Control, Electrical and
Computer Engineering Department, The Islamic University of Gaza.

to control problems, two papers reporting the latest
advances had been published[29], [28]. The design of
computational verb controller was also presented in a
textbook in 2006[1].

2) Computational Verb Image Processing and Image Un-
derstanding. The recent results of image processing by
using computational verbs can be found in[30]. The
applications of computational verbs to image under-
standing can be found in [32].

3) Stock Market Modeling and Prediction based on compu-
tational verbs. The product of Cognitive Stock Charts[4]
was based on the advanced modeling and computing
reported in [34]. Applications of computational verbs
was used to study the trends of stock markets known as
Russell reconstruction patterns [35].

Computational verb theory has been successfully applied
to many industrial and commercial products. Some of these
products are listed as follows.

1) Visual Card Counters. The YangSky-MAGIC card
counter[6], developed by Yang’s Scientific Research
Institute and Wuxi Xingcard Technology Co. Ltd., was
the first visual card counter to use computational verb
image processing technology to achieve high accuracy of
card and paper board counting based on cheap webcams.

2) CCTV Automatic Driver Qualify Test System. The
DriveQfy CCTV automatic driver qualify test system[7]
was the first vehicle trajectory reconstruction and stop
time measuring system using computational verb image
processing technology.

3) Visual Flame Detecting System. The FireEye visual
flame detecting system[2] was the first CCTV or we-
bcam based flame detecting system, that works under
color and black & white conditions, for surveillance and
security monitoring system[38], [39].

4) Smart Pornographic Image and Video Detection Sys-
tems. The PornSeer[5] pornographic image and video
detection systems are the first cognitive feature based
smart porno detection and removal software.

5) Webcam Barcode Scanner. The BarSeer[3] webcam bar-
code scanner took advantage of the computational verb
image processing to make the scan of barcode by using
cheap webcam possible.

6) Cognitive Stock Charts. By applying computational
verbs to the modeling of trends and cognitive behaviors
of stock trading activities, cognitive stock charts can
provide the traders with the “feelings” of stock markets
by using simple and intuitive indexes.

III. LEARNING COMPUTATIONAL VERB RULES WITH
REAL NUMBER CONSEQUENTS

The first of two simplest verb rules is of the form

IF x(t) V, THEN y is c (1)

where the antecedent consists of one computational verb and
the consequent is a real number. In physical linguistics, x(t),
the waveform is the action value of a computational noun, e.g.,



YANG, LEARNING COMPUTATIONAL VERB RULES 45

input, and c ∈ R is the attribute value of computational noun
y. The second of two simplest verb rule is of the form

IF x is c , THEN y(t) V (2)

where the antecedent is a real number and the consequent
consists of one computational verb. In physical linguistics, c ∈
R is the attribute values of computational noun x and y(t), the
waveform is the action values of a computational noun, e.g.,
output. The difference between computational verb rules (1)
and (2) is that the former has static consequent while the latter
has static antecedent.

If all computational verbs in the antecedent and consequent
of a computational rule degenerate into be’s, then the compu-
tational verb rule degenerates into a conventional rule.Some
examples of computational verb rules are listed as follow.
• IF temperature becomes high, THEN current is off.
• IF speed decreases, THEN switch is on.
• IF the microwave is on, THEN water becomes hot.
• IF voltage is 3.3V, THEN current oscillates.
Here we study the learning algorithm of computational verb

rule (1).

A. Single-input Computational Verb Algorithms

Let’s assume the following computational verb algorithm
of n computational verb rules.

IF x(t) V1, THEN y is y1;
...
IF x(t) Vn, THEN y is yn, (3)

where x(t) ∈ R, t ∈ [0, T ] is a measured waveform known as
input, and y is the output, of which the attribute values are
real numbers yi ∈ R. Vi, i = 1, . . . , n, are n computational
verbs of which the evolving functions are Ei(t) ∈ R, t ∈
[0, T ], i = 1, . . . , n. Observe that each computational verb rule
in algorithm (3) consists of an antecedent of one computational
verb and a consequent of a real number.

Given a computational verb similarity S(·, ·), the output of
the entire computational verb algorithm is given by

y =

n∑

i=1

S(x(t), Ei(t))yi

n∑

i=1

S(x(t), Ei(t))

. (4)

The computational verb similarity is one of the most important
concept in computational verb logic and has been studied in
very detained in [36]. Here we use the following computational
verb similarity as an illustrating example

S(E1(t), E2(t)) = 1−
√

1
T

∫ T

0

[st(E1(t))− st(E2(t))]
2
dt (5)

where st(·) is a saturate function[36] given by

st(x) =
1

1 + e−x
, and ṡt(x) =

e−x

(1 + e−x)2
. (6)

We will back to this computational verb similarity later when
we apply it to derive the learning algorithms of computational
verb rules.

We assume that there are m canonical computational verbs
Ẽj(t), j = 1, . . . , m, which are used to construct all computa-
tional verbs as

Ei(t) =
m∑

j=1

αij Ẽj(t) (7)

where αij ∈ R, i = 1, . . . , n; j = 1, . . . ,m, function as
adverbs.

Given K sets of training samples {(uk(t), dk)}K
k=1, we

define an error function as

E =
K∑

k=1

(ỹk − dk)2 (8)

where

ỹk =

n∑

i=1

S(uk(t), Ei(t))yi

n∑

i=1

S(uk(t), Ei(t))

. (9)

The learning rule is given by

αij(l + 1) = αij(l) + γ(l)∆αij(l), l = 1, . . . , (10)

where γ(l) ∈ R+ is the learning rate, which can be tuned to
different values during the training process, and

∆αij = − ∂E

∂αij

= −
∂

K∑

k=1

(ỹk − dk)2

∂αij

= −2
K∑

k=1

(ỹk − dk)
∂ỹk

∂αij
(11)

where

∂ỹk

∂αij
=

∂

∑n
i=1 S(uk(t), Ei(t))yi∑n
i=1 S(uk(t), Ei(t))

∂αij

=
1

n∑

i=0

S(uk(t), Ei(t))

∂S(uk(t), Ei(t))yi

∂αij

−

n∑

i=0

S(uk(t), Ei(t))yi

[
n∑

i=0

S(uk(t), Ei(t))

]2

∂S(uk(t), Ei(t))
∂αij

(12)

where ∂S(uk(t),Ei(t))
∂αij

is given by Eq. (13). Observe that in
Eq. (13) only one of many possible computational verb
similarities is used. We can use other computational verb
similarities as well.
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∂S(uk(t), Ei(t))
∂αij

=

∂





1−

√√√√√ 1
T

∫ T

0


st (uk(t))− st




m∑

j=1

αij Ẽj(t)







2

dt





∂αij

=

∫ T

0


st (uk(t))− st




m∑

j=1

αij Ẽj(t)





 ṡt




m∑

j=1

αij Ẽj(t)


 Ẽj(t)dt

T

√√√√√ 1
T

∫ T

0


st(uk(t))− st




m∑

j=1

αij Ẽj(t)







2

dt

. (13)

B. Multi-input Computational Verb Algorithms

Let’s assume the following computational verb algorithm
of n computational verb rules.

IF x1(t) V11 AND x2(t) V12 . . . AND xp(t) V1p,
THEN y is y1;
...
IF x1(t) Vn1 AND x2(t) Vn2 . . . AND xp(t) Vnp,
THEN y is yn (14)

where xi(t) ∈ R, t ∈ [0, T ], i = 1, . . . , p are p inputs.
Vij , i = 1, . . . , n; j = 1, . . . , p, are np computational verbs,
of which the evolving functions are Eij(t) ∈ R, t ∈ [0, T ], i =
1, . . . , n; j = 1, . . . , p. Observe that the antecedent of each
computational verb rule consists of p computational verbs
while the consequent is a real number.

The output of this multi-input computational algorithm is
given by

y =

n∑

i=1

yi

p∏

j=1

S(xj(t), Eij(t))

n∑

i=1

p∏

j=1

S(xj(t), Eij(t))

. (15)

We assume that there are m canonical computational verbs
Ẽj(t), j = 1, . . . , m, which are used to construct all computa-
tional verbs as

Eih(t) =
m∑

j=1

α
(h)
ij Ẽj(t), h = 1, . . . , p, (16)

where α
(h)
ij ∈ R, i = 1, . . . , n; j = 1, . . . , m, function as

adverbs.
Given K sets of training samples

{(uk1(t), . . . , ukp(t), dk)}K
k=1, we define an error function as

E =
K∑

k=1

(ỹk − dk)2 (17)

where

ỹk =

n∑

i=1

yi

p∏

h=1

S(ukh(t), Eih(t))

n∑

i=1

p∏

h=1

S(ukh(t), Eih(t))

. (18)

The learning rule is given by

α
(h)
ij (l + 1) = α

(h)
ij (l) + γ(l)∆α

(h)
ij (l), l = 1, . . . , (19)

where γ(l) ∈ R+ is the learning rate, which can be tuned to
different values during the training process, and

∆α
(h)
ij = − ∂E

∂α
(h)
ij

= −
∂

K∑

k=1

(ỹk − dk)2

∂α
(h)
ij

= −2
K∑

k=1

(ỹk − dk)
∂ỹk

∂α
(h)
ij

(20)

where ∂ỹk

∂α
(h)
ij

is given by Eq. (21).

IV. LEARNING COMPUTATIONAL VERB RULES BY
SOLVING NONLINEAR EQUATIONS

By representing all computational verbs in a computational
verb algorithm by using canonical computational verbs, the
learning problem of computational verbs is efficiently trans-
formed into a problem in parameter space. In the parameter
space, each computational verb algorithm is defined by a
unique parameter vector. Therefore, to learn a computational
verb algorithm based on a given set of training sample can
be viewed as solving the unknown parameter vector for a
set of nonlinear functions. There are two steps to learning
computational verb algorithms in this way:

1) Based on the training samples, constructing a set of
nonlinear equations with unknown parameter vector as
the variables to solve.

2) Solving the set of nonlinear equations numerically.
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∂ỹk

∂α
(h)
ij

=

yi

p∏

g=1,g 6=h

S(ukg(t), Eig(t))

n∑

i=1

p∏
g=1

S(ukg(t), Eig(t))

∂S(ukh(t), Eih(t))

∂α
(h)
ij

−

n∑

i=1

yi

p∏
g=1

S(ukg(t), Eig(t))

[
n∑

i=1

p∏
g=1

S(ukg(t), Eig(t))

]2

p∏

g=1,g 6=h

S(ukg(t), Eig(t))
∂S(ukh(t), Eih(t))

∂α
(h)
ij

(21)

where ∂S(ukh(t),Eih(t))

∂α
(h)
ij

is given by

∂S(ukh(t), Eih(t))

∂α
(h)
ij

=

∂





1−

√√√√√ 1
T

∫ T

0


st (ukh(t))− st




m∑

j=1

α
(h)
ij Ẽj(t)







2

dt





∂α
(h)
ij

=

∫ T

0


st (ukh(t))− st




m∑

j=1

α
(h)
ij Ẽj(t)





 ṡt




m∑

j=1

α
(h)
ij Ẽj(t)


 Ẽj(t)dt

T

√√√√√ 1
T

∫ T

0


st(ukh(t))− st




m∑

j=1

α
(h)
ij Ẽj(t)







2

dt

. (22)

As an illustrative example, let us construct the parameter
vector for computational verb algorithm (3) as follow. Let us
define the following parameter vector

α = (α11, . . . , α1m︸ ︷︷ ︸
V1

, α21, . . . , α2m︸ ︷︷ ︸
V2

, . . . , αn1, . . . , αnm︸ ︷︷ ︸
Vn

)>. (23)

In Eq. (8), let

fk(α) , ỹk − dk (24)

then to find the minimum value of the error function E is
equivalent to solve the following set of nonlinear equations

f(α) ,




f1(α)
...

fK(α)


 =




ỹ1 − d1

...
ỹK − dK


 = 0. (25)

For computational verb algorithm (14), the parameter vector
is given by

α = (α(1)
11 , . . . , α

(1)
1m︸ ︷︷ ︸

V11

, α
(2)
11 , . . . , α

(2)
1m︸ ︷︷ ︸

V12

, . . . , α
(p)
11 , . . . , α

(p)
1m︸ ︷︷ ︸

V1p

,

α
(1)
21 , . . . , α

(1)
2m︸ ︷︷ ︸

V21

, α
(2)
21 , . . . , α

(2)
2m︸ ︷︷ ︸

V22

, . . . , α
(p)
21 , . . . , α

(p)
2m︸ ︷︷ ︸

V2p

,

. . . , α
(1)
n1 , . . . , α(1)

nm︸ ︷︷ ︸
Vn1

, α
(2)
n1 , . . . , α(2)

nm︸ ︷︷ ︸
Vn2

, . . . , α
(p)
n1 , . . . , α(p)

nm︸ ︷︷ ︸
Vnp

).

The parameter vector for computational verb algorithms (56),
(62), (67) and (70) is the same as that for computational verb

algorithm (3). The parameter vector for computational verb
algorithm (73) is given by

α = (α(x)
11 , . . . , α

(x)
1mx︸ ︷︷ ︸

Vx
1

, α
(x)
21 , . . . , α

(x)
2mx︸ ︷︷ ︸

Vx
2

, . . . , α
(x)
n1 , . . . , α(x)

nmx︸ ︷︷ ︸
Vx

n

,

α
(y)
11 , . . . , α

(y)
1my︸ ︷︷ ︸

Vy
1

, α
(y)
21 , . . . , α

(y)
2my︸ ︷︷ ︸

Vy
2

, . . . , α
(y)
n1 , . . . , α(y)

nmy︸ ︷︷ ︸
Vy

n

).

The parameter vector for computational verb algorithm (83)
is given by

α = (α(1x)
11 , . . . , α

(1x)
1mx︸ ︷︷ ︸

Vx
11

, α
(2x)
11 , . . . , α

(2x)
1mx︸ ︷︷ ︸

Vx
12

, . . . , α
(px)
11 , . . . , α

(px)
1mx︸ ︷︷ ︸

Vx
1p

,

. . . , α
(1x)
n1 , . . . , α(1x)

nmx︸ ︷︷ ︸
Vx

n1

, α
(2x)
n1 , . . . , α(2x)

nmx︸ ︷︷ ︸
Vx

n2

,

. . . , α
(px)
n1 , . . . , α(px)

nmx︸ ︷︷ ︸
Vx

np

,

α
(y)
11 , . . . , α

(y)
1my︸ ︷︷ ︸

Vy
1

, α
(y)
21 , . . . , α

(y)
2my︸ ︷︷ ︸

Vy
2

, . . . , α
(y)
n1 , . . . , α(y)

nmy︸ ︷︷ ︸
Vy

n

).

Here are present some numerical methods of solving f(α) =
0.
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A. Newton’s Method

The most straightforward method of solving Eq. (25) is the
Newton’s method addressed as follows. In the neighborhood
of α, f can be expanded in Taylor series

f(α + δα) = f(α) + J(α)δα + O(δα2) (26)

where J(α) is the Jacobian matrix at α. In Eq. (26) if we
ignore terms of order δα2 and higher and let f(α+ δα) = 0
then we have the Newton step δα = −J−1(α)f(α). We
can find the solution to Eq. (25) by iterating the following
equations to convergence.

α(k + 1) = α(k)− J−1(α)f(α),
given an initial condition α(0). (27)

However, the Newton’s method is very sensitive to initial
conditions. To overcome this issue, we can construct a globally
convergent iterating algorithm as follow. Let

$ =
1
2
f(α)>f(α),

then a globally convergent iterating algorithm can be designed
when every iterating step decreases $. By doing so, we can
guarantee that $ keeps decreasing at each iteration. Let O$
be gradient (vector of first partial derivatives), since

(O$)>δα = −f(α)>f(α) ≤ 0

and equality is only satisfied at the solution, the Newton step
is a descent direction of $. Therefore, we design the iterating
algorithm by searching along the Newton step such that $
decreases a big enough amount; namely, to find such a suitable
λ in the following equation

α(k + 1) = α(k)− λJ−1(α)f(α), k = 0, . . . (28)

that

$(α(k))−$(α(k + 1)) > ε(k), k = 0, . . . (29)

where ε(k) > 0 is a given small value. To achieve this goal,
we apply the method presented in [8] as follow. To prevent $
from deceasing too slow with respect to the step length, we
make the average rate of decreasing $ to be related to the
initial rate of decreasing −(O$)>J−1(α)f(α) given by

$(α(k + 1)) ≤ $(α(k)) + β(O$)>(α(k + 1)−α(k)) (30)

where β ∈ (0, 1) is a small value of a typical value β =
10−4. Then a suitable λ can be found by using the following
backtracking algorithm.

1) Construct a function

g(λ, k) = $(α(k)− λJ−1(α(k))f(α(k))) (31)

and find

ġ(λ, k) , dg(λ, k)
dλ

= − (
O$(α(k)− λJ−1(α(k))f(α(k)))

)>

(J−1(α(k))f(α(k)))). (32)

The first step is to try λ = 1. If the result is not
acceptable then we go to next step.

2) The first backtrack. If λ = 1 failed, then we begin
backtrack. Let us expand g(λ, k) into

g(λ, k) ≈ [g(1, k)− g(0, k)− ġ(0, k)]λ2

+ġ(0, k)λ + g(0), (33)

of which the minimum is at

λ∗ = − ġ(0, k)
2[g(1, k)− g(0, k)− ġ(0, k)]

. (34)

Let λ2 = 1, for a small enough β we choose λ1 =
min(0.5, max(λ∗, 0.1)). If we need further backtrack,
then we go to next step.

3) Repeat the following steps until no further backtrack
needed.

a) Solve a and b from the following equations.
(

a
b

)
=

1
λ1 − λ2

(
1/λ2

1 −1/λ2
2

−λ2/λ2
1 λ1/λ2

2

)

(
g(λ1)− ġ(0)λ1 − g(0)
g(λ2)− ġ(0)λ2 − g(0)

)
. (35)

Then the minimum of function g(λ) = aλ3+bλ2+
ġ(0)λ + g(0) is at

λ∗ =
−b +

√
b2 − 3aġ(0)
3a

; (36)

b) λ2 = λ1;
c) λ1 = min(0.5λ1,max(λ∗, 0.1λ1)).

B. Broyden’s Method

One drawback of Newton’s method is that the Jacobian
matrix is needed. In cases when the Jacobian matrix is not
analytically available or too expensive to calculate, we use
Broyden’s method[8] to find approximate Jacobian. Let B(k)
be the approximate Jacobian at the kth iteration, then we have

B(k)δα(k) = −f(α(k)) (37)

where δα(k) = α(k + 1) − α(k). Then the quasi-Newton
condition is that B(k + 1) satisfies

B(k + 1)δα(k) = δf(α(k)) , f(α(k + 1))− f(α(k)). (38)

In Broyden’s method we use the following formula to deter-
mine B(k + 1)

B(k + 1) = B(k) +
[δf(α(k))−B(k) · δα(k)]× δα(k)

δα(k) · δα(k)
.

(39)

The initial condition B(0) is usually chosen as the identity
matrix.

V. LEARNING AS FINDING MINIMUM OF ERROR
FUNCTION

To learn computational verbs for each antecedent of a
computational verb algorithm is to find a minimum of an error
function, e.g., Eq. (8). Here two more methods will be used
to find the minimum of the error function. As an illustrating
example, we study a simple computational verb algorithm, of
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which each antecedent consists of a single computational verb
and each consequent is a real number.

Let us assume that there are m = 3 canonical computational
verbs, of which the evolving functions are given by

Ẽ1(t) = 1− e−t,

Ẽ2(t) = 0.5,

Ẽ3(t) = e−t, t ∈ [0, 10]. (40)

The evolving functions of the three canonical computational
verbs are shown in Fig. 1.
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Fig. 1. The three canonical computational verbs in Eq. (40). The evolving
functions Ẽ1(solid), Ẽ2(dashed), and Ẽ3(dotted) are shown.

Let’s study the following three computational verb rules

IF x(t) increases, then y is 0.9;
IF x(t) stays, then y is 0.5;
IF x(t) decreases, then y is 0.1. (41)

The following six samples of computational verbs are
chosen to train the computational verb rules.

Eincrease 1(t) = 1− e−1.1t, y1 = 0.9,

Eincrease 2(t) = 1− e−0.9t, y2 = 0.9,

Edecrease 1(t) = e−1.1t, y3 = 0.1,

Edecrease 2(t) = e−0.9t, y4 = 0.1,

Estay 1(t) = 0.6, y5 = 0.5,

Estay 2(t) = 0.4, y6 = 0.5, t ∈ [0, 10]. (42)

The computational verb similarity is calculated at samples of
the continuous evolving functions as

S(E1, E2) =
1

100

99∑

i=0

(
min(st(E1(iδ)), st(E2(iδ)))
max(st(E1(iδ)), st(E2(iδ)))

)100

,

δ = 0.1. (43)

Let the parameter vector be

α = (α11 α12 α13 α21 α22 α23 α31 α32 α33)>. (44)

Then the three computational verbs in the antecedents are
given by

Eincrease(t) = α11(1− e−t) + 0.5α12 + α13e
−t,

Estay(t) = α21(1− e−t) + 0.5α22 + α23e
−t,

Edecrease(t) = α31(1− e−t) + 0.5α32 + α33e
−t, t ∈ [0, 10].

(45)

A. Downhill Simplex Method

Downhill simplex method is an easy way to find the
minimum of a function as presented in [8]. Since this method
requires only function evaluations but not derivatives, it eases
the implementation at the price of moderate computational
complexity. In the parameter space of a verb rule set, if
the parameter vectors are of n-dimension, then a simplex is
a geometrical structure consisting of (n + 1) vertices. The
downhill simplex method begins with an initial simplex, which
consists of an initial starting parameter vector α0 and the other
n parameter vectors are generated as follows

αi = α0 + δiei (46)

where ei’s are n unit vectors of the parameter space, and
δi’s are constants related to the guessed range than encloses
a minimum. The basic idea of downhill simplex method is to
reallocate the vertex of high error to reduce the entire level of
errors at all simplex vertices. The configurations of simplex
change at each iteration are shown in Fig. 2. Figure 2(a)
shows the simplex at the beginning of one iteration when some
vertices are of high values and the others are of low values.
At the end of the iteration, the resulting simplex can be any
one of those shown in Figs. 2(b) to (e). In Figs. 2(b) to (e),
the original simplex is shown in dashed lines for comparison.

To learn parameters in computational verb algorithm (41),
the initial starting parameter vector is given by

α0 = (1 0 0 0 1 0 0 0 1)>. (47)

And other 9 starting parameter vectors are

α1 = (2 0 0 0 1 0 0 0 1)>,

α2 = (1 1 0 0 1 0 0 0 1)>,

α3 = (1 0 1 0 1 0 0 0 1)>,

α4 = (1 0 0 1 1 0 0 0 1)>,

α5 = (1 0 0 0 2 0 0 0 1)>,

α6 = (1 0 0 0 1 1 0 0 1)>,

α7 = (1 0 0 0 1 0 1 0 1)>,

α8 = (1 0 0 0 1 0 0 1 1)>,

α9 = (1 0 0 0 1 0 0 0 2)>. (48)

The learning result is

α∗ = (0.999829 − 0.000053 0.010922
0.065448 1.048120 0.638260
−0.005613 0.011713 1.228373)>. (49)

The error is e = 0.000318 for this parameter vector. The
evolving functions of the three learnt computational verbs
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high

low
(a) (b)

(c)

(d) (e)

Fig. 2. All possible transformations of a simplex in one iteration of downhill
simplex method. (a) The original simplex at the beginning of one iteration. (b)
A reflection towards opposite direction away from the high point. (c) Same as
(b) with expansion. (d) A contraction along one dimension leaving the high
point. (e) A contraction along all dimensions approaching the low point.

in the antecedents of computational verb algorithm (41) are
shown in Fig. 3. Observe that the worse learning result is in
that of stay. The first 1/3 of the evolving function of stay is
in fact a part of decrease. However, the rest of stay is very
near the ideal situation.

B. Direction Set (Powell’s) Method

As addressed in [8], when we use Powell’s method to find a
minimum of a function, we choose a set of directions and move
along the first direction to its minimum, then from there along
the second direction to its minimum and repeat this procedure
for the rest directions. This procedure is repeated as many
times as necessary until the minimum becomes unchanged.
The key to a good performance of Powell’s method is to
choose a set of good directions. For a given parameter vector
α∗, in its neighborhood any function f can be approximated
by its Taylor series as

f(α) = f(α∗) +
∑

i

∂f

∂αi
αi +

1
2

∑

i,j

∂2f

∂αi∂αj
αiαj + . . .

≈ c− b ·α +
1
2
α ·H ·α (50)

where

c , f(α∗), b , −∇f |α∗ , [H]ij , ∂2f

∂αi∂αj

∣∣∣∣
α∗

. (51)
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Fig. 3. The three learnt computational verbs in the antecedents in the
computational verb algorithm (41) by using downhill simplex method. The
evolving functions for increase(solid), stay(dashed), and decrease(dotted) are
shown.

The matrix H is known as the Hessian matrix of the function
f at α∗. It follows from Eq. (50) that the gradient of f can
be calculated as

∇f |α = ∇
(

c− b ·α +
1
2
α ·H ·α

)
= H ·α− b (52)

which implies that the function f will be at an extremum at
the solution of H ·α = b. It follows from Eq. (52) that if we
move along some direction, the change of gradient is given by

δ(∇f) = H · (δα). (53)

Assume that we have moved along a direction u to a minimum
of f and now to move along the second direction v. To prevent
moving along v from spoiling the minimization along u, the
change in the gradient should be perpendicular to u; namely,
it follows from Eq. (53) that

0 = u · δ(∇f) = u ·H · v. (54)

Two vectors u and v that satisfy Eq. (54) are conjugate. Give
a set of vectors, if its elements are conjugate pairwise, then
this set is a conjugate set. The importance of the concept of
conjugate set to minimization of a function f is that if we
do successive line minimizations of f along a conjugate set
of directions, then the minimization along each direction is
decoupled to the others in the conjugate set. Therefore, the
key is to find such a conjugate set of directions. Consult [8]
for a detailed description of how to construct this kind of
conjugate set of directions in Powell’s method.

By using Powell’s method, after 14 iterations, we arrived at
the following solution

α∗ = (0.987592 0.019557 0.002694
0.093044 1.018511 − 2.188152
−0.002231 0.005155 1.007018)>. (55)

The minimum value of the error function is 0.000164. The
initial parameter vector is the same as that in Eq. (47). The
evolving functions of the three learnt computational verbs
in the antecedents of computational verb algorithm (41) are
shown in Fig. 4. Also, observe that the biggest error is
contributed by stay.
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Fig. 4. The three learnt computational verbs in the antecedents in the
computational verb algorithm (41) by using Powell’s method. The evolving
functions for increase(solid), stay(dashed), and decrease(dotted) are shown.

VI. LEARNING COMPUTATIONAL VERB RULES WITH
STATIC ANTECEDENTS

Here we study the computational verb rules of the form in
Eq. (2).

A. Single-input Computational Verb Algorithms
Let’s assume the following computational verb algorithm of

n computational verb rules.

IF x is x1, THEN y(t) V1;
...
IF x is xn, THEN y(t) Vn, (56)

where y(t) ∈ R, t ∈ [0, T ] is a measured waveform known as
output computational verb and xi ∈ R is a real input. Vi, i =
1, . . . , n, are n computational verbs, of which the evolving
functions are Ei(t) ∈ R, t ∈ [0, T ], i = 1, . . . , n. Observe
that each computational verb rule in algorithm (56) consists
of an antecedent of a real number and a consequent of one
computational verb.

Assume that we observe an input x = a, then the output of
the entire algorithm is calculated by

y(t) =

n∑

i=1

st

(
1

|xi − a|
)
Ei(t)

n∑

i=1

st

(
1

|x1 − a|
) . (57)

Assume that all computational verbs in the consequents
satisfy Eq. (7), and given K sets of training samples
{(uk, dk(t))}K

k=1, we define an error function as

E =
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt (58)

where

ỹk(t) =

n∑

i=1

st

(
1

|xi − uk|
)
Ei(t)

n∑

i=1

st

(
1

|x1 − uk|
) . (59)

Let us assume Vi, i = 1, . . . , n, satisfy Eq. (7), then the
parameters for computational verb algorithm (56) are αij , i =
1, . . . , n; j = 1, . . . ,m. We choose the learning rule (10) for
αij , ∆αij can be calculated as

∆αij = − ∂E

∂αij

= −
∂

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt

∂αij

= −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)
∂αij

dt (60)

where

∂ỹk(t)
∂αij

=

∂

∑n
i=1 st

(
1

|xi−uk|
)
Ei(t)

∑n
i=1 st

(
1

|xi−uk|
)

∂αij

=
st

(
1

|xi − uk|
)

∂Ei(t)
∂αij

n∑

i=1

st

(
1

|xi − uk|
)

=
st

(
1

|xi − uk|
)
Ẽj(t)

n∑

i=1

st

(
1

|xi − uk|
) . (61)

B. Multi-input Computational Verb Algorithms

Let’s assume the following computational verb algorithm of
n computational verb rules.

IF x1 is x11 AND x2 is x12 . . . AND xp is x1p,
THEN y1(t) V1;

...
IF x1 is xn1 AND x2 is xn2 . . . AND xp is xnp,
THEN yn(t) Vn. (62)

where xi ∈ R, i = 1, . . . , p are p inputs. Vi, i = 1, . . . , n,
are n computational verbs of which the evolving functions are
Ei(t) ∈ R, t ∈ [0, T ], i = 1, . . . , n. Observe that the antecedent
of each computational verb rule consists of p real numbers
while the consequent is a computational verb.

Assume that we observe a p-vector of input (a1, . . . , ap),
then the output of this multi-input computational algorithm is
given by

y(t) =

n∑

i=1

Ei(t)
p∏

j=1

st

(
1

xij − aj

)

n∑

i=1

p∏

j=1

st

(
1

xij − aj

) . (63)
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Assume K sets of training samples
{(uk1, . . . , ukp, dk(t))}K

k=1, then we have

ỹk(t) =

n∑

i=1

Ei(t)
p∏

j=1

st

(
1

xij − ukj

)

n∑

i=1

p∏

j=1

st

(
1

xij − ukj

) . (64)

Similarly, let us assume Vi, i = 1, . . . , n satisfy Eq. (7),
then the parameters for computational verb algorithm (62) are
αih, i = 1, . . . , n;h = 1, . . . ,m. To learn αih based on the
learning rule (10) and the error function (58), ∆αih can be
calculated as

∆αih = − ∂E

∂αih

= −
∂

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt

∂αih

= −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)
∂αih

dt (65)

where

∂ỹk(t)
∂αih

=

Ei(t)
∂αih

p∏

j=1

st

(
1

xij − ukj

)

n∑

i=1

p∏

j=1

st

(
1

xij − ukj

)

=

Ẽh(t)
p∏

j=1

st

(
1

xij − ukj

)

n∑

i=1

p∏

j=1

st

(
1

xij − ukj

) . (66)

C. Fuzzification

The antecedents of rules in computational verb algo-
rithms (56) and (62) are attribute values, which are represented
as real numbers. Besides real numbers, fuzzy membership
functions and probability density functions can also function as
attribute values. Therefore, all real numbers in computational
verb algorithms (56) and (62) can be replaced by fuzzy
membership functions as follows.

1) Computational Verb Algorithm (56): Computational
verb algorithm (56) can be recast into

IF x is X1, THEN y(t) V1;
...
IF x is Xn, THEN y(t) Vn (67)

where “is’s” are the default computational verbs used in
conventional logic systems. Xi, i = 1, . . . , n, are fuzzy sets
of which the membership functions are µXi(x), i = 1, . . . , n.

Equation (59) is recast into

ỹk(t) =

n∑

i=1

µXi(uk)Ei(t)

n∑

i=1

µXi
(uk)

. (68)

Then the learning algorithm in (60) and (61) becomes

∆αij = −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
µXi(uk)Ẽj(t)

n∑

i=1

µXi(uk)

dt.

(69)

2) Computational Verb Algorithm (62):

IF x1 is X11 AND x2 is X12 . . . AND xp is X1p,
THEN y1(t) V1;

...
IF x1 is Xn1 AND x2 is Xn2 . . . AND xp is Xnp,
THEN yn(t) Vn (70)

where Xij , i = 1, . . . , n; j = 1, . . . , p, are fuzzy sets, of which
the membership functions are µXij (xi), i = 1, . . . , n; j =
1, . . . , p. Equation (64) is recast into

ỹk(t) =

n∑

i=1

Ei(t)
p∧

j=1

µXij (ukj)

n∑

i=1

p∧

j=1

µXij (ukj)

. (71)

Then the learning algorithm in Eqs. (65) and (66) becomes

∆αih = −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]

Ẽh(t)
p∧

j=1

µXij (ukj)

n∑

i=1

p∧

j=1

µXij (ukj)

dt.

(72)

VII. COMPUTATIONAL VERB RULES WITH
COMPUTATIONAL VERB ANTECEDENTS AND

CONSEQUENTS

So far, we only study the learning algorithm for computa-
tional verb rules, of which either antecedents or consequents
are attribute values; namely, real numbers or fuzzy member-
ship functions. Here we will construct the learning algorithms
for computational verb rules, of which all antecedents and
consequents are in the form of computational verbs.

A. Single-input Computational Verb Algorithms

Let’s assume the following computational verb algorithm of
n computational verb rules.

IF x(t) Vx
1 , THEN y(t) Vy

1 ;
...
IF x(t) Vx

n, THEN y(t) Vy
n (73)
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where x(t) ∈ R, t ∈ [0, T ] is a measured waveform known as
input and y(t) ∈ R, t ∈ [0, T ] is an output. In the antecedents,
Vx

i , i = 1, . . . , n, are n computational verbs, of which the
evolving functions are Ex

i (t) ∈ R, t ∈ [0, T ], i = 1, . . . , n. In
the consequents, Vy

i , i = 1, . . . , n, are n computational verbs,
of which the evolving functions are Ey

i (t) ∈ R, t ∈ [0, T ], i =
1, . . . , n.

Given an observation x(t), the output of this verb algorithm
is a computational verb Vy, of which the evolving function
Ey(t) is calculated as

Ey(t) =

n∑

i=1

S(x(t), Ex
i (t))Ey

i (t)

n∑

i=1

S(x(t), Ex
i (t))

. (74)

We assume that there are mx and my canonical computational
verbs to construct Vx

i and Vy
i , i = 1, . . . , n, respectively. Then

the computational verbs in computational verb algorithm (73)
can be expressed as

Ex
i (t) =

mx∑

j=1

αx
ij Ẽx

j (t), Ey
i (t) =

my∑

j=1

αy
ij Ẽy

j (t). (75)

Given K sets of training samples {(uk(t), dk(t))}K
k=1, we

define an error function as

E =
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt (76)

where

ỹk(t) =

n∑

i=1

S(uk(t), Ex
i (t))Ey

i (t)

n∑

i=1

S(uk(t), Ex
i (t))

. (77)

The learning rules are given by

αx
ij(l + 1) = αx

ij(l) + γx
ij(l)∆αx

ij(l),
αy

ij(l + 1) = αy
ij(l) + γy

ij(l)∆αy
ij(l), l = 1, . . . (78)

where γx
ij(l) ∈ R+ and γy

ij(l) ∈ R+ are learning rates, which
can be tuned to different values during the training process for
each parameter, and

∆αx
ij = −

∂

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt

∂αx
ij

= −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)
∂αx

ij

dt (79)

where ∂ỹk(t)
∂αx

ij
is given by Eq. (80) for one of many possible

computational verb similarities[36].

∆αy
ij = −

∂

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt

∂αy
ij

= −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)
∂αy

ij

dt (81)

where ∂ỹk(t)
∂αy

ij
is given by

∂ỹk(t)
∂αy

ij

=
∂

∑n
i=1 S(uk(t), Ex

i (t))Ey
i (t)∑n

i=1 S(uk(t), Ex
i (t))

∂αy
ij

=
S(uk(t), Ex

i (t))
n∑

i=1

S(uk(t), Ex
i (t))

∂Ey
i (t)

∂αy
ij

=
S(uk(t), Ex

i (t))
n∑

i=1

S(uk(t), Ex
i (t))

Ẽy
j (t). (82)

B. Multi-input Computational Verb Algorithms

Let’s assume the following computational verb algorithm of
n computational verb rules.

IF x1(t) Vx
11 AND x2(t) Vx

12 . . . AND xp(t) Vx
1p,

THEN y(t) Vy
1 ;

...
IF x1(t) Vx

n1 AND x2(t) Vx
n2 . . . AND xp(t) Vx

np,
THEN y(t) Vy

n (83)

where xi(t) ∈ R, t ∈ [0, T ], i = 1, . . . , p are p inputs.
In the antecedents, Vx

ij , i = 1, . . . , n; j = 1, . . . , p, are np
computational verbs, of which the evolving functions are
Ex

ij(t) ∈ R, t ∈ [0, T ], i = 1, . . . , n; j = 1, . . . , p. In the
consequents, Vy

i , i = 1, . . . , n are n computational verbs, of
which the evolving functions are Ey

i (t) ∈ R, t ∈ [0, T ], i =
1, . . . , n.

The output of this multi-input computational algorithm is a
computational verb Vy , of which the evolving function, Ey(t),
is given by

Ey(t) =

n∑

i=1

Ey
i (t)

p∏

j=1

S(xj(t), Ex
ij(t))

n∑

i=1

p∏

j=1

S(xj(t), Ex
ij(t))

. (84)

We assume that there are mx canonical computational
verbs Ẽx

j (t), j = 1, . . . , mx, which are used to construct all
computational verbs in antecedents as

Ex
ih(t) =

mx∑

j=1

α
(hx)
ij Ẽx

j (t), h = 1, . . . , p, (85)

where α
(hx)
ij ∈ R, i = 1, . . . , n; j = 1, . . . ,mx, function

as adverbs. We also assume that there are my canonical
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∂ỹk(t)
∂αx

ij

=
∂

∑n
i=1 S(uk(t), Ex

i (t))Ey
i (t)∑n

i=1 S(uk(t), Ex
i (t))

∂αx
ij

=




Ey
i (t)

n∑

i=1

S(uk(t), Ex
i (t))

−

n∑

i=1

S(uk(t), Ex
i (t))Ey

i (t)

[
n∑

i=1

S(uk(t), Ex
i (t))

]2




∂S(uk(t), Ex
i (t))

∂αx
ij

=




Ey
i (t)

n∑

i=1

S(uk(t), Ex
i (t))

−

n∑

i=1

S(uk(t), Ex
i (t))Ey

i (t)

[
n∑

i=1

S(uk(t), Ex
i (t))

]2




×

∫ T

0


st(uk(t))− st




mx∑

j=1

αx
ij Ẽx

j (t)





 ṡt




mx∑

j=1

αx
ij Ẽx

j (t)


 Ẽx

j (t)dt

T

√√√√√ 1
T

∫ T

0


st(uk(t))− st




mx∑

j=1

αx
ij Ẽx

j (t)







2

dt

. (80)

computational verbs Ẽy
i (t), i = 1, . . . ,my , which are used to

construct all computational verbs in consequents as

Ey
i (t) =

my∑

j=1

αy
ij Ẽy

j (t), i = 1, . . . , n. (86)

Given K sets of training samples
{(uk1(t), . . . , ukp(t), dk(t)}K

k=1, we define an error function
as

E =
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt (87)

where

ỹk(t) =

n∑

i=1

Ey
i (t)

p∏

h=1

S(ukh(t), Ex
ih(t))

n∑

i=1

p∏

h=1

S(ukh(t), Ex
ih(t))

. (88)

The learning rules are given by

α
(hx)
ij (l + 1) = α

(hx)
ij (l) + γ

(hx)
ij ∆α

(hx)
ij (l),

αy
ij(l + 1) = αy

ij(l) + γy
ij∆αy

ij(l), l = 1, . . . , (89)

where γ
(hx)
ij ∈ R+ and γy

ij ∈ R+ are learning rates, which
can be tuned to different values during the training process
for each parameter, and

∆α
(hx)
ij = −

∂

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]2dt

∂α
(hx)
ij

= −2
K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)

∂α
(hx)
ij

dt (90)

where ∂ỹk(t)

∂α
(hx)
ij

is given by Eq. (91).

∆αy
ij = −2

K∑

k=1

∫ T

0

[ỹk(t)− dk(t)]
∂ỹk(t)
∂αy

ij

dt (92)

where ∂ỹk(t)
∂αy

ij
is given by

∂ỹk(t)
∂αy

ij

=
∂

∑n
i=1 Ey

i (t)
∏p

g=1 S(ukg(t), Ex
ig(t))∑n

i=1

∏p
g=1 S(ukg(t), Ex

ig(t))
∂αy

ij

=

p∏
g=1

S(ukg(t), Ex
ig(t))

n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

Ey
i (t)

∂αy
ij

=

Ẽy
j (t)

p∏
g=1

S(ukg(t), Ex
ig(t))

n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

. (93)

VIII. CONCLUDING REMARKS

In this paper I only presented a few possible learning algo-
rithms of computational verb rules based on known samples.
The computational verb rules discussed include the following
cases.

1) The antecedent of each computational verb rule consists
of one computational verb and the consequent consists
of one real number;
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∂ỹk(t)

∂α
(hx)
ij

=
∂

∑n
i=1 Ey

i (t)
∏p

g=1 S(ukg(t), Ex
ig(t))∑n

i=1

∏p
g=1 S(ukg(t), Ex

ig(t))

∂α
(hx)
ij

=
p∏

g=1,g 6=h

S(ukg(t), Ex
ig(t))





Ey
i (t)

n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

−

n∑

i=1

Ey
i (t)

p∏
g=1

S(ukg(t), Ex
ig(t))

[
n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

]2





∂S(ukh(t), Ex
ih(t))

∂α
(hx)
ij

=
p∏

g=1,g 6=h

S(ukg(t), Ex
ig(t))





Ey
i (t)

n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

−

n∑

i=1

Ey
i (t)

p∏
g=1

S(ukg(t), Ex
ig(t))

[
n∑

i=1

p∏
g=1

S(ukg(t), Ex
ig(t))

]2





×

∫ T

0


st (ukh(t))− st




mx∑

j=1

α
(hx)
ij Ẽx

j (t)





 ṡt




mx∑

j=1

α
(hx)
ij Ẽx

j (t)


 Ẽx

j (t)dt

T

√√√√√ 1
T

∫ T

0


st(ukh(t))− st




mx∑

j=1

α
(hx)
ij Ẽx

j (t)







2

dt

. (91)

2) The antecedent of each computational verb rule consists
of more than one computational verb and the consequent
consists of one real number;

3) The antecedent of each computational verb rule consists
of one real number and the consequent consists of one
computational verb;

4) Fuzzification of 3);
5) The antecedent of each computational verb rule consists

of more than one real number and the consequent
consists of one computational verb.

6) Fuzzification of 5);
7) The antecedent and consequent of each rule consists of

one computational verb;
8) The antecedent consists of more than one computational

verbs and the consequent consists of one computational
verb.

There are many ways to generalize the results presented here.
First, all real numbers can be generalized into fuzzy mem-
bership functions. Second, the way to calculate computational
verb similarities can be generalized into many others reported
in [36] as well. Third, the types of computational verb rules
can be generalized into many others. Fourth, the ways of
constructing computational verbs used in computational verb
rules may have many different choices. Therefore, the results
presented here is far from complete or comprehensive.
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