
SIAM J. COMPUT.
Vol. 20, No. 5, pp. 865-877, October 1991

1991 Society for Industrial and Applied Mathematics
004

PP IS AS HARD AS THE POLYNOMIAL-TIME HIERARCHY*

SEINOSUKE TODAY"

Abstract. In this paper, two interesting complexity classes, PP and P, are compared with PH, the
polynomial-time hierarchy. It is shown that every set in PH is polynomial-time Turing reducible to a set in
PP, and PH is included in BP. 0)P. As a consequence of the results, it follows that PP PH (or 03P___ PH)
implies a collapse of PH. A stronger result is also shown: every set in PP(PH) is polynomial-time Turing
reducible to a set in PP.

Key words, polynomial-time hierarchy, probabilistic Turing machine, polynomial-time Turing reduc-
tions, parity, randomized reduction

AMS(MOS) subject classifications. 68Q15, 03D15

1. Introduction. Since the notion of probabilistic Turing machines was introduced
by Gill [5], much attention has been given to several questions about its computational
power. One ofthose questions is whether PP is more powerful than PH (the polynomial-
time hierarchy), where PP denotes the class of sets accepted by polynomial-time-
bounded probabilistic Turing machines with two-sided unbounded error probability.
In particular, it is important in the theory of computational complexity to ask whether
PH is included in PP, or to ask whether all sets in PH are reducible to sets in PP under
a suitable reducibility. This has been an open question discussed in many papers [1],
[2], [10], [12], [15], [16], [19-21]. It was shown by Gill [5] that NPU co-NP is included
in PP. It is not known, however, whether A2P is included in PP. For this question,
Beigel, Hemachandra, and Wechsung [3] have recently shown that pNP{ogJ is included
in PP. This is the strongest result known currently for the containment question of PH
in PP. Some related results have been shown in [20].

In this paper, we give an affirmative answer to one of the above questions. We
show that all sets in PH are _< -reducible to a set in PP. Namely, our Main Theorem
in this paper is stated as follows.

MAIN THEOREM. PH P(PP)
As an immediate consequence, we see that PP is not included in PH unless PH

collapses to a finite level. This gives us evidence that PP is harder than PH. In the
process of proving the Main Theorem, we show an interesting result about the hardness
of the class P. This class was introduced by Papadimitriou and Zachos [13] and
further investigated in several papers [13], [25], [15]. We show that all sets in PH are
reducible to a set in this class under polynomial-time randomized reductions with
two-sided bounded error probability. It was shown by Valiant and Vazirani [25] that
all sets in NP are reducible to a set in P under polynomial-time randomized reductions
with one-sided bounded error probability. These randomized reductions are stronger,
but in other respects our result extends theirs. In fact, they asked how computationally
difficult P is. Our result is an answer to their open question.

Our proof of the main theorem proceeds as follows. In 3, we show that PH is
included in BP. P, where BP. denotes the BP-operator introduced by Sch/Sning 15].
Intuitively speaking, a set is in BP. P if and only if it is reducible to a set in P

* Received by the editors February 21, 1989; accepted for publication (in revised form) December 12,
1990. This research was supported in part by International Information Science Foundation grant 89 2 2 176.

t Department of Computer Science and Information Mathematics, University of Electro-communica-
tions, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan.

865

866 SEINOSUKE TODA

under a polynomial-time randomized reduction with two-sided bounded error probabil-
ity. The proof of it is based on a result by Valiant and Vazirani [25] and a result by
Sch/Aning [15]. In 4, we show that BP. 0)P is included in P(PP). In fact, we will
show a stronger result than this. The proof is based on a structural property of 0)P
discovered in this paper. At the end of 4, we will mention a stronger result than the
Main Theorem above: PP(PH) P(PP). This result is obtained by combining the
technique in this paper with a result by K6bler et al. [10].

2. Preliminaries. We assume that the reader is familiar with the basic concepts
of computational complexity theory. Let E be a finite alphabet. For a string w E*, Iwl
denotes the length of w. For a set L

_
E*, L denotes the complement of L. For a class

K of sets, co-K denotes the class of sets whose complement is in K. Let En (respectively,
E -<n and E<’) denote the set of strings with length n (respectively, length, at most n
and less than n). For a finite set X

_
E*, IIXII denotes the number of strings in X. Let

N denote the set of natural numbers.
Our sets in this paper are over E {0, 1, : } unless otherwise specified. The symbol

: is usually used as a delimiter among strings of {0, 1}*. A pairing function (respectively,
a k-tuple function) over {0, 1}* is represented by delimiting two strings (respectively,
k strings) by this symbol.

Our models of computation are variations of polynomial-time-bounded oracle
Turing machines (deterministic, nondeterministic, or probabilistic). Our oracle
machines are usual ones. For an oracle machine M and an oracle set A, M(A) denotes
that M uses A as an oracle. A polynomial-time-bounded deterministic (respectively,
nondeterministic) oracle machine is abbreviated by an oracle P-machine (respectively,
oracle NP-machine). A polynomial-time-bounded probabilistic oracle machine with
two-sided unbounded error probability (respectively, with two-sided bounded error
probability) is abbreviated by an oracle PP-machine (respectively, an oracle BPP-
machine). In the unrelativized cases, we omit the term "oracle." For example, an oracle
NP-machine with the empty set as an oracle is simply called an NP-machine.

For an oracle set A, P(A) denotes the class of sets accepted by oracle P-machine
with oracle A. NP(A), PP(A), and BPP(A) are defined similarly. 0)P(A) denotes the
class of sets L for which there exists an oracle NP-machine M such that for each x, x
is in L if and only if the number of accepting computation paths of M(A) on x is odd.
This class was defined by Papadimitriou and Zachos [13]. For a class K of oracle sets,
P(K) {P(A): A K}. Other classes are defined similarly. The unrelativized classes
are defined by setting the oracle set to the empty set, and the specification of oracle
set is omitted in this case.

We assume that all polynomial-time-bounded oracle machines M satisfy the
following conditions.

(1) Its transition function has at most two possible transitions from each
configuration.

(2) All computation paths of M are encoded into a string of {0, 1}* by the usual
manner, where a computation path may contain possible answers from a given oracle,
and the oracle answer "yes" (respectively, "no") is encoded by 0 (respectively, 1).

These assumptions are technical ones. Obviously, we lose no generality under
these assumptions.

Let X be a finite set of strings and R be a predicate over strings. In this paper,
we denote by Prob ({we X" R(w)}) the probability that R(w) is true for randomly
chosen w from X under uniform distribution. In [15], Sch/Sning introduced the
BP-operator, which produces a probabilistic class from a given class. He also defined

PP IS AS HARD AS PH 867

-operator in [16], as an abstraction of the class P. In [26], Wagner defined the
counting operator, based on a characterization of PP in [14], [26]. We give those
definitions here. The following definition of the counting operator is different from
the original one; however, it is easy to see that both definitions define the same concept.

DEFINITION 2.1 [15], [16], [26]. Let K be a class of sets and let L be a set. Then
we define some new classes denoted by @ K, BP. K, and C. K as follows.

(1) L e @ K if there exist a set A e K and a polynomial p such that for all x e E*,

x e L ---> [[{w e {0, 1}P(lxl): x 4 w e a}][is odd.

(2) L e BP K if there exist a set A e K, a polynomial p, and a constant a > 0 such
that, for all x e E*,

Prob ({we{0, 1}p(Ixl’xweA<--xe L})>=1/2a.

(3) L e C K if there exist a set A e K and a polynomial p such that for all x e E*,

Prob ({we{0, 1}p(lxl’xqeweA<-->xe L}) >1/2.
It is easy to see that C-P= PP, BP. P= BPP, and @. P= @P. The following

propositions are basic properties of the above operators, which follow immediately
from the definitions. These will be used implicitly in later arguments.

PROPOSITION 2.2. Let K1 and K2 be arbitrary classes of sets. Then, the following
statements hold.

(1) If K
_
K2, then K

_
@) K2.

(2) If K is closed under marked union with sets of theform {x#0 pII>" x eX*} (for
arbitrary polynomial p such sets are in P), then K1 is closed under complernentation.

(3) If K1 is such that, for all sets Le K, the set {xx" x e L} also belongs to K1,
then K @ K.

PROPOSITION 2.3. Let K and K2 be any classes ofsets. Then thefollowing statements
hold.

(1) If KI_ K2, then BP. KI BP. K2.
(2) co-BP. K

_
BP. co-K Hence, if K is closed under cornplernentation, then

co-BP. KI= BP. K1.
(3) If K1 is closed under padding i.e., L e K1 implies {x 44= y" x e L and y e {0, 1 }*} e

K for each set L), then K BP" K.
PROPOSITION 2.4. Let Ki and K2 be arbitrary classes of sets. Then the following

statements hold.
(1) If K _K, then C.K_C.K2.
(2) co-C. K

_
C. co-K1. Hence, if K1 is closed under complernentation, then co-

C. K1-C. K.
(3) If K is closed under padding, then K1 C K
(4) BP" K

C. K

We can easily see that all the classes to be built in this paper satisfy the. closure
properties mentioned in the above propositions (except possibly for complementation).
For example, II(k => 0) is closed under taking marked union with the set of the form
{x#O p(lxl)"

X eY-,*}’, hence, . II is closed under complementation; we will use this
fact in the next section.

In the later sections, we will be concerned with several reducibility notions defined
below.

DEFINITION 2.5. Let A and B be arbitrary sets. A is said to be -< P.-reducible to
B(A<-P,, B) if there exists a function f computable in polynomial time such that for

P P B) ifeach x, x e A if and only ill(x)e B. A is said to be <- ma- reducible to B(A --<ma

868 SEINOSUKE TODA

there exists a function f computable in polynomial time such that for each x,f(x)=
yl#Y2# #Ym (m >--_ 1), and x A if and only if the majority of yi’s are in B. A is
said to be <- -reducible to B (A --<TP B) if there exists an oracle P-machine that accepts
A with oracle B. Let K be a class of sets and let <-rP denote an arbitrary reducibility.
A set L is <P-r-hard for K if every set in K is _< P-reducible to L; if L K in addition,
then L is said to be --r-< P complete for K. Then we say that K is closed under < p if and
only if for all sets A and B, A _< P B and B If implies A K.

PObserve that for all sets A and B, A maj B implies A _< T
P B; and hence, if a class

PIf is closed under <--, then the class is closed under <--maj.

3. P is hard for PH under randomized reducibility. In this section, we show that
)P is hard for the polynomial-time hierarchy under polynomial-time randomized
reducibility. More precisely, our main result in this section is stated as follows.

THEOREM 3.1. PHi_ BP" P.
Before proving this, we give an intuitive explanation of the proof to the reader.

We first show that E is included in BP. II_ for each k > 1 (see Lemma 3.3)
This generalizes a result due to Valiant and Vazirani [25] in which they showed that
all NP-complete sets are reducible to a set in P under randomized polynomial-time
reducibility. Our proof technique is essentially the same as theirs. We next observe
that it is possible to swap a @-operator and a BP-operator. In particular, we show
that @ BP. @ P__G_ BP. @ @ P (see Lemma 3.6). Furthermore, we observe that it is
possible to reduce two consecutive BP-operators (respectively, two consecutive
operators) to one operator: It was shown by Papadimitriou and Zachos [13] that
0) P(@ P) @ P. This implies that 0) @ P @ P, and we also show that BP BP @ P
BP 0)P (see Lemma 3.7). At the end of this section, we put all this together to prove
Theorem 3.1, using an induction on the levels of the polynomial-time hierarchy.

Now we begin to show the lemmas mentioned above. Following Valiant and
Vazirani [25], we shall view strings of {0, 1} as n-dimensional vectors from the vector
space GF[2] n. We denote by u. v the inner product of two vectors u and v over GF[2].
In [25], they showed the following result.

THEOREM 3.2 [25]. Let n>= 1 and let So__ {0, 1} be a nonempty set. Suppose
Wl, w2," w, are randomly chosen from {0, 1}". Let So S and let

S={v S: v. w= v" w2 v. w=O}

for each 1 <= <-_ n. Let P,(S) be the probability that Si 1 for some 0 <- n. Then,
P,(S) >=-.

LEMMA 3.3 For each k > 1, Z U 1-I c B P. . 1-I_ |o

Proof By Propositions 2.2(2) and 2.3(2), BP .. 1-I_ is closed under com-
plementation. Hence, it suffices to show that c_ BP. . II_. Let L . Then it
was shown by Stockmeyer [18] and Wrathall [28] that there exist a set A II_ and
a polynomial p such that for every x, x L if and only if x y A for some y
We define a set C as follows:

C {x :: w w2 Wp(Ixl): for each i, 1 <= <- p([xl) w {0, 1} p(lxl), and for some j,

O<-j<-p(Ixl), II{Y {0, 1} p(Ixl)" x y A^ (ti<=j)[w;. y =0]}11 is odd}.

We first show that C is in II_l. Since FI _1 is closed under complementa-
tion, it suffices to show that C’s complement, , is in . II_l. This can be done as
follows: Given arbitrary strings x and z wlw2 Wpll such that, for each i, 1
P(lX[), wi {0, 1}

PP IS AS HARD AS PH 869

x#zC-for each j, 0 _-<j <- p([x]), []{y {0, 1} ,(Ixl). x # y A ^ (/i <_j)[wj. y 0]}[[is even

o n (ll{" x#yJ^(Vi<_j)[wj.y=O]}ll+l)isodd.
j=0

Hence we may define a set B 6H_ and a polynomial q such that for every x # z,
(Izl =p(Ixl)2),

p(lxl)

j=0

The set B is defined by

B {x # w wp(lxl) # ayay. a(ll)w(ixl)" for every j, 1 j p(]x[),

wj {0, 1 } v(ll, aj {0, 1 }, yj {0, 1 } v(ll, and
(W, J p(Ixl))[ajyj o+’ v (j x yj A (Vi j)[w," yj 0])]}.

It is easy to see that BH_ and that B and the polynomial q(n)=p(n)(1 +p(n))
satisfy the required condition; that is, the set B and the polynomial q witness C
.Pk-l"

Next, we show L BP. . H_ by using the set C. Let x be a string and let
w, w2," , w(ixl> be randomly chosen from {0, 1}P(lxl). We define

So {y {0, }v(- x y A}

and

S ={y So" w y w. y wi" y}

for each 1 ip(Ix[). Let Pv(ll(So) be the probability that
p(]x]). Then it is easy to see that

Hence, from Theorem 3.2,
(1) xLProb({u{O, 1}P(ll)’x#uC})and
(2) xeLProb({u{0,1}v(ll’x#uC})=0.

The probability of (2) follows from the fact that for all x, if x L, then x # y A for
every y {0, 1}(Ixl). To amplify the probability in (1), we fuher define a set D as
follows"

D {x # u,uu lu, (Ixl) for each 1, 2, 3 and x # u, C for some 1, 2, 3}.

Then we obtain that for each x,

(3) xLProb({uuu{O, 1} v(ll)" x#uuuD})

=1 (Prob ({u {0, 1} (ll)" x # u C}))

1 27-=+ and

(4) xLProb({uuu{O, 1}v(ll)’x#uuuD})=O.
By using the same argument as when showing C H_, we can show D H_.
This implies L

It was shown by Papadimitriou and Zachos 13] that P(P) P. This implies
the following theorem. For the sake of making this paper more selficontained, we
provide a sketch of their proof.

870 SEINOSUKE TODA

THEOREM 3.4 [13]. 0) P(0) P) P. Hence we have that O) P P and that
PP is closed under --<maj.

Proof Sketch. Let L be a set in 0)P(0)P). Then there exist a set A 0)P and an
oracle NP-machine M such that for every x, x L if and only if the number of accepting
paths of M(A) on input x is odd. Let M1 be an NP-machine that witnesses A P.
Then we define an NP-machine M2 working on a given input x as follows"

(1) M2 first guesses a computation path w ofM on input x, which includes possible
oracle answers to the query strings appearing in w.

(2) If w is a rejecting path of M on x, then M2 enters a rejecting state; otherwise,
it goes to the next step.

(3) Let y, Y2, Y,, (z, z2, , Zl) be all the query strings which appear in w
and whose corresponding oracle answers in w are "yes" (respectively, "no").
Then M simulates M successively for each y and each z in the following
manner:
(a) For each yi, it simply simulates M. If M enters a rejecting state, then
so does M2; otherwise, it proceeds to the next simulation.
(b) For each z, it nondeterministically selects one of the following processes:

(i) M2 goes to the next simulation. (Intuitively speaking, this process
can be regarded as a dummy-accepting path of M1 on input z.)

(ii) M2 simulates M on z. If M1 enters a rejecting state, then so does
M2; otherwise, it goes to the next simulation.

(4) M2 enters an accepting state.

We can classify all possible accepting computation paths of M on input x into
two groups, one of which consists of accepting paths of M(A) on x (group 1), and
the other consists of the remaining ones (group 2). Obviously, every accepting path
in group 1 contains correct oracle answers of the oracle set A, and every accepting
path in group 2 contains a wrong oracle answer. From the definition of M2, we can
easily see that every accepting path in group 1 is followed by an odd number of
accepting paths in steps 3 and 4, and every accepting path in group 2 is followed by
an even number of accepting paths in those steps. From this observation, it is not
difficult to see that for every x, x L if and only if the number of accepting paths of

M on input x is odd. We leave the verification to the interested reader. Thus L is in
P. The other statements are immediate from the first one.
The following theorem was shown by Sch6ning [15].

PTHEOREM 3.5 [15]. Let K be a class of sets which is closed under --<maj. Then for
all sets A B P K and all polynomials q, there exist a set B and a polynomial p such that,
for all n,

Prob ({y {0, 1} p(n)" (X,]X]-- n)[x y B--xa]})>= 1-2-q(n).

LEMMA 3.6. 0) BP (P c__ BP P.
Proof Let L . BP. P. Then there exist a set A BP. P and a polynomial

p such that for each x, x L if and only if

[l{w" Iwl =p(Ixl) and x w

is odd. Furthermore, there exist a set B P, a polynomial q, and a constant a > 0
such that for each y,

Prob ({u {0, 1} q(lyl)" y=uB,-y6A})>--+o.
PSince P is closed under --<ma, we may assume, from Theorem 3.5, that for all m,

Prob ({u {0, 1}q("): (Vy, lyl m)[y. u6 B--yA]})>-1/4.

PP IS AS HARD AS PH 871

Hence we have that for all x of length n,

Prob ({u e {0, 1} q(n+l+p(n))" (VW e {0, 1}P(n))[X # W # 12 e B *- x # w e A]}) >- ,
and hence,

(1) Prob({ue{O, 1}q(n+l+p(n))’{we{O, 1}p(n)’x#w#ueB}

={we{O, 1}P(": x# w e A}}) >-.
For a string x of length n, assume xe L. Then [l{w e {0, I}P(": x wea}[I is odd.

Hence from (1),

(2) Prob ({ue{O, 1} q("+l+p("))" [[{we{O, 1}P("): x# w#ueB}l is odd}) >_- .
Conversely, assume xeL. Then [[{we{O, 1} p("" x# weA}l[is even. Hence from (1),

(3) Prob ({ue{0, 1} q(n+l+p(n))" [[{We{0, 1}P(n): X# w#ueB}l is odd}) -<_ 1/4.

We now define B’ and A’ by

B’={x# u # w" lu[= q([xl+ l+p([x[)), [w[=p([x[), and x# w # u e B}

and

A’= {x * u" lul q(lxl + 1 +p(lxl)) and x, u * w e B’

for an odd number of w

Then we obtain that Prob ({u e {0, 1} q(Ixl+l+p(Ixl))"
X U e A’ ’-’ x e L}) >-- from (2) and

(3) above. It is easy to see that B’e 03 P and A’e). P. Hence, A’ is in 03 P from
Theorem 3.4. This implies L e BP. 03 P.

LEMMA 3.7. BP" BP q) P BP 0) P.
Proof. It suffices to show the inclusion BP. BP. q)PG BP. 03 P. Let L e BP. BP.

0)P. Then there exist a set A e BP. O)P and a polynomial p such that for each x,

Prob ({we{0, 1}p(Ixl): x weA<->xeL})>-.

Furthermore, there exist a set B e @ P and a polynomial q such that for each y,

Prob ({u e {0, 1}q(Iyl):

Note that we are using Theorem 3.5 in this setting. We now define a set C by

C {x # wu" [w[P(lx[), [u[q(lx # w[)= q(lx[+ 1 +p(Ix})), and x # w # u e B}.

It is easy to see that C is in 03 P. For a string x, if x e L, then
(1) Prob ({wu e {0, 1} p(IxI)+q(IxI+I+p(IxI))" x # wu e C})

=Prob ({we{0, 1} p(II" x# weA})

xProb ({u e {0, 1}q(lxl+l+p(lxl)): x# w# Ue B}[x# weA)

+Prob ({we{0, 1}p(Ixl): x# weA})

x Prob ({u e {0, 1}q(Ixl+l+p(Ixl)): X W U e B}lx w A)

872 SEINOSUKE TODA

where Prob (X/Y) denotes the conditional probability of the event X under the
condition Y.

Conversely, if x L, then
(2) Prob ({W/,/C {0, 1}p(lxl)+q(lxl+l+p(lxl)): x Wbl C})

=Prob ({w {0, 1} p(Ixl)" x wA})

x Prob ({u {0, 1}q(Ixl+l+P(Ixl)): x w u B}lx w A)

+Prob ({w {0, 1} p(Ixl) x#t wf:A})

Prob ({u {0, 1}q(Ixl++p(Ixl)): X W 4 u B}lx w A)

_-<z.l+l.= =-.
Thus we have that for every x,

Prob ({v {0, 1} p(lxl)/q(lxl+/p(lxl)), x v C x Z}) -> 1/2+.
This implies that L

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. We prove this theorem by induction on the levels of the

polynomial-time hierarchy. The inclusion E P BP. P is obvious. We now assume
c BP. @P for some k>0. It is easy to see that BP. @P is closed under com-

plementation. Hence we have the inclusion IIkP_l
_
BP. 03 P. Then,

;c__ BP. @. 1-I[_ (from Lemma 3.3)_
BP. @ BP. @P (from inductive assumption)

BP. @ P (from Lemma 3.6 and Lemma 3.7).

Thus we conclude that PH U k__>0 Z[-----BP. @ P.
It was shown by Sch6ning [15] that IIc_ BP. Z[implies Z+l=H[+ for every

k _-> 1, which is regarded as a refinement ofthe result by Karp and Lipton [7]. Combining
this result with Theorem 3.1, we observe that P is harder than PH unless PH collapses
to a finite level. More precisely, we obtain the following corollary.

COROLLARY 3.8. For every k >- 1, if P
_ ,, then PH E+l. Hence 03 P_ PH

implies that PH collapses at a finite level.
The second statement in this corollary follows from the fact that 03 P has a complete

set under _< Pro-reducibility.

4. PP is <-_-hard for PH. In this section, we prove the following theorem.
THEOREM 4.1. C @ P

_
P(PP).

It is easy to see that BP. @ P_ C. @ P. Hence the Main Theorem in 1 follows
immediately from this theorem and from Theorem 3.1.

The following lemma plays an important role in the proof of Theorem 4.1, and
depends on an interesting numerical property. For an NP-machine N and an input y,
let # aCCN(y) denote the number of accepting computation paths of N on input y.

LEMMA 4.2. Let X be a set in P and let q be a polynomial. Then, there exists an
NP-machine N such that for each input y of length n,

(1) if ye! X, then # accr(y)=-O.(mod 2q(),and
(2) ify X, then # accrl(y) -1 (mod 2q(")).
Before proving this lemma, we give an intuitive explanation about our proof of

Theorem 4.1 and about the role of Lemma 4.2. Let L be a set in C. 03 P. Then there
exist a set X @ P and a polynomial p such that for every x,

Prob ({ w c {0, 1 } p(lxl), x # W G X iff x L}) > 1/2.

PP IS AS HARD AS PH 873

Let N1 be an NP-machine satisfying the conditions in Lemma 4.2 for the set L and
the polynomial q(n) n. Consider an NP-machine N which operates as follows. Given
an input x of length n, N first guesses a string w of length p(n), and it begins to
simulate N1 on input x # w. If N1 enters an accepting state, then N enters an accepting
state; otherwise, it enters a rejecting state. Let # X[x] denote the number of strings
w such that Iwl=p(n) and x wX. From Lemma 4.2, it is not difficult to see that
aCCN(X)=2n+l+p(n kx- X[x] for some natural number kx-->0. By a standard
binary search technique, # aCCN(X) can be computed in polynomial time with an oracle
set from PP. After this, we can also get the value of #X[x] within polynomial time
by computing :aCCN(X mod 2n+l+p(n), because #X[x]<-2 p(")2n++p(n). Finally, we
decide to accept the input x if and only if #X[x] > 2 p(n)-l. Hence, we can conclude
that C. P c_ p(pp).

The recurrence relation in the next lemma provides the key numerical property.
Intuitively speaking, it gives us a whole exponential factor of freedom in our counting.

LEMMA 4.3. For an integer m, define the sequence So, s, s2,’’’, inductively by
So m and for > 1, si 3 4

S i- -JI- 4 s i-- 1" Then,
(1) if m is even, then for all i, si is a multiple of 22, and
(2) if m is odd, then for all i, si + 1 is a multiple of 2 2’.
Proof. The statement (1) is obvious from the definition of the sequence. We prove

(2). The case i=O is obvious. We assume that for some i> 0, Si_ --22i-1" ki_ -1 for
some positive integer ki_. Then, from the definition of si,

S 3 4
Si_ +4" Si_

3. (2 2’-1. ki-1- 1)4+4. (22i-1. k,-1-1)3

3 22i+1 4 2 3. 2 2 2‘ 2ki-1- 8. k,3._l +6. ki-1 1

22i (3 22i k,4._l 8 22’- 2ki-1 + 6" ki_ 1) 1.

Hence si is a multiple of 2 2’. [3

Accordingly, we make the following recursive definition of a functionfs" * X N-+
N, where is the input alphabet of a given NTM N.

DEFINITION 4.4. For an NP-machine N and an input y, define

fN(Y, O)= aCCN(y), and for -> 1,

fN(Y, i)= 3" (fN(Y, i-1))4+4 (fN(Y, i-1))3.

LEMMA 4.5. Let N be an NP-machine, and let q(n) be a polynomial. Then for all
input y of length n,

(1) if aCCN(y) is even, thenfN(y, [log2q(n)])=-O(mod2q(")), and
(2) if aCCN(y) is odd, then fN(y, [log2 q(n)])--=--1 (mod 2q(")).
Proof Since 22[1g2 q(n)] 2q(n)+k 2q(n) 2k for some natural number k, this follows

immediately from Lemma 4.3.
Given a set Xe @P, it follows from the definition of P that there is an

NP-machine N such that for all y, y e X if and only if aCCN(y) is odd. Hence, to
obtain Lemma 4.2, it remains to show how to construct an NP-machine Q such that
for all y,

acco(y)=fN(y, [log2 q(n)]).

This is accomplished in the following lemma.

874 SEINOSUKE TODA

LEMMA 4.6. Let N be an NP-machine, and let be a polynomial which bounds the
runtime of N. Then we can find an NTM Q which takes inputs of the form y : li, and
a constant c > 0 such that for all y, i:

(1) accQ(y 4 I i) =fN(Y, i), and
(2) all computations of Q on input y 1 halt within c. 4i. (t(lYl) / 1) steps.
Proof. Intuitively speaking, the required machine Q is designed so that for each

input y 1 , it executes itself recursively on input y : 1-1 according to the definition
of fN. This can be done by using stack operations. Furthermore, since the depth of
recursive executions for input y 1 is at most i, and at most four sequential calls are
made at each level, the required time bound is obtained. We now describe Q as a
recursive procedure, using a stack for the recursive executions.

PROCEDURE Q(y, i), where the input is written in the form y 4 1 i.
Step 1: if 0 then simulate M on input y;

if M enters an accepting state
then return "ACCEPT" else return "REJECT";

Step 2: guess one of the following subprocesses nondeterministically;
(subprocess 1)
branch away nondeterministically into three branches;
execute the following in each branch;
for j:= 1 to 4 do

execute Q(y, 1) recursively;
{this can be done by pushing i,j and return position into a stack before
execution and by popping those off the stack after execution}

if this call to Q(y, i-1) returns "REJECT" then return "REJECT"
od;
return "ACCEPT""
(subprocess 2)
branch away nondeterministically into four branches;
execute the following in each branch;
forj:=lto3 do

execute Q(y, 1) recursively;
{this can be done by pushing i,j and return position into a stack before
execution and by popping those off the stack after execution}

if this call to Q(y, i-1) returns "REJECT" then return "REJECT"
od;
return "ACCEPT."

By induction on i, it is not difficult to show that for each input y 1 , the number
of accepting computation paths of Q is equal to fN(Y, i). The essence of this proof is
to estimate the runtime of the above machine. Let y I be an input for Q and let
T(y, i) denote the runtime of Q on input y 1 . It is not difficult to see that stack
operations and the other bookkeeping operations in Step 2 can be done within time
at most O(i), say c. i+ c for some c> 0, if we denote natural numbers by unary
notation. Furthermore, the operations in Step 1 can be done within a constant time,
say c > 0. Then, we obtain the following inequalities from the definition of Ml:

(1) T(y, 0)<-_ t(lyl)+ c,

and

(2) T(y,i)_-<4.(T(y,i-1)+c.i+c) for each > 0.

PP IS AS HARD AS PH 875

From this, we have:

(3) T(y, i)<4 t(lY[)+ 4k =4’ 4
=, "(c" i+c) t(lY[)+’(4i-1) "(c" i+c).

Thus we finally have T(y, i)<= 0(4i" (t([y[)+ i)). This completes the proof.
Proof of Lemma 4.2. Let N1 on input y simulate Q of Lemma 4.6 on input

y # 1 rg2q(lYll. Then N1 runs in polynomial time in [y[, and satisfies the properties
required in Lemma 4.2.

Before deducing Theorem 4.1, we state and prove a technically stronger result. A
function h" 2" N is said to belong to the class # P [23], [24] if there is an NP-machine
N such that for all x *, h(x)= #aCCN(X). Then pptl stands for the class of sets
which can be solved in polynomial time with one free evaluation of a P function.
Papadimitriou and Zachos [13] showed that pNpoga pp (calling the latter class
"+P"). We show that the whole polynomial-time hierarchy is contained in PPt, as
a consequence of Theorem 4.7.

THEOREM 4.7. C @ P p.P[1].

Proof Let L C. @ P. Then there is a set X @ P and a polynomial p such that
for all x, putting W {w {0, 1 } p(ll), x # w X}, we have x L if and only if Wx >
2p<lxl)-l. Then from Lemma 4.2, we can find an NP-machine N such that for all inputs
y, with m

(1) if y X, then for some integer ay > 0, accy(y) 2. ay 1, and
(2) if y X, then for some integer/3y _-> 0, accN(y)= 2m’y.
Now let Z be an NTM which on every input x of length n does this"
(1) Guess w {0, 1} p(n).
(2) Simulate N on input x # w, accepting if and only if N accepts.
Then Z clearly runs in polynomial time. Now writing r for {0, 1} P("- W, we

have"

#accz(x) 2
I,V

2
VV"

#accN(x#w)+ #accN(x#w)

(21.wl.ce.w_l)+ E 21 *wl’/3w)
w

Since every a and fl. is integral, it follows that # accz(x) + 11W[I is a multiple
of 2II++p(II. Since wxll--<2(x <2x+/(x, it follows that wxll can be computed
simply by complementing the last p(Ixl) bits of #accz(x) in binary notation. That is
to say, x L if and only if the p([xl)th bit of #accz(x) from the right is a "0." Since
Z is a polynomial-time-bounded NTM, #accz(" is a # P function, and the theorem
follows. [3

Proof of Theorem 4.1. It is well known that for every P function h, its graph
{x k: h(x)<-k} belongs to PP [14]. By the standard binary search technique, h(x)
can be computed with O(Ixl)-many queries to its graph. So C. (P, and hence PH,
is included in P(PP). [3

The following corollary is straightforward from the Main Theorem.
COROLLARY 4.8. For each k >- O, if PP

Z, then PH collapses to E. Furthermore,

if PP PH, then PH collapses to a finite level
Proof Assume PP

_ . It is well known that PP is closed under complementation.
Hence we have PP__ EfqI/ from the assumption. It is also well known that P(E
1-I)_ Z for each k_-> 0. From the main theorem, we have

PH

P(PP) P(E CI II)

_ .

876 SEINOSUKE TODA

The second statement is easily obtained from the fact that PP has a complete set under
-< Pm-reducibility. [3

At the end of this section, we observe a result stronger than the Main Theorem.
It was shown by K6bler et al. [10] that PP(BPP)= PP. Furthermore, the equality can
be relativized to all oracle sets. More precisely, we have the following result.

THEOREM 4.9 [10]. For all oracle sets A, PP(BPP(A))= PP(A).
From this theorem, we have the following theorem.
THEOREM 4.10. PP(PH) is included in P(PP).
Proof It is easy to see that PP(PH)PP(BP.P)_PP(BPP(P)). These

inclusions follow from Theorem 3.1 and from the definition of BP-operator. From
Theorem 4.9, we have PP(PH)_ PP(P). It is not hard to show that PP(P)=
C. P(P)=C.P. Some techniques for showing this have appeared in [21], [26].
Hence we obtain this theorem from Theorem 4.1.

5. Concluding remarks. In this paper, we showed that every set in PH (and in
PP(PH)) is polynomial-time Turing reducible to a set in PP. We also show a similar
result about P. There are some further questions that are related to this work. A
simple question is whether we can show, by using a different kind of reducibility such
as polynomial-time truth-table reducibility, that PH is reducible to PP. In fact, we
showed that PH is included in p.Plj; this is a somewhat stronger statement than
PH G P(PP). On the other hand, it is well known that every set which is _<tPt-reducible
to a set in PP is in P*PIJ; but the converse is unknown. Hence the answer to the above
question will give us a somewhat stronger result than the present result. The other
interesting question is whether C=P [26], [21] is as hard as PH. A more important
question is whether NP(PP) is included in P(PP), or whether PP(PP) is included in
P(PP). It is also interesting to find oracle sets that separate those classes from each
other.

Acknowledgment. I am very thankful to Osamu Watanabe for helpful discussions
and some nice advice, to Lane Hemachandra for his comments on this work, and to

Kenneth Regan for his many suggestions on the earlier version of this paper. I am
very thankful to the Program Committee of the 4th IEEE Conference on Structure in

Complexity Theory in 1989 for giving me an opportunity to talk about this result at

the conference; concerning this, I have to thank Richard Beigel, Lane Hemachandra,
and Gerd Wechsung for giving much of their lecture time to me. I want to thank the
referees of this paper. In particular, one of the referees gave me many suggestions
which made the quality of this paper much better. I would also like to thank Ron
Book and Janos Simon for their suggestions.

REFERENCES

D. ANGLUIN, On counting problems and the polynomial-time hierarchy, Theoret. Comput. Sci., 12 (1980),
pp. 161-173.

[2] J. L. BALC,ZAR, R. g. BOOK, AND U. SCHONING, The polynomial-time hierarchy and sparse oracles,
J. Assoc. Comput. Mach., 33 (1986), pp. 603-617.

[3] R. BEIGEL, L. A. HEMACHANDRA, AND G. WECHSUNG, On the power ofprobabilistic polynomial-time:
pNP[log] pp, in Proc. 4th IEEE Conference on Structure in Complexity Theory, 1989, pp. 225-227.

[4] JIN-YI CAI AND L. A. HEMACHANDRA, Or/the power ofparity polynomial time, in Proc. Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 349, 1989,
Springer-Verlag, Berlin, pp. 229-240.

[5] J. GILL, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6 (1977),
pp. 675-695.

PP IS AS HARD AS PH 877

[6] L. A. HEMACHANDRA, On ranking, in Proc. 2nd IEEE Conference on Structure in Complexity Theory,
1987, pp. 103-117.

[7] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, in
Proc. 12th ACM Symposium on Theory of Computing, 1980, pp. 302-309.

[8] K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Inform. Process. Lett.,
14 (1982), pp. 39-43.

[9] J. KtBLER, U. SCHtNING, AND J. TORAN, On counting and approximation, Acta Inform., 26 (1989),
pp. 363-379.

[10] J. KOBLER, U. SCH(SNING, S. TODA, AND J. TORAN, Turing machines with few accepting computations
and low sets for PP, in Proc. 4th IEEE Conference on Structure in Complexity Theory, 1989,
pp. 208-215.

[11] C. LAUTEMAN, BPP and the polynomial-time hierarchy, Inform. Process. Lett., 14 (1983), pp. 215-217.

[12] T. J. LONG AND A. L. SELMAN, Relativizing complexity classes with sparse oracles, J. Assoc. Comput.
Mach., 33 (1986), pp. 618-627.

13] C. H. PAPADIMITRIOU AND S. ZACHOS, Two remarks on the power ofcounting, in Proc. 6th Gesellschaft
fiir Informatik Conference on Theoretical Computer Science, Lecture Notes in Computer Science

145, 1983, Springer-Verlag, Berlin, pp. 269-276.
[14] J. SIMON, On the difference between one and many, in Proc. 4th Colloquium on Automata, Languages

and Programming, Lecture Notes in Computer Science 52, 1977, Springer-Verlag, Berlin,
pp. 480-491.

15] U. SCH)NING, Probabilistic complexity classes and lowness, in Proc. 2nd IEEE Conference on Structure
in Complexity Theory, 1987, pp. 2-8; also in J. Comput. System Sci., 39 (1989), pp. 84-100.

16] , The power ofcounting, in Proc. 3rd IEEE Conference on Structure in Complexity Theory, 1988,
pp. 2-9.

[17] M. SIPSER, A complexity theoretic approach to randomness, in Proc. 15th ACM Symposium on Theory
of Computing, 1983, pp. 330-335.

[18] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[19] ,On approximation algorithms for 4P, SIAM J. Comput., 14 (1985), pp. 849-861.

[20] S. TODA, Restricted relativizations ofprobabilisticpolynomial-time, Theoret. Comput. Sci., 1990, accepted.
[21] J. TORAN, An oracle characterization of the counting hierarchy, in Proc. 3rd IEEE Conference on

Structure in Complexity Theory, 1988, pp. 213-223.
[22] L.G. VALIANT, Relative complexity ofchecking and evaluating, Inform. Process. Lett., 5 (1976), pp. 20-23.
[23] ., The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.

[24] The complexity ofreliability and enumeration problems, SIAM J. Comput., 8 (1979), pp. 410-421.

[25] L. G. VALIANT AND V. V. VAZIRANI, NP is as easy as detecting unique solutions, Theoret. Comput.
Sci., 47 (1986), pp. 85-93.

[26] K. WAGNER, The complexity of combinatorial problems with succinct input representation, Acta Inform.,
23 (1986), pp. 325-356.

[27] ,Some observations on the connection between counting and recursion, Theoret. Comput. Sci., 47
(1986), pp. 131-147.

[28] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977),
pp. 23-33.

[29] S. ZACHOS, Robustness ofprobabilistic computational complexity classes under definitional perturbations,
Inform. and Control, 54 (1982), pp. 143-154.

[30] S. ZACHOS AND H. HELLER, A decisive characterization of BPP, Inform. and Control, 69 (1986),
pp. 125-135.

