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Abstract—Performance evaluation of broadband networks
requires statistical analysis and modeling of the actual network
traffic. Since multimedia services, and especially variable bit rate
(VBR) MPEG-coded video streams are expected to be a major
traffic component carried by these networks, modeling of such ser-
vices and accurate estimation of network resources are crucial for
proper network design and congestion-control mechanisms that
can guarantee the negotiated quality of service at a minimum cost.
The layer modeling of MPEG-1 coded video streams and statistical
analysis of their traffic characteristics at each layer is proposed
in this paper, along with traffic models capable of estimating the
network resources over asynchronous transfer mode (ATM) links.
First, based on the properties of the entire MPEG-1 sequence
(frame layer signal), a model (Model A) is presented by correlating
three stochastic processes in discrete time (autoregressive models),
each of which corresponds to the three types of frames of the
MPEG encoder ( , and frames). To simplify the traffic
Model A and to reduce the required number of parameters, we
study the MPEG stream at a higher layer by considering a signal,
which expresses the average properties of , and frames
over a group of picture (GOP) period. However, models on this
layer cannot accurately estimate the network resources, especially
in multiplexing schemes. For this reason, an intermediate layer is
introduced, which exploits and efficiently combines information
of both the aforementioned layers, producing a model (Model B),
which requires much smaller number of parameters than Model
A and simultaneously provides satisfactory results as far as the
network resources are concerned. Evaluation of the validity of the
proposed models is performed through experimental studies and
computer simulations, using several long duration VBR MPEG-1
coded sequences, different from that used in modeling. The results
indicate that both Models A and B are good estimators of video
traffic behavior over ATM links at a wide range of utilization.

Index Terms—Asynchronous transfer mode (ATM), MPEG-1
coded video traffic and flow control, statistical multiplexing,
variable bit rate (VBR) coding.

I. INTRODUCTION

A MAJOR traffic component over broadband integrated
networks (B-ISDN) based on asynchronous transfer

mode (ATM) is anticipated to be multimedia services [1]–[3].
The demand of such services, like video teleconferencing [4],
high-definition television (HDTV) [5], indexing and browsing
of large video databases [6], [7] as well as the forthcoming
video on demand (VOD) [8] will rapidly increase in the coming
years. However, all the above applications impose very large
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bandwidth requirements and, without applying any compres-
sion technique, the multiplexed video traffic easily overload the
networks. For this reason, several coding algorithms have been
proposed in the literature to perform efficient video compres-
sion while simultaneously maintaining an acceptable picture
quality [9], [10]. One of the most popular is the MPEG-1 video
standard [11], developed by the Moving Picture Expert Group
with respect to the JPEG and H.261 activities. It was initially
implemented for storage of compressed video, but because of
its flexibility, it now appears in many other applications from
interactive systems on CD-ROM’s to video delivery [12].

Two main different modes are used for encoding any video
source, namely constant bit rate (CBR) and variable bit rate
(VBR), respectively [2]. A CBR coding mode cannot guarantee
constant video quality for all scenes since a rate-control mecha-
nism is put in use in high video activity to achieve the required
(target) bit rate. However, the users of video applications are in-
terested in invariable quality regardless of the complexity of the
scenes. Therefore, they prefer a VBR coding mode, which main-
tains constant the picture quality, varying the output bit rate, to
a CBR one. In this mode, to take advantage of statistical varia-
tions of VBR encoders, we multiplex several independent video
sources in a common buffer with constant output rate [2], [13].
Then, the aggregate bit rate tends to smooth out around the av-
erage as the law of large numbers indicates [14], so that the loss
probability is reduced as the number of multiplexed sources in-
creases beyond one.

However, for real-time video applications, frame/cell-loss
probability means degradation of picture quality due to the
fact that the lost information cannot be retransmitted [15].
Since, for a given video quality, the loss probability should not
exceed a certain limit, it is necessary to build some protection
against losses so that an acceptable quality of service (QoS)
level should guarantee to the users [16], [17]. Furthermore,
the success of ATM networks depends on the development of
effective congestion-control schemes, responsible for main-
taining the negotiated QoS delivering by the network. Hence,
traffic models, which approximate the statistical properties and
the traffic characteristics of several types of video sequences,
are necessary for estimating the network resources, e.g., to
determine the size of statistical multiplexers that achieves
acceptable picture quality at a minimum cost [13] or to accom-
plish admission control and bandwidth allocation [18], [19].

Several VBR video models have been proposed in the liter-
ature. The first attempts were by Haskell and Limb, who pro-
posed and simulated statistical multiplexing of video for pic-
ture-phone encoders [20], [21]. In [13], a single video stream of
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a telephone scene is analyzed and two models, one in discrete
time and one in continuous time, are shown to fit the experi-
mental data well. A multistate Markovian chain is proposed in
[22] as a video source model for VBR teleconference streams.
In the same work, reduction of the required number of param-
eters is achieved by adopting a discrete autoregressive (AR)
process of order 1 [DAR(1)]. In [23], a new approach to the
problem of bandwidth allocation is described for VBR video-
phone services by modeling the cell streams as a stationary Mar-
kovian chain. A discrete-time discrete-state Markovian chain is
proposed in [24] for modeling of VBR coded video sources,
and three different methods (stationary-interval method, asymp-
totic method and the hybrid method) are used for approximating
the average queue. In [25], a motion-classified AR model has
been proposed for describing the traffic statistics of a full-mo-
tion VBR video stream, the parameters of which are determined
using a Markov chain associated with different motion activity
periods. These periods are defined by classifying the motion in
a block-by-block basis. Scene modeling is performed by Frater
et al. [15] for video films whose the autocorrelation functions
indicate a long-range dependence. Another approach of scene
modeling is proposed by Heymanet al.[26], in the case of VBR
broadcast video traffic.

However, the previous models cannot directly be applied to
VBR MPEG coded video sources, since the MPEG compres-
sion algorithm is different from the coding techniques used in
the above studies [18]–[27]. For instance, in a DPCM coding
scheme there are several spikes, usually due to scene changes,
while small values of bytes indicate video frames belonging to
the same scene [26]. On the contrary, when the MPEG algorithm
is used, three types of frames, with different average frame size
and properties, are merged in a deterministic way to form the
aggregate MPEG video sequence [5], [11]. In this case, spikes
occur whenever there is either a change of the frame type or a
scene change.

Some statistical properties and basic characteristics of
MPEG-coded video steams have been recently analyzed, such
as the higher rate of Intra frames than of Interones, and the
periodicity existing in the autocorrelation function of MPEG
sequences (see Section IV-B) [28]–[31]. Nevertheless, in this
paper, we exploit the statistical properties of MPEG streams
and propose models at three layers (the frame layer, GOP layer,
and intermediate layer), which can approximate the network
resources and the traffic behavior at a wide range of utilization.
(This paper deals with MPEG-1 video streams. However, since
MPEG-2 video sources present the same traffic behavior, the
following analysis can also be applied to MPEG-2 sequences.)
The first layer exploits all the statistical properties of the
MPEG-1 stream. However, due to the signal complexity, a
large number of parameters is required to properly model the
VBR MPEG-1 video traffic. On the other hand, examination of
the MPEG-1 stream at the high GOP layer reduces the model
complexity, but simultaneously deteriorates the estimation
accuracy. At the intermediate layer, however, we are able to
efficiently combine properties of the other two layers and gen-
erate models which can sufficiently approximate the network
resources using a small number of parameters. In particular,
at this layer, the video activity and the burstness of MPEG-1

sequences are modeled as a three-state Markov chain based on
properties of the GOP layer signal. Then, Intra and Interframes
are generated using correlated first-order AR models whose the
parameters are associated with different video activities.

Traffic models that combine Markov chains and AR models
have been also discussed in [25]. However, the video traffic
of [25] does not correspond to MPEG-1 traffic. Furthermore,
the states of the Markov chain are determined by classifying
blocks of 8 × 8 pixels within a frame according to the respec-
tive values of their motion vectors. As a result, the frame packet
size is estimated on a block basis. Instead, in our approach, the
model states represent the average video activity over a time
period by considering the temporal behavior of frames within
this time period. Such an approach has the advantage of esti-
mating the burstness of video traffic, which significantly deter-
mines the network resources by overloading the associated net-
work buffers. Furthermore, correlated AR models are used for
generating the size of each type of frame, since different sta-
tistical properties are encountered in MPEG-1 streams than in
video sequences presented in [25].

This paper is organized as follows. Section II presents some
basic characteristics of MPEG-1 encoders, while Section III is
devoted to the basic concepts of MPEG-1 modeling. In Sec-
tions IV–VI, traffic models at frame, GOP, and intermediate
layers are presented. The buffer configuration scheme is de-
scribed in Section VII, while experimental results indicating the
good performance of the proposed traffic model are discussed
in Section VIII. Finally, Section IX concludes the paper.

II. BASIC CHARACTERISTICS OFMPEG-1 ENCODERS

Since video source modeling depends on the adopted com-
pression scheme [26], it is useful before proposing models of
MPEG-1 encoders to briefly describe the encoding algorithm,
the associated VBR coding control, and present some basic
characteristics of MPEG-1 streams.

A. The Encoding Algorithm

All video frames in the MPEG-1 standard are processed in a
block-based mode. In particular, each color input frame is di-
vided into nonoverlapping macroblocks (MB’s), each of which
contains four luminance blocks and two chrominance (1 Cr and
1 Cb) of size 8 × 8 pixels (sampling ratio 4 : 1 : 1). Three dif-
ferent coding modes are used by the MPEG-1 coding algorithm:
Intraframe ( ), predictive ( ), and bidirectionally predictive
( ), resulting in three types of frames ( , and ). The
frames are also called Intra frames whileand Interframes.
These three types of frames are deterministically merged
forming the group GOP, which is defined by the distance
between frames and the distance between frames. In
practice, the most frequent values of is 3 (two successive
frames), while of 6, 12, 15 depending on the required video
quality and the transmission rate. In our study, the parameters

and are chosen to be 3 and 12, respectively, resulting in
the following stream .

In Intraframe mode, only compression in spatial direction is
used by applying a 2-D 8 × 8 discrete cosine transform (DCT)
to all luminance and chrominance blocks of the input frame.
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Quantization of each DCT coefficient is then performed based
on an 8 × 8 quantizer matrix, the elements of which are given in
[11] and [12]. The DC coefficient of the DCT transform, which
corresponds to the average intensity of each component block,
is coded using a differential prediction method, while the re-
maining ones (AC) are “zig-zag” scanned and a run-length en-
tropy algorithm is applied using variable length code (VLC) ta-
bles [11].

In predictive mode ( frames), motion estimation/compensa-
tion is performed on a MB basis. In particular in our approach,
for each MB a square of 32 pixels is chosen as the motion-vector
search area and the vector that minimizes the absolute differ-
ence between the current MB and the shifted one in the pre-
vious or frame is chosen as the motion vector of the MB. To
speed up the process, alogarithmic searchhas been adopted in
our encoder, while as reference frame we have selected thede-
coded option, meaning that the motion estimation is performed
using the previous decoded frame for improving video quality
at the decoder [10]. The motion-compensated prediction error
is then calculated and an 8 × 8 DCT is applied to the errors
of each block followed by quantization, run length and entropy
coding[11] and [12]. For achieving higher coding efficiency, the
conditional MB replenishmenthas been adopted in the encoder.
This means that each MB is distinguished between three coding
types: 1) skipped MB, where no information is transmitted (zero
motion vectors); 2) InterMB, where the motion vectors and the
DCT coefficients of the error are transmitted (plus some headers
information); and 3) Intra MB, where the MB is handled as in
Intraframe ( ) mode. frames are coded similarly to frames,
apart from the fact that the motion vectors are estimated with
respect to the previous or the following (or an interpolation be-
tween them) or frame [12]. In our experiments, we have
used thecross2option for the estimation of the motion vectors
of frames. This means that the encoder finds the best back-
ward and forward vectors, and then sees what backward vector
best matches the best forward vector, and vice versa.

Higher compression ratios are achieved through coarser
quantization. For this reason, the quantizer matrix, for each
MB, is multiplied by a scalar called quantization factor. In a
CBR mode, a video buffer is required to ensure that a constant
bit-rate output is reproduced by the encoder. In this case, the
quantization factor is adjusted for each MB by a rate-control
mechanism to avoid buffer overflow/underflow [12]. On the
contrary, when the encoder operates in “open loop,” the output
rate varies according to the image complexity, since a constant
quantization factor is used for each type of frames [32]. This is
the most common method, which has been used in the literature
to achieve VBR video coding, and this approach has been also
adopted in this paper [2], [13], [22], and [32]. In particular, we
have used a quantization factor equal to 8 and 12 for Intra and
Interframes, respectively. However, constant quantization does
not result in “truly” constant video quality due to the fact that
the human visual system is more sensitive to errors in certain
types of regions, like texture, than flat areas. For this reason,
more sophisticated methods can be used for VBR coding
control [33], [34]. However, regardless of the method selected
to achieve constant quality, the main difference between VBR
and CBR is that the output video rate is not constrained by any

Fig. 1. The frame layer and the AV_GOP signal for the Terminator over a time
window of 500 frames.

networking requirements, but is selected according to the video
quality [32].

B. Basic Characteristics

The average packet size at th GOP period will be denoted
as in the rest of this paper, and is given by

(1)

where denotes the integer part, the size of the MPEG-1
stream, and the packet size at
the th frame. That is, for and
represents the frame size offrame at th GOP, ,

the first and frame of the same GOP, and so
on.

The dotted line in Fig. 1 illustrates the size of the first 500
frames of an MPEG-1 video sequence (Terminator Film). The
solid line shows the signal , which is formed by ex-
tending signal so that it has the same size as the
signal (perhaps apart from some last values when is not
integer). Particularly, it is held that .
The signals and are also called the AV_GOP
and frame layer signal, respectively. In this figure, the large
frame sizes correspond toframes, while the small ones cor-
respond to frames, and the intermediate ones toframes. It
is also observed that follows video-sequence activity,
meaning that its size increases whenever the sizes of Intra and
Interframes on average increase. This property is the basic con-
cept behind the models relied on in the intermediate layer.

Although frames have, on average, the largest size and
the smallest one, models which ignore (or sometimes )
frames and take into account onlyframes severely underes-
timate the network resources [29]. This is due to the fact that

and frames present higher fluctuation thanframes, and
that there is a strong correlation between them. The first reason
stems from the coding algorithm ofand frames. As we have
stated above, some MB’s of and frames can be coded as
Intra MB’s, resulting in low compression ratios. Consequently,
during high video activity, the majority of frames within a GOP
period, which mainly consist of Inter frames, take values which
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TABLE I
CORRELATION COEFFICIENT OFINTRA/INTER FRAMES FORSEVERAL MPEG-1 SEQUENCES

are much greater than their average, therefore loading the net-
work, while in low video activity, the values of frames within a
GOP are small enough to empty the network buffers [35].

The strong correlation between Intra and Inter frames are due
to the motion-estimation algorithm and the temporal continuity
of the actual video stream. A correlation measure between two
stochastic processes, and , is given by the correlation
coefficient defined as

(2)

where is the variance of a stochastic process, is
the expectation operator, and , the average of and

, respectively.
Table I shows the correlation coefficient between Intra and

Inter frames for several MPEG-1 coded video sequences. In par-
ticular, our results have been obtained using four long-duration
(40 000 frames) MPEG-1 streams: Terminator, Star Wars part
III, and two TV series. The last three sequences are also called
Sources 1, 2, and 3 in the following, for simplicity purposes.
All the aforementioned sequences have been encoded using the
same VBR coding control and encoding algorithm, such as the
same quantization factors, motion-estimation method, and
and GOP parameters. In this table, we show correlation coef-
ficient values among Intra and Inter frames after being averaged
over a GOP period. This is due to the fact that the correlation
among the entire , and streams is not fair, since the re-
spective elements of the streams correspond to totally different
GOP’s. As it is observed, the correlation coefficient between
Inter frames ( - ) is stronger than the respective one between
Inter and Intra frames (- , - ) since the coding method used
for frames is different from the coding method used for Inter
frames. Almost the same correlation degree is also observed for
all the examined video sequences. Similar results as far as the
correlation between , and frames is concerned, have also
been presented in [29].

III. M ODELING OFVBR MPEG-1 CODED VIDEO SOURCES

The MPEG-1 stream corresponds to a low layer for modeling
of VBR MPEG-1 coded video sources, in the sense that it con-
tains all the statistical properties of the aggregate signal. In the
following, we call this layer the frame layer, and call the respec-
tive signal the frame-layer signal. At this layer, we are able to
generate models which can accurately approximate the network
resources, since all the necessary information of the MPEG-1
signal can be exploited. However, the complexity of this signal,
as it is briefly described in Section II, results in complicated
traffic models requiring a large number of parameters.

Reduction of model complexity could be achieved by
examining the MPEG-1 stream at a higher layer characterized
by the following property: the signal on this layer should have
a simpler form than the frame layer signal, but simultaneously
provides an approximation of the aggregate sequence. Such
a signal is , which appears the same average as the
aggregate MPEG-1 sequence, follows video activity, presents
smaller fluctuation than Intra and Inter frames, and is generally
much simpler than the frame-layer signal. Modeling based on
the statistical properties of will be called GOP-layer
modeling in the rest of this paper. However, such modeling,
without exploiting any other knowledge from the frame-layer
signal, cannot provide sufficient approximation of the network
resources due to the fact that significant characteristics of the
aggregate MPEG-1 stream are lost, and the lost information
is difficult to be estimated. For instance, for a given value
of , it is not possible to properly determine the size
of , and frames within the respective GOP and their
erroneous estimation significantly affects the performance of
the traffic models.

The more knowledge about the MPEG-1 stream we exploit,
the better approximation of the network resources we achieve,
but simultaneously, the number of model parameters increases.
At an intermediate layer, however, it is possible to efficiently
combine the properties of and , generating
models that can accurately approximate the traffic behavior of
MPEG-1 sources requiring much smaller number of parame-
ters. The basic concept of this layer modeling is to approximate
video activity of MPEG-1 sequences using the simplified signal

and according to the specific value of video activity
(produced by the GOP layer model) to generate the sizes of

, and frames using estimators based on frame-layer
modeling.

IV. FRAME–LAYER MODELING

In the following, we study the statistical properties of the
frame-layer signal i.e., the probability distribution and the auto-
correlation function, and we propose traffic models capable of
capturing the traffic characteristics of MPEG-1 video sources.

A. Study of the PDF

The frame size histogram of an MPEG-1 stream is charac-
terized by many small values mainly due toand sometimes
to frames and by few large values, mainly due toframes.
The former causes a rapid increase at the region of frames of
small size, while the latter a hill at the region of frames of large
size. Consequently, the distribution of an MPEG-1 stream seems
to be superposition of three different distributions i.e., of ,
and frames, meaning that it is more convenient to split the
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Fig. 2. Q–Q plots of Gamma and Lognormal Distribution for the Terminator. (a) Aggregate MPEG-1 stream. (b)–(d)I; P , andB frames, respectively.

MPEG-1 sequence into , and streams and perform sepa-
rate statistical analysis for each of them.

Fig. 2 illustrates the Q-Q plots (fractile diagrams [36]) of
Gamma and Lognormal distribution of the Terminator for the
aggregate MPEG-1 sequence, as well as for frames. In
this figure, the quantiles are normalized by the respective max-
imum value of the real data. It is observed that, in contrast to
the aggregate MPEG-1 sequence, the , and frame his-
tograms can be approximated by Gamma or Lognormal distri-
bution whose the unknown parameters are estimated using the
method of moments [14].

Heymanet al. have also concluded that VBR teleconfer-
encing streams follow the Gamma distribution using, however,
another coding scheme [22].

B. Study of Autocorrelation Function

In this subsection, survey of the autocorrelation function is
performed. However, before presenting the basic properties, we
first give some definitions for clarification purposes.

The autocorrelation of a stochastic process at lag is
defined as [2]

(3)

where is the variance of the average, and
the expectation operator. Comparing (2) and (3), it seems

that .
Depending on parameters, the autocorrelation function

of any VBR MPEG-1 coded video sequence appears “period-
icity” and “subperiodicity” [35], as illustrated in Fig. 3(a) for
the Terminator, where and have been chosen as
GOP parameters. The large positive peaks are due toframes,

the negative peaks to frames, while the small positive peaks
to frames. The periodicity of such a function is equal to the
distance ( in our case), while the subperiodicity to the
distance ( ).

For this reason, separate study of the autocorrelation func-
tion for each type of frames is more convenient, since such an
approach eliminates the periodicity of the aggregate sequence.
Fig. 3(b)–(d) presents the autocorrelation functions for ,
and frames in case of the Terminator. The autocorrelation of

frames decays more rapidly than ofand frames, while
the autocorrelation of frames presents the slowest decay rate.

A stochastic process is said to have
short-/long-range dependence if the sum of the autocorrelation
at different lags converges or diverges, respectively [37], [38].
That is

(4)

for short-range dependent process (for long-range dependent
process).

Another equivalent condition for being a stochastic
process short/long-range dependent is the asymp-
totic behavior of the variance of process

with respect
to [39]. In particular, if the variance is propor-
tional to , for large , the process is characterized
as a short-range dependent, while if the decays at a
slower rate than , i.e., is proportional to ,
for large , then the process is said to be long-range de-
pendent. Estimating the parameterof several VBR MPEG-1
coded video sources, it seems that , and streams are
long-range dependent processes [35]. Similar results can be
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Fig. 3. Autocorrelation of the Terminator along with two AR models fitted to them. (a) Aggregate MPEG-1 stream. (b)–(d)I; P , andB frames, respectively.

found in [38], [40] for broadcast video sequences that have been
coded using a hybrid DPCM/DCT compression algorithm.

However, the performance of models that accomplish gen-
eral statistical properties are not compulsory in agreement with
that provided by real data. In [29], it has been shown that mod-
eling relying only on statistical tests is not sufficient to approx-
imate the network traffic, and consequently, deviation of some
statistical properties is sometimes not so crucial as far as the
network resources are concerned. Using Lindley’s equation for
the delay in a G/G/1 queue, it can be shown that the long-range
dependence property affects the network resources only if large
busy periods occur. The term “busy period” indicates the time
interval, starting when the buffer is empty and ending in the
following empty state [40]. For a given utilization, we can as-
sume that busy periods do not exceed a certain limit, and thus,
lags beyond a threshold do not have any influence on the video
traffic. As a result, there is a finite order of an AR model that
can capture well the actual traffic, resulting in good prediction
of frame/cell-loss probability. That is, the size of , and
frames is estimated by

(5a)

with and

the AR order for the -stream (5b)

where is the th frame size for the -stream generating
by the AR model of order , and is the independent

and identical distributed noise with zero mean and variance one.
The model parameters , , and are estimated using the
Yule–Walker equations [41].

Based on the Yule–Walker equations, the AR model parame-
ters are obtained by examining the entire sequences of, and

frames. This approach is useful for estimating the network re-
sources during the network design phase, using, e.g., the traffic
models as video generators. However, in applications where dy-
namic bandwidth allocation or prediction of frame sizes or ac-
tivity during video transmission is necessary, an adaptive im-
plementation of the Yule–Walker equations is performed, mod-
ifying the AR parameters in every, e.g., GOP period [41]. Both
approaches are discussed in the section of experimental results
of this paper.

Fig. 3(b)–(d) illustrates the autocorrelation functions of an
AR model of order 1 [AR(1)] and a high order AR for the Ter-
minator sequence, whose the unknown parameters have been
calculated based on statistical properties of the entire sequence
of Intra and Inter frames. It is observed that AR models of
high order better approximate the autocorrelation than AR’s of
order 1. In particular, an order of , , and

has been used for each type of frame of the Terminator
sequence. In general, the following inequalities
are satisfied.

Fig. 4 illustrates the autocorrelation functions of video
Sources 1, 2, and 3 along with the respective of the Terminator
for , and frames. All the examined sequences present
similar behavior as far as the autocorrelation function is con-
cerned. In particular, Sources 1 and 2 present slightly slower
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Fig. 4. Autocorrelation of the Terminator compared with various MPEG-1 sources. (a)I frames. (b)P frames. (c)B frames.

TABLE II
CORRELATION COEFFICIENT OF THEPREDICTION ERRORS OFINTRA/INTER FRAMES FORSEVERAL MPEG-1 SEQUENCES

decay than the autocorrelation function of the Terminator. On
the contrary, a slightly faster decay appears in the autocorrela-
tion of Source 3. As a result, the high-order AR models, used
for capturing the statistical properties of the Terminator, are
also appropriate for the other three streams. This is due to the
fact that the Terminator is a long duration sequence, containing
all possible variations of the video activity, such as camera
zooming and panning, abrupt scene changes, and periods
with high/slow motion. Therefore, examining the statistical
properties of the Terminator is adequate to provide satisfactory
results for the other video sequences, too. In case, however, of
sources with specific characteristics, better performance of the
proposed models is achieved through categorization of video
sequences into classes. In such cases, the modeling procedure
remains the same, while the model parameters are estimated
using some representatives of the class.

C. Traffic Model of Frame Layer (Model A)

Based on the statistical properties presented in the previous
subsections, three high-order AR models, with

, can be used for modeling of , and streams.
Then, the generated signals are deterministically merged, ac-
cording to and parameters of the GOP pattern, to form the
estimated frame layer signal. However, if uncorrelated predic-
tion errors are used as filter inputs to generate the signals

, the aggregate MPEG-1 sequence will contain uncorre-
lated , and components, instead of real data, where ,
and frames are strongly correlated, as we have discussed in
Section II. In this case, the estimated aggregate sequence does
not present the burstness of the real data, resulting in poor esti-
mation of the network resources.

Indeed, the statistical properties of prediction errors ,
obtained using the inverse AR filter (where real data are used as
the filter input, while the filter output corresponds to the respec-

tive prediction error), indicate that there is correlation among
them. Table II shows the correlation coefficient of predictions
errors of , and frames after being averaged over a GOP
period, for the four examined MPEG-1 video sources. This is
done for the same reason as in Section II. As it is observed,
the correlation coefficient between prediction errors of Inter
frames is higher than the respective coefficients of Inter and
Intra frames. Correlation among prediction errors of , and

frames stems from the correlation among , and frames
themselves, as we have mentioned in Section II.

Another interesting property is that the errors follow
the same p.d.f. as illustrated in Fig. 5, where the quantiles of
prediction errors corresponding toand frames are depicted
versus the quantiles of errors offrames for the Terminator and
Source 1 video sequence. The previous property results from
the fact that the frame size histograms of , and frames
conform to the same p.d.f. as we have stated in Section IV-A.

As a result, correlation of , and prediction errors is re-
quired to generate a model for the aggregate MPEG-1 sequence,
which will contain correlated , and components. How-
ever, using the second property, an approach to correlate the er-
rors is to generate a reference error signal, which follows
the same p.d.f. as , and then, generate the prediction errors
based on this reference signal. A simple method is to consider
the error of frames as reference error, due to the fact that
frames constitute the majority within a GOP. Then, the errors of

and frames are related to that offrames through a correla-
tion mechanism illustrated in Fig. 6, which is also called Model
A in the following.

In particular, to generate the prediction error offrames,
, the error of frames, is related to using

the following equation:

for odd
otherwise

(6)
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Fig. 5. Q-Q plots ofI andP prediction errors with respect to the error ofB frames. (a) Terminator sequence. (b) Video Source 1 sequence.

Fig. 6. Block diagram of the proposed model at the frame layer (Model A).

where is the number of frames within a GOP and
is the the prediction error corresponding to the secondframe

within the GOP period. In general, as , we denote the
prediction error of theth frame of a GOP. In Fig. 6, (6) is
depicted through the decimator filter↓, whose the input–output
relationship is given by , after
shifting the reference error by one lag.

Equation (6) indicates thatand frames are fed with the
same prediction errors for every odd group of the picture pe-
riod. The correlation coefficient of the errors ofand frames
after being averaged over a GOP, achieved by this mechanism,
is close to that provided by the real data (Table II). In particular,
the correlation coefficient of and provided by the
model over a GOP period is equal to 0.17. It should be men-
tioned that since by definition the errors of , and frames
present zero mean and variance of one, there is no need for the
reference error to be shifted or be scaled to compensate
probable differences in mean and variance. Instead the
parameters involved in (5a) are used to shift and scale the re-
spective prediction errors so that the generated signals
present the appropriate mean and variance.

Similar procedure is used for generation of error. In
particular, we split into three error sequences, denoted
by , , each of which corresponds to the error
of the th frame, say , within a GOP. This means that
indicates the error of the first frame within a GOP, while

refers to the second frame, , and to the third
one, . In general, the is split into sequences where

denotes the number of frames within a GOP. Then, each
error is related to the reference error as follows:

(7)

with in our case. The previous
equation means that the , and frames of a GOP are
generated using the same prediction error as the , and

frames.
Having estimated the errors , we can easily

produce the error by merging them into a common link as
it illustrated in Fig. 6 using a mixing “switch”. Such an approach
results in correlation coefficient between the errors ofand
frames over a GOP period equal to 0.61, which is close to that
presented in Table II for the real data. Correlation between the
errors of and frames is indirectly achieved through (6), (7).
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Fig. 7. Q-Q plots of Gamma and Lognormal distribution for the GOP layer
signal for the Terminator.

In cases that a different degree of correlation is necessary among
the prediction errors, a different proportion of correlation should
be performed. For instance, weaker correlation is accomplished
by leaving the error to be uncorrelated to the reference
error .

V. GOP LAYER MODELING

In this section, we propose video source models at the GOP
layer by examining the statistical properties of signal .

A. Statistical Analysis

The quantiles [36] of Gamma and Lognormal distribution
versus the quantiles of are presented in Fig. 7 for the
Terminator sequence. In this figure, we depict the quantiles
normalized with the respective maximum value of the real data,
as we have done in Section IV-A. We observe that both Gamma
and Lognormal distribution fits well the real data for both
video sequences. Studies of others MPEG coded video sources
have resulted in similar conclusions as far as the histogram of

is concerned [35].
The autocorrelation function of is depicted in

Fig. 8 (solid line). Using similar ideas to those discussed
in Section IV-B, we can approximate the autocorrelation of

with a high order AR model. In general, the order of
the AR is close to the order of the respective AR offrames
since a similar decay rate is presented. In Fig. 8, the dashed and
dotted lines correspond to the autocorrelation functions of an
AR(1) and an AR(20) model, respectively. Fig. 9 illustrates the
autocorrelation functions of for video Sources 1, 2, and
3 along with that resulted from the Terminator. In particular,
the autocorrelation functions of Sources 1 and 2 decay slightly
slower than that of the Terminator while the autocorrelation
of Source 3 presents a slightly faster decay. However, in all
cases, the differences of autocorrelation are very small and
thus, modeling based on the Terminator is adequate to capture
the statistical properties of the other three streams.

B. Traffic Models of GOP Layer

Having examined the statistical properties of , a high-
order AR can be used for its modeling. However, in this layer,

Fig. 8. Autocorrelation of the GOP layer signal and of two AR models fitted
to it for the Terminator.

Fig. 9. Comparison of the autocorrelation of the GOP layer signal of the
Terminator with various MPEG-1 sources.

regardless of the sequences used for modeling and evaluation,
the proposed traffic model, say, refers to an average
signal over a GOP period, instead of the aggregate MPEG-1 se-
quence, which actually determines the network resources. Thus,
the problem is how to estimate the frame sizes within a GOP,
for a given value of signal . Coarse estimation of the
frame sizes results in poor traffic approximation, meaning that
the proposed models overestimate or underestimate the actual
traffic, whereas good performance is achieved by accurate pre-
diction of frame sizes. The degree of estimation depends on the
proportion of knowledge, which we exploit from the frame layer
signal and the method we use for the frame size prediction. In
the following, we analyze the case of no or small knowledge
about the frame layer signal as Methods A and B, respectively,
while in Section VI we efficiently combined properties of sig-
nals and to generate models that are good esti-
mators of frame/cell-loss probability requiring a small number
of parameters.

Method A: In this case, we assume no knowledge about the
properties of frame layer signal. Therefore, we can estimate the
frame sizes of MPEG-1 sources by considering all frames within
a GOP to be equal to the respective value of . Fig. 10
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Fig. 10. Graphical representation of Method A of GOP layer.

Fig. 11. Graphical representation of Method B of GOP layer.

presents the proposed scheme, where denotes the esti-
mation of the aggregate MPEG-1 sequence using Method A. As
we can see, is the same as , which has been
defined in Section II. The signal does not fulfill the sta-
tistical properties of MPEG-1 sequences since neither the distri-
bution function nor the autocorrelation function is satisfied. Only
the statistical properties of are fulfilled. The above-de-
scribed simple approach can be used only for an initial estimation
of thenetworkresources.Theadoptedmethodunderestimatesthe
average size of frames, while it overestimates the size ofand

frames. However, at no multiplexing schemes and at conven-
tional utilization, i.e., around 0.8, the small size offrames is
balanced with the large size ofand frames resulting in good
estimation of frame/cell-loss probability. On the other hand, at
multiplexing schemes where the entire stream is tend to smooth
out around its average, the largeframes and the high fluctuation
of and frames,which isunderestimatedby thismethodology,
mainly determine the network resources. Therefore an approxi-
mate estimation of the traffic behavior is achieved.

Method B: In this case, we assume that small knowledge
about the properties of frame-layer signal is available. In partic-
ular, we consider that the mean values of , and frames,
denoted by respectively, are given. Then, the esti-
mated frame size of Intra and Inter frames is given by

(8)

where and are the mean value of signal
.

Equation (8) indicates that the estimated frame size of
Intra/Inter frames is proportional to the ratio of mean value of
the respective type of frame and the average value of signal

. The proposed method is presented in Fig. 11, where
indicates the generated signal using Method B. It is

expected that this method gives better estimation as far as the
network resources are concerned, in relation to Method A.
However, it does not still capture the high fluctuation of
and frames and the large values offrames, resulting in

poor estimation of frame/cell-loss probability, especially at
multiplexing schemes.

VI. I NTERMEDIATE LAYER MODELING

As we have stated above, Methods A and B provide ap-
proximate estimation of frame/cell-loss probability. Further
improvement of the network performance is achieved if more
information about MPEG-1 stream is exploited. As knowledge
increases, the required number of parameters increases too.
This means that we are moving from the high GOP layer to the
low frame layer, and when all knowledge about the frame-layer
signal is available, modeling results in frame-layer modeling.

However, there is an intermediate layer, where we are able to
reduce the number of parameters while satisfactorily approxi-
mating the network resources, since significant parts of infor-
mation of both layers can be combined. The basic concept is:
1) to simplify the GOP layer models so that only video activity
is estimated and 2) to introduce simplified models for Intra and
Inter frames, based on the estimated video activity.

In a VBR coding mode, in case of high video activity, the
encoder rate is much larger than the average, since more bytes
per frame are allocated to maintain the requested picture quality.
On the contrary, in low video activity, the rate drops. Since the
output rate of the statistical multiplexer is constant, high video
activity fills up the buffer, causing frame/cell-loss probability,
while low video activity empties the buffer. When the encoder
rate is around the average-medium activity, the state of the buffer
remains almost constant, presenting small fluctuations. Thus,
categorization of the size of Intra/Inter frames into different
video activities (bands) is useful for modeling, since each band
affects the network resources in a different way.

Fig. 12 illustrates the general structure of the proposed model
at the intermediate layer. It consists of three subsystems: the
activity model subsystem, band selection subsystem, and band
model subsystem for , and frames.

1) Activity-Model Subsystem:The purpose of this sub-
system is to approximate the video activity and the burstness
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Fig. 12. Block diagram of the subsystems that form the intermediate layer
model (Model B).

of MPEG-1 coded video sources based on properties of signal
. This means that the activity is estimated on a GOP

basis. Its output activates the band selection subsystem.
2) Band-Selection Subsystem:This subsystem is the link

between the activity-model subsystem and the band-model
subsystem. It takes as input the output of the activity-model
subsystem and, according to its value, selects the appropriate
band and the respective parameters for the band model.

3) Band-Model Subsystem:It is the subsystem responsible
for generation of , and frames within a GOP. Taking at
the beginning of each GOP the proper parameters and the se-
lective band provided by the band-selection subsystem, it com-
poses the MPEG-1 stream according toand distances.

In the following, we perform statistical analysis for each band
which is required to find the structure of the band models and
to estimate their unknown parameters.

A. Band Statistical Analysis

The signal is used to classify the video sequences
into activity bands. In particular, groups of picture whose the
respective value of is greater than a predetermined
threshold, say, , are marked as high-activity GOP’s. Instead,
GOP’s with values of below a threshold, say, ,
are considered to correspond to low activity band. Values of

between the threshold and defines GOP’s of
medium activity band. As a result, video activity is selected on
a GOP basis.

Fig. 13. Autocorrelation ofB frames in high band for various values of
parameter� .

All , and frames, whose the respective groups of pic-
ture belong to a high activity band, are called , and high
band frames. Similarly, we can define the , and medium
(low) band frames. Based on the results obtained by the statis-
tical properties and characteristics of each band frame, proper
traffic models for generating , and frames within each
band are proposed. First, we consider the temporal behavior of
band frames by examining their autocorrelation function for dif-
ferent values of thresholds and . Fig. 13 illustrates the au-
tocorrelation function of frames in high band using different
values of threshold , in the case of the Terminator. In this
figure, the threshold is given in relation to the mean and the
standard deviation of the signal , that is

(9)

where is the parameter which denotes how far the threshold
is from the average, and is the standard deviation of

. Similarly, we can determine the low threshold by
subtracting the average from the standard deviation multiplied
by the scaling factor .

As is observed by comparing Fig. 4(c) and Fig. 13, the au-
tocorrelation functions of frames in the high band decay more
rapidly than the respective of the aggregateframes. Similar
results are found for and frames. Hence, it is anticipated that
AR models of much lower order can be used to approximate the
frame size in high band.

In particular, threshold , or equivalently, parameter ,
is selected in such a way that an AR(1) sufficiently models the
temporal behavior of high band frames. This is accomplished by
minimizing a cost function expressing the average distortion be-
tween the autocorrelation function of each band frame, resulting
from a given value of , and the respective AR(1) model

(10)

where is the vector containing the autocorrelation of
the , or frames in the high band at the first lags, and
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Fig. 14. (a) Average distortion versus� for high band. (b) Distortion ofI; P , andB frames versus� for high band.

Fig. 15. Autocorrelation for high band of Terminator and various MPEG-1 sources.

is the respective vector for the AR(1) model. In our
simulation, .

Fig. 14(a) presents the cost functionof (10), after applying
a low-pass filter to eliminate noisy fluctuations. Fig. 14(b)
shows the respective cost function for each type of frame.
The value of that minimizes the average cost distortion
is very close to that which minimizes the distortion for each
type of frames in the band. Thus, the resulting threshold is
appropriate to model all band frames as an AR of order 1. The
thresholds obtained by examining the other three sequences
are close to that obtained by the Terminator. However, a small
fluctuation of the threshold around the value obtained by this
method is not so significant for the traffic behavior since the
autocorrelation is slightly affected.

The autocorrelation functions of video Sources 1, 2, and 3
along with the respective autocorrelation of the Terminator
sequence are presented in Fig. 15 using the previously obtained
value of threshold . Good approximation is observed in
almost all cases. Similar results can be verified for low and
medium band.

B. Traffic Model of Intermediate Layer (Model B)

After performing the band statistical analysis, we concentrate
on the implementation of the proposed scheme using the block
diagram of Fig. 13.

1) Activity-Model Subsystem Implementation:The imple-
mentation of this subsystem is based on signal (GOP
layer), and its goal is to approximate the video activity. The
signal is split into three activity bands. Large values of

correspond to a high activity band, medium sizes to a
medium activity band, and finally, small sizes to a low activity
band. Since the probabilities of staying in an activity band
almost drop exponentially, the video activity can be modeled
as a three-state Markovian chain whose the states correspond
to high, medium, and low activity bands.

The transition matrix of the Markovian chain will
be estimated as follows ([22]):

number of transition to
number of transitions out of

(11)

when the denominator is greater than zero. Since the sum of
elements of the transition matrix for every row is equal to one,
six parameters are required for video activity modeling.

2) Band-Selection Subsystem Implementation:A simple re-
trieval mechanism is used for finding the appropriate parameters
of the band models subsystem according to the value of video
activity.

3) Band-Model Subsystem Implementation:Based on the
autocorrelation functions of , and streams within each
band, three AR models of order 1, each of which refers to the

, and frames, are used for modeling of each band. Since
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Fig. 16. Proposed Model B.

frames of the medium band preserve the current buffer status
while frames of the low band empty the buffer, the exact values
of frames in low and medium band do not play a significant
role to the traffic behavior, but only their respective average.
As a result, we can consider the frame size within the low and
medium band constant and equal to the average. Although
this approach does not satisfy the statistical properties of the
medium and low band, it approximates very well the traffic
intensity of video sources, and simultaneously reduces the
required number of parameters to six, two for the bands and
three for the , and frames. On the contrary, three AR
models of order 1 are used for modeling the size of frames in
high bands, since a high band significantly affects the loss rates.
Thus, the required number of parameters used for modeling
frames in high bands is equal to nine, i.e., three for each AR
model and three for each type of frames, resulting in a total
number of 21 parameters: six for the Markovian chain, nine
for the high band, and six for the other bands of the model,
meaning that seven parameters for each frame type are on
average required.

4) Model-B Description:Fig. 16 presents the model at the
intermediate layer (Model B) relied on the previous subsystem
implementation. The three-state Markovian chain corresponds
to the video activity model whose the states indicate the high
(HB), medium (MB), and low (LB) activity band. At the begin-
ning of every GOP, a video activity is selected according to the
transition probabilities of the Markovian chain. The Markovian
chains inside the states of the video-activity model (the “small”
chains) describe the structure of the GOP, as it is defined by the

and distances. For instance, having generated theframe
for a GOP, which is the first frame, the chain transits with proba-
bility one to frame (first frame in the GOP), and then with
probability one to frame (second frame in the GOP) and
so on. Each state of the “small” Markovian chains corresponds
to the output of the respective band model. That is, LIo is the
output of the Low Band model for theframe, i.e., a constant
value, while HPo is the output of high band model for the
frame, i.e., an AR(1).

VII. B UFFERCONFIGURATION SCHEME

To evaluate the good performance of the proposed traffic
models as far as the network resources are concerned we have

Fig. 17. Buffer configuration scheme.

used the following buffer configuration scheme illustrated in
Fig. 17.

independent video sources are multiplexed into a common
buffer connected to a single ATM link. A first-in first-out (FIFO)
policy is considered for the statistical multiplexing, meaning
that cells are stored, and leave the buffer in the same order as
they enter it. A cell can get into the common buffer only if there
is available space for it. Otherwise, it is lost along with the re-
spective frame. The output rate of the buffer is assumed to be
constant and equal to mean , where is number of
the multiplexed sources, the utilization, and the average
source rate.

For every frame period, the frame size is calculated using ei-
ther the real data or the aforementioned source models. The real
data have been obtained by recording several VBR MPEG-1
coded video sequences of long duration using the encoding al-
gorithm described in Section II. In case of source models, sev-
eral sets of traffic data (paths) are created and the results are
obtained by running many times the simulation for each dif-
ferent sample path. In particular, eight different paths have been
selected in our experiments. To generate traffic for different
sources, we have used the same data sequence but different ini-
tial frames, as in [22].

The starting times of the multiplexed video sources signif-
icantly affect the cell-loss rates even though the sources present
identical statistical characteristics. Since every frame of each
video sequence arrives at a constant time, equal to the frame pe-
riod, a video source that starts its transmission a short time after
the other sources will have many more losses. As a result, frames
arriving from this source are more likely to face larger queue
lengths than cells arriving earlier from other sources, in the
sense that the arrival-instant queue seen by different sources is
not statistically identical. An approach, to reduce, this so called
source-periodicity effect, which has been observed in [22] for
video traffic, is to uniformly distribute the starting times of the

multiplexed sources in intervals of 40 ms. This assumption
is valid in case that the sources appear at the multiplexer at
random time instances. However, in applications when many
video sources are synchronized to start their transmission at the
same time, the uniform distribution of the starting times within
an interframe interval is not satisfied [22]. Although in such a
scenario, the average loss rate will be greater than the respective
rate obtained using a uniform distribution of starting times, the
most important issue is that the traffic behavior of some sources
will be quite different from some other ones. In this case, if the
traffic behavior is examined based on the source of the worst
losses, the network resources will be insufficiently allocated. As
a result, reduction of the source periodicity effect is necessary
for efficient transmission of video sources.
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Fig. 18. Frame/cell-loss probability versus buffer size using data of various MPEG-1 sources and Model A at different utilization in case of uniform p.d.f. for the
starting times. (a), (b):U = 0:75. (c), (d):U = 0:85:.

Two methods are presented in this paper for reduction of the
source-periodicity effect. The first one is based on a non-FIFO
scheduling policy at the multiplexer, while the second on a
histogram equalization, which transforms the distribution of
starting times to a uniform one.

In the FIFO buffer policy described above, when a new cell
arrives at the buffer and finds it full, it is automatically dropped,
regardless of the current losses of the respective source. On the
contrary, in the non-FIFO scheduling policy, an accumulated
loss rate for each source is calculated. Then, an arriving cell that
finds the buffer full, it is not automatically dropped. Instead, the
cell, corresponding to the source with the lowest current accu-
mulated losses among all cells being in the buffer, is dropped,
resulting in an equalization of the loss rates over all sources.
This scenario does not affect the average cell rate, which re-
mains the same as in the FIFO case, since it decreases the cell
rate of some sources at the expense of some others [22].

In the second approach, a histogram equalization of the
starting time distribution is performed. Let us denote the
cumulative distribution of starting times within an interframe
interval, by ms. Experiments can define the
shape and type of . Let be the cumulative function
of the uniform distribution. Hence, any time stamp, say,in

the time interval of 40 ms, corresponding, for example, to the
starting time of theth source, is mapped to a new time

(12)

so that the distribution of the new starting times follows the
uniform p.d.f. Equation (12) indicates that an additional delay
of should be added to theth source. However, in the
case where , this additional delay is negative, meaning
that the th source should start its transmission earlier. Since
this is practically impossible, the starting time of the respective
source is determined within the following interframe period, i.e.,

ms. Such an approach, although reducing the average
losses of the multiplexed sources, increases the source delay,
40 ms at maximum.

VIII. E XPERIMENTAL RESULTS

The proposed traffic models are evaluated using three VBR
MPEG-1 coded video sequences, different from that used in
modeling.

A. Frame-Layer Model (Model A)

First, a uniform distribution of the starting times and a FIFO
scheduling policy is considered. Fig. 18 presents frame/cell-loss
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Fig. 19. Comparison of cell losses in case of synchronized and uniformly
distributed sources and the performance of Model A and B for the former case.

probability versus buffer size of a signal generated using the pro-
posed Model A and real data recorded from the video Sources
1, 2, and 3 at a wide range of utilization (0.75 and 0.85), in the
case of . The simulation was performed with the data
rate scaled up and down by 2% to show how close the estimated
loss probability is to that obtained from the real data [15], [26].
Although a slight deviation out of the range of2% is observed,
especially at , Model A seems to be robust for esti-
mating frame/cell losses.

In case of many synchronized video sources, different buffer
statistics are expected to be encountered since manyframes ar-
rive at the same time with high probability. In our simulations, a
Gauss distribution has been used for modeling the starting times
instead of the uniform one used in the previous case. Fig. 19
presents a comparison of the average cell losses versus buffer
size for video Source 1, using as starting-time p.d.f. the uniform
and the Gauss distribution. In this figure, 20 sources have been
multiplexed. The uniform p.d.f. is defined in the interval of [0
40] ms, while the Gauss by an average of 20 ms and standard
deviation of 0.1. The latter means that the majority of sources
start their transmission at the middle of the interframe interval
(around 20 ms). Although the same utilization has been used,
higher cell losses are observed in case of synchronized sources,
for all buffer sizes. In this figure, we also illustrate the estimated
cell losses, provided by Model A. Good approximation is no-
ticed in all buffer sizes since the proposed model is based on the
statistical properties of video sources. Table III presents the cell
losses for each of the 20 individual multiplexed sources for two
delay values (105 ms and 82 ms) and utilization equal to 0.85
when the aforementioned Gauss p.d.f. has been used as distri-
bution of the starting times. Although the multiplexed sources
present the same statistical properties, they are characterized
by very different loss rates. In particular, many sources present
no losses at all, even for small buffer sizes, whereas there are
sources, such as source 4 and 15, where the respective losses
are much higher than the rest ones. In the same table, the re-
sults obtained by applying the non-FIFO scheduling policy and
the histogram equalization, as they have been described in Sec-
tion VII, are also presented. In both approaches, reduction of the
source-periodicity effect is noticed. Although in the second ap-
proach, an improvement of the average cell-loss rate is also ac-

complished, this is balanced by the additional delay introduced
by this methodology, as we have mentioned in Section VII. This
additional delay is also presented in Table III for each of the 20
multiplexed sources. Since, on average, an additional delay of
about 20 ms is introduced, we conclude that the average losses
at the same total delay (buffering plus histogram equalization
delay) is slightly better to that provided by the non-FIFO sched-
uling policy (see Table III). As a result, synchronized video
sources require greater delay to achieve the same video quality.
However, in the non-FIFO scheduling policy, smaller loss fluc-
tuation is observed. Since this method is independent form the
p.d.f. of starting times it can also be applied in the uniform dis-
tribution for further equalizing the source losses.

B. GOP Layer Models (Methods A, B)

Fig. 20 presents the cell-loss probability using the Methods
A and B of GOP layer modeling for the Terminator. Our simu-
lations were done with 20 multiplexed video sources and using
the uniform distribution for the starting times. Even though the
Terminator sequence has been used for evaluation, both methods
underestimate the loss probability. This is due to the fact that at
multiplexing schemes, where the aggregate video stream tends
to smooth out around its average, the burstness of MPEG-1 video
traffic, which cannot be estimated by Methods A and B, affects
the cell losses. However, it seems that Method B better approx-
imates the loss probability since more information of the frame
layersignal isexploited.For this reason,GOP layermodelingcan
be used only for an initial estimation of the video traffic charac-
teristics, i.e., for capturing the activity of a video source.

C. Intermediate Layer Model (Model B)

The accuracy of the proposed traffic Model B, as far as the
frame/cell-loss probability is concerned, is evaluated in Fig. 21,
in the case of video Sources 1, 2, and 3, when . Our sim-
ulation has been performed using the uniform distribution for the
starting times, while the parameters of Model B have been es-
timated based on the Terminator sequence. Despite the signifi-
cant reduction of the required model parameters, a very good ap-
proximation of frame/cell losses is observed in a wide range of
utilization (0.75 and 0.85). As in frame-layer modeling, the data
losses are obtained by varying the data rate2%. A slight devia-
tion out of the range 2% is also observed for some buffer sizes,
especially at low utilization, meaning that Model B is very robust
for estimating the MPEG-1 traffic behavior. The performance of
the proposed Model B for each individual source is presented
in Table III using the same conditions as those described in the
frame-layer modeling. It seems that Model B approximates well
both the average and the individual loss rates. The performance
of the proposed Model B in case of synchronized video sources is
presented in Fig. 19. As it is observed, Model B provides a very
good approximation of the cell losses for all buffer sizes since, as
with Model A, Model B does not depend on the adopted starting
time distribution of the multiplexed sources.

D. The Effect of Delay

In the following, the effect of a large buffer size to the
system delay is examined. In general, a number of components
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TABLE III
AVERAGE CELL LOSS PROBABILITIES FOR DIFFERENTDELAY AND BUFFERCONFIGURATION SCHEMES AT UTILIZATION 0.85

Fig. 20. Cell-loss probability versus buffer size using data of the Terminator
and Method A and B of GOP layer atU = 0:8.

introduces delays in a video transmission system: encoder
buffering, frame reordering necessary for decoding of
frames, actual encoding and decoding time, network transport
delays and so on. In case of highly interactive videoconference
applications or real time video transmission, low delays are
usually preferable. Furthermore, the overall delay may be
one of the negotiated QoS parameter that the network should
guarantee [18]. In this paper, we concentrate on buffering delay,
which is required to smooth VBR traffic into CBR one. This
delay is of particular interest since it influences both video
quality and the multiplexer gain through the associated traffic
characteristics [32].

For constant frame-rate encoders, like the examined MPEG-1,
the overall delay throughout the system should be constant for
the duration of the connection. This is due to the fact that once
decoding starts, a video frame should be displayed every 40 ms.

As a result, the time between the capturing and the displaying of a
frame should remain constant. Since the number of bits per frame
is variable due to the VBR coding, the end-to-end delay should
guarantee that the decoder can access all bits of a frame by the
time that the frame is required to be displayed. As a result, the
buffering delay is measured as the maximum delay required by a
cell to get out of the buffer [22], [32].

Fig. 22 presents the delay versus the number of multiplexed
video sources for the Terminator sequence in case of 0.85, 0.8,
and 0.75 utilization. In particular, in this figure, the delay is ob-
tained by using such buffer size that a 10−5 average cell-loss rate
is accomplished. As it is observed in Fig. 22, for utilization above
0.8, thedelay,even formanymultiplexedvideosources, isgreater
than the frame reordering delay forframes, which in our case
is equal to 80 ms (two successiveframes). In particular, in the
case of and , the buffering delay is 139 ms
for 10−5average cell loss. This is also presented in Fig. 23, which
illustrates the delay versus utilization for 20, 15, and 10 multi-
plexed sources for the same loss probability. Furthermore, our
simulations indicate that the delay is high for small number of
multiplexed sources, even in case of low utilization. Specifically,
when and , a delay of 371 ms is measured,
which is 4.64 times greater than that of 80 ms. As the number of
multiplexed sources increases, the delay decreases too, even for
the same utilization. Indeed, for and , a delay
comparable to the interframe period is noticed.

E. Prediction of Video Activity

In applications where we are interested in prediction of
video activity, an adaptive implementation of the proposed AR
models is accomplished. Such applications are very useful for
dynamic bandwidth allocation or effective implementation of
congestion-control schemes, especially over ATM networks
responsible for maintaining the negotiated QoS. In this case,
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Fig. 21. Frame/cell-loss probability versus buffer size using data of various MPEG-1 sources and Model B at different utilization in case of uniform p.d.f. for the
starting times. (a), (b)U = 0:75. (c), (d)U = 0:85.

Fig. 22. Delay versus the number of multiplexed sources in case of average
loss probability equal to 10−5 for the Terminator.

based on the previous samples of the transmitted sequence, the
current video activity is predicted through an adaptive proce-
dure described in the following. Such an approach increases the
prediction accuracy and provides the system with the flexibility
of satisfactorily estimating future samples.

Fig. 23. Delay versus utilization in case of average loss probability equal to
10−5 for the Terminator.

An AR model is considered more suitable for such an adap-
tive implementation, due to the fact that the current estimated
value is expressed as a function of the previous values and to the
fact that its parameters have been estimated as it is presented in
[41].



110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

Fig. 24. Prediction of video activity for 100 GOP indices.

Fig. 25. The first AR coefficient versus GOP indices.

In particular, the adaptive implementation of the AR model
is performed on a GOP basis and the current band is predicted
by exploiting the statistical properties of the previoussam-
ples. In order to impose different significance on each of the
previous samples and to afford the possibility of following the
statistical variations of the observable data, a forgetting factor is
introduced. This means that samples, which are far from the cur-
rent GOP index, affect the statistical properties less than sam-
ples close to it. In our simulation, ten samples have been used
as observable data, while the forgetting factor is chosen to have
the following form: , with for each th pre-
vious sample. Fig. 24 shows the tracking capability of the pro-
posed model to the actual data in case of an AR model of order 2.
In this figure, 100 GOP indices are illustrated, taken from the
Terminator sequence. The zero value corresponds to low activity
band, while values of one and two correspond to medium and
high activity band, respectively. The use of an AR(2) instead
of an AR(1) is based on the fact that the latter provides much

smoother tracking capabilities. We observe that the model pre-
dicts the actual traffic very accurately, despite the small time
delay at the instances of band changes. The plot of the first AR
coefficient versus GOP indices is illustrated in Fig. 25 along
with the respective actual data for indicating the actual tracking
capability of the model. After a video activity change, the AR
coefficient takes a small value. In the following samples, the
AR coefficient increases, since samples with more similar sta-
tistical properties are included to the observable data. After the
band prediction, it is possible to estimate the values of Intra/Inter
frames within a GOP using a similar adaptive framework.

IX. CONCLUSION

In this paper, we survey the traffic characteristics of multi-
plexed VBR MPEG-1 coded video sources transmitted over
ATM B-ISDN networks. We also propose traffic models, which
approximate the network resources: frame/cell-loss probability
and buffering delay. Our study has concentrated on three layers:
the frame layer, GOP layer, and Intermediate layer. In the first
layer, the aggregate MPEG-1 stream, which constitutes the
frame-layer signal, is examined, and a correlated AR model
of high order (Model A) is introduced to approximate the
network resources. Reduction of the required parameters is
achieved by analyzing the MPEG-1 video sources at a higher
layer (GOP layer) on which a simpler signal is used
for modeling. However, without enough knowledge about the
frame-layer signal, models on this layer are not good estimators
for the MPEG-1 traffic characteristics. In order to maintain
accurate approximation of the MPEG-1 traffic behavior and
simultaneously reduce the number of required parameters, an
intermediate layer, which efficiently combines properties of
the other layers, has been introduced in this paper, resulting in
Model B.

Experimental results and simulation using several VBR
MPEG-1 coded video sources have shown the ability of both
Model A and B to successfully approximate the network
resources at a wide range of utilization. However, since the
parameters of Model B are much simpler than that of Model
A, we can conclude that the most suitable layer for modeling
MPEG-1 sequences is the Intermediate layer. Our simulations
have concentrated on the impact of the buffering delay to the
VBR MPEG-1 stream at a wide range of utilization and several
multiplexed sources. In applications where dynamic bandwidth
allocation or admission control is necessary, prediction of the
video activity bands can be examined based on an adaptive
implementation of the AR model. Our investigation indicates
good tracking capabilities of the adaptive model to the actual
data.

Of particular interest is the relation of frame/cell-loss proba-
bility to the visual distortion, which is observed by the human
eye. Although loss probability is a metric which indicates how
well the models estimate the network resources, this value does
not directly corresponds to the visual distortion of video signals.
For instance, the loss of a frame is not generally as signifi-
cant as the loss of anframe, since in the latter case, all frames
within a GOP will be distorted.
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