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Abstract—Performance evaluation of broadband networks bandwidth requirements and, without applying any compres-
requires statistical analysis and modeling of the actual network sjon technique, the multiplexed video traffic easily overload the
traffic. Since multimedia services, and especially variable bit rate networks. For this reason, several coding algorithms have been

(VBR) MPEG-coded video streams are expected to be a major d in the literat ¢ £ fficient vid
traffic component carried by these networks, modeling of such ser- proposed In the literature to perform eificient video compres-

vices and accurate estimation of network resources are crucial for SIon while simultaneously maintaining an acceptable picture
proper network design and congestion-control mechanisms that quality [9], [10]. One of the most popular is the MPEG-1 video

can guarantee the negotiated quality of_service ata minimum_ cost. standard [11], developed by the Moving Picture Expert Group
The layer modeling of MPEG-1 coded video streams and statistical with respect to the JPEG and H.261 activities. It was initially

analysis of their traffic characteristics at each layer is proposed . | ted for st f d vid but b f
in this paper, along with traffic models capable of estimating the implémented Tor siorage of compressed video, but because o

network resources over asynchronous transfer mode (ATM) links. its flexibility, it now appears in many other applications from
First, based on the properties of the entire MPEG-1 sequence interactive systems on CD-ROM’s to video delivery [12].

(frame layer signal), a model (Model A) is presented by correlating  Two main different modes are used for encoding any video
three stochastic processes in discrete time (autoregressive models)g )\ rce namely constant bit rate (CBR) and variable bit rate
each of which corresponds to the three types of frames of the ’ ! )

MPEG encoder (I, P, and B frames). To simplify the traffic (VBR), res.pect|vely.[2]. ACBR codmg mode cannot guarantee
Model A and to reduce the required number of parameters, we Cconstant video quality for all scenes since a rate-control mecha-
study the MPEG stream at a higher layer by considering a signal, nism is put in use in high video activity to achieve the required
which expresses the average properties of, P, and B frames (target) bit rate. However, the users of video applications are in-
over a group of picture (GOP) period. However, models on this e regted in invariable quality regardless of the complexity of the

layer cannot accurately estimate the network resources, especially . . .
in multiplexing schemes. For this reason, an intermediate layer is scenes. Therefore, they prefer a VBR coding mode, which main-

introduced, which exploits and efficiently combines information tains constant the picture quality, varying the output bit rate, to
of both the aforementioned layers, producing a model (Model B), a CBR one. In this mode, to take advantage of statistical varia-
which requires much smaller number of parameters than Model  tjons of VBR encoders, we multiplex several independent video
A and simultaneously provides satisfactory results as far as the sources in a common buffer with constant output rate [2], [13]
network resources are concerned. Evaluation of the validity of the - ’ )
proposed models is performed through experimental studies and Then, the aggregate bit rate tends_to _smooth out around the av-
computer simulations, using several long duration VBR MPEG-1 €rage as the law of large numbers indicates [14], so that the loss
coded sequences, different from that used in modeling. The results probability is reduced as the number of multiplexed sources in-
indicate that both Models A and B are good estimators of video creases beyond one.
traffic behavior over ATM links at a wide range of utilization. However, for real-time video applications, frame/cell-loss
Index Terms—Asynchronous transfer mode (ATM), MPEG-1 probability means degradation of picture quality due to the
coded video traffic and flow control, statistical multiplexing, fact that the lost information cannot be retransmitted [15].

variable bit rate (VBR) coding. Since, for a given video quality, the loss probability should not
exceed a certain limit, it is necessary to build some protection
|. INTRODUCTION against losses so that an acceptable quality of service (QoS)

_ . level should guarantee to the users [16], [17]. Furthermore,
MAJOR taffic component over broadband mtegrateie success of ATM networks depends on the development of

network; (B-_IS_DN) based on _asyr_1chron(_)us tranng'ffective congestion-control schemes, responsible for main-
mode (ATM) is ant|C|pated_ to be. mul_tlmedla Services [1_]_[% ining the negotiated QoS delivering by the network. Hence,
Ih?‘ %eTa_?d OI sl,uc'h.servll_(':[e)isr,vl|kesv©edo t(_elecongerbencm.g [ affic models, which approximate the statistical properties and
'gh-detinition television ( ) [5], indexing an rOWSINY e traffic characteristics of several types of video sequences,
o_f large video databases [6]? [7] as vyell as th_e forthcomlryre necessary for estimating the network resources, e.g., to
video o|r_1| demand (?I/(t)hD) [E:)] will raplij_ly |tr_1crea_se|nthe Coml'n%etermine the size of statistical multiplexers that achieves
years. However, all the above applications Impose very arg'éceptable picture quality at a minimum cost [13] or to accom-

plish admission control and bandwidth allocation [18], [19].
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a telephone scene is analyzed and two models, one in discegquences are modeled as a three-state Markov chain based on
time and one in continuous time, are shown to fit the expegproperties of the GOP layer signal. Then, Intra and Interframes
mental data well. A multistate Markovian chain is proposed iare generated using correlated first-order AR models whose the
[22] as a video source model for VBR teleconference streanpg@rameters are associated with different video activities.
In the same work, reduction of the required number of param-Traffic models that combine Markov chains and AR models
eters is achieved by adopting a discrete autoregressive (AR)e been also discussed in [25]. However, the video traffic
process of order 1 [DAR(1)]. In [23], a new approach to thef [25] does not correspond to MPEG-1 traffic. Furthermore,
problem of bandwidth allocation is described for VBR videcthe states of the Markov chain are determined by classifying
phone services by modeling the cell streams as a stationary Malpcks of 8 x 8 pixels within a frame according to the respec-
kovian chain. A discrete-time discrete-state Markovian chaintise values of their motion vectors. As a result, the frame packet
proposed in [24] for modeling of VBR coded video sourcesize is estimated on a block basis. Instead, in our approach, the
and three different methods (stationary-interval method, asympedel states represent the average video activity over a time
totic method and the hybrid method) are used for approximatipgriod by considering the temporal behavior of frames within
the average queue. In [25], a motion-classified AR model htss time period. Such an approach has the advantage of esti-
been proposed for describing the traffic statistics of a full-manating the burstness of video traffic, which significantly deter-
tion VBR video stream, the parameters of which are determinednes the network resources by overloading the associated net-
using a Markov chain associated with different motion activitwork buffers. Furthermore, correlated AR models are used for
periods. These periods are defined by classifying the motiongenerating the size of each type of frame, since different sta-
a block-by-block basis. Scene modeling is performed by Fratestical properties are encountered in MPEG-1 streams than in
et al. [15] for video films whose the autocorrelation functionwideo sequences presented in [25].
indicate a long-range dependence. Another approach of scen€his paper is organized as follows. Section Il presents some
modeling is proposed by Heymanal.[26], in the case of VBR basic characteristics of MPEG-1 encoders, while Section Il is
broadcast video traffic. devoted to the basic concepts of MPEG-1 modeling. In Sec-
However, the previous models cannot directly be applied tons 1V=VI, traffic models at frame, GOP, and intermediate
VBR MPEG coded video sources, since the MPEG comprdayers are presented. The buffer configuration scheme is de-
sion algorithm is different from the coding techniques used stribed in Section VII, while experimental results indicating the
the above studies [18]-[27]. For instance, in a DPCM codirgpod performance of the proposed traffic model are discussed
scheme there are several spikes, usually due to scene charigeSection VIII. Finally, Section IX concludes the paper.
while small values of bytes indicate video frames belonging to
the same scene [26]. On the contrary, when the MPEG algorithm ||. Basic CHARACTERISTICS OFMPEG-1 ENCODERS
is used, three types of frames, with different average frame size_, . .
and properties, are merged in a deterministic way to form theS'nf:e video source 'T‘O.de"”g depends on the'adopted com-
aggregate MPEG video sequence [5], [11]. In this case, spi ssion scheme [26], 't_ Is useful _before proposing mOd?'S of
occur whenever there is either a change of the frame type o EG-1 e_ncoders to bne_fly describe the encoding algorlthm_,
scene change. the assoc_la_ted VBR coding control, and present some basic
Some statistical properties and basic characteristics %}aracterlstlcs of MPEG-1 streams.
MPEG-coded video steams have been recently analyzed, such ) )
as the higher rate of Intra frames than of Interones, and the The Encoding Algorithm
periodicity existing in the autocorrelation function of MPEG All video frames in the MPEG-1 standard are processed in a
sequences (see Section IV-B) [28]-[31]. Nevertheless, in thikck-based mode. In particular, each color input frame is di-
paper, we exploit the statistical properties of MPEG streama&led into nonoverlapping macroblocks (MB’s), each of which
and propose models at three layers (the frame layer, GOP layemntains four luminance blocks and two chrominance (1 Cr and
and intermediate layer), which can approximate the netwoikCb) of size 8 x 8 pixels (sampling ratio 4:1:1). Three dif-
resources and the traffic behavior at a wide range of utilizatioierent coding modes are used by the MPEG-1 coding algorithm:
(This paper deals with MPEG-1 video streams. However, sintéraframe (), predictive {?), and bidirectionally predictive
MPEG-2 video sources present the same traffic behavior, i), resulting in three types of frameg, (P, and B). The [
following analysis can also be applied to MPEG-2 sequencegmes are also called Intra frames whiteand B Interframes.
The first layer exploits all the statistical properties of th@hese three types of frames are deterministically merged
MPEG-1 stream. However, due to the signal complexity, farming the group GOP, which is defined by the distardce
large number of parameters is required to properly model thetween!/ frames and the distanc®/ betweenpP frames. In
VBR MPEG-1 video traffic. On the other hand, examination gfractice, the most frequent values/fis 3 (two successivés
the MPEG-1 stream at the high GOP layer reduces the moftaimes), while ofl. 6, 12, 15 depending on the required video
complexity, but simultaneously deteriorates the estimatiquality and the transmission rate. In our study, the parameters
accuracy. At the intermediate layer, however, we are able Aé and L are chosen to be 3 and 12, respectively, resulting in
efficiently combine properties of the other two layers and gethe following stream .- IBBPBBPBBPBBIBB - - -.
erate models which can sufficiently approximate the network In Intraframe mode, only compression in spatial direction is
resources using a small number of parameters. In particulased by applying a 2-D 8 x 8 discrete cosine transform (DCT)
at this layer, the video activity and the burstness of MPEG#a all luminance and chrominance blocks of the input frame.
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Quantization of each DCT coefficient is then performed based xi0”
on an 8 x 8 quantizer matrix, the elements of which are givenin
[11] and [12]. The DC coefficient of the DCT transform, which
corresponds to the average intensity of each component block,
is coded using a differential prediction method, while the re-
maining ones (AC) are “zig-zag” scanned and a run-length en-
tropy algorithm is applied using variable length code (VLC) ta- 2
bles [11].

In predictive mode P frames), motion estimation/compensa- 3
tion is performed on a MB basis. In particular in our approach, % 100 200 300 400 500
for each MB a square of 32 pixels is chosen as the motion-vector Number of Frames
search area and the vector that minimizes the absolute diﬁﬁ[}'. 1. The frame layer and the AV_GOP signal for the Terminator over a time
ence between the current MB and the shifted one in the pr@rdow of 500 frames.
vious/ or P frame is chosen as the motion vector of the MB. To
speed up the processlagarithmic searcthas been adopted in
our encoder, while as reference frame we have selectedkethe
coded optionmeaning that the motion estimation is performe
using the previous decoded frame for improving video qualit
at the decoder [10]. The motion-compensated prediction er
is then calculated and an 8 x 8 DCT is applied to the errorsThe average packet sizeratth GOP period will be denoted
of each block followed by quantization, run length and entromsz“ (n¢) in the rest of this paper, and is given by
coding[11] and [12]. For achieving higher coding efficiency, the
conditional MB replenishmethias been adopted in the encoder. <L1 )/

L,

N

AV_GOP Signal
........... Frame Layer Signal ;

v

S

Frgme Size

networking requirements, but is selected according to the video
8uality [32].

T Basic Characteristics

This means that each MB is distinguished between three coditfg(n¢) = Z ¥ (ngL +1)
types: 1) skipped MB, where no information is transmitted (zero i=0
motion vectors); 2) InterMB, where the motion vectors and the ng=20,1, -, |[Np/L| -1 (1)
DCT coefficients of the error are transmitted (plus some headers
information); and 3) Intra MB, where the MB is handled as iwhere|-| denotes the integer par¥r the size of the MPEG-1
Intraframe () mode.B frames are coded similarly 8 frames, stream, ande? (ng), ny = 0, 1, ---, Ny the packet size at
apart from the fact that the motion vectors are estimated withe nxth frame. That is, fol, = 12 andM = 3, 2" (ngL)
respect to the previous or the following (or an interpolation beepresents the frame sizeframe athgth GOPx ! (ngL+1),
tween them)! or P frame [12]. In our experiments, we haver! (ng L + 3) the first B and P frame of the same GOP, and so
used thecross2option for the estimation of the motion vectoron.
of B frames. This means that the encoder finds the best backThe dotted line in Fig. 1 illustrates the size of the first 500
ward and forward vectors, and then sees what backward vedtames of an MPEG-1 video sequence (Terminator Film). The
best matches the best forward vector, and vice versa. solid line shows the signal“(n ), which is formed by ex-
Higher compression ratios are achieved through coarsending signak“(n¢) so thatithas the same size astfién )
guantization. For this reason, the quantizer matrix, for easkgnal (perhaps apart from some last values wiNerf L is not
MB, is multiplied by a scalar called quantization factdy. Ina integer). Particularly, it is held that“*“(nr) = z(|ng/L]).
CBR mode, a video buffer is required to ensure that a constdifte signals:*“ (nr) andz* (nr) are also called the AV_GOP
bit-rate output is reproduced by the encoder. In this case, ted frame layer signal, respectively. In this figure, the large
quantization factor is adjusted for each MB by a rate-contrilame sizes correspond foframes, while the small ones cor-
mechanism to avoid buffer overflow/underflow [12]. On theespond taB frames, and the intermediate onedtdrames. It
contrary, when the encoder operates in “open loop,” the outpsitalso observed that“(n¢) follows video-sequence activity,
rate varies according to the image complexity, since a constameaning that its size increases whenever the sizes of Intra and
quantization factor is used for each type of frames [32]. This isterframes on average increase. This property is the basic con-
the most common method, which has been used in the literataept behind the models relied on in the intermediate layer.
to achieve VBR video coding, and this approach has been als@\lthough 7 frames have, on average, the largest size And
adopted in this paper [2], [13], [22], and [32]. In particular, wéhe smallest one, models which ignate (or sometimesP)
have used a quantization factor equal to 8 and 12 for Intra aindmes and take into account onlyframes severely underes-
Interframes, respectively. However, constant quantization ddenate the network resources [29]. This is due to the fact that
not result in “truly” constant video quality due to the fact thaf” and B frames present higher fluctuation tharirames, and
the human visual system is more sensitive to errors in certdivat there is a strong correlation between them. The first reason
types of regions, like texture, than flat areas. For this reas@tems from the coding algorithm éfandB frames. As we have
more sophisticated methods can be used for VBR codistated above, some MB'’s df and B frames can be coded as
control [33], [34]. However, regardless of the method selectéatra MB'’s, resulting in low compression ratios. Consequently,
to achieve constant quality, the main difference between VBRIring high video activity, the majority of frames within a GOP
and CBR is that the output video rate is not constrained by apgriod, which mainly consist of Inter frames, take values which
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TABLE |
CORRELATION COEFFICIENT OFINTRA/INTER FRAMES FORSEVERAL MPEG-1 SQUENCES

Sequences Corr. Coef of I-P on a GOP Corr. Coef. of I-B on a GOP Corr. Coef. of P-B on a GOP
Terminator 0.28 0.23 0.85

Source 1 0.34 0.30 0.86

Source 2 0.26 0.27 0.71

Source 3 023 = 0.18 0.67

are much greater than their average, therefore loading the netReduction of model complexity could be achieved by
work, while in low video activity, the values of frames within aexamining the MPEG-1 stream at a higher layer characterized
GOP are small enough to empty the network buffers [35]. by the following property: the signal on this layer should have
The strong correlation between Intra and Inter frames are dasimpler form than the frame layer signal, but simultaneously
to the motion-estimation algorithm and the temporal continuifyrovides an approximation of the aggregate sequence. Such
of the actual video stream. A correlation measure between tacsignal isz“(ng), which appears the same average as the
stochastic processek(n) andY (n), is given by the correlation aggregate MPEG-1 sequence, follows video activity, presents

coefficientrx y defined as smaller fluctuation than Intra and Inter frames, and is generally
much simpler than the frame-layer signal. Modeling based on

S E{(X(n) — px) - (Y(n) — py)} (2) the statistical properties af%(ng) will be called GOP-layer
' Vvar(X(n)) - var(Y(n)) modeling in the rest of this paper. However, such modeling,

without exploiting any other knowledge from the frame-layer

wherevar(-) is the variance of a stochastic proces¥,} is signal, cannot provide sufficient approximation of the network
the expectation operator, apd, ..y the average o (n) and resources due to the fact that significant characteristics of the
Y (n), respectively. aggregate MPEG-1 stream are lost, and the lost information

Table | shows the correlation coefficient between Intra ang difficult to be estimated. For instance, for a given value
Inter frames for several MPEG-1 coded video sequences. In paf-z“(n¢), it is not possible to properly determine the size
ticular, our results have been obtained using four long-duratiofi I, P, and B frames within the respective GOP and their
(40000 frames) MPEG-1 streams: Terminator, Star Wars partoneous estimation significantly affects the performance of
I, and two TV series. The last three sequences are also caltad traffic models.
Sources 1, 2, and 3 in the following, for simplicity purposes. The more knowledge about the MPEG-1 stream we exploit,
All the aforementioned sequences have been encoded usingttfeebetter approximation of the network resources we achieve,
same VBR coding control and encoding algorithm, such as that simultaneously, the number of model parameters increases.
same quantization factors, motion-estimation method, AndAt an intermediate layer, however, it is possible to efficiently
andM GOP parameters. In this table, we show correlation coefembine the properties of“(ng) and 2 (nr), generating
ficient values among Intra and Inter frames after being averagaddels that can accurately approximate the traffic behavior of
over a GOP period. This is due to the fact that the correlati?iPEG-1 sources requiring much smaller number of parame-
among the entird, P, and B streams is not fair, since the re-ters. The basic concept of this layer modeling is to approximate
spective elements of the streams correspond to totally differeideo activity of MPEG-1 sequences using the simplified signal
GOP’s. As it is observed, the correlation coefficient betweert’(ng) and according to the specific value of video activity
Inter frames £-B) is stronger than the respective one betwedgproduced by the GOP layer model) to generate the sizes of
Inter and Intra framesK-1, B-I) since the coding method used!, P, and B frames using estimators based on frame-layer
for I frames is different from the coding method used for Intanodeling.
frames. Almost the same correlation degree is also observed for
all the examined video sequences. Similar results as far as the IV. FRAME—LAYER MODELING
correlation betwees, P, andB frames is concerned, have also

been presented in [29]. In the following, we study the statistical properties of the

frame-layer signal i.e., the probability distribution and the auto-
correlation function, and we propose traffic models capable of
IIl. M ODELING OF VBR MPEG-1 GDED VIDEO SOURCES  ¢aptyring the traffic characteristics of MPEG-1 video sources.
The MPEG-1 stream corresponds to a low layer for modelin
of VBR MPEG-1 coded video sources, in the sense that it conf: Study of the PDF
tains all the statistical properties of the aggregate signal. In theThe frame size histogram of an MPEG-1 stream is charac-
following, we call this layer the frame layer, and call the respeterized by many small values mainly duefband sometimes
tive signal the frame-layer signal. At this layer, we are able to P frames and by few large values, mainly due/térames.
generate models which can accurately approximate the netwdtie former causes a rapid increase at the region of frames of
resources, since all the necessary information of the MPEGsthall size, while the latter a hill at the region of frames of large
signal can be exploited. However, the complexity of this signalize. Consequently, the distribution of an MPEG-1 stream seems
as it is briefly described in Section I, results in complicatetb be superposition of three different distributions i.e.J of,
traffic models requiring a large number of parameters. and B frames, meaning that it is more convenient to split the
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Fig. 2. Q-Q plots of Gamma and Lognormal Distribution for the Terminator. (a) Aggregate MPEG-1 stream. (b)HdandB frames, respectively.

MPEG-1 sequence inth P, andB streams and perform sepa-the negative peaks t8 frames, while the small positive peaks
rate statistical analysis for each of them. to P frames. The periodicity of such a function is equal to the
Fig. 2 illustrates the Q-Q plots (fractile diagrams [36]) oflistancel. (L = 12 in our case), while the subperiodicity to the
Gamma and Lognormal distribution of the Terminator for thdistanceM (M = 3).
aggregate MPEG-1 sequence, as well adfaP, B frames. In For this reason, separate study of the autocorrelation func-
this figure, the quantiles are normalized by the respective mdicn for each type of frames is more convenient, since such an
imum value of the real data. It is observed that, in contrast &pproach eliminates the periodicity of the aggregate sequence.
the aggregate MPEG-1 sequence, the”?, and B frame his- Fig. 3(b)—(d) presents the autocorrelation functions fo#,
tograms can be approximated by Gamma or Lognormal distand B frames in case of the Terminator. The autocorrelation of
bution whose the unknown parameters are estimated using fhieames decays more rapidly than Bfand B frames, while

method of moments [14]. the autocorrelation oB3 frames presents the slowest decay rate.
Heymanet al. have also concluded that VBR teleconfer- A stochastic proces¥ (n), n = 1, 2, --- is said to have
encing streams follow the Gamma distribution using, howeveshort-/long-range dependence if the sum of the autocorrelation
another coding scheme [22]. at different lags converges or diverges, respectively [37], [38].
That is
B. Study of Autocorrelation Function
In this subsection, survey of the autocorrelation function is Z p(l) < oo(= o0) )
performed. However, before presenting the basic properties, we !
first give some definitions for clarification purposes. for short-range dependent process (for long-range dependent
The autocorrelation of a stochastic procésg:) at lagl is  process).
defined as [2] Another equivalent condition for being a stochastic
. . process short/long-range dependent is the asymp-
p(l) = B{(X(n) = px) - (X(n+1) = px)) (3) totic behavior of the variance of process\™ =

var(X(n)) (1/m)(X(km — m + 1) + --- + X(km)) with respect

wherevar(X (n)) is the variance o (n), px the average, and to m [39]. In particular, if the variancear(S.™) is propor-
E{-} the expectation operator. Comparing (2) and (3), it seertignal tom !, for largem, the process{(n) is characterized
thatp(0) = rx x. as a short-range dependent, while if the(5"™) decays at a
Depending onV/, L parameters, the autocorrelation functioslower rate thamn =1, i.e., is proportional ton=2, a € (0, 1)
of any VBR MPEG-1 coded video sequence appears “peridor largem, then the proces& (n) is said to be long-range de-
icity” and “subperiodicity” [35], as illustrated in Fig. 3(a) for pendent. Estimating the parameteof several VBR MPEG-1
the Terminator, wherd/ = 3 andL = 12 have been chosen ascoded video sources, it seems tHatP, and B streams are

GOP parameters. The large positive peaks are dddrames, long-range dependent processes [35]. Similar results can be
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Fig. 3. Autocorrelation of the Terminator along with two AR models fitted to them. (a) Aggregate MPEG-1 stream. (b)2(dnd B frames, respectively.

found in [38], [40] for broadcast video sequences that have bemmd identical distributed noise with zero mean and variance one.
coded using a hybrid DPCM/DCT compression algorithm.  The model parametegs, b, andd“ are estimated using the
However, the performance of models that accomplish geviule—Walker equations [41].
eral statistical properties are not compulsory in agreement withBased on the Yule—Walker equations, the AR model parame-
that provided by real data. In [29], it has been shown that moirs are obtained by examining the entire sequencésBf and
eling relying only on statistical tests is not sufficient to approxB frames. This approach is useful for estimating the network re-
imate the network traffic, and consequently, deviation of sonseurces during the network design phase, using, e.g., the traffic
statistical properties is sometimes not so crucial as far as thedels as video generators. However, in applications where dy-
network resources are concerned. Using Lindley’s equation feimic bandwidth allocation or prediction of frame sizes or ac-
the delay in a G/G/1 queue, it can be shown that the long-ranggty during video transmission is necessary, an adaptive im-
dependence property affects the network resources only if laggementation of the Yule—Walker equations is performed, mod-
busy periods occur. The term “busy period” indicates the timging the AR parameters in every, e.g., GOP period [41]. Both
interval, starting when the buffer is empty and ending in thgpproaches are discussed in the section of experimental results
following empty state [40]. For a given utilization, we can asof this paper.
sume that busy periods do not exceed a certain limit, and thusFig. 3(b)—(d) illustrates the autocorrelation functions of an
lags beyond a threshold do not have any influence on the vidar model of order 1 [AR(1)] and a high order AR for the Ter-
traffic. As a result, there is a finite order of an AR model thahinator sequence, whose the unknown parameters have been
can capture well the actual traffic, resulting in good predictiogalculated based on statistical properties of the entire sequence
of frame/cell-loss probability. That is, the size bf P, andB  of Intra and Inter frames. It is observed that AR models of
frames is estimated by high order better approximate the autocorrelation than AR’s of
. olr)der 1. In particular, an order af = 25, ¢? = 100, and
c _ c p c C C q* = 35 has been used for each type of frame of the Terminator
2Ga(k) == B aGplk — 1) + (k) +d°  (5a) sequence. In general, the following inequalitiés< ¢” < ¢?
are satisfied.
with ¢ € {I, P, B} and Fig. 4 illustrates the autocorrelation functions of video
c Sources 1, 2, and 3 along with the respective of the Terminator
¢” the AR order for thet-stream (5b) for I, P, and B frames. ill the examil;ed sequences present
wherez S (k) is thekth frame size for th€-stream generating similar behavior as far as the autocorrelation function is con-
by the AR model of order,©, ande€ (k) is the independent cerned. In particular, Sources 1 and 2 present slightly slower

=1
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Fig. 4. Autocorrelation of the Terminator compared with various MPEG-1 sourcekfi@nes. (b)P frames. (c)B frames.

TABLE I

CORRELATION COEFFICIENT OF THEPREDICTION ERRORS OFINTRA/INTER FRAMES FORSEVERAL MPEG-1 $QUENCES

Sequences | Corr. Coef of I-P error on a GOP | Corr. Coef. of I-B error on a GOP | Corr. Coef. of P-B error on a GOP
Terminator 0.26 0.13 0.61

Source 1 0.33 0.20 0.70

Source 2 0.24 0.18 0.65

Source 3 0.19 0.11 0.51
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decay than the autocorrelation function of the Terminator. Qe prediction error), indicate that there is correlation among
the contrary, a slightly faster decay appears in the autocorrelaem. Table Il shows the correlation coefficient of predictions
tion of Source 3. As a result, the high-order AR models, usedrors ofl, P, andB frames after being averaged over a GOP
for capturing the statistical properties of the Terminator, aperiod, for the four examined MPEG-1 video sources. This is
also appropriate for the other three streams. This is due to thene for the same reason as in Section Il. As it is observed,
fact that the Terminator is a long duration sequence, containitigg correlation coefficient between prediction errors of Inter
all possible variations of the video activity, such as camefeames is higher than the respective coefficients of Inter and
zooming and panning, abrupt scene changes, and peritriisa frames. Correlation among prediction errord ofP, and
with high/slow motion. Therefore, examining the statisticaB frames stems from the correlation amahgP, andB frames
properties of the Terminator is adequate to provide satisfactdhemselves, as we have mentioned in Section Il.
results for the other video sequences, too. In case, however, ofnother interesting property is that the errefs(k) follow
sources with specific characteristics, better performance of tthe same p.d.f. as illustrated in Fig. 5, where the quantiles of
proposed models is achieved through categorization of vidpediction errors corresponding fcand P frames are depicted
sequences into classes. In such cases, the modeling procedersus the quantiles of errors Bfframes for the Terminator and
remains the same, while the model parameters are estima®edirce 1 video sequence. The previous property results from
using some representatives of the class. the fact that the frame size histogramsiofP?, and B frames
conform to the same p.d.f. as we have stated in Section IV-A.
As aresult, correlation of, P, andB prediction errors is re-

C. Traffic Model of Frame Layer (Model A) :
Based on the statistical properties presented in the previéhn%red to generate a model for the aggregate MPEG-1 sequence,

subsections, three high-order AR model§.,(k) with C' € which will contain correlated, P, and B components. How-
(1. P. B} c:';m be used for modeling dt P,RandB streams. €Ve" using the second property, an approach to correlate the er-
s 9 ' . rorse€ (k) is to generate a reference error signal, which follows

The'." the generated signals are deterministically merged, e same p.d.f. as”(k), and then, generate the prediction errors
cording toL, and M parameters of the GOP pattern, to form th%ased on this reference signal. A simple method is to consider

estimated frame layer signal. However, if uncorrelated predai?{

: c - . e error of B frames as reference error, due to the fact #at
tion errorse® (k) are used as filter inputs to generate the signals . T

o : . fames constitute the majority within a GOP. Then, the errors of
x5 r(k), the aggregate MPEG-1 sequence will contain uncor

r -
lated!, P, andB components, instead of real data, wheré”, ?_andP framc_as are related t_o th_athframes _through acorrela-

. ion mechanism illustrated in Fig. 6, which is also called Model
and B frames are strongly correlated, as we have d|scusse0I in

. . . in the following.
Section Il. In this case, the estimated aggregate sequence d% S : 9 -
n particular, to generate the prediction error loframes,

not present the burstness of the real data, resulting in poor egp(-k), the error of B frames,c?(k) is related toe! (k) using
mation of the network resources. the following equation:

Indeed, the statistical properties of prediction errgrgk), geq '
obtained using the inverse AR filter (where real data are used as I(h) = { eB(Ng xk+1) = eP2(k), for oddk
the filter input, while the filter output corresponds to the respec- T el (k), otherwise

(6)
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Fig. 5. Q-Q plots off and P prediction errors with respect to the errorBfframes. (a) Terminator sequence. (b) Video Source 1 sequence.

e'(k)
L 1 1 eventk 1 Frames
llag | | [ O%
™| shift 8 2 20dd & ART
N llag | | lg -
Shift
B P Frames MPEG-1 stream
)} [3lags | e AR P MPEG
shire [ ] ¥ g I Synthesizer
5lags | | 5
1 shift s g
B Frames
AR B
Fig. 6. Block diagram of the proposed model at the frame layer (Model A).
whereNp is the number of3 frames within a GOP anef’z (k) Similar procedure is used for generationcdt(k) error. In

is the the prediction error corresponding to the secBrftame  particular, we splitz"’ (k) into three error sequences, denoted
B, within the GOP period. In general, a& (k), we denote the by e’ (k), i = 1, 2, 3, each of which corresponds to the error
prediction error of théth B frame B; of a GOP. In Fig. 6, (6) is of theith P frame, say’;, within a GOP. This means thaft* (k)
depicted through the decimator filter whose the input—output indicates the error of the firge frame PP, within a GOP, while
relationship is given by(n) = z(n) | M = x(n x M), after e2(k) refers to the seconit frame, P, ande’™ (k)to the third
shifting the reference error by one lag. one,Ps. In general, the!’ (k) is split into Np sequences where
Equation (6) indicates thdtand B, frames are fed with the Np denotes the number éf frames within a GOP. Then, each
same prediction errors for every odd group of the picture perrore’ (k) is related to the reference error as follows:
riod. The correlation coefficient of the errorsband B frames ePik)y =ePO(k), i=1,2,3 (7)

after being averaged over a GOP, achieved by this mecham%\mh (1) (2) v = [2 4 6]7 in our case. The previous

is close to that provngd by tr}e real datg (Table II.). In partiCUIaéQUation means that the , P,, and Ps frames of a GOP are
the correlation coeff|C|e_nt o(f (k) ande” (k) provided by the generated using the same prediction error asitheB,, and
model over a GOP period is equal to 0.17. It should be meR frames.

tioned that since by definition the errorsbf I, andB frames  Haying estimated the erroe (k), i = 1, 2, 3, we can easily
present zero mean and variance of one, there is no need forghgjuce the errar” (k) by merging them into a common link as
reference erroe” (k) to be shifted or be scaled to compensatgillustrated in Fig. 6 using a mixing “switch”. Such an approach
probable differences in mean and variance. Insteatithen”  results in correlation coefficient between the errorg’aind B
parameters involved in (5a) are used to shift and scale the fieames over a GOP period equal to 0.61, which is close to that
spective prediction errors so that the generated sigrgigk) presented in Table Il for the real data. Correlation between the
present the appropriate mean and variance. errors of P and! frames is indirectly achieved through (6), (7).
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signal for the Terminator.
Fig. 8. Autocorrelation of the GOP layer signal and of two AR models fitted

to it for the Terminator.
In cases that a different degree of correlation is necessary among
the prediction errors, a different proportion of correlation shoulc 1
be performed. For instance, weaker correlation is accomplishe

by leaving the error* (k) to be uncorrelated to the reference o3 h Terminator
erroreB (k). | ———- Source 1
0.6 .!x‘ ............... Source 2
V. GOP LAYER MODELING L) —-—-=  Source 3

In this section, we propose video source models at the GO 0413

layer by examining the statistical properties of sigr@(nc).

Autocorrelation

02}
A. Statistical Analysis

The quantiles [36] of Gamma and Lognormal distribution
versus the quantiles of“(n¢) are presented in Fig. 7 for the .
Terminator sequence. In this figure, we depict the quantile 0 20
normalized with the respective maximum value of the real date,,
as we have done in Section IV-A. We observe that both Gamrlga ) . )

s . Ig. 9. Comparison of the autocorrelation of the GOP layer signal of the
and Lognormal distribution fits well the real data for botherminator with various MPEG-1 sources.

video sequences. Studies of others MPEG coded video sources

have resulted in similar conclusions as far as the h|stogramr8EJardless of the sequences used for modeling and evaluation,

1% (ng) is concerned [35]. )
: . . . . the proposed traffic model, say5 ,(n¢) refers to an average
G AR
The autocorrelation function of™(ng) is depicted in s'!gnal over a GOP period, instead of the aggregate MPEG-1 se-

40 60 80
Lag (Video Frames)

.F'gé 8t'(80“|(3/ Illsne). Using S|m|la_r |dteatsh to tr;ose dllsi_usse ence, which actually determines the network resources. Thus,
in Section IV-B, we can approximate thé autocorreiation o? e problem is how to estimate the frame sizes within a GOP,

1% (ng) with a high order AR model. In general, the order . - o
. . ’ or a given value of signat§ . Coarse estimation of the
the AR is close to the order of the respective AR/drames f g gnat’y p(nc)

since a similar decay rate is presented. In Fig. 8, the dashed
dotted lines correspond to the autocorrelation functions of
AR(1) and an AR(20) model, respectively. Fig. 9 illustrates th&
autocorrelation functions of“ (n) for video Sources 1, 2, and

3 along with that resulted from the Terminator. In particula

the autocorrelation functions of Sources 1 and 2 decay sligh{
slower than that of the Terminator while the autocorrelatio

of Sour;:r(]a 3 d!c;fresents a ?Ilgh;cly fast:art_decay. However, Illn ile in Section VI we efficiently combined properties of sig-
cases, the dierences or autocorrelation aré very sma sz“(ng) andsf (n ) to generate models that are good esti-

thus, m_od.ehng baseq on the Terminator is adequate to caPWStors of frame/cell-loss probability requiring a small number
the statistical properties of the other three streams. of parameters

. Method A: In this case, we assume no knowledge about the

B. Traffic Models of GOP Layer properties of frame layer signal. Therefore, we can estimate the

Having examined the statistical properties:6fn ), a high- frame sizes of MPEG-1 sources by considering all frames within
order AR can be used for its modeling. However, in this layes, GOP to be equal to the respective value §f;(nq). Fig. 10

rame sizes results in poor traffic approximation, meaning that
proposed models overestimate or underestimate the actual
ffic, whereas good performance is achieved by accurate pre-
ction of frame sizes. The degree of estimation depends on the
roportion of knowledge, which we exploit from the frame layer
ignal and the method we use for the frame size prediction. In
e following, we analyze the case of no or small knowledge
out the frame layer signal as Methods A and B, respectively,
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Fig. 11. Graphical representation of Method B of GOP layer.

presents the proposed scheme, whelén ) denotes the esti- poor estimation of frame/cell-loss probability, especially at
mation of the aggregate MPEG-1 sequence using Method A. Aslltiplexing schemes.

we can seerf (nr) is the same as#“(nr), which has been

defined in Section Il. The signaI,FA(nF) does not fulfill the sta- VI. INTERMEDIATE LAYER MODELING

tistical properties of MPEG-1 sequences since neither the distri- .
bution function nor the autocorrelation function issatisﬁed.Onlg AS. we havg sta_ted above, Methods A and B“prowde ap-
the statistical properties af (nc) are fulfilled. The above-de- | roximate estimation of frame/cell-loss probability. Further
scribed simple approach can be used only for aninitial estimatil provement of the network performance IS achieved if more
ofthe networkresources. The adopted method underestimates? %rmanon about MPEG'l stream is exploited. A.S knowledge
average size of frames, while it overestimates the sizefofnd Increases, the required number of parameters increases too.

P frames. However, at no multiplexing schemes and at conV(-:]:H]'S]c meanls that W%arﬁ movlllnkg fro:n(;he h'gh ?t(r?Pflayer tlo the
tional utilization, i.e., around 0.8, the small sizeloframes is owirame fayer, and when afl knowiedge about the frame-iayer

balanced with the large size Bfand P frames resulting in good signal is available, modeling results in frame-layer modeling.

estimation of frame/cell-loss probability. On the other hand, at However, there is an intermediate layer, where we are able to

multiplexing schemes where the entire stream is tend to smo n?]lgtlijge ttng rr:gtr\?v l())?li (r);spoaurs:rgstesriic\:léh!? r?;g;ﬁcugr'g 3??;?0)1'
outaround its average, the latfames and the high fluctuation 9 ' 9 P

of B andP frames, whichisunderestimated by this methodolog attloq of Ipottf;‘ Iaé%itlzan be C(;mlblneq[.hTthe ?as!g concsptt IS-
mainly determine the network resources. Therefore an approx}- Ot.s'mFt) 'Ly 3 Nt a;ye(; models slc; da or:jylwf eol atc I yd
mate estimation of the traffic behavior is achieved. Is estimated and 2) to intro uce simpliied models torintra an
Igter frames, based on the estimated video activity.

Method B: In this case, we assume that small knowledg In a VBR coding mode. in case of hiah video activitv. the
about the properties of frame-layer signal is available. In partic- q te 9 h ' than th 9 ; Y, byt
ular, we consider that the mean valued/ ofP, and B frames, encoder rate Is much farger than the average, since more byles

denoted byl i, respectively, are given. Then, the estiPe" frame are allocated to maintain the requested picture quality.

mated frame size of Intra and Inter frames is given by On the contrary, in Iovy \{ldeo act'|V|ty, th? rate drops. .Smce. the
output rate of the statistical multiplexer is constant, high video

activity fills up the buffer, causing frame/cell-loss probability,
while low video activity empties the buffer. When the encoder
whereC € {I, P, B} andu“ are the mean value of signalrate is around the average-medium activity, the state of the buffer
7% (ng). remains almost constant, presenting small fluctuations. Thus,
Equation (8) indicates that the estimated frame size oéitegorization of the size of Intra/Inter frames into different
Intra/Inter frames is proportional to the ratio of mean value afdeo activities (bands) is useful for modeling, since each band
the respective type of frame and the average value of sigaffliects the network resources in a different way.
1% (na). The proposed method is presented in Fig. 11, whereFig. 12 illustrates the general structure of the proposed model
zE(nr) indicates the generated signal using Method B. It &t the intermediate layer. It consists of three subsystems: the
expected that this method gives better estimation as far as #utivity model subsystem, band selection subsystem, and band
network resources are concerned, in relation to Method Aodel subsystem faof, P, and B frames.
However, it does not still capture the high fluctuation Bf 1) Activity-Model Subsystemrhe purpose of this sub-
and B frames and the large values &fframes, resulting in system is to approximate the video activity and the burstness

WE 4+ (eGning) — 1) ®
G AR\G 124
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All I, P, andB frames, whose the respective groups of pic-

ture belong to a high activity band, are calledP, andB high
band frames. Similarly, we can define theP, andB medium
MPEG (low) band frames. Based on the results obtained by the statis-

> Synthesis [ tical properties and characteristics of each band frame, proper
traffic models for generating, P, and B frames within each
band are proposed. First, we consider the temporal behavior of
MPEG Stream band frames by examining their autocorrelation function for dif-

ferent values of thresholdg; and7;. . Fig. 13 illustrates the au-

Fig. 12. Block diagram of the subsystems that form the intermediate Ia)lteqfcorrelatlon function OB frames in hlgh band u_smg dlﬁerem
model (Model B). values of threshold sy, in the case of the Terminator. In this
figure, the thresholdy is given in relation to the mean and the

) ] _ standard deviation of the signaf (n¢), that is
of MPEG-1 coded video sources based on properties of signal G G
Ty=p" +Ag-o 9)

1% (ng). This means that the activity is estimated on a GOP
basis. Its output activates the band selection subsystem.  where)y is the parameter which denotes how far the threshold
2) Band-Selection Subsysterfihis subsystem is the link T is from the average, and® is the standard deviation of

between the activity-model subsystem and the band-modéi(nc). Similarly, we can determine the low threshdlg by
subsystem. It takes as input the output of the activity-modglibtracting the average from the standard deviation multiplied
subsystem and, according to its value, selects the appropriayethe scaling factoA .
band and the respective parameters for the band model. As is observed by comparing Fig. 4(c) and Fig. 13, the au-
3) Band-Model Subsystenit is the subsystem responsibletocorrelation functions of frames in the high band decay more
for generation off, P, and B frames within a GOP. Taking at rapidly than the respective of the aggreg&tdérames. Similar
the beginning of each GOP the proper parameters and the results are found faf and P frames. Hence, itis anticipated that
lective band provided by the band-selection subsystem, it coAR models of much lower order can be used to approximate the
poses the MPEG-1 stream accordindgtand M distances. frame size in high band.
In the following, we perform statistical analysis for each band In particular, threshold’;, or equivalently, parametey,
which is required to find the structure of the band models arglselected in such a way that an AR(1) sufficiently models the

to estimate their unknown parameters. temporal behavior of high band frames. This is accomplished by
minimizing a cost function expressing the average distortion be-
A. Band Statistical Analysis tween the autocorrelation function of each band frame, resulting

The signalz©(n¢g) is used to classify the video sequencefsrom a given value o, and the respective AR(1) model

into activity bands. In particular, groups of picture whose the D(\y) :% Z DC()\H)

respective value of:%(ns) is greater than a predetermined for all

threshold, sayf%, are marked as high-activity GOP’s. Instead, celr, P By

GOP’s with values ofz“(n¢g) below a threshold, sayl7,, :1 Z HPC()\H) —PSR()\H)H (10)
are considered to correspond to low activity band. Values of tor all 2

% (ng) between the threshold; and 77, defines GOP’s of cclL P B}

medium activity band. As a result, video activity is selected amherep” (Ax) is the vector containing the autocorrelation of
a GOP basis. the I, P, or B frames in the high band at the fir& lags, and
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Fig. 15. Autocorrelation for high band of Terminator and various MPEG-1 sources.

05 r(A\mr) is the respective vector for the AR(L) model. In our 1) Activity-Model Subsystem Implementatiofhe imple-
simulation,@ = 15. mentation of this subsystem is based on sigrfalng) (GOP
Fig. 14(a) presents the cost functibnof (10), after applying layer), and its goal is to approximate the video activity. The
a low-pass filter to eliminate noisy fluctuations. Fig. 14(byignalz®(n¢) is splitinto three activity bands. Large values of
shows the respective cost functié” for each type of frame. z%(n¢) correspond to a high activity band, medium sizes to a
The value of \y that minimizes the average cost distortioomedium activity band, and finally, small sizes to a low activity
is very close to that which minimizes the distortion for eachand. Since the probabilities of staying in an activity band
type of frames in the band. Thus, the resulting threshold amost drop exponentially, the video activity can be modeled
appropriate to model all band frames as an AR of order 1. The a three-state Markovian chain whose the states correspond
thresholds obtained by examining the other three sequentefigh, medium, and low activity bands.
are close to that obtained by the Terminator. However, a smallThe transition matrix” = [p,;] of the Markovian chain will
fluctuation of the threshold around the value obtained by thige estimated as follows ([22]):
method is not so significant for the traffic behavior since the
autocorrelation is slightly affected. Dij =
The autocorrelation functions of video Sources 1, 2, and 3
along with the respective autocorrelation of the Terminat¥¢hen the denominator is greater than zero. Since the sum of
sequence are presented in Fig. 15 using the previously obtaiféments of the transition matrix for every row is equal to one,
value of thresholdl’;;. Good approximation is observed inSix parameters are required for video activity modeling.

almost all cases. Similar results can be verified for low and 2) Band-Selection Subsystem Implementatiérsimple re-
medium band. trieval mechanism is used for finding the appropriate parameters

of the band models subsystem according to the value of video
activity.
3) Band-Model Subsystem Implementatiddased on the
After performing the band statistical analysis, we concentraagtocorrelation functions of, P, and B streams within each
on the implementation of the proposed scheme using the bldmknd, three AR models of order 1, each of which refers to the
diagram of Fig. 13. I, P, andB frames, are used for modeling of each band. Since

number of transition to j
number of transitions out af

11)

B. Traffic Model of Intermediate Layer (Model B)
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«— Video Sources—>

used the following buffer configuration scheme illustrated in
Fig. 17.

N independent video sources are multiplexed into a common
buffer connected to a single ATM link. A first-in first-out (FIFO)
policy is considered for the statistical multiplexing, meaning
that cells are stored, and leave the buffer in the same order as

¢ f th dium band th ¢ buffer st they enter it. A cell can get into the common buffer only if there
rames ot the medium band preserve tne curreént bulter s afg%vailable space for it. Otherwise, it is lost along with the re-

while fram(_as of the low ba’?d empty the buffer, the ex:_;lct yalu [ﬁective frame. The output rate of the buffer is assumed to be
of frames in low and medium band do not play a &gmﬂcar&onstam and equal t + mear{R)/U, whereN is number of

role to the traffic behavior, but only their respective averagg, multiplexed sourceg; the utilization, andR the average
As a result, we can consider the frame size within the low a urce rate '

medium band constant and equal to the average. Althoug or every frame period, the frame size is calculated using ei-

this gpproach does not ;ausfy th? statistical properties of %%r the real data or the aforementioned source models. The real
medium and low band, it approximates very well the traffi ata have been obtained by recording several VBR MPEG-1

mten;ﬂg of v;)deo ;sources, tandt 5|rr_1ultte\1,\rl1ec;uslt¥l rel;jucgzs { Sded video sequences of long duration using the encoding al-
required number of parameters 1o Six, two for the bands aagrithm described in Section Il. In case of source models, sev-
three for thel, P, and B frames. On the contrary, three AR

dels of order 1 qf deling the si £t eral sets of traffic data (paths) are created and the results are
MOdeIs ot order 1 are used Tor modeling the Size OTIrames yi ;o q by running many times the simulation for each dif-
high bands, since a high band significantly affects the loss ratfe ent sample path. In particular, eight different paths have been

Thus, the required number of parameters used for modeli ected in our experiments. To generate traffic for different

frargels |ndh|t?1h bafnds 'S (re]qtual to fn:cne, €., threﬁ_ for _eacr][ urces, we have used the same data sequence but different ini-
model and three for each type of frames, resulting in a ol ¢ ec a5 in [22].

fnurrt]rl? erh(_)thé p?jrame(;cer_s: fs X tfr? r thtﬁ Mzrko(;nanfctnam, n(ljne The starting times of th& multiplexed video sources signif-
or the high band, and six for the other bands ot the mo %antly affect the cell-loss rates even though the sources present
meaning that seven parameters for each frame type are

average required i®htical statistical characteristics. Since every frame of each

o video sequence arrives at a constant time, equal to the frame pe-
. 4) MO(_jeI-B Description: Fig. _16 presents th? model at theriod, a video source that starts its transmission a short time after
intermediate layer (Model B) relied on the previous subsyst

S other sources will have many more losses. As aresult, frames

;m?rl]emggtatmnt.. Tthe thrc(jael—stﬁte Mte;]rkm{latn Chﬂn C?rr;SpE%iving from this source are more likely to face larger queue
0 the video aclivity model whose the states indicate the hi gths than cells arriving earlier from other sources, in the

(HB), medium (MB), and low (LB) activity band. At the begln'sense that the arrival-instant queue seen by different sources is

ning of every GOP, a video activity is selected according to' tl?%t statistically identical. An approach, to reduce, this so called

trsn_snu_)n p(;()t;ﬁb'“?ets of tfhtf] Ma_l(rjkowant_c_rlam. -I(-:ihel ll/lharlfowa ource-periodicity effect, which has been observed in [22] for
chains inside the states of the video-activity model (the “smal ideo traffic, is to uniformly distribute the starting times of the

chains) describe the structure of the GOP, as it is defined by t multiplexed sources in intervals of 40 ms. This assumption

L andM distances, For instance, having generated thame is valid in case that thé&V sources appear at the multiplexer at

for a GOP, which is the first frame, the chain transits with prob?- L . oo
- ’ . ' __tandom time instances. However, in applications when man
bility one to B; frame (firstB frame in the GOP), and then with : ! WEVET, In applicall w y

i~ . video sources are synchronized to start their transmission at the
probability one tof3, frarn“e (secioncB fraf“e n the GOP) and ame time, the uniform distribution of the starting times within
so on. Each state of the “small” Markovian chains correspon

o th tout of th tive band model. That is. Llo is t R interframe interval is not satisfied [22]. Although in such a
0 the output of the respective band model. that IS, L0 IS r%%enario, the average loss rate will be greater than the respective
output of the Low Band model for theframe, i.e., a constant

| hile HPo is th tout of hiah band del for i rate obtained using a uniform distribution of starting times, the
value, while 10 1S the output of high band modet for ine most important issue is that the traffic behavior of some sources
frame, i.e., an AR(1).

will be quite different from some other ones. In this case, if the
traffic behavior is examined based on the source of the worst
losses, the network resources will be insufficiently allocated. As

To evaluate the good performance of the proposed trafficresult, reduction of the source periodicity effect is necessary
models as far as the network resources are concerned we Havefficient transmission of video sources.

Fig. 16. Proposed Model B.

VII. B UFFER CONFIGURATION SCHEME
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Fig. 18. Frame/cell-loss probability versus buffer size using data of various MPEG-1 sources and Model A at different utilization in case of. drfiffanthe
starting times. (a), (b)/ = 0.75. (c), (d):U = 0.85..

Two methods are presented in this paper for reduction of ttiee time interval of 40 ms, corresponding, for example, to the
source-periodicity effect. The first one is based on a non-FIFarting time of theth source, is mapped to a new tipe
scheduling policy at the multiplexer, while the second on a , _
histogram equalization, which transforms the distribution of v =g (f(pi)) (12)

starting times to a uniform one. so that the distribution of the new starting times follows the
In the FIFO buffer policy described above, when a new callhiform p.d.f. Equation (12) indicates that an additional delay
arrives at the buffer and finds it full, it is automatically droppedof p; — p; should be added to th¢h source. However, in the
regardless of the current losses of the respective source. Ondase whereg!, < p;, this additional delay is negative, meaning
contrary, in the non-FIFO scheduling policy, an accumulatdbat the:th source should start its transmission earlier. Since
loss rate for each source is calculated. Then, an arriving cell tiais is practically impossible, the starting time of the respective
finds the buffer full, it is not automatically dropped. Instead, theource is determined within the following interframe period, i.e.,
cell, corresponding to the source with the lowest current acdi-+ 40 ms. Such an approach, although reducing the average
mulated losses among all cells being in the buffer, is droppéa§se5 of the _multlplexed sources, increases the source delay,
resulting in an equalization of the loss rates over all sourcd® MS at maximum.
This scenario does not affect the average cell rate, which re-
mains the same as in the FIFO case, since it decreases the cell
rate of some sources at the expense of some others [22].  The proposed traffic models are evaluated using three VBR
In the second approach, a histogram equalization of tMPEG-1 coded video sequences, different from that used in
starting time distribution is performed. Let us denote theodeling.
cumulative distribution of starting times within an interframe
interval, by f(z), = € [0 40) ms. Experiments can define the”- Frame-Layer Model (Model A)
shape and type of (z). Let g(x) be the cumulative function  First, a uniform distribution of the starting times and a FIFO
of the uniform distribution. Hence, any time stamp, sayin scheduling policy is considered. Fig. 18 presents frame/cell-loss

VIIl. EXPERIMENTAL RESULTS
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25 ' ' ' ' ' complished, this is balanced by the additional delay introduced
S . by this methodology, as we have mentioned in Section VII. This
ynchronized Case . . .
=3 e Model A 1 additional delay is also presented in Table Il for each of the 20
ic;i I m‘zgig Case multiplexed sources. Since, on average, an additional delay of
L35l about 20 ms is introduced, we conclude that the average losses
ﬂ; ™ at the same total delay (buffering plus histogram equalization
§ 4 . | delay) is slightly better to that provided by the non-FIFO sched-
= S T uling policy (see Table 1ll). As a result, synchronized video
o \‘\\.\ h sources require greater delay to achieve the same video quality.
45 T~ ] However, in the non-FIFO scheduling policy, smaller loss fluc-

tuation is observed. Since this method is independent form the
B0 1200 1200 Teoo 1800 3000 2200 p._d.f._of starting times it can also be applied in the uniform dis-
Buffer Size (cells) tribution for further equalizing the source losses.

Fig. 19. Comparison of cell losses in case of synchronized and uniform®y, GOP Layer Models (Methods A, B)
distributed sources and the performance of Model A and B for the former case.

Fig. 20 presents the cell-loss probability using the Methods
- _ _ ) A and B of GOP layer modeling for the Terminator. Our simu-
probability versus buffer size of a signal generated using the pfgtons were done with 20 multiplexed video sources and using
posed Model A and real data recorded from the video Sourggg yniform distribution for the starting times. Even though the
1,2, and 3 at a wide range of utilization (0.75 and 0.85), in thgyyminator sequence has been used for evaluation, both methods
case of V' = 20. The simulation was performed with the datg ngerestimate the loss probability. This is due to the fact that at
rate scaled up and down by 2% to show how close the estimafggjtiplexing schemes, where the aggregate video stream tends
loss probability is to that obtained from the real data [15], [26}, smooth out around its average, the burstness of MPEG-1 video
Although a slight deviation out of the range-62% is observed, yaffic, which cannot be estimated by Methods A and B, affects
especially ai/ = 0.75, Model A seems to be robust for estie cel| |osses. However, it seems that Method B better approx-
mating frame/cell losses. . _ imates the loss probability since more information of the frame
In case of many synchronized video sources, different buffg e signal is exploited. For this reason, GOP layer modeling can
statistics are expected to be encountered since thiames ar- e ysed only for an initial estimation of the video traffic charac-

rive at the same time with high probability. In our simulations, feristics, i.e., for capturing the activity of a video source.
Gauss distribution has been used for modeling the starting times

instead of the uniform one used in the previous case. Fig. &9 |ntermediate Layer Model (Model B)

presents a comparison of the average cell losses versus buffer )
size for video Source 1, using as starting-time p.d.f. the uniform | N€ accuracy of the proposed traffic Model B, as far as the

and the Gauss distribution. In this figure, 20 sources have b .@,’ne/cell-loss.probability is concerned, is evaluated in I_:ig. 21,
multiplexed. The uniform p.d.f. is defined in the interval of [" th_e case of video Sources 1’_2’ and S'Whéﬁ: _20._Ou_r5|m-
40] ms, while the Gauss by an average of 20 ms and standdl@tion has been performed using the uniform distribution for the

deviation of 0.1. The latter means that the majority of sourc&t2rting times, while the parameters of Model B have been es-

start their transmission at the middle of the interframe interviinated based on the Terminator sequence. Despite the signifi-

(around 20 ms). Although the same utilization has been us&@nt reduction of the required model parameters, a very good ap-

higher cell losses are observed in case of synchronized sour@égf('mat'on of frame/cell losses is observed in a wide range of

for all buffer sizes. In this figure, we also illustrate the estimatedf!lzation (0.75 and 0.85). As in frame-layer modeling, the data
cell losses, provided by Model A. Good approximation is ng2SSes are obtained by varying the data #286. A slight devia-

ticed in all buffer sizes since the proposed model is based on fif% 0ut of the range=2%is also observed for some buffer sizes,

statistical properties of video sources. Table I1l presents the cgfiPecially atlow utilization, meaning that Model B is very robust

losses for each of the 20 individual multiplexed sources for pwgr estimating the MPEG-1 traffic behavior. The performance of

delay values (105 ms and 82 ms) and utilization equal to 0.8 Proposed Model B for each individual source is presented
when the aforementioned Gauss p.d.f. has been used as diftrfaPle Il using the same conditions as those described in the
bution of the starting times. Although the multiplexed sourcd@me-layer modeling. It seems that Model B approximates well

present the same statistical properties, they are characteri?@ft the average and the individual loss rates. The performance
by very different loss rates. In particular, many sources presémhe proposed Model Bin case of synchronized video sources s

no losses at all, even for small buffer sizes, whereas there Qngented in Fig. 19. As itis observed, Model B provides a very

sources, such as source 4 and 15, where the respective |0g§8§I approximation of the cell losses for all buffer sizes since, as

are much higher than the rest ones. In the same table, the'Yh Model A, Model B does not depend on the adopted starting
sults obtained by applying the non-FIFO scheduling policy ariti® distribution of the multiplexed sources.

the histogram equalization, as they have been described in Sec-

tion V1, are also presented. In both approaches, reduction of fHe 1he Effect of Delay

source-periodicity effect is noticed. Although in the second ap-In the following, the effect of a large buffer size to the

proach, an improvement of the average cell-loss rate is also agstem delay is examined. In general, a number of components



108 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

TABLE Il
AVERAGE CELL LOSS PROBABILITIES FOR DIFFERENT DELAY AND BUFFER CONFIGURATION SCHEMES AT UTILIZATION 0.85

Buffering Delay 105 ms Buffering Delay 82 ms
Source | Starting | Hist. Equal. FIFO Non FIFO | Histogram FIFO Non FIFO Histogram
Time Delay Scheduling | Scheduling | Equalization | Scheduling | Scheduling | Equalization
i 20.08 11.44 -3.35 -3.72 -3.77 -3.17 -3.34 -3.82
2 19.93 29.74 - -3.57 -3.94 - -3.36 -3.99
3 19.84 22.35 - -3.55 - - 331 -3.87
4 20.16 17.64 -2.68 -3.65 -3.89 2.43 -3.30 -3.62
5 20.06 8.96 4.11 -3.73 - -4.02 -3.33 -3.54
6 20.02 3.15 - -3.64 - - -3.35 -3.66
7 19.87 24.0 - -3.81 -4.17 - -3.35 -3.88
8 20.11 14.44 -3.16 -3.62 -3.74 -2.93 -3.36 -3.47
9 19.85 22.82 - -3.67 -4.09 - -3.35 -3.75
10 20.07 10.25 -4.03 -3.50 -4.21 -3.88 -3.33 -3.89
11 19.99 38.41 - -3.41 - - -3.36 -4.05
2 20.08 11.44 -3.76 --3.38 -3.93 -3.57 -3.35 -3.77
13 20.05 7.60 - -3.62 -4.01 - -3.33 -4.01
14 19.96 33.82 - -3.42 -4.25 - -3.34 -3.96
15 20.12 15.27 -2.93 -3.63 -3.87 -2.75 -3.29 -3.54
16 20.06 8.96 - -3.43 -4.05 -4.45 -3.35 -3.89
17 20.07 10.25 -3.45 -3.64 -3.96 -3.35 -3.3] -3.80
18 20.12 15.27 -3.31 -3.79 -3.88 -2.88 -3.36 -3.53
19 19.86 23.37 - -3.56 - - -3.36 -3.92
20 19.98 36.84 - -3.82 -4.26 - -3.33 -3.83
0 ‘ ' i ‘ ' As aresult, the time between the capturing and the displaying of a
——  Terminator +/-1% frame should remain constant. Since the number of bits per frame
AF Ry ——== Method A : is variable due to the VBR coding, the end-to-end delay should
2 Method B guarantee that the decoder can access all bits of a frame by the
%‘_2 | 1 time that the frame is required to be displayed. As a result, the
@ buffering delay is measured as the maximum delay required by a
- cell to get out of the buffer [22], [32].
§-3 " 1 Fig. 22 presents the delay versus the number of multiplexed
= video sources for the Terminator sequence in case of 0.85, 0.8,
Ol and 0.75 utilization. In particular, in this figure, the delay is ob-
tained by using such buffer size that a3@verage cell-loss rate
st 1 isaccomplished. Asitis observedinFig. 22, for utilization above
. ‘ ‘ . 0.8, the delay, even for many multiplexed video sources, is greater
100 200 300 400 500 600 700 than the frame reordering delay fBrframes, which in our case

Buffer Size (Cells) is equal to 80 ms (two successiBrames). In particular, in the
case ofy = 0.85andN = 20, the buffering delay is 139 ms
Fig. 20. Cell-loss probability versus buffer size using data of the Terminatghy 1 0-5 average cellloss. This is also presented in Fig. 23, which
and Method A and B of GOP layer &t = 0.8. illustrates the delay versus utilization for 20, 15, and 10 multi-
lexed sources for the same loss probability. Furthermore, our

introduces delays in a video transmission system: enco fihulations indicate that the delay is high for small number of

?rzfr;eer?ggclzﬁnsnéggifer;% g:gs;; aB;i nfg nde(?[\(/:v?)dr:??rﬁg @rltlltiplexed sources, evenin case of low utilization. Specifically,
' 9 9 ' PRenN = 5andU = 0.75, a delay of 371 ms is measured,

delays and so on. In case of highly interactive videoconferenc

\&Rich is 4.64 times greater than that of 80 ms. As the number of

applications or real time video transmission, low delays afe .. .
PP Y rﬁultlplexed sources increases, the delay decreases too, even for

usually preferable. Furthermore, the overall delay may lg same utilization. Indeed, f6F = 0.75 andN — 20, a delay
one of the negotiated QoS parameter that the network Shogogmparable to the iﬁterfram;e perio d.is noticed '

guarantee [18]. In this paper, we concentrate on buffering delay,
which is required to smooth VBR traffic into CBR one. Thi%
delay is of particular interest since it influences both video
quality and the multiplexer gain through the associated traffic In applications where we are interested in prediction of
characteristics [32]. video activity, an adaptive implementation of the proposed AR
For constant frame-rate encoders, like the examined MPEGrIgdels is accomplished. Such applications are very useful for
the overall delay throughout the system should be constant éiynamic bandwidth allocation or effective implementation of
the duration of the connection. This is due to the fact that oncengestion-control schemes, especially over ATM networks
decoding starts, a video frame should be displayed every 40 mesponsible for maintaining the negotiated QoS. In this case,

Prediction of Video Activity
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Fig. 22. Delay versus the number of multiplexed sources in case of averggg o3 pelay versus utilization in case of average loss probability equal to
loss probability equal to 6 for the Terminator. 105 for the Terminator.

based on the previous samples of the transmitted sequence, thn AR model is considered more suitable for such an adap-
current video activity is predicted through an adaptive proctéve implementation, due to the fact that the current estimated
dure described in the following. Such an approach increases Hadue is expressed as a function of the previous values and to the
prediction accuracy and provides the system with the flexibilifiact that its parameters have been estimated as it is presented in
of satisfactorily estimating future samples. [41].
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4 , . ' : smoother tracking capabilities. We observe that the model pre-
dicts the actual traffic very accurately, despite the small time
delay at the instances of band changes. The plot of the first AR
3r ~— Predicted Data 1 coefficient versus GOP indices is illustrated in Fig. 25 along
with the respective actual data for indicating the actual tracking
capability of the model. After a video activity change, the AR
coefficient takes a small value. In the following samples, the
AR coefficient increases, since samples with more similar sta-
tistical properties are included to the observable data. After the
band prediction, itis possible to estimate the values of Intra/Inter
frames within a GOP using a similar adaptive framework.

............. Actual Data

GOP Bands

IX. CONCLUSION

700 720 740 760 780 800 . . - .
GOP Index In this paper, we survey the traffic characteristics of multi-

plexed VBR MPEG-1 coded video sources transmitted over
Fig. 24. Prediction of video activity for 100 GOP indices. ATM B-ISDN networks. We also propose traffic models, which
approximate the network resources: frame/cell-loss probability
and buffering delay. Our study has concentrated on three layers:
the frame layer, GOP layer, and Intermediate layer. In the first
layer, the aggregate MPEG-1 stream, which constitutes the
frame-layer signal, is examined, and a correlated AR model
"""""""""""""" Actual Data of high order (Model A) is introduced to approximate the
network resources. Reduction of the required parameters is
achieved by analyzing the MPEG-1 video sources at a higher
P layer (GOP layer) on which a simpler signef (n¢) is used
P for modeling. However, without enough knowledge about the
; frame-layer signal, models on this layer are not good estimators
for the MPEG-1 traffic characteristics. In order to maintain
accurate approximation of the MPEG-1 traffic behavior and
simultaneously reduce the number of required parameters, an
intermediate layer, which efficiently combines properties of
the other layers, has been introduced in this paper, resulting in
Model B.

Experimental results and simulation using several VBR
MPEG-1 coded video sources have shown the ability of both
Model A and B to successfully approximate the network
resources at a wide range of utilization. However, since the
parameters of Model B are much simpler than that of Model

In particular, the adaptive implementation of the AR model, we can conclude that the most suitable layer for modeling
is performed on a GOP basis and the current band is predicMBEG-1 sequences is the Intermediate layer. Our simulations
by exploiting the statistical properties of the previdkissam- have concentrated on the impact of the buffering delay to the
ples. In order to impose different significance on each ofithe VBR MPEG-1 stream at a wide range of utilization and several
previous samples and to afford the possibility of following thenultiplexed sources. In applications where dynamic bandwidth
statistical variations of the observable data, a forgetting factoraiocation or admission control is necessary, prediction of the
introduced. This means that samples, which are far from the cuideo activity bands can be examined based on an adaptive
rent GOP index, affect the statistical properties less than samplementation of the AR model. Our investigation indicates
ples close to it. In our simulation, ten samples have been uggabd tracking capabilities of the adaptive model to the actual
as observable data, while the forgetting factor is chosen to halaga.
the following form:0.9%, with< = 1, 2, - - -, K for eachith pre- Of particular interest is the relation of frame/cell-loss proba-
vious sample. Fig. 24 shows the tracking capability of the prbility to the visual distortion, which is observed by the human
posed model to the actual data in case of an AR model of ordeefe. Although loss probability is a metric which indicates how
In this figure, 100 GOP indices are illustrated, taken from theell the models estimate the network resources, this value does
Terminator sequence. The zero value corresponds to low activiiyt directly corresponds to the visual distortion of video signals.
band, while values of one and two correspond to medium aRdr instance, the loss of & frame is not generally as signifi-
high activity band, respectively. The use of an AR(2) insteazhnt as the loss of ahframe, since in the latter case, all frames
of an AR(1) is based on the fact that the latter provides muglithin a GOP will be distorted.
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Fig. 25. The first AR coefficient versus GOP indices.
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