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Introduction

In [1],3 by means of stochastic and deterministic models, we
presented a system-identification theory for predicting buckling
loads of elastic systems from vibration data; thus creating a
theory for non-destructive testing. An integral part of the pro-
cedure i3 the determination of the structure’s boundary condi-
tions. In this paper the mathematical models presented in {1}
aro improved and attention is focused on estimating the system’s
boundary conditions by means of vibration testing. By use of
the vibration data the improved models are validated. In a
subscquent paper, use is made of these results to describe a
nondestructive testing procedure for determining buckling cri-
teria for structures.

Single Boundary Parameter Model

Consider a uniform cantilever beam which is partially re-
strained against translation and rotation at its base. Denote the
torsional restraint by the lumped parameter ¢ and the transla-
tionul restraint by the lumped parameter k as shown in Fig. 1.
The differential equation for the free vibration of this beam is
easily shown to be

ElUszzs + pAty = 0 (1)
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Vibratory Identification of Beam
Boundary Conditions

In previous work, by means of stochastic and delerministic models, the authors pre-
sented a system identification theory for performing nondestructive testing of elastic
systems. The procedure requires identification of the structure’s boundary conditions.
Herein, the mathematical models are improved, and vibration dala are presented for
the determination of the boundary parameters. These experimentally derived resulls
are shown to validate the models.

in which u(z, t) is the beam’s lateral deflection, p its density, A
its cross-sectional area, E its modulus of elasticity, and I its
second moment of area. Its associated boundary conditions are

u(o, t) + Elu,.s(o, t) = 0
Elu..(0, t) — cuz(o,t) = 0 (2)
uzzz(L, t) =0= u::(Ll t)

where L is the beam’s length.
The natural frequencies of this beam are the solutions of the
characteristic equation

CKq(F) — KFq(F) — CF3qu(F) + Figs(F) = 0 (3)

where the ¢i(F) are transcendental functions defined in the
nomenclature and its eigenfunctions are given by

X(xz) = B{{KC(cos F + cosh F) — 2CF3 sinh F
+ F4(cos F — cosh F)] cos Ax + (KC(sin F — sinh F)
— 2KF cosh F + Fi(sin F + sinh F)] sin Az
+ [~ KC(cos F + cosh F) 4+ 2CF3sin F

S
‘f N
v

Fig. 1 Cantllever beam with rotational and transiational restraints
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+ F4(cos F — cosh F)] cosh Az + [KC(sinh F — &in F)

— 2KF cos F + Fé(sin F + sinh F)] sinh Az} 4)

In these equations, the parameter F is a dimensionless representa-
tion of the natural frequency, w, and is given by
w?pA

= here M = —F=
F = AL where M = El (5)
The dimensionless parameters
cL kL?
C = B and K = Zi (6)
The

represent the rotational and translational restraints.
arbitrary constant B in (4) is determined from the initial condi-
tions.

Our objective is to create a mathematical model to be used to
predict results obtained experimentally. Specifically our ex-
perimental setup was for a system whose support stiffness was
much larger in translation than rotation. To this end let us
consider the case where k is infinite, thus the characteristic
equation reduces to

Cq(F) — Fqa(F) = 0 )

If the fundamental frequency of this beam was known, then
equation (7) could be used to calculate the values of its rotational
restraint, thus identifying its boundary condition. However, any
variation associated with the measurement of the fundamental
frequency will lead to variations in the values of the restraint
computed in this manner. For this reason, the variation as-
sociated with the measurement of the natural frequency will be
modeled, and its effect on the identification of the restraint will
be discussed. R

Assume that the jth measurement, ;(, of the beam’s funda-
mental frequency parameter is a random variable which can be

represented as

QW = fo 4 Z,0 8)

i=1 ...J

where Z,, j = 1, ... J are a sequence of independent, ident;
ly distributed random variables such that cal-

ElZm) = P
{Zw} =0 j=1, J ®)

P 4 (10)

In words, each fundamental frequency measurement ig 5 random
variable which can be expressed as the sum of a determinist;

and a random part. This random part has a mean of z8T0 i:
independent from measurement to measurement, and repl'ese,mg
the scatter which appears in a sequence of identical experiments

For the experiment described below, the random part, has z;
standard deviation which is much smaller than the deteMinistic
part of the measurement; that is

Var I/Q{Z(l)} < < B

E{anzizm} = Var {Z(l)}‘sniz i =1,

1)

and the variance of the Z; was small compared to one, These
facts make it unnecessary to assume that distribution functions
for the random variables Z;V are known.

An estimator of the beam’s fundamental frequency, Fm, iy
the sample mean of the measurements

1 J
Qn = 5 Z QW

=1

(12)

If QO is substituted for F in (7), then an estimator, C, of the
support’s restraint, C, can be obtained.

Now writing & Taylor series expansion for C' about QM = f
and from the assumptions stated earlier it can be shown that the
expected value and variance of C are given by

1 d&C

E{C} =C+ 5 ZFan Var {Quw} (13)
dc

(14)

Var {C} = [W]’ Var {Q)}

Nomenclature

A = cross-sectional area

= constant in mode shapes

= rotational spring constant

= dimensionless rotational spring parameter
= c[/EI

Sae W
)

E = Young’s modulus
E{ } = expectation of a random variable
F = dimensionless frequency parameter = (w3p4/
ENIM
I = sgecond moment of cross-sectional area; num-
ber of ensemble members
J = number of frequency measurements
%k = translational spring constant
K = dimensionless translational spring parameter
= RIS/EI
L = length of beam
m = concentrated mass
M = dimensionless mass parameter = m/pAl;
number of natural frequencies measured
@(F) = 1+ cos F cosh F
q2(F) = sin F cosh F — cos F sinh F
¢:(F) = sin F cosh F + cos F sinh F
qF) = sin F ginh F
g(F) = 1 — cos F cosh F
s?{ } = estimator for variance of a random variable
t = time
u = lateral displacement of beam neutral axis

Var { } = variance of a random variable
z = coordinate along axis of beam
X: = random component of rotational restraint
X(z) = mode shapes of beam
Zi® = random component of frequency parameter
measurement
d:;; = Kronecker delta
A = beam parameter = (wlpA/EI}"
p = density
w = angular frequency
= measurement of dimensionless frequency p&
rameter
Subscripts
t =1, ...I = 1ith assembly
j=1,...J = jth measurement
t = partial differentiation with respect to time
z = partial differentiation with respect to spati
coordinate
Superscripts
%k = kth mode
m = 1, ...M = mth mode used in identification
A = estimator
— = mean value
~ = value of frequency corresponding to the meat

value of restraint in an ensemble

; E
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The derivatives in equations (13) and (14) are evaluated at F®
and can be obtained by implicit differentiation. Notice in (13)
that C is a biased estimator of the restraint, C, but that this
bias decreases as the variance of the sample’s mean of the fre-
quency measurements decreases. Equation (14) indicates that
the variance of the restraint estimator also decreases under the
game condition.

The experiment performed to obtain the vibration data for
use in the model was a beam of 4150 steel having a measured
density of 7772 kg/m® and a measured Young’s modulus of
2,127 X 1011 N/m2. The beam was 39.55 ¢cm long and had a

rectangular cross-section which averaged 1.270 em X 2.567 cm..

The beam was supported at its root by bolting it to steel blocks
as shown in Fig. 2. The beam’s first five natural frequencies were
measured in the steady-state vibration test which is block-
diagrammed in Fig. 3.

The beam was excited by applying the amplified signal of an
oscillator to a loudspeaker which was connected to the beam
through a force gage. The gage consisted of a hollow plexiglass
rod on which two strain gages were mounted and wired with two
identical gages on a dummy rod so as to read axial strain with
compensation for strains due to bending and temperature change.
The response of the beam was monitored at 3 locations with
piezoelectric accelerometers. Using the response and frequency
data, a particular natural frequency could be obtained. The re-
sults of twelve measurements of each of the beam’s first five
patural frequencies are summarized in Table 1.

Tablel Summary of data from 12 experiments on a single cantilever
beam

Sample variance Fractional
Sample mean  of frequency  standard deviation

Mode  of frequency 82{Z(’°)} s{Z (")}

k O 106 0)

1 1.7045 1.1977 0.06%

2 4.299 3.709 0.04%

3 7.249 4.980 0.03%

4 10.122 8.626 0.03%

b} 12.984 9.580 0.029%

The fundamental frequency measured in the experiment will
now be used to identify the beam’s boundary condition. Sub-
stitution of ® = 1.7045 from Table 1 into (7) gives ¢ = 8.604
as the estimate for the beam’s restraint. Recall from (13) that
C is a biased estimator of the restraint C. However, an unbiased
estimate of the restraint can be calculated from this equation by
using the value of (' for E{C}, s?{Z®} from Table 1 for the
variance of Z®, and evaluating the derivatives of the restraint
at Q0. The result is 8.604 indicating that the bias is negligible
due to the small value achieved for 2{ZW}. An estimate of the
variance of C is similarly found from (14) to be s3{ €} = 4.075

STRAIN-GAGED ROD

Fig.2 Mounted cantilever beam

X 1074, The accuracy of the predietion of the restraint can be
judged by using the unbiased estimate of C in the characteristic
equation to obtain estimates of the beam’s higher frequencies by
use of the equations

Cu(f®) — Fog(F®y =0 k=2 ... (15)

The estimates of the frequencies computed from (15) and the
corresponding measurements for the beam’s second through fifth
modes are shown in Table 2. The difference between these esti-
mates and the corresponding measurements ranges from 1.7 per-
cent in the second mode to 4.7 percent in the fifth mode.

Table 2 Comparison of cantilever data and the single paramdtar
{C) model

Fo — Ow
Mode Estimate Measyrement )
k F® Q® Percent
2 4,373 4.299 +1.7
3 7.423 7.249 +2.4
4 10.495 10.122 +3.7
5 13.590 12.984 +4.7

Determination of One Parameter From Multiple
Frequencies

In this section, the measurements of the beam’s higher natural
frequencies will be used to obtain an improved estimate of the
boundary parameter. The scatter in the measurements of the
higher natural frequencies' will be modeled by assuming that
the jth measurement of the mth natural frequency is a random
variable, denoted by £2;™, such that

Qym = fom 4 Zm Tim=1,... M
E{Z;m}) =0 Jim=1..M
E{Z;,mZ;mp} = Var {Z(ml)}‘silizamm‘z

(16)
an

i=1,
=1, ...

ACCELEROMETER

VOLTAGE VOLTMETER
T AMPLIFIER
| powWER -
OSCILLATOR AMPLIFIER SPEAKER
VOLTAGE |
- VOLTMETER l
DIGITAL .
UNTER BRIDG!
«© AMPLIFIER
L
DUAL BEAM
VOLTMETER 02CIL1LOSCOPE

Fig. 3 Block diagram of instrumentation for vibration experiment
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Juh=1...Jimm=1 ... M (18)
These random variables were modeled to have a different variance
for each mode, m = 1, ... M, since the variance increases in the
higher modes for the experimental data in Table 2. One also
notices from this table that the standard deviations of the random
variables are much smaller than the corresponding deterministic
parts of the measurements. Thus the same observations as ex-
pressed in (11) and immediately following it can be used.

Suppose that each of the first M natural frequencies was ob-
served a total of J times, The estimators for the beam’s natural
frequencies are obtained by calculating the sample means of
these measurements

J
Qom 52.9,@ m=1,..M (19)

=1

Now, the estimator of each of the beam’s natural frequencies can
be used in the characteristic equation (7) to derive an estimator,
Cm of the partial restraint

Gomgy(fom) — ﬁ(m)q,(ﬁ(m)) =0 m=1...M (20)

whose variance is found as in the preceding section to be

dc :r Var {m} m=1, ... M

AFm (21)

Var {§m} = [

A single estimator, é’, of the partial restraint, C, can be found
by minimizing the quantity

M@ — Oomp
L " Var {Cm)

m=]

which gives greater consideration to those estimators having
smaller variances. The minimizing value of C is given by

¢ = f anCm (22)
m=l
in which the weighting factors are found from
Y 1 1
L Varow] ]“ T Ver(Gwp mTheed @

The expectation and variance of the restraint estimator, 6’, are
computed to be

M
A 1 dic pal
E{C} = C + 2—"‘2_1 an e Var {2} (24)

M
Vor (8} = § ad [gp% ]’ Var (D] (25)
m=]

The measurements of the first two natural frequencies ob-
tained in the last section will now be used to calculate an estimate
of the beam’s restraint. The estimates of the mth restraint are
obtained by substit’,\uting Q0 from Table 1 into (20), yielding
0w = 8,694, and 0® = 5.902.

Note that the estimate of restraint computed from the second
natural frequency is lower than the estimate calculated from the
fundamental one. This is related to the effects of shear deforma-~
tion, rotatory inertia, and accelerometer mass which cause the
observations of the higher natural frequencies to be increasingly
lower than those predicted by the physical model [2]. The esti-
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mates of the weighting factors are obtained from (21) and (23)
by substituting s}{Z} for Var {Qm] and evaluating ¢},
derivatives at L. These estimates are & = 0.4135, anq d:
= (0.5865. Observe that more weight is given to the seconq
natural frequency than to the fundamental. This is the gage
since dC/dF is smaller at this beam’s second natural fl'equency
than it is at its fundamental and since this in turn causes the
restraint estimated from the second natural frequency to haye A
smaller estimated variance. The estimate, C, of the partial Te-
straint, C, is then found from (20) and (22). The result is @
= 7.056. An unbiased restraint estimate can be computed from
(24), yielding the same value. This indicates that the biag i
negligible. Similarly, the variance of C is found from (25) to he
${C} = 1.6850 X 104, This variance is smaller than the variance

.of the restraint estimated from the fundamental frequency alone,

4.075 X 10™%. In this sense, the use of the observations of the
beam’s first two natural frequencies gave a better identification
of the boundary condition than the identification obtained from
the observations of the fundamental frequency alone.

Using the first three natural frequencies, this trend continues
[3]. However, a problem is encountered when the beam’s fourth
natural frequency is employed in the estimation model. It leads
to physically unrealizable (negative) values for 6w, Clearly it is
expected that at some natural frequency the technique would
break down, for the higher the frequency the less dependence on
the boundary conditions.

In an attempt to improve upon the model presented above, we
investigated the case where % is finite, thus studying the model
whose characteristic equation is (3). This work is contained in
[3]. With this model, using the first two natural frequencies led
to predictions of the higher natural frequencies which were not
as accurate as those obtained using the model where & was as-
sumed infinite,

Beam Constrained at Both Ends

Our purpose here is to develop a model for a system con-
strained at more than one point using the procedures developsd
in the preceding sections. Again, we will validate the model by
comparing results obtained from it to experimentally obtained
results.

Recall, we mentioned at the outset that the ultimate use for
the models developed herein is to make predictions of a structure’s
buckling characteristics. In the experiments we performed we
validated the mathematical model by actually buckling the speei~
mens. Thus, to maintain accuracy, the structure was mounted
such that the vibration tests and buckling tests could be made
without disturbing the means of support. This necessitated that
one end of the beam be connected to a Joad cell as Hllustrated in
Fig. 4.

In Fig. 4 the rotational spring ¢ represents the support pro-
vided by the head of the universal testing machine. The rota-

s .

31

] o
‘u(x,')

Fig. 4 Beam restrained at both ends
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tional spring ¢; describes the connection between the end of the
beam and the load cell. The translational spring & and the con-
centrated mass m are a mathematical model of this load cell.
The free vibration of this beam must satisfy (1) subject to the
boundary conditions

Eluz.-(0, 1) + kufo, t) + muulo, t) = 0
Elug 0, t) — cruz(o, t) =
w(L, t) = 0, Eluz.(L, t) + cus(L, t) = 0
The characteristic equation for this boundary value problem is
(K — MFNCiCugs(F) + (C1 + Co)Fa(F) + 2Fqu(F)]
+ P{CiCo(F) + CF[(F) — ¢o(F)] + CoF qu(F) — Figy(F)} = 0
@7

(26)

and the eigenfunction is
X(z) = B({(K — MF%)Ci[Ca(cos F — cosh F)
— F(sin F - sinh F)] + F3[2C,C; sinh F -+ 2C,F cosh F
— CyF(cos F + cosh F) + Fi(sin F + sinh F)}} cos hx
+ {(K — MFY[C\Cx(sin F + sinh F) + CiF(cos F + cosh F)
=+ 2C,F cosh F + 2F2 gsinh F] + F4C(sin F — ginh F)
+ F(cos F — cosh F))} sin Nz
+ {(K — MF%Cy[Cs(cosh F — cos F) + F(sinh F + sin F)]
+ F32C\C: sin F + 2FCy cos F + FCi(cos F + cosh F)
+ Fi(sinh F — sin F)]} cosh Az + {(K — MFY[— C1Ca(sin F

+ sinh F) — CyF(cos F 4 cosh F) — 2C,F cos F + 2F?% gin F|
+ FA[Cu(sin F — sinh F) 4 F(cos F ~ cosh F)]} sinh Az) (28)
in which
C;L CzL m
_— = —1 M = —
C= g1 *=EI pAL (29)

The load cell used had the dimensionless mass parameter M
= 3.290.

An experiment was conducted in which the first five natural
frequencies of a beam restrained at both ends were observed.
This beam was of 4150 steel, density 7834 kg/m?, and Young’s
modulus 2.113 X 10 N/m? . The beam was 89.97 ¢m long and
bhad a rectangular cross section which averaged 2.544 cm by
1.279 em. One end of the beam was supported as shown in
Fig. 2. The other end of the beam was bolted to a similar set of
steel blocks which were attached to the load cell as shown in
Fig. 5. The first five natural frequencies of this beam were each

Fig.5 Attachment of beam to load cell

Journal of Dynamic Systems, Measurement and, Control

measured five times in the same manner as outlined in the pre-
vious sections. The results are summarized in Table 3.

Table 3 Summary of data from 5§ experiments on a beam restralned
at both ends

Sample mean Sample variance Fractional
of frequency of frequency  standard deviation
Mode fiw 2] Zw} s{Z®}
k 10-¢ Q®
1 4.296 1.4782 0.09%
2 7.059 1.3828 0.059%,
3 10.234 2.670 0.05%
4 13.335 2.480 0.049,
5 16.047 1.9074 0.03%

Let the translational restraint, %, of the load cell support be
an unknown parameter and assume that the rotational restrainty
of both supports are equal. It then follows that estimators, C
and K, of the beam’s two unknown support parameters are
found from the simultaneous solution of the following special
case of the characteristic equation,

R — 3o Grgu @i + 2fmipem) + 2mrg o)
+ Qmsrgy( @) + QemC{2a@m) — @)
— Qg (Qemy) = m=172
Using the beam’ 's first and second sample mean frequencies from
Table 3 yields 0 = 8888 and R = 833.0. o

Forming Ta.ylor series expansions of ¢ and R about ﬂ‘l)
and ® = F® the expectations and variances are

A d°C
B{C} = C+ _[ai’(n?

30)

Var {Z®] + ai'm’ —=—5—Var {zm}]

oot
Raid
|

1 &K
= K+ [am’ ——Var {Z®} +6F(,), Var § zm}] a1

Fo J

N dC [*Var {Z®
Var {C} =[6F’“>] .{I }

A dK [PVar{Z®
Var {K} = [W] .{, }

Unbiased estimates of these restraints can now be calculated.
They are C = 8.888 and K = 833.1. Hence, the bias of these
restramt estlmates P negligible. The estlmates for the variances
of € and K are 2{C} = 3.606 X 1073 and 2{ K} = 82.90.

Table 4 contains the measurements of the beam'’s third through
fiftth natural frequencies and estimates calculated from the two
parameter model.

[ aC P Var {Z0}
a

[ K ]2 Var {Z®)

oF® [T U (32)

Table4 Comparison of measured and estimated natural frequencies
for the beam constrained at both ends

o — Hm
)

& V) F® - Percent
3 10.234 10.044 —1.9
4 13.335 13.080 -1.9
b 16.047 16.146 -0.0

Observe from Table 4 that the two-parameter model predicts
the third through fifth natural frequencies within 1.9 percent.
A model assuming C) is not equal to C3 which incorporates the
first three natural frequencies leads to estimates of the param-
eters which are not physically realizable (negative or imaginary
values). Using the experimental data of other investigators for
beams supported at more than one point [4], [5] also yielded
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physically unrealizable results. Clearly this area warrants further
investigation.

An Ensemble of Beams

Consider a collection of similarly manufactured beam-columns
designed to have similar support boundary conditions. One sis-
pects that when these structures are installed that differences
will be found in the boundary support parameters. Our purpose
here is to model this phenomenon,

The measured fundamental frequencies of an ensemble of
cantilever beams can be used to obtain estimates for the mean
and the variance of the boundary restraint parameter within the
ensemble. Returning to the model represented by Fig. 1, let
the translational restraints of an ensemble of beams be infinite
and allow the rotational restraint of each beam to be different
due, for example, to unavoidable small differences in assembly.
It is convenient to assume that the restraint is 4 random variable,
Ci, represented as

Ci=C+X: i=1,...1 (33)
in which ¢ is the ensemble’s mean value of restraint and the
Xi, i =1, ... I, are a sequence of independent, identically dis-
tributed random variables such that

E{X} =0 i=1,...1 (34)
B{XuXi) = Var {X}0iey #,%2=1,...1  (35)

Denoting the kth natural frequency of the ith member of the
ensemble by the random variable Fi®, and truncating a Taylor
series expansion of Fi® about C: = C (using (33) through (35))
the mean and the variance of Fi are given by

1 d3aF®

®) - P = F® e =

E{F®} = P Fo+ o =5 Var{X} k=1,... (36)
Foy 2

Var{F<k>}=[d—%] Var{X} k=1,... (37

in which F™ ig the mth natural frequency corresponding to &
in the characteristic equation (7). The subscript ¢ has been
omitted since the result is the same for all members. In these ex-
pressions the derivatives are evaluated at C = € and can be
obtained from the implicit differentiation of the characteristic
equation. Now assume that the jth measurement of the funda-
mental frequency of the ith member of the ensemble is a random
variable denoted by $2:;V which can be represented as

ﬁ;,(n = F® 4 Z;;m i=1...I;, j=1,...J (38)

where Z;;M, j =1, ... J,are ¢ = 1, ... I sequences of inde-
pendent, identically distributed random variables such that

E{Zym} =0 di=1,...I;, j=1,...J (39)
E{ZyyWZippn®} = Var {Z0}840d5s
yia=1 ... fnja=1,...J (40)

Thus, each frequency measurement is the sum of two random
variables. One of these is the fundamental frequency of the ith
member of the ensemble, F;V. The randomness of this variable
is due to the restraint’s difference from beam to beam. The other
random variable is Z;;(V and represents the scatter which appears
in a sequence of identical experiments for the ith member. The
latter random variable is assumed to be independent from mem-
ber to member and from measurement to measurement. For
simplicity, it is also assumed that this random variable’s dis-
tribution is the same from member to member. Further assume
that the random variables representing restraint randomness are
independent of those which account for measuring errors. Thus

E{Fq®Zp®) =0  d,4=1,...1; j=1,...J (41)

The estimator, 6’, of the ensemble’s mean restraint, ¢, is found
by substituting the ensemble sample mean, Q“), of the sample
mean, {3, of the fundamental frequency measurements for
each beam into the characteristic equation. That is

Qo) — Gug o) = o

(42)
in which
14
= I Z Qo (43)
=
and
13
O = ; Yoo =1 (44)

=1

The mean and the variance of ¢ can be shown to be

B0} =0+ 2 il ,1—'—1[”“)]’ Var {X}

2 dFun I ac
+ 1 Var {Z0} | (45)
1o

Var (6] = ;— Var (X} + ;1;[%’:,]’ Var (20} 6)

An estimator of the ensemble’s restraint variance, Var {X },
1s derived by substituting the estimate of the ensemble variance
of the fundamental frequency, s3{ F®}, into (37). That is

el = [ﬁ%], HFo] n
in which the derivative is evaluated at F® = 0 and
1 ¢ o4
A{FO} = ;———lg @ — Gop
1 BN A
- JaCh Yo —Qop i1, .1 @8)

i=-1

An experiment was performed in which the steady state vibra-
tion data for three different ensembles of cantilever beams was
obtained. To obtain the first ensemble, the cantilever specimen
previously discussed was unbolted from its supports and reas-
sembled in an “identical” manner using a torque wrench. The
first five natural frequencies of the reassembled beam were
measured. It was soon apparent from the observations that the
restraint’s randomness was contributing significantly more to the
variance of each frequency measurement than was the measure-
ment’s scatter. Thus each natural frequency of the beam was
measured two times for each assembly. The beam was assembled
and tested a total of ten times in this manner. The results for
this ensemble are summarized in the first 3 columns of Table 5.

For the second ensemble of beams, the same specimen beam
was bolted to & support consisting of steel blocks with aluminum
inserts between the blocks and the beam as shown in Fig. 2.
Each of the beam'’s first five natural frequencies was measured
twice for each of six such assemblies. The results for this en-
semble are summarized in Table 6.

For the final ensemble, the specimen beam was bolted to the
support with plexiglass inserts replacing the aluminum inserts.
A new set of inserts was used in each assembly to avoid a sys-
tematic effect on the rotational restraint due to the viscoelastic
behavior of the plexiglass. All of the inserts were made from the
same sheet of material to minimize the variation of the support’s
boundary condition. The results of two measurements of each
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Table 5 Comparison of estimates and measurements for the ensemble using steel inserts

Estimate of Maeasurement of
Sample variance Estimate o _ variance of variance of
Sample mean of frequency of mean - O frequency frequency
Mode of frequency a2 Qw} fre}uency %) 8| Fw) ,%Q(b)}
] (%) 10~ %) Percent 10~ 104
1 1.6939 4.762 -- -- - -
2 4,280 10.406 4.360 1.9 8.42 10.39
3 7.226 21.85 7.409 2.6 9.03 21.83
4 10.096 24.82 10.483 3.8 7.73 24.78
b 12,963 26.90 13.579 4.8 6.34 26.85

Table 6§ Comparison of estimates and measurements for the ensemble using aluminum Inserts

Estimate of Measurement of
Sample variance Estimate ﬁ(h) Ow variance of variance of
Sample mean of frequency of mean o = et frequency frequency
Mode of frequency s{dw) fre}uency Ow A Fw} 8{Qw}
k (*) 10—¢ ) Percent 10—+ 104
1 1.6627 3.237 - - - .
2 4,215 10.959 4.320 2.5 4.72 10.94
3 7.139 16.658 7.369 3.2 4.53 16.63
4 9.999 27.47 10.445 4.5 3.60 27.43
5 12,861 26.22 13.545 6.3 2.81 26.17

natural frequency for each of six assemblies are summarized in
Table 7.

Substitution of the sample mean of the average of the funda~
mental frequency measurements for each member from Table 6
into the characteristic equation gives the estimate C = 8.056 for
the mean restraint in the ensemble having steel supports.
Placing 83{Z} from Table 1 and $2{{}0} from Table 8 in (47)
and (48) yields the estimate a’{C} = 1.5189 for the variance of
the restraint. Recall from (45) that C is a biased estimator of
the mean restraint €. However, an unbiased estimate of the
mesn restraint can be calculated from this equation by using
the value of C for E{C}, using s? {C} for Var { X}, using s3{ Z}
for Var {ZW}, and evaluating the derivatives of the restraint
at {3V, The result is 8.191. The accuracy of the identification of
mean restraint can be assessed by using this unbiased estimate of
restraint in the characteristic equation to predict the means
of higher natural frequencies. These estimates and the sample
means of the corresponding measurements for the ensemble’s
second through fifth modes are presented in Table 5. The dif-
ference between the predictions and the measurements ranges
from 1.9 percent in the second mode to 4.8 percent in the fifth
mode. The accuracy of the estimate of the restraint variance can
similarly be assessed by using 83{C} in (37) to estimate the vari-

ances of the higher natural frequencies, These estimates are
also listed in Table 5. The quantity

1
B’{Q(h)l - -I—l_—l- z [ﬁ‘(h) — Q(‘)]’
=
1 - _ .
~ =D, 1>,,z.', Qw —Gop s=1, ... I; B=1,...
(49)

is derived from the measurements and can be shown to be an
unbiased estimate of the variance of the ensemble’s higher natural
frequencies. This measurement and its corresponding standard
deviation is also presented in Table 5.

A similar set of calculations for the ensemble with aluminum
inserts shows the unbiased estimate of the mean restraint to be
6.606, and the estimate of the variance of the restraint to be
#{C} = 0.5432. The estimates of the higher natural frequencies
for this ensemble are compared to the experimental measure-
ments in Table 6.

In the case of the plexiglass inserts, the unbiased estimate of
the mean restraint was 5.297 and the estimate of the variance of

Tabte 7 Comparison of estimates and measurements for the ensemble using plexiglass inserts

Estimate of Measurement of
Sample variance Estimate P — dm variance of variance of
Sample mean of frequency of mean - frequency frequency
Mode of frequency ${Qw} frequency ) a8 Fm) 8{Qw}
k () 10~ * Percent 104 104
1 1.6263 1.3430 -- - - -
2 4.174 2.064 4,278 2.5 1.566 2.04
3 7.008 2.935 7.328 3.2 1.33 2.91
4 9.979 5.427 10.410 4.3 0.99 5.38
b 12.808 1.7864 13.514 5.6 0.73 1.
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the restraint was s3{C} = 0.1180. Estimates of the properties of
the higher frequencies of this ensemble are compared to the ex-
perimental measurements of these properties in Table 7.

Concluding Remarks

Our purpose in this paper was to demonstrate the feasibility of
identifying the boundary conditions of constrained beams from
vibration test data. An important application of this technique
is the prediction of buckling loads; the subject of a further in-
vestigation by the authors.
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