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Abstract:
Machine learning techniques are frequent for the complicated task of predicting software defects. Often
the prediction models fail to predict defects successfully as the between class imbalance increases in the
training data. This paper conducts experiments on NASA KC1 dataset. Experiments were carried out on
five different datasets with different class imbalance ratio, made from original KC1 dataset. Performance
variations of each classifier were analyzed to detect software defects as the imbalance ratio increases for
training datasets. Moreover different classifier’s performances were also investigated while trained with
same datasets to find out the better one for each case. It is found that our proposed Cluster Ensemble
based Probabilistic Neural Network approach has performed better than all other approaches including
SMOTE based Probabilistic Neural Network for the given data sets. It is also found that incorporating
Cluster Ensemble with SMOTE based Probabilistic Neural Network approach performs better than only
SMOTE based Probabilistic Neural Network approach.
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1. INTRODUCTION

Software development consists of a set of tasks like requirement analysis, validation and evolution. In the evolution
process bug or defect fixing is an important part. Defects in a software product prevent a it from meeting software
requirement or end-user expectations. Usually software’s are prone to many defects like Arithmetic, Logic, Syntax,
Team working defects etc. Software defect identification and fixing is often very complex asking for time consuming
efforts. Since many software play a vital role in our daily life events as well as in sophisticated areas of countries,
defects can cause problems, ranging from minor to catastrophic glitches leading to loss of life [1]. Thus complex
time-consuming problem of defect prediction must be efficiently solved, leading to extensive research activities in
this area.

Several attempts have been taken to use data mining and machine learning techniques for intelligent software
defect prediction. Few researches took into consideration the total Lines of Code (LOC)[2] as a parameter for defect
occurance, since it represents the complexity. Cyclomatic complexity metric and Halstead complexity metrics [3, 4]
are also proposed as important parameters by others. Besides, other research used machine learning techniques such
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as Munson et al. proposed classification model [5], Shen et al. proposed linear regression model [6] for software
defect prediction. Models having less historical data asks for Just-in-time (JIT) defect prediction or in other words
defect prediction model for changes proposed by Mockus et al. [7]. Research on Transfer learning approaches has
come out with efficient cross-project defect prediction models [8, 9] working well for data in new domain. Li et al
[10] suggested a sample-based process that selects and tests a small proportion of modules to build a model for a
large software system to predict defects. Song et al [11] suggested a general software defect prediction framework
evaluating prediction performance of opposing schemes for particular historical data sets. Models are constructed
based on evaluated knowledge that predicts software defects from new data.

The performance of machine learning and data mining techniques depends on the nature of available data.
Significant decrease of the performance of most standard learning algorithms can be caused by imbalanced data.
This work represents Cluster Ensemble (CE) based data preparation for Probabilistic Neural Network (PNN) to deal
with the imbalance software defect prediction data. It also includes analyzing the well-known Synthetic Minority
Oversampling Technique (SMOTE) for imbalanced data with PNN. Then the effect of applying CE over SMOTE
processing was analyzed for PNN based prediction of defected software. The experiment was evaluated using KC1
dataset, created by NASA.

The desire of this work is to identify defects efficiently using machine learning techniques for imbalanced training
datasets of existing software metrics which leads to reducing the software developing and maintenance cost.

2. CLASS IMBALANCE PROBLEM AND RATIO

Imbalanced data sets consist of an unequal class distribution. In common understanding class imbalance or
between-class imbalance corresponds to major, and frequently excessive imbalances. Often one class may out
represent another class with an order of 100:1, 1,000:1, and 10,000:1 and so on [12–15]. A typical scenario is
illustrated in Figure 1.

Figure 1. Class imbalance in datasets, triangle samples are out represented by pentagonal objects.

For imbalance problems the Imbalance Ratio (IR) is calculated as equation 1.

IR =
Tma j

Tmin
(1)

Where,
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Tma j= Total instances of majority class and

Tmin= Total instances of minority class

Imbalance in data often results from problems that are inherently based on imbalanced data. For example, if a data
set is considered that consists of fraud transaction samples, naturally normal transaction samples will greatly exceed
fraudulent samples. On the other hand when data collection process is limited, class imbalances occur artificially in
some domains that doesn’t have intrinsic imbalance in data. Again in certain cases, the data abounds and the scientist
decides the quantity of samples to be selected [16]. In imbalanced cases classifiers used to provide an imbalanced
degree of predictive accuracy with the majority class having better percentage of accuracy while the minority class
having very poor accuracies. But a balanced accuracy (ideally 100 percent) for both of the classes on the data set is
preferable [17].

3. METHODOLOGY

3.1 Cluster Ensemble

Cluster Ensemble (CE) aggregates cluster instances based on different subset of features. The general goal of
clustering is to partition a set of data such that “similar” data points are grouped into the same cluster while those from
different clusters are grouped as “dissimilar.” Thus it attempts to increase interclass distance and decrease intraclass
distance. Given a feature space A = {1,2,. . . , p} as the set of indices of coordinates in ℜp and n observations {X1,
. . . , Xn} ∈ ℜp, each clustering vector ν is a subset of A. Each clustering vector is expanded iteratively based on
quality measure Q which is calculated from equation 2.

Q(ν ′) = SSW (ν ′)/SSB(ν ′) (2)

Where,

SSW is within-cluster sum of squared distances

SSB is between-cluster sum of squared distances

Both SSW and SSB are computed on currently used feature subset (ν ′ ) , respectively.

τ= Number of consecutive unsuccessful attempts,

τm = Maximal allowed value of τ in expanding a clustering vector.

The growth of a clustering vector is described in Algorithm 1 [18].

Algorithm 1. The growth of a clustering vector ν ′

1: Set τ = 0 and ν ′={NULL};

2: Initially select ν ′←( ν1
(0),. . . , νb

(0)) using feature contest;

3: repeat

4: Sample ν1,. . . ., νb, from the feature space A where s<p ;

5: Projected the data on feature space (ν ′, ν1,....., νb) and Apply K-means Clustering;

6: if Q(ν ′, ν1,.....,νb ) > Q(ν ′) then

7: reject {ν1,...,νb} and set τ= τ+1;

8: else
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9: expand ν ′ by (ν ′, ν1,.....,νb) and set τ= 0;

10: end if

11: until τ = τm;

Algorithm 2. Feature contest

1: Set i = 1;

2: repeat

3: Sample {ν1
(i),. . . , νb

(i)} ∈ A;

4: Apply K-means to the data projected on (ν1
(i),. . . , νb

(i)) to get Q (ν1
(i),. . . , νb

(i));

5: Set i=i+1;

6: until i=q;

7: Set (ν1
(0),. . . , νb

(0)) as min Q (ν1
(i),. . . , νb

(i)) of q subsets;

Feature contest is desired to present a good initialization for the clustering vector growth and the procedure is
illustrated in Algorithm 2. When there are large numbers of noisy features, the above process comes out with resultant
clustering vector consisting of discriminating features that lead to a “good” clustering.

3.2 Probabilistic Neural Network

A Probabilistic Neural Network (PNN) is a form of statistical discriminant analysis process where operations are
designed into a multilayered feedforward network as given in Figure 2. PNN replaces the sigmoid activation function
of neural networks with an exponential function [19].

PNN is fast, based on Bayesian classification and guaranteed converging to optimal classifier when the representa-
tive training data is large enough. PNN is supervised inherently parallel structure with no local minima issues. It
allows one-shot classification thus learning processes have no relation with recalling processes.

Figure 2. Probabilistic Neural Network Architecture

PNN consists of a pattern layer or radial basis layer where radial basis function works as the transfer function and
can be calculated by-

h(x) = ø(||x− xc||) (3)

Where,
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ø is the radial basis function

x is the input of the neuron

xc is the centre of the neuron

|| is usually used for Euclidean distance

The layer, computes the probabilistic density function (PDF) of the input training samples according to their
distribution values . Modifying simple PDF and applying to the input forms output vector P of the Pattern Layer in
the PNN as given in equation 4 [20].

Ph = exp(
−∑i(Xi−W xh

ih )2

2σ2 ) (4)

The Summation Layer performing weighted sum operation of it’s inputs and is defined as

net j =
1

N j
∑
h

W hy
h j .Ph and N j = ∑

h
W hy

h j (5)

Output Layer performs a max operation to select the output class value. The inference procedure for output vector
O is

net j = max
k

(netk) then O j=1 else O j= 0

Where,

i is the number of input layers

h is the number of hidden layers

j is the number of output layers

k is the number of training examples

Nk is the number of classification

σ is the smoothing parameters (standard deviation), 0.1< σ<1

X is the input vector

W xh
ih is the connection weight between the input layer X and the pattern layer P

W hy
h j is the connection weight between the pattern layer P and the summation layer Y

Normally spread factor σ value is taken as 0.1, 0.05 or 0.01. Too small value leads to neurons with less input space
covering capability thus poor generalization while too large σ gives values near 1.0 for all inputs [20].

3.3 SMOTE

Synthetic minority oversampling technique (SMOTE) has become successful in several applications. Instead of
replacement with over-sampled data, minority class is over-sampled with ‘synthetic’ examples [17].

Synthetic data is created based on the feature space similarities between existing minority examples. For minority
class subset Smin∈ S, K-nearest neighbors are considered for each sample xi ∈ Smin, where K is an integer. One of the
K-nearest neighbors are selected at random and the difference between original and selected neighbor is calculated.
Then the feature vector difference is multiplied with a random number between [0,1]. Finally, new sample xnew is
generated using equation (6).
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xnew = xi +(xi′− xi)×δ (6)

Where xi ∈ Smin is the minority instance under consideration, xi′ is selected K-nearest neighbor of

xi: xi′ ∈ Smin, and δ ∈ [0,1] is a random number. Therefore, the resulting synthetic instance according to (6) is a
point along the line segment joining xi under consideration and the randomly selected K-nearest neighbor xi [12]
[17]. The over all process is given in Algorithm 3 as pseudo code.

Algorithm 3. SMOTE

1. For each data point xi ∈ Smin

2. Select K Nearest Neighbors {x1′,x2′,..., xk′} from the entire dataset S

3. Repeat

4. Randomly pick a neighbor xi′ ∈ Smin

5. Calculate the distance d= (xi′ - xi)

6. Randomly choose a resample point xnew as xnew = xi + d × δ

7. Until total oversampling is completed

The synthetic examples cause the classifier to create larger and less specific decision regions. These synthetic
samples help break the ties introduced by simple oversampling, and furthermore, augment the original data set in a
manner that generally significantly improves learning.

4. PROPOSED APPROACH

SMOTE adds to the dataset a set of new instances that are supposed to come out with better learning space for
classifier models. But very often there remains a possibility of noisy features in the data sets. Besides, taking a lot of
features lead to over fitting the classifier model. Generating unreal samples consisting of the same set of features as
that of the original samples therefore increases instances that also have noisy features.

So, CE is proposed to select appropriate set of features and then feed the projected data into the classifier. As
CE reduces noisy features, instances become more suitable for learning. Instead of generating extra samples, noisy
feature reduction helps the classifiers to learn better about the classes from existing data. Again as the CE approach
also select discriminative features out of all, distinguishing characteristics of the classes are used to generate classifier
model that results better classification. Moreover the projected data on the selected features have reduced dimension
so, faster processing is ensured. Block diagram of the proposed processing approach is illustrated in Figure 3.

5. DATASET & EXPERIMENTAL SETUP

5.1 Dataset

KC1 dataset is from a NASA Metrics Data Program [21]. Software engineering model verification, and improve-
ment experiments uses it widely. KC1 contain static code measures like includes McCabe, Halstead features, LOC
etc. KC1 is a C++ coded system for storage management for receipt and ground data processing [21, 22]. The data
set contains 21 software product metrics as listed in Table 1.

The test dataset with 703 instances and train dataset with 1406 candidates were built from the original dataset.
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Figure 3. Block diagram of proposed processing approach.

Table 1. Original KC1 Dataset Description

Dataset Attribute
Names

Description Classes Size

KC1 loc McCabe’s line count of code 2 2109
v(g) McCabe ”cyclomatic complexity”
ev(g) McCabe ”essential complexity”
iv(g) McCabe ”design complexity”
n Halstead total operators + operands
v Halstead ”volume”
l Halstead ”program length”
d Halstead ”difficulty”
i Halstead ”intelligence”
e Halstead ”effort”
b Halstead
t Halstead’s time estimator
lOCode Halstead’s line count
lOComment Halstead’s count of lines of comments
lOBlank Halstead’s count of blank lines
lOCodeAndComment numeric
uniq Op unique operators
uniq Opnd unique operands
Op total operators
total Opnd total operands
branchCount of the flow graph
problems module has/has not one or more reported defects

Than a total of 5 dataset, each with 1200 patterns were selected from the 1406 instances of the full train dataset.
These 5 dataset has different IR values. The KC1 dataset comes out with an IR of 4, and this experiment were carried
out for up to three times the default IR value. The dataset information is given in Table 2.
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Table 2. Training Dataset Description

Datasets No. of instances
IR (max/min)

Class1
(True)

Class2
(False)

D1 240 960 4

D2 171 1029 6

D3 133 1067 8

D4 109 1091 10

D5 92 1108 12

T1 45 658 -

5.2 Evaluation Metric

Informative assessment metrics like Confusion Matrix and Receiver Operating Characteristics (ROC) curves are
considered for evaluation since singular assessment criteria like the overall accuracy or error rate, does not offer
enough information to evaluate imbalanced learning.

5.3 Confusion Matrix

Confusion matrix visualizes an algorithm’s performance. Usually it is used for supervised learning algorithms. It
contains information about actual and hypothesis output done by a classification system.

In a basic binary classification problem, let {p; n} be the true positive and negative class label and {C1;C2} are the
predicted positive and negative class labels. Table 3 illustrates classification performance formulation by a confusion
matrix [12].

Table 3. Sample Confusion Matrix

p
(Target)

n
(Target)

C1
(Predicted)

TP FP

C2
(Predicted)

FN TN

PC NC

In this paper, we use the minority class (Class 1) as the positive class and the majority class(Class 2) as the negative
class. Thus accuracy and error rate are defined as

Accuracy = (T P+T N)/(PC+NC) (7)

ErrorRate = 1−accuracy (8)
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5.4 Receiver Operating Characteristics (ROC) Curves

The ROC curve plots two evaluation matrices namely the True Positive Rate (Sensitivity) in function of the False
Positive Rate for different cut-off points of a parameter. True Positives Rate (TPR) and False Positives Rate (FPR),
are defined as:

T PR =
T P
PC

(9)

FPR =
FP
NC

(10)

TPR/FPR pair’s corresponding to a particular decision threshold are represented at each point on the ROC curve.
Thus any of these points correspond to the performance of a single classifier for a given distribution. Thus the visual
representation of the relative trade-offs between the benefits (TPR) and costs (FPR) are easily understood. The
Area Under the ROC curve (AUC) is a measure of how well a parameter can distinguish between given classes. It
corresponds to the probability of identifying one of the two instances correctly [23–25].

6. RESULTS AND DISCUSSION

6.1 Performance Analysis of PNN

Firstly, the performances of the PNN approach for classification of each of the five dataset were evaluated. Table 4
- Table 8 depicts the confusion matrix of PNN performance for training with D1 to D5 respectively and testing on the
T1 test dataset. The overall accuracy increased gradually from 61.9 at D1 to 64.4 at D5.

Table 4. Confusion Matrix of PNN based Classification for Training with D1.

Class 1
(Target)

Class 2
(Target)

Accuracy (%)

Class 1
(Predicted)

40 263 13.2

Class 2
(Predicted)

5 395 98.8

Accuracy (%) 88.9 60.0 61.9

Table 5. Confusion Matrix of PNN based Classification for Training with D2.

Class 1
(Target)

Class 2
(Target)

Accuracy (%)

Class 1
(Predicted)

39 248 13.6

Class 2
(Predicted)

6 410 98.6

Accuracy (%) 86.7 62.3 63.9

Figure 4 illustrates the ROC analysis of the corresponding performances. As the samples for the majority class
increases with IR, performances become almost same for the PNN. Thus the classification of D1 training is poor in
contrast to the other 4 datasets.
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Table 6. Confusion Matrix of PNN based Classification for Training with D3.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

38 247 13.3

Class 2
(Predicted)

7 411 98.3

Accuracy(%) 84.4 62.5 63.9

Table 7. Confusion Matrix of PNN based Classification for Training with D4.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

38 246 13.4

Class 2
(Predicted)

7 412 98.3

Accuracy(%) 84.4 62.6 64.0

Table 8. Confusion Matrix of PNN based Classification for Training with D5.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

38 243 13.5

Class 2
(Predicted)

7 415 98.3

Accuracy(%) 84.4 63.1 64.4

Figure 4. ROC curve of PNN.
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6.2 Performance of CE based PNN (CEPNN) Approach

Secondly, CE based PNN approach classification performance was evaluated for D1 to D5. Table 9 - Table 13
illustrates the corresponding confusion matrix. Now, the overall accuracy increased gradually from 78.1 for training
with D1 to 82.1 for D5. It is clear that CE provides better performance compared to PNN only approach. The ROC
plot in Figure 5 shows that the D1 training performance is inferior to others.

Table 9. Confusion Matrix of CEPNN based Classification for Training with D1.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

28 137 17.0

Class 2
(Predicted)

17 521 96.8

Accuracy(%) 62.2 79.2 78.1

Table 10. Confusion Matrix of CEPNN based Classification for Training with D2.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

24 110 17.9

Class 2
(Predicted)

21 548 96.3

Accuracy(%) 53.3 83.3 81.4

Table 11. Confusion Matrix of CEPNN based Classification for Training with D3.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

24 108 18.2

Class 2
(Predicted)

21 550 96.3

Accuracy(%) 53.3 83.6 81.7

Table 12. Confusion Matrix of CEPNN based Classification for Training with D4.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

24 106 18.5

Class 2
(Predicted)

21 552 96.3

Accuracy(%) 53.3 83.9 81.9

6.3 Performance of PNN on SMOTE (SMOTEPNN) based Processed Data
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Table 13. Confusion Matrix of CEPNN based Classification for Training with D5.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

24 105 18.6

Class 2
(Predicted)

21 553 96.3

Accuracy(%) 53.3 84.0 82.1

Figure 5. ROC Curve of CE PNN.

Table 14 to Table 18 analyzes the performance of SMOTEPNN approach to classify the test dataset based on
training with D1 to D5 respectively. The confusion matrices here, also demonstrates that increment in the IR comes
out with better classification of the majority class but with a cost of decreasing minority class classification. It is
to be noted that the accuracy of the majority sample classification is poor enough compared to that of the CEPNN
approach. Thus a lot of samples are misclassified as a result the overall accuracy decreases. Figure 6 shows that only
D5 training has given a comparable reliable difference in evaluation in terms of the ROC plot with others.

Table 14. Confusion Matrix of SMOTEPNN based Classification for Training with D1.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

41 306 11.8

Class 2
(Predicted)

4 352 98.9

Accuracy(%) 91.1 53.5 55.9

6.4 Performance of PNN on CE and SMOTE (CESMOTEPNN) based Processed Data

Finally the CESMOTEPNN performances for classification were evaluated. The confusion matrices in the Table
19 to Table 23 illustrates the rise in the corresponding overall accuracy for training with D1 to D5 compared to that
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Table 15. Confusion Matrix of SMOTEPNN based Classification for Training with D2.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

41 293 12.3

Class 2
(Predicted)

4 365 98.9

Accuracy(%) 91.1 55.5 57.8

Table 16. Confusion Matrix of SMOTEPNN based Classification for Training with D3.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

39 289 11.9

Class 2
(Predicted)

6 369 98.4

Accuracy(%) 86.7 56.1 58.0

Table 17. Confusion Matrix of SMOTEPNN based Classification for Training with D4.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

39 277 12.3

Class 2
(Predicted)

6 381 98.4

Accuracy(%) 86.7 57.9 59.7

Table 18. Confusion Matrix of SMOTEPNN based Classification for Training with D5.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

38 258 12.8

Class 2
(Predicted)

7 400 98.3

Accuracy(%) 84.4 60.8 62.3

of SMOTEPNN due to incorporating CE with SMOTEPNN. Figure 7 depicts that D5 training has the superior curve
as like previous approaches and also the D1 training has less promising curve but they are better than corresponding
SMOTEPNN in terms of ROC analysis.

6.5 ROC plot analysis of All Approaches for Classification

To find the contrast within all the classification approaches for training with same IR data, the ROC curve is plotted
classifying T1 when trained with D1 (IR=4) has been plotted in Figure 8. Similarly ROC curve while trained with
each of the train dataset D2, D3, D4, D5 has been plotted in Figure 9 to Figure 12 respectively.
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Figure 6. ROC Curve of SMOTE PNN.

Table 19. Confusion Matrix of CESMOTEPNN based Classification for Training with D1.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

35 208 14.4

Class 2
(Predicted)

10 450 97.8

Accuracy(%) 77.8 68.4 69.0

Table 20. Confusion Matrix of CESMOTEPNN based Classification for Training with D2.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

31 171 15.3

Class 2
(Predicted)

14 487 97.2

Accuracy(%) 68.9 74.0 73.7

Table 21. Confusion Matrix of CESMOTEPNN based Classification for Training with D3.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

31 170 15.4

Class 2
(Predicted)

14 488 97.2

Accuracy(%) 68.9 74.2 73.8

It should be noted that, in all cases CEPNN performs best. The CEPNN curve has always come out with promising
slope that leads to more true positive classification. As the IR increased from 4 for D1 to the CEPNN ROC curve
tend to move upwards ensuring more true positive rate and less false positive rate. As can be seen form the figures,
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Table 22. Confusion Matrix of CESMOTEPNN based Classification for Training with D4.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

31 160 16.2

Class 2
(Predicted)

14 498 97.3

Accuracy(%) 68.9 75.7 75.2

Table 23. Confusion Matrix of CESMOTEPNN based Classification for Training with D5.

Class 1
(Target)

Class 2
(Target)

Accuracy(%)

Class 1
(Predicted)

30 148 16.9

Class 2
(Predicted)

15 510 97.1

Accuracy(%) 66.7 77.5 76.8

Figure 7. ROC Curve of CF SMOTE PNN.

the CE based approaches performed better than others. Since, next to the CEPNN approach, CESMOTEPNN can be
selected as a good classification approach.

On the other hand as illustrated in figures the SMOTEPNN without CE is not used, performs as a random classifier
that is not reliable at all. Besides, with increasing IR of training datasets, the distance between PNN and SMOTEPNN
declines thus both of the classifiers are unsuited for classification. It’s clear from the figures that as IR value grows for
training data, there are no significant change in the ROC plot of SMOTEPNN and it is always bellow the other curves.

7. CONCLUSION

In this paper a cluster ensemble based probabilistic neural network approach is proposed for imbalanced data
classification. It is found that incorporating CE approach with the PNN comes out with much reliable classification
compared to that of state of the art SMOTE technique based PNN approach. The approach is also superior to PNN
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Figure 8. ROC of D1 training for All Techniques.

Figure 9. ROC of D2 training for All Techniques.

Figure 10. ROC of D3 training for All Techniques.

only classification for same training and test environment. Furthermore, the output demonstrates the superiority of
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Figure 11. ROC of D4 training for All Techniques.

Figure 12. ROC of D5 training for All Techniques.

CE with SMOTE based PNN as it performs better than only SMOTE based PNN classifier. Future works can be
carried out to check the impact of CE on other classifier performances and combined CE and other feature reduction
approaches like PCA to reduce dimension for more classification from imbalanced data. Other important attempts
can be improvement of the minority class classification accuracy through automatic adjustment of parameters that
will lead to an adaptive CE approach.
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