
Learning Query Intent from Regularized Click Graphs

Xiao Li, Ye-Yi Wang, Alex Acero
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{xiaol,yeyiwang,alexac}@microsoft.com

ABSTRACT
This work presents the use of click graphs in improving query
intent classifiers, which are critical if vertical search and
general-purpose search services are to be offered in a uni-
fied user interface. Previous works on query classification
have primarily focused on improving feature representation
of queries, e.g., by augmenting queries with search engine re-
sults. In this work, we investigate a completely orthogonal
approach — instead of enriching feature representation, we
aim at drastically increasing the amounts of training data by
semi-supervised learning with click graphs. Specifically, we
infer class memberships of unlabeled queries from those of
labeled ones according to their proximities in a click graph.
Moreover, we regularize the learning with click graphs by
content-based classification to avoid propagating erroneous
labels. We demonstrate the effectiveness of our algorithms
in two different applications, product intent and job intent
classification. In both cases, we expand the training data
with automatically labeled queries by over two orders of
magnitude, leading to significant improvements in classifi-
cation performance. An additional finding is that with a
large amount of training data obtained in this fashion, clas-
sifiers using only query words/phrases as features can work
remarkably well.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Search process ; I.5.1 [Pattern
Recognition]: Models—Statistical

General Terms
Algorithms, Experimentation

Keywords
Semi-supervised learning, Query classification, User intent,
Click-through data
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1. INTRODUCTION
Recent years have witnessed an increasing number of ver-

tical search services (e.g. job search or product search) of-
fered with a general-purpose search engine using a unified
user interface. Such a service will provide more relevant and
essential results for in-domain web queries, but will make no
sense to queries that are irrelevant to that domain. Thus it is
critical to have query intent classifiers (binary in our case 1)
that can accurately determine whether a query should trig-
ger vertical search in their respective domains. For example,
with respect to a job intent classifier, the query “trucking
jobs” should be classified as positive, thereby triggering job
search; whereas “steve jobs” or “dirty jobs” should not.

A variety of related topical query classification problems
have been investigated in the past [5, 16, 7]. A common chal-
lenge therein is the sparseness of query features coupled with
the sparseness of training data, observing the colossal vol-
umes of web queries. Previous works on query classification
have primarily focused on tackling the feature sparseness
problem, e.g. by augmenting queries with external knowl-
edge such as search engine results [16, 7]. The sparseness of
training data, on the other hand, has received relatively less
attention. One related work we are aware of is by Beitzel
et al. [5] which leveraged unlabeled data to improve super-
vised learning. In fact, the amount of training data is often
key to classification performance. Learning a classifier with
insufficient training data would either lead to 1) overfitting,
due to a high-variance estimate of an “accurate” model, or
2) high-bias, due to the use of an “inaccurate” model [9].

In this work, we focus on an orthogonal direction to query
feature enrichment — we aim at drastically expanding the
training data, in an automated fashion, to improve classi-
fication performance. This is achieved by leveraging click
graphs, namely a bipartite-graph representation of click-
through data. The edges therein are connecting between
queries and URLs (or clustered URLs) and are weighted by
the associated click counts. A click graph contains a vast
amount of user click information, giving rise to content-
independent, unsupervised methods for many applications
such as query/document clustering and classification [3, 10,
18] and query-to-document retrieval [1, 8]. This also brings
opportunities for semi-supervised learning , which leverages
both labeled and unlabeled examples in classification. Intu-
itively, queries with similar click patterns are likely to have
the same class label.

1Given a fixed number of intent classes, it is straightforward
to replace a set of binary classifiers with a single multi-class
classifier.
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Figure 1: An intuitive example of learning job intent from a click graph. (a) A click graph where shaded (red)
nodes represent seed queries labeled as + or -; (b) Label information +/- is propagated from seed queries to
URLs and then to unlabeled queries. Note that queries like “steve jobs” and “employment discrimination”
are correctly inferred as negative, as they both connect with “en.wikipedia.org” which is inferred to be a
negative URL. In practice, the inference is performed iteratively using soft labels rather than hard ones.

A major contribution of this work is that we use a prin-
cipled approach that automatically labels a large amount

of queries in a click graph, which are then used in training
content-based classifiers. Our approach is inspired by graph-
based semi-supervised learning techniques [17, 21, 20, 12],
and especially by [20]. The key idea is that we manually
label a small set of seed queries in a click graph, and we
iteratively propagate the label information to other queries
until a global equilibrium state is achieved. An intuitive il-
lustration of this idea is given in Figure 1. One technical
novelty of our work is that we regularize the learning with
content-based classification. When a click graph is noisy or
sparse (as is usually the case [8]), such regularization would
prevent a click graph from propagating erroneous labels.

We demonstrate the effectiveness of our algorithms in two
applications, product intent and job intent classification,
while our approach is general enough to be applied to other
tasks. In both cases, we expand the training data with au-
tomatically labeled queries by over two orders of magnitude,
leading to significant improvements in classification perfor-
mance. An additional finding is that with a large amount
of training data obtained in this fashion, classifiers using
only query lexcial features can work remarkably well. The
rest of the paper is organized as follows. Section 2 presents
our learning algorithms that infer query intent from click
graphs; Section 3 discusses related work; Section 4 describes
our evaluation methodology, experiments and results, fol-
lowed by concluding remarks in Section 5.

2. METHODOLOGY
As mentioned in the introduction, the ultimate goal of our

work is to learn a content-based classifier. In other words,
given a feature representation of queries, we desire to learn
a classification function that not only correctly classifies ob-
served queries, but also generalizes to unseen queries. In this

work, we use a maximum entropy classifier which models the
conditional probability as follows,

pλ(y|x) =
exp

∑

j λjφj(x,y)

∑

y

exp
∑

j λjφj(x,y)
(1)

where x denotes an input query, y denotes classes (binary in
our case), and φj(x, y), j = 1, 2, . . . , represent a set of query
lexical features. The classifier is parameterized by λ which
can be estimated using a maximum likelihood objective. A
detailed discussion of using maximum entropy model for text
classification can be found in [14].

The lexical features used in this work are n-grams, al-
though they can be easily substituted by other features.
An n-gram refers to a consecutive n word tokens that ap-
pear together, and we treat sentence start “<s>” and sen-
tence end “</s>” as two special word tokens. For example,
the query “trucking jobs” will activate a number of features
including 1) unigrams: “trucking” and “jobs”; 2) bigrams:
“<s>+trucking”, “trucking+jobs” and “jobs+</s>”; while
higher-order n-grams can be derived similarly. An n-gram
is naturally smoothed with its lower-order counterparts via
the linear interpolation

∑

j λjφj(x, y). Such lexical features,
despite their sparseness, are a relatively unbiased represen-
tation of queries. One added advantage of using such fea-
tures is that classification can be done prior to information
retrieval [4]. In fact, using query lexical features can yield
remarkable classification performance given abundant train-
ing data, as will be demonstrated in Section 4.4.

In this section, we focus our attention on how to obtain a
large amount of training data in an automated fashion by the
use of click graphs. We formally formulate our learning ob-
jectives, and provide solutions with two simple algorithms.
Additionally, we discuss practical considerations when learn-
ing with click graph.



2.1 Learning with click graphs
From a collection of click-through data, we can construct

a bipartite graph G = (X
⋃

Z, E), where X = {xi}
m
i=1 rep-

resents a set of queries and Z = {zk}
n
k=1 a set of URLs (or

clustered URLs). Each edge in E connects a vertex in X
with one in Z, and there is no edge between two vertices in
the same set. Let W represent an m × n weight matrix, in
which element wi,k equals the click count associating ver-
tices xi and zk. Furthermore, we assume that a small set of
seed queries, denoted as XL, are manually labeled as pos-
itive or negative with respect to a specific intent. How to
select seed queries is task-dependent, which will be discussed
in Section 4. Given the click graph and the labeled set XL

(an example of which is given in Figure 1 (a)), our goal is
to automatically assign labels to queries in the set X \ XL.

The problem of learning from labeled and unlabeled data
has been investigated in a number of works [17, 21, 20, 12].
Our objective and algorithm presented in this section are
heavily influenced by the work of [20]. Formally, we let F
denote an m × 2 matrix, in which element fi,y is a non-
negative, real number indicating the “likelihood” that xi be-
longs to class y. Given F , the posterior probability p(y|xi)
can be computed by fi,y/(fi,+1 + fi,−1). We further use
F 0 to denote an instantiation of F that is consistent with
manual labels: for xi ∈ XL that are labeled as positive,
we have f0

i,+1 = 1 − f0
i,−1 = 1; for those labeled as nega-

tive, we have f0
i,+1 = 1 − f0

i,−1 = 0; and for all unlabeled

queries xi ∈ X \ XL, we have f0
i,+1 = f0

i,−1 = 0. Our goal,

consequently, becomes to estimate F given G and F 0.
Furthermore, we define a normalized click count matrix

B = D−1/2W . Here D is a diagonal matrix in which element
di,i equals the sum of all elements in the ith row (or column)
of WW T . Intuitively, di,i can be understood as the“volume”
of all length-of-two paths that start at xi. The reason we
use such a normalization will be evident shortly. Given the
definition, our algorithm works as follows,

Algorithm 1

Input: matrix F 0 and matrix B = D−1/2W
Output: F ∗

1: Initialize F by F 0;
2: repeat
3: Compute Hi = BT F i−1;
4: Compute F i = αBHi + (1 − α)F 0, where α ∈ [0, 1);
5: until the sequence F i converges to F ∗

To show the convergence, we see that in the linear algebra
sense A = D−1/2WW T D−1/2 is similar to the stochastic
matrix D1/2WW T . Therefore, the largest eigenvalue of A
is 1, and all other eigenvalues are in [0, 1) (since A is also
positive semi-definite). Consequently, it is easy to see that
the sequence of F i converges to F ∗ = (1− α)(1− αA)−1F 0

asymptotically.
Notice that line 3 and line 4 of Algorithm 1 can be merged

into a single step F i = αAF i−1+(1−α)F 0 where A = BBT .
But when n � m (far fewer URLs than queries), the two-
step approach is computationally more efficient. Moreover,
since B is a sparse matrix (most elements are zero), the
computation complexity of each iteration of Algorithm 1 is
linear in the number of graph edges.

It has been shown in [20] that F ∗ is an optimal solution

of minimizing the following objective,

Q(F ) = αQ1(F ) + (1 − α)Q2(F ) (2)

where

Q1(F ) =
1

2

∑

y=±1

m
∑

i,j=1

(

n
∑

k=1

wi,kwj,k)‖
fi,y

√

di,i

−
fj,y

√

dj,j

‖2

Q2(F ) =
1

2

∑

y=±1

m
∑

i=1

‖fi,y − f0
i,y‖

2

The objective consists of two terms. First, minimizing Q1(F )
alone gives AF ∗

1 = F ∗
1 . This means both columns of F ∗

1 are
the principle eigenvector of A, recalling the fact that the
largest eigenvalue of A is 1. From a different perspective,
if we replace line 4 of Algorithm 1 by F i = BHi, the se-
quence F i will converge to F ∗

1 . This is true for any value
of F 0 as long as F 0 and F ∗

1 are not orthogonal. In other
words, Q1(F ) asks F to be in the equilibrium state of the
click graph. Secondly, Q2(F ) regularizes F towards F 0. In
this regard, Q(F ) is a tradeoff between the consistency with
the intrinsic structure of the click graph and the consistency
with manual labels.

Once F ∗ is obtained, we normalize its elements to obtain
posterior probabilities p(y|xi), i = 1..m. In training the
final maximum entropy classifier, we can either use these
posterior probabilities directly, or we can clamp them to
0/1 values. In our experiments in Section 4 we chose the
latter method for simplicity.

2.2 Content-based regularization
A click graph can be sparse — there might be missing

edges between queries and URLs that are relevant. More-
over, user clicks are often noisy, which result in edges be-
tween irrelevant queries and URLs. Missing edges prevent
correct label information from being propagated, while clas-
sification errors may arise from spurious edges.

To compensate for the sparsity and noise of a click graph,
we regularize click graph learning by content-based classifi-
cation. Specifically, we use F c(λ) to denote an m×2 matrix,
representing the output of the maximum entropy classifier;
each element fc

i,y = pλ(y|xi) is a classification function de-
fined in Equation (1). Then we treat F c as a prior of F and
modify our objective in Equation (2) accordingly,

Q(F, λ) = αQ1(F ) + (1 − α)Q2(F, λ) (3)

where Q1(F ) is the same as that in Equation (2) and Q2(F, λ)
has the following form,

Q2(F, λ) =
1

2

∑

y=±1

m
∑

i=1

‖fi,y − fc
i,y(λ)‖2

(4)

The new objective Q(F, λ) asks F to be consistent with the
output of the maximum entropy model, while keeping with
the intrinsic structure of the click graph.

The objective in Equation (3) can be optimized in an iter-
ative fashion. Given an estimate F ∗, the problem is reduced
to estimating maximum entropy model parameters λ that
minimizes the quadratic loss in Equation (4). This is can be
solved using stochastic gradient descent or other numerical
methods. Next, given an estimate λ∗, the objective essen-
tially becomes that in Equaton (2) except that F 0 is replace
by F c(λ∗). Thus, we can optimize F and λ alternatively as
follows.



Algorithm 2

Input: matrix F 0 and matrix B = D−1/2W
Output: F ∗ and λ∗

1: Initialize F ∗ = F 0, and initialize λ as random;
2: repeat
3: Find λ∗ = argmin

λ
Q(F ∗, λ) using stochastic gradient

descent;
4: Find F ∗ = argmin

λ
Q(F,λ∗) using Algorithm 1, where

the input are F c(λ∗) and B;
5: until the value Q(F ∗, λ∗) converges

In contrast to Algorithm 1, this algorithm jointly opti-
mizes F and λ, and the output λ∗ gives the final maxi-
mum entropy classifier. The convergence is guaranteed since
Q(F, λ) is lower-bounded and its value is decreased every
iteration. In practice, we use a more relaxed stopping cri-
terion: at each iteration, we make binary classification for
{xi}

m
i=1 based on normalized F ∗, and the algorithm stops

when we observe no more change in our predictions.

2.3 Click graph construction
Having described the core algorithms, we now turn to

practical issues on click graph construction. In practice, it is
sometimes inefficient and unnecessary to apply our learning
algorithms to a gigantic click graph constructed from the
entire collection of click-through data. In this section, we
present a practical method of building a compact click graph
and iteratively expanding it, if necessary, until it reaches a
desired size. We first present two pre-processing steps i.e.

removing navigational queries and clustering URLs; then we
discuss our method on click graph construction.

A query is considered navigational when a user is primar-
ily interested in visiting a specific web page in mind. For
example, “youtube” is likely to be a navigational query that
refers to the URL “www.youtube.com.” Such a query usu-
ally has a skewed click count on one URL, and the class
membership of that URL can be excessively influenced by
this single query. To avoid their adverse effect on our learn-
ing algorithms, we identify navigational queries based on
measures proposed in [11] and remove them from our click
graphs.

Secondly, we merge related URLs into clusters to compen-
sate for the sparsity of a click graph. Specifically, if a set
of URLs have exactly the same top-, second- and third-level

domain names, we group them into a single node and add
up their click counts accordingly. For example,

nurse.jobs.topusajobs.com/*

finance.jobs.topusajobs.com/*

miami.jobs.topusajobs.com/*
are all grouped to a URL cluster jobs.topusajobs.com.

Finally, since the most reliable information of query classes
resides in seed queries, it would be more efficient to apply
our algorithms only to a relatively compact click graph that
covers these queries. To this end, we start from the seed
queries and iteratively expand click graph in the following
fashion,

1. Initialize a query set X ′ = XL (seed query set), and
initialize a URL set Z′ = ∅;

2. Update Z′ to be the set of URLs that are connected
with X ′;

3. Update X ′ to be the set of queries that are connected
with Z′;

4. Iterate 2 and 3 until X ′ reaches a desired size;

In each iteration, we can prune away queries and/or URLs
with edges fewer than a threshold. The final click graph to
which the learning algorithms are applied consists of X ′, Z′

and edges connecting between them.

3. RELATED WORK
In recent years, many research efforts in query classifica-

tion have been devoted to enriching feature representation
of queries. The 2005 KDD Cup inspired the use of the World
Wide Web for query enrichment. The winning solution by
Shen et al. [16] used search engine results as features, includ-
ing pages, snippets and titles, and built classifiers based on
a document taxonomy; then classifications in the document
taxonomy were mapped to those in the target taxonomy.
Broder et al. [7] transformed the problem of query classifi-
cation to that of document classification which was solved
directly in the target taxonomy. A comprehensive compar-
ison of these methods can be found in [4]. Another way
to enhance feature representation is the use of word cluster
features [15, 2]. In such an approach, semantically similar
words can be grouped into clusters, either by domain knowl-
edge or by statistical methods, and be used as features to
improve the generalization performance of a classifier.

On the other hand, there has been a surge of interest
in semi-supervised learning that leverages both labeled and
unlabeled data to improve classification performance. One
widely used approach is self-training (or bootstrapping) [19].
This method iteratively trains a seed classifier using the la-
beled data, and uses high-confidence predictions on the un-
labeled data to expand the training set. Co-training [6] im-
proves over self-training by learning two separate classifiers
on two independent sets of features; each classifier’s predic-
tions on unlabeled data are used to enlarge the training set
of the other. Moreover, Beitzel et al. [5] proposed a semi-
supervised approach tailored to query classification based on
selectional preference. Another important school of semi-
supervised learning method is based on graphs, including
Markov random walks [17], label propagation [21], learning
with local and global consistency [20] and manifold regular-
ization [12]. While these works differ in their optimization
objectives, they all share the same underlying assumption
that if two samples are close in the intrinsic geometry of
an input space, their conditional distributions will be simi-
lar. Our Algorithm 1, which classifies unlabeled data based
on a bipartite graph, is technically inspired by the work of
[20]. Moreover, our objective in Equation (3), which jointly
performs graph-based learning and maximum entropy model
training, is closely related to the learning paradigm proposed
in [12]. The key difference is that we combine two orthog-
onal views in this learning paradigm — while learning with
click graphs focuses on user click information, the maximum
entropy model is constructed on the basis of query content
information.

Another group of related work aims to combine content
information with click information in clustering and clas-
sification. Beeferman et al. [3] and Wen et al. [10] used
click patterns as features in complement to query terms for
clustering. Xue et al. [18] proposed an iterative reinforce-

ment algorithm on a click graph for document classification.



In their work, a content-based classifier was used to pro-
duce initial posterior probabilities, which were then inter-
polated with click graph predictions at each iteration step.
One major distinction of our work is that we minimize a
joint objective function with respect to a click graph and
a content-based classifier. In our iterative algorithm (Algo-
rithm 2), the click graph output is used as training data for
the maximum entropy model, whose output is in turn used
to regularize click graph learning.

4. EVALUATION

4.1 Applications
The query intent classifiers discussed in this work are mak-

ing binary decisions regarding whether a query contains an
intent that qualifies for a domain-specific search. At appli-
cation time, they serve as frontend components of a search
engine that have both general-purpose and vertical search
functionalities. When a query is classified as positive with
respect to a specific domain, the corresponding domain-
specific search will be conducted at the backend, and will
ideally return to user the most relevant and essential an-
swers. In this work, we evaluate our learning algorithms in
two applications, product intent and job intent classifica-
tion, while our approach is general enough to be applied to
other applications as well.

Product intent classification. A query with product
intent is one that refers to any tangible product, or a class of
products, which can be purchased in store or online. A num-
ber of positive examples (ignoring cases) are “ipod nano”,
“nike shoes on sale”, “mercedes floormats”, while negative
ones are like “www.amazon.com”, “apple inc”, “soccer world
cup.” Query log analysis shows that approximately 5%-7%
of the distinct web search queries contain product intent,
although this number depends on time and search-engine.
A major challenge to product intent classification is that
product queries are rather diversified. Without substantial
training data, learning a classifier using query lexical fea-
tures only is likely to overfit, as will be shown in Section 4.4.

Job intent classification. We define a query to have
job intent if the user is interested in finding certain types of
job listings. For example, “trucking jobs”, “employment in
boston” are positive queries whereas “steve jobs”, “employ-
ment discrimination” are not. Note that we treat queries
such as“resume”and“sample cover letters”as negative though
they are indirectly related to jobs. We estimate that roughly
0.2%-0.4% of the distinct web search queries have job in-
tent. Unlike product queries, a vast majority of job queries
contain key words or phrases such as “jobs” and “employ-
ment.” When using such patterns in classification, however,
one needs to be careful since they can also appear in negative
examples, e.g. “steve jobs.”

4.2 Data preparation

4.2.1 Click-through data
For semi-supervised learning, we collected a set of click-

through data over a continuous period of time from the Live

Search query log. After removing navigational queries and
applying URL clustering as described in Section 2.3, this
data set consists of 8 million distinct queries that have re-
sulted in clicks, and 3 million distinct URL clusters that
have been clicked on. There are 15 million distinct clicks

Amounts Product intent Job intent

Seed queries 2K 300
(20% pos.) (35% pos.)

Click graphs
Query nodes 1,200K 600K
URL nodes 380 120
Query-URL edges 1,400K 700K
Total click count 3,200K 1,500K

Evaluation set 20K 3K
queries (6% pos.) (30% pos.)
Expanded train 300K 60K
set queries (15% pos.) (5% pos.)

Table 1: Configurations of seed query sets, click
graphs, evaluation sets and expanded training sets
for product intent and job intent classification. The
number of “URL nodes” corresponds to that after
clustering and pruning.

(or query-URL pairs) which account for 32 million clicks
in total. From this set of click-through data, we selected
seed query sets for manual labeling, and constructed click
graphs as described in Section 2.3, which we will present
in detail shortly. In addition, we prepared a second set of
click-through data, collected over a different time period, for
measuring classification performance.

4.2.2 Seed query sets
Recall that we first need to manually label a small set of

seed queries in order to apply our learning algorithms. Since
seed query sets are presumably small, randomly sampling
from query logs would lead to few positive queries, especially
for job intent classification where the percentage of positive
examples is only 0.2%-0.4%.

To compensate for this problem, we selected seed queries
for training job intent classifiers in the following fashion.
First, we obtained a number of job related websites (these
can be easily obtained from the World Wide Web), and we
collected queries that have landed on these websites. We
then randomly sampled 200 of them for manual labeling. To
mitigate the bias of our selected seed queries, we additionally
sampled and labeled another 100 general web search queries
(where an expectedly small portion are positive), and added
them to the seed query set. In the end, we obtained 300 seed
queries for training job intent classifiers, in which 35% are
positive. Similarly, we obtained 2K seed queries for training
product intent classifier in which 20% are positive.

It is worth mentioning our manual labeling procedure. In
both applications, a user interface was created for human
annotators where each query was presented along with re-
trieval results from two major search engines. Then human
annotators looked at both results to make a binary judg-
ment.

4.2.3 Click graphs
From the seed queries, we constructed click graphs using

the method described in Section 2.3. We performed two
such iterations for building the click graph for product intent
classification, and only one iteration for the job case. In each
iteration, we pruned away all URLs that have fewer than 3
edges, which greatly reduced the size of the resulting click



graphs. The second row of Table 1 shows configurations of
the resulting click graphs. Note that we are dealing with
1.4M/700K edges in product/job classification, which is the
computation complexity of each iteration of Algorithm 1.

4.2.4 Evaluation sets
To measure classification performance, we separately pre-

pared evaluation sets for human annotators to label, and we
ensured that queries in these evaluation sets do not overlap
with any seed queries. Furthermore, since the evaluation
sets were sampled from a second set of click-through data,
many queries therein do not even exist in the click graph
used in semi-supervised learning. The amounts of evalua-
tion data are shown in the third row of Table 1.

4.3 Evaluation metrics
The maximum entropy model output p(y = 1|xi), as de-

fined in Equation (1), is the posterior probability that a
query is positive with respect to a specific intent. We use an
adjustable threshold γ on this output to balance the preci-
sion and recall. In other words, a query is considered positive
when p(y = 1|xi) > γ and negative otherwise. By changing
γ from 0 to 1, we are able to obtain the entire precision-
recall curve which is used as a performance measure in our
experiments. In some cases, we only report optimal Fα val-
ues as well as its precision and recall values owning to the
lack of space. Here Fα is computed as

Fα = (1 + α) · precision · recall/(α · precision + recall)

In our applications, we want to weight precision significantly
higher than recall, as false positives are more costly than
false negatives regarding user experience — it would appear
strange to a user if the system displays vertical search results
when the user does not have that intent. In our work, we use
Fα=0.2 values (meaning precision is weighted 5 times higher
than recall) in Table 2 and Table 3, although using other
comparable α’s resulted in a similar trend.

4.4 Experiments and results

4.4.1 Algorithm comparisons
The main interest of work is to study how automatically

labeled training data would impact classification performance.
For a fair comparison, we used the same feature representa-
tion, specifically query lexical features, in all methods pre-
sented in this experiment. In product intent classification we
used n-gram features with n = 1, 2, 3, while in the job case
we used n = 1 and 2. Given the same feature representation,
we compare classifiers which were trained on different types
of training data:

1. Manual labels (seed queries). We trained a maxi-
mum entropy classifier using seed queries only.

2. Self-training. We implemented the method of [19]
based on query n-gram features. We first trained a
maximum entropy classifier using seed queries, and
then iteratively used high-confidence predictions on
unlabeled queries to expand the training set.

3. Algorithm 1. We used a regularization coefficient
α = 0.75 in Equation (2). Note that in both Algo-
rithm 1 and 2 we experimented with other regulariza-
tion coefficients and found that α ∈ (0.5, 0.9) yielded

Figure 2: Product intent classification with training
sets expanded by different algorithms

Figure 3: Job intent classification with training sets
expanded by different algorithms

similar good results. It took around 20 iterations for
Algorithm 1 to reach a fixed point, and queries with
high-confidence classification were selected and com-
bined with seed queries to train a maximum entropy
classifier.

4. Algorithm 2. As above, we used α = 0.75 in Equa-
tion (3). Algorithm 2 ran 3 iterations (in the outer
loop) before the predictions on queries stabilized. Again,
high-confidence queries and seed queries were merged
to train a maximum entropy classifier.

There are a number of implementation issues worth at-
tention. First, in cases of self-training, Algorithm 1 and
Algorithm 2, we all needed to set confidence thresholds to
select the most likely positive and negative queries to expand
the training sets, and such thresholds were chosen by cross-
validation in our experiments. Secondly, since the selected
queries were often excessively skewed toward negative ex-



# Distinct Queries 0 37K 75K 150K 300K

Precision 0.67 0.77 0.81 0.83 0.84
Recall 0.25 0.40 0.42 0.43 0.46
Fα=0.2 0.53 0.67 0.7 0.72 0.74

Table 2: Product intent classification by varying the
amount of automatically labeled queries by Algo-
rithm 1. The first column corresponds to using 2K
seed queries as training data.

# Distinct Queries 0 7.5K 15K 30K 60K

Precision 0.88 0.89 0.9 0.9 0.91
Recall 0.67 0.71 0.71 0.72 0.73
Fα=0.2 0.84 0.86 0.87 0.87 0.88

Table 3: Job intent classification by varying the
amount of automatically labeled queries by Algo-
rithm 2. The first column corresponds to using 300
seed queries as training data.

amples, we discarded all negative queries that occurred only
once. The resulting expanded training sets (which included
seed queries) are shown in the last row of Table 1. As can
been seen, we were able to automatically expand the training
data by over two orders of magnitude in both applications.

Now we inspect the classification performance of the above
algorithms. As shown in Figure 2 and Figure 3, Algorithm
1 & 2 significantly outperformed the other two methods in
both applications. Specifically, Algorithm 2, i.e., regular-
izing by content-based classification, showed significant ad-
vantage over Algorithm 1 in job intent classification, but not
in the product case. This is largely due to the fact that the
job intent classifier trained on seed queries already had rea-
sonably good performance, thus providing a relatively good
prior in Algorithm 2. In product intent classification, on
the other hand, the seed query set was relatively small with
respect to the large variety of product queries, resulting in
a poor seed classifier and hence an unreliable prior.

Another observation in this experiment is that self-training
did not work well in our query intent classification tasks. In
self-training, if some unlabeled data that can be confidently
classified by the seed classifier contain unseen discrimina-
tive features, then the algorithm would leverage these new
features to improve classification. In query classification,
however, since queries are short, it is difficult for the self-
training algorithm to discover new discriminative features
that generalize to other queries. In Section 4.4.3, we exper-
iment with more generalizable features and compare them
with query lexical features.

4.4.2 Varying the amounts of training data
Another interesting experiment is to see the impact of

different amounts of automatically labeled queries on clas-
sification performance. To this end, we kept the same seed
query sets, and randomly sampled other queries (according
to their frequencies) in the click graphs described in Table 1.
We experimented with different sampling rates, resulting in
varying sizes of click graphs and hence of the final expanded
training sets. Table 2 and Table 3 report precision, recall
and Fα=0.2 values for product and job intent classification

Figure 4: Product intent classification using differ-
ent feature representations and different amounts of
training data

respectively, where we exponentially increased the amounts
of training data obtained by either Algorithm 1 or Algo-
rithm 2. In both applications, we observed a monotonic
increase in classification performance, although the increase
slowed down when we used all click graph data available.
Based on this experiment, it is reasonable to believe that
classification performance could be further enhanced if we
leverage a significantly larger collection of click-through data
(which we did not explore in this work).

4.4.3 Using more generalizable features
As mentioned in Section 3, a significant amount of re-

search efforts in query classification has been contributed
to augmenting queries with external knowledge. Here we
experiment with one augmented feature representation in
product intent classification, and we compare its perfor-
mance with that using query lexical features. More im-
portantly, we inspect their respective performance when we
change the amounts of training data.

Specifically, we augmented lexical features with word clus-
ter features [15, 2] to improve the generalization ability of
the product intent classifier. The idea is to group seman-
tically similar words or phrases into clusters, and use these
clusters, in addition to regular words, to create n-gram fea-
tures. In this work, we created word/phrases clusters such
as “<brand>” and “<type>” from a product database. The
<brand> cluster consists of brand names, e.g., “canon” and
“nike”, while the <type> cluster consists of product types,
e.g., “laptop” and “golf shoes”. Then regular n-grams are
augmented by these clustered n-grams in forms like“<brand>
+camera” and “<type>+</s>”, which are used as features
in classification. One advantage of such features is that they
can generalize to words or phrases that have not occurred
in training data. The motivation here is akin to other query
augmentation methods, e.g. by using linguistic knowledge
[5] or using search engine results [16, 7].

As shown in Figure 4, when we used seed queries as train-
ing data, the performance of augmented features outper-



formed that of query n-gram features by a large margin.
However, when we expanded our training set with automat-
ically labeled queries, the difference in performance became
negligible. This confirms our argument that with abundant
training data, using only query words and phrases as fea-
tures can work remarkably well.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented a semi-supervised learning ap-

proach to query intent classification with the use of click
graphs. Our work differs from previous works on query
classification in that we aim at drastically expanding the
training data in an attempt to improve classification perfor-
mance. This allows us to use relatively unbiased features,
namely words/phrases in queries themselves, despite their
sparseness. We achieved this goal by mining a large amount
of click-through data, and inferring class memberships of
unlabeled queries from those of labeled ones in a princi-
pled fashion. Moreover, we used content-based classification
to regularize this learning process, and jointly performed
graph-based learning and content-based learning in a uni-
fied framework.

In the future, we would like to investigate the impact of
seed queries, e.g., how to choose them and how much to
choose, on our learning algorithm performance. Further-
more, it would be interesting to apply our approach to a
even larger collection of click-through data, and to other
tasks such as faceted query classification [13].
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