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Abstract

This paper demonstrates a new method of programming arti�cial chemistries. It uses

the emerging capabilities of the system's dynamics for information processing purposes. By

evolution of metabolisms that act as control programs for a small robot one achieves the

adaptation of the internal metabolic pathways as well as the selection of the most relevant

available exteroreceptors. The underlying arti�cial chemistry evolves e�cient information

processing pathways with most bene�t for the desired task, robot navigation. The results

show certain relations to biological systems like motile bacteria.

Keywords: Arti�cial Chemistry, Chemical Information Processing, Autonomous Robots,

Genetic Programming

1 Introduction

Arti�cial Life (AL) �rst intertwined di�erent research areas into one interdisciplinary attempt

�Author to whom correspondence should be addressed
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of extracting the �rst principles of life. The paradigm of complex systems, which includes

living organisms, favors the idea of emergence to describe global properties which result from

interactions between subsystems or components. These interactions may follow some very

simple locally e�ective rules causing global behavior of the system not explainable by dividing

the whole into parts and by investigating the subsystems and components. The system has

certain properties not because of the properties of its constituents but of their organization

and their function in the whole.

The theory of evolution introduced adaptation as a crucial part of sustained existence of

complex systems. Abstracting from natural molecular processes, Arti�cial Chemistry (AC)

reproduces the basic properties of such evolving systems and tries to analyze (either with

computer simulations or analytical) the dynamics and arti�cial evolution of complex systems.

The idea of evolution has become a key concept in the �eld of Evolutionary Algorithms [7, 30].

AC systems are part of the area of emergent computation [19, 20] and can additionally act as

a model of a decentralized and lean control architecture.

In this paper Arti�cial Chemistry deals with information processing systems consisting of an

arti�cial chemistry as the main processing entity. Arti�cial chemical computing has been the

topic of several contributions in the last years. Hjemfeld et al. [22], Okamoto et al. [31], and

Mills et al. [24] e.g., investigated the possibilities of realizing arti�cial neural networks or turing

machines in vitro, Arkin [5] discovered computational functions in biochemical reaction net-

works, Adleman realized a DNA-based solution of a combinatorical problem [3], and Adamatzki

et al. [2, 34, 33] proposed the use of oscillating reactions like the Belousov-Zhabotinsky reac-

tion for mobile robot control. Arti�cial chemical computing has been used for control tasks,

especially for mobile robots. Husbands [23] used an AC to get better results with an arti�cial

neural network for robot control. In his model arti�cial neurons are able to emit substances

that di�use and modulate transmission functions of other neurons. Brooks [14] used an ar-

ti�cial hormone system to model an asynchronous information 
ow in a distributed parallel
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control architecture for a humanoid robot. Adamatzki et al. and Ziegler et al. [2, 1, 41] used

either an excitable lattice or simpli�ed enzyme-substrate kinetics to control mobile robots. Lu-

gowski, Shackleton et al., Aoki et al. [28, 27, 36, 4], among others, intended to establish a new

view on parallel distributed computer architectures, completely di�erent from the well known

and common von-Neumann-architecture. Conrad et al. [15, 16, 40, 39] started to implement

and to analyze a simulator for pattern-recognition-based biochemically motivated complex re-

action networks. Astor [6] used AC to evolve arti�cial neural networks, Banzhaf [10] used the

processing capabilities to implement a "molecular" solution to the traveling salesman problem.

Due to the complexity of AC, all approaches used more or less manually designed instances of

an AC to arrive at the desired results. Up to now it is an unsolved problem to automatically

generate ACs with desired properties (though some discussion can be found in [8, 9, 26]). In

the next section follows an introduction into the terminology of arti�cial chemistries, along

with a description of the information processing capabilities of ACs. Section 3 and 4 introduce

reaction graphs as a representation of metabolisms and as the basis of the genetic programming

system. The following section give the results of experiments with either simulated and real

robots. The last part of the paper is devoted to an analysis of the evolved reaction networks

and includes a comparison to certain biochemical features of chemotactic bacteria.

2 Arti�cial Chemistry as a Means of Information Processing

An arti�cial chemistry can be described as a tuple fS;R;Ag, where S is a set of all possible

symbols which each symbolize a certain molecular species, R is a set of collision rules repre-

senting the interaction among the molecules, and A is an algorithm describing the reaction

vessel or domain and how the rules are applied to the molecules inside the vessel. The set

P (the population) is a multi-set (a set that can contain more than one object of a certain

type) P = fs1; : : : ; sMg; si 2 S 8 i, consisting of M (the population size) molecules. In

order to allow reactions to take place, a reaction vessel is needed, the reactor. For a detailed
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introduction to arti�cial chemistries see [17]. The reactor used in the following experiments

has a spatial structure, i.e. it is a n x m grid, folded as a torus. This simple reactor can be

seen as a protocell-like structure without any cytoskeletton. The volume of the reactor is n �m,

the maximum number of molecules it can contain. What kind of reactions occur is determined

by the rules ri 2 R; i = 1; : : : ; N . Each ri can be written as

ri : Si ! S0

i (1)

with

Si = fsjksj 2 S; j = 1; : : : ; Ng (2)

and

S 0

i = fsjksj 2 S; j = 1; : : : ;Mg: (3)

In our experiments, Si and S0

i are multi-sets of size two (maximum) (max(N;M) = 2), so all

possible reactions are of the following four types:

s1 �! s01 (4)

s1 + s2 �! s01 (5)

s1 �! s01 + s02 (6)

s1 + s2 �! s01 + s02 (7)

The algorithm A that creates the dynamics of the system can be written in pseudo code as

in Fig. 1. The molecules have a Moore neighborhood (all eight neighbors on a square lattice).

A molecule s is involved in a reaction , if there is a multi-set S in the neighborhood which

is a right-hand-side of a rule r 2 R and if s 2 S. The molecules in S are removed from the

reactor and all molecules in S0 are put into the reactor. Note that the neighborhood may

contain more than one complete set. The di�usion of a molecule is a random move to one

of the empty �elds in the neighborhood, similar to the Brownian motion (see Fig. 2). The

velocity of the di�usion can be adjusted by an additional parameter that gives the radius of

4



the neighborhood. The Moore-Neighborhood has a radius r = 1 and a size of s = 8, i.e. only

next neighbors are taken into account. Every reaction can be in
uenced additionally through

catalytic or inhibitive e�ects of other molecules. This will impact the rate constant of the

reaction by an additional catalytic/inhibitive factor. In order to keep the reactor size limited,

a dilution 
ux �(t) removes randomly chosen molecules.

The arti�cial chemical computing idea uses the following metaphor [11]: the data to be pro-

cessed (in- and output) is represented by molecules and the processing of data is represented

by the molecule-molecule interactions, well known as reactions. In order to solve a certain

computational problem, one needs to model the input (the problem description) and the out-

put (the solution). Therefore, some of the participating molecules have a special meaning. The

concentration of input substances mirrors the parameters of the problem. Output substances

change in concentration according to changes of input 
ow and due to internal metabolic re-

actions. In order to achieve the desired output with a given input one has to set up the right

internal reactions, a question that the following sections will discuss.

3 Arti�cial Reaction Graphs

The most natural way of visualizing reaction mechanisms are graphs. A chemical reaction like

Ca + H2SO4 �! CaSO4 + H2; (8)

where calcium and sulphuric acid react to calcium sulphate and hydrogen, can easily be repre-

sented with a special graph as in Fig. 3. Arti�cial reaction graphs are a special case of general

graphs, so-called weighted directed bipartite graphs [38]. A reaction graph is directed because it

visualizes transformations. A transformation might be reversible. If it is reversible, it can be

displayed with two counter directed reactions. The graph is called bipartite because there are

two di�erent types of nodes: those representing molecules and those representing reactions.

The graph has a weight, i.e. a numeric value associated with each edge, is a weighted graph,
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which indicates the catalytic or inhibitive activity of a certain substance with respect to a

special reaction.

An arti�cial reaction network thus has the following properties, written in formal, graph the-

oretical notation [21]:

(i) It is a directed graph.

G = (V;E) (9)

(ii) The set of nodes V is the union of two sets, �rst the set of molecules S and, second, the

set of reactions R.

V = R [ S; R = fvr1 ; : : : ; vrng; S = fvs1 ; : : : ; vsmg (10)

Every node, either reaction or molecule, is assigned a unique name, in this case a number.

A node will never be renamed.

(iii) E �! V � V � R is the set of edges. An edge connects exactly two nodes v and w,

so it is a pair of nodes, combined with a numerical value, representing the speed of the

reaction.

E = fe1; : : : ; elg; ei = (vi; wi; ki); 8 i 2 1; : : : ; l (11)

vi and wi must be of di�erent type:

vi 2 R ) wi 2 S or (12)

vi 2 S ) wi 2 R: (13)

Edges of this type have always a weight kdefault which means that this reaction is spon-

taneous.

(iv) There is a special kind of edge -the edge indicating a catalytic or inhibitive e�ect of a

molecule on a reaction. This edge is always directed

vi 2 S �! wi 2 R: (14)
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Edges of this type have weights, from a range ki 2 [kmin; kmax].

(v) A metabolic pathway is a subgraph P (v; w) = (V 0; E0) with v; w 2 S; v; w 2 V 0;V 0 � V

and E0 � E, so that P � G. P contains only nodes that are encountered during

a traversal from v to w on the shortest path in G. If there is no path, P is empty.

Additionally, for every reaction node r of the shortest path the following condition must

hold:

8 s 2 S(r) : (s; r; kr) 2 E0 ^ s 2 P and (15)

8 s0 2 S0(r) : (r; s0; kr) 2 E0 ^ s0 2 P;

i.e. every participant and every product of a reaction node that is part of the pathway

must themselves be part of the pathway. The length of a pathway is de�ned as the

number of nodes. Together, the metabolic pathways of every node of P form a metabolic

network, which in turn is a method for visualizing biochemical systems. [29] shows the

complexity of -at �rst sight- simple biochemical reactions.

(vi) The set I(G) is called the input set of G, I(G) � V . Every molecule node in I represents

a connected substance whenever the metabolism is simulated. These substances are

connected with external 
uxes which, together, represent the state of the environment

of the metabolism.

(vii) The set O(G) is the output set of G, O(G) � V; I(G) \ O(G) = ;. The nodes in O

represent the response of the metabolism to a certain internal state and an external

situation.

(viii) The set F (G) � V , the functional set, or kernel, of G contains only molecule nodes that

ful�ll the following conditions:

1) 8 w 2 F (g) : 9 e = (v; w) 2 �G k v 2 I(G); (16)

2) 8 w 2 F (G) : 9 P (v0; w) = (V 0; E0) k v0 2 I(g)^

8 v 2 V 0 : 9 e = (v00; v) 2 �G k v00 2 I(G):
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�G = (V; �E) is the transitive closure of G. �E is de�ned as

(v; w) 2 �E =) 9 a path from v to w in G. (17)

Arti�cial reaction graphs are natural and intuitive ways of representing the pathways of a

metabolism. They build, together with the other constituting parts of the arti�cial chemistry,

a full description of the system's molecular dynamics. Another, formally quite similar approach

of visualizing metabolisms are Petri Nets [35]. There, the molecular dynamics is created by

performing the transactions of the net, starting from an initial state.

3.1 Is a random graph a reaction graph?

A random graph of the elements above is not always a reaction graph, because there are some

conditions that it may violate [38]. For instance the graph displayed in Fig. 4 is not a reaction

graph because a small amount of A would produce an in�nite amount of B, a reaction that

would realize creatio ex nihilo. This is a biochemically impossible reaction mechanism. In order

to arrive at reaction networks that do not produce or consume matter, the reaction graphs

have to ful�ll the condition of material balance.

The material balance in arti�cial reaction networks Let an elementary reaction of a

reaction network be written as

A +B ! C +D (18)

This equation implies that the weights of the species A;B;C; and D ful�ll the following equa-

tion

mA +mB ! mC +mD (19)

Note that this reaction does not imply that

mB = mD or mA = mC (20)
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Random arti�cial reaction networks may contain elementary reactions which violate the ma-

terial balance. For example, the following equations of an arti�cial reaction network R (the

graph G of R is shown in Fig. 4)

i) A! B + C (21)

ii) C ! A

are inconsistent because the following equation system

i) mA = mB +mC (22)

ii) mC = mA

cannot be solved in positive integers. If A is chosen as the independent variable, mA = mC and

mB = 0; that is species B has weight zero. This is not possible. To test whether an arti�cial

reaction network is consistent, the following algorithm must be applied:

Step 1: Construct the m�n stoichiometric matrixM(R) of the reaction network R. The

total number of reactions in the network is n and m is the number of di�erent species

taking part in the mechanism.

Step 2: Calculate the rank of M (rank(M(R)).

Step 3: Calculate the number of independent variables for species weights using

m� rank(M(R)) (23)

Step 4: Declare n species weights as independent variables and set their weights to unity.

Step 5: Solve the system of equations

M(R) _m = 0 (24)

with m being the unknown species weights.

Step 6: Check if all weights (all components of _m) are positive. If this is not the case,

the arti�cial reaction network contradicts thermo dynamical laws.
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A small example This can easily be illustrated with the following example. Let the graph

in Fig. 4 be our arti�cial reaction system R. Then the 2� 3 stoichiometric matrix M(R) is

A B C

(1) -1 1 1

(2) 1 0 -1

The rank of M(R) is 2, so the number of independent species is, according to (23) m � 2 =

3� 2 = 1. If we chose now A as the independent species with mA = 1, (24) becomes to

0
BB@

�1 1 1

1 0 �1

1
CCA

0
BBBBBB@

1

_mB

_mC

1
CCCCCCA

= 0 (25)

This arrives at the following system of equations:

mB +mC = 1 (26)

mC = 1

which has the solution mA = mC = 1; mB = 0. Due to the zero weight of B, the arti�cial

reaction network should be discarded. As a result, the reaction network of species A;B; and

C with only symbolic names is shown to violate the material balance even with the unknown

composition of A;B; and C.

3.2 Variation of arti�cial reaction networks

Genetic Programming [13, 25] is an evolutionary algorithm which represents an individual as an

algorithm that can be executed in order to get its �tness value. It is a common interpretation

of the above de�nition that GP evolves computer programs. But there is a di�erent and more

general interpretation of the de�nition. Due to this interpretation, GP systems [13] evolve

structures of variable size and shape. These structures may be representations of dynamic

systems which are not necessarily isomorphic to computer programs. In our case, the execution
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of an individual amounts to the simulation of the arti�cial reaction system represented by the

individual, i.e. the reaction graph. The genetic operators of the GP system now have to handle

the graph representation. Additionally, they need to obey the restrictions of reaction graphs.

This stands in contrast to [26], who neglect biochemical plausibility of their graphs. Thus a

reaction graph which has undergone a modi�cation by a genetic operator (either mutation or

crossover) has to be a real reaction graph, i.e. needs to ful�ll material balance.

Mutation A Mutation can now be one of the following operations:

1. Adding/Deleting inhibitors or catalysts

An existing reaction can be changed by adding an inhibitor/catalyst if none is present,

or by deleting the inhibitor/catalyst. A new inhibitor/catalyst is chosen randomly from

all present molecules in the reaction graph. The new inhibitor/catalyst is assigned a

randomly chosen rate constant k 2 [kmin; kmax].

2. Variation of inhibitive/catalytic rates

The inhibitive/catalytic activity, expressed by the rate constant k can be changed. There-

fore, k is multiplied by random number from a log normal distribution.

3. Changing the type of a reaction

The type of a reaction can be changed by adding or deleting participants of the reaction,

either as a reactant or as a product. If a new participant is added, it is chosen randomly

from all present molecules in the reaction graph.

4. Adding/Deleting reactions

A reaction is deleted by removing the node from the reaction graph. All edges to and

from the reaction node are deleted, too. A reaction is added by choosing all participants

randomly from all present molecules in the reaction graph.

5. Adding/Deleting molecules

A molecule is deleted by deleting the node from the reaction graph. If the molecule
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participates in reactions, all edges and all reactions are deleted accordingly. Elements of

the sets I and O must not be deleted by a mutation.

The resulting new graph must obey the material balance. If the mutation hurts this condition,

a high penalty value is assigned. Formally, the mutation of a graph can be written as follows:

G �! G : Mutation (27)

1) (V;E) �! (V 0; E); V � V 0 adding a node (cases 4,5)

2) (V;E) �! (V 0; E); V 0 � V ^ I � V 0 ^ O � V 0 deleting a node (cases 4,5)

3) (V;E) �! (V;E0); E � E 0 adding an edge (cases 1,3,4)

4) (V;E) �! (V;E0); E0 � E deleting an edge (cases 1,3,4,5)

5) (V;E) �! (V;E0); E0 = feikei 2 E; 8i 6= j; e0j = (vj ; wj; k
0

j); k
0

j = kj � e
N(0;1)g

with N(0; 1) being a standard gaussian distibuted random variable

mutating the rate constant (case 2).

Crossover With crossover, subgraphs are exchanged between two individuals. Both resulting

graphs must hold the reaction graph conditions. Crossover exchanges metabolic pathways of

two reaction graphs. A pathway is extracted by a depth-�rst traversal (15) starting from a

molecule node in the reaction graph. The pathway is empty if no path from the starting

node to the target node exists. An example for the determination of a metabolic pathway is

shown in Fig. 5. The two pathways are then exchanged and the resulting reaction graphs are

released into the next generation, provided the material balance condition holds. An example

for combining a graph with a pathway is shown in Fig. 6. Formally, crossover can be written
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as follows:

G� G �! G�G : Crossover (28)

1) G �! G� P; cutting a pathway

(V;E) �! (V 0; E0)� (V 00; E00);

V = V 0 [ V 00; E = E0 [E 00; V 0; V 00; E0; E00 6= ;

2) G� P �! G; inserting a pathway

(V;E)� (V 0; E0) �! (V 00; E00);

V 00 = V [ V 0; E00 = E [ E0; V; V 0; E; E0 6= ;

A pathway is determined by a traversal on the shortest path between two nodes. On the way

through the graph to the target node, every reaction that is encountered becomes part of the

pathway, including every necessary preceding molecular node (e.g. node "F" in Fig. 5). This

pathway is then removed from the original graph and inserted into the crossover partner, from

which in turn a pathway has been subtracted before (see Fig. 6). Molecules of the pathway,

whose names (numbers) are already present in the target graph keep their names in the new,

resulting graph. Molecules, whose names are not present in the new graph are assigned a new

name (number). Elements of I and O must not be deleted by a cutting operation.

Mutation and crossover operators cause the reaction network to change its size and constituent

parts. This has two e�ects, (i) the arti�cial chemistry becomes constructive, which means that

it is not limited to the �nite number of reactions or molecules already present at the beginning1 .

As a result, the terminal set of the GP system changes during the evolution, because the set

of possible molecules is variable; (ii) the genome representing a reaction network has variable

size and shape, which will result in growing di�culties for the analysis of the kernel.

In the following experiments we will see that the size of the genome grows during the evolu-

tionary phase, showing well known phenomena like introns and bloating [13, 12].

1in fact, it is a weakly constructive chemistry, according to [18, 17]).
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4 The Evolution of Metabolisms

The automatic evolution of an arti�cial chemistry with desired properties requires (i) a reactor

in which the reactions are simulated, (ii) a reaction graph representing all possible reactions

in the reactor, (iii) variation operators for reaction graphs, and (iv) a �tness function for the

evaluation. A schematic view of the algorithm is shown in Fig. 7.

The population of individuals is initialized by the GP-System and successively evaluated. The

individuals are interpreted by the reactor module as a set of reaction rules. The reactor module

produces as an outcome time dependent vectors of concentrations, which in turn are taken as

input of the �tness evaluation module. This module interprets the concentrations according

to the �tness function and assigns a speci�c �tness value to the simulated individual. The

GP-System uses its genetic operators to evolve increasingly better individuals until the whole

algorithm terminates. The algorithm can now be expressed in pseudo code as in Fig. 8

5 Robot Navigation - Experimental Setup

Now we demonstrate the capability of an arti�cial chemistry programmed by an evolutionary

algorithm to control a miniature robot in real time. Therefore, the simulated arti�cial chemistry

is connected to both the sensory information and the motors of an |either simulated or real

existing| robot. The problem of the experiments is the task of navigating an autonomous

robot through a maze without hitting any obstacles. To succeed in this task, fast and e�cient

use of sensory information by means of metabolic information processing shall be evolved. In

order to avoid expensive evaluations on a real robot, the �rst experiments are carried out with

a simulator. Afterwards, the evolved arti�cial metabolisms are tested on a real robot. Figs. 9

and 10 show the arti�cial environment of a small robot in the simulator2. This robot simulator

acts as the �tness evaluation module in Fig. 7. The feedback loop is realized by reducing the

2Written by Olivier Michel et al., University of Nice
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motor substance concentration while a motor command is executed by the simulator.

5.1 Sensor integration

The sensors of the Khepera robot used here are shown in Fig. 10. Pairs of proximity sensors

(both front sensors and back sensors and at each case the side sensors) cause an in
ow of

substances, so the concentrations of b; c; d and e change linearly according to the values of

the appropriate sensor pair. The substances b; c; d; e together form the input set I � V . To

stay with the biological metaphor, several membrane channels into a cellular compartment

are realized with this experimental setup. The in
ow �(si) can be described by the following

functions

�(b) = f(left1; left2)

�(c) = f(front1; front2)

�(d) = f(right1; right2)

�(e) = f(back1; back2)

9>>>>>>>>>>=
>>>>>>>>>>;

with (29)

f(s1; s2) = cellsize �maxInflow �
max(s1; s2)

1023
: (30)

The parameters cellsize and maxInflow limit the in
ow of a sensor substance to a maximum

value (up to a standard of 10% of cell size per iteration in all experiments). The value 1023

is the maximum sensor value and ensures the linear dependence of the in
ow. If the robot is

surrounded by obstacles, the sensor induced in
ow per time step of substances would sum up

to 0.4 or 40% of the cells volume. Whether or not the metabolism makes use of the in-
owing

sensor substances is left to its own decision.

5.2 Actuator integration

As the task of navigation, a simple chemotactic behavior of the robot should be achieved.

Chemotaxis can be described as a frequency modulation of tumbling phases during periods of

15



straight movement [37]. Thus, the rotation direction and speed of the two motors (Fig. 10)

remain unchanged unless the concentration of the motor control substance a exceeds a certain

threshold. Then the rotation direction of one motor is changed, causing the robot to rotate3

around its z-axis. During the switch of motor rotation direction, a certain amount of a is

consumed, so the concentration of a diminishes during a rotation of the robot as speci�ed with

the out
ow rate � (unless it is produced by the metabolism at a higher rate). The substance

a builds the output set O � V The out
ow of a can then be described by

�(a) =

8>><
>>:

� � a if a > amin

0 otherwise.

(31)

5.3 FitnessFunction

The strategy of the �tness function of the experiments is to achieve long straight movements

if no obstacles are present, and short evasive rotations otherwise. The performance of the

evaluated metabolism is calculated during a �xed period of execution, by summing up the

di�erences between rotation speed and direction of both motors during the execution. If both

motors rotate with the same speed and direction, this di�erence is zero, so the optimal behavior

of a metabolism is to minimize the number and duration of rotation phases.

5.4 Additional Parameters

The di�culty of the correct parameters can be shown by an {at �rst sight{ simple example: If

the concentration of a exceeds the threshold amin, the motor rotation is switched and a certain

amount of a is consumed. The concentration of a may rise again due to the speci�c reactions

until the next active cycle. The question is now to adjust the consumption rate of a, the number

of reactor cycles between two active cycles, the motor speed, and the activation threshold amin

in a way that the robot moves in a reasonable manner. Note that the adjustment of these

parameters has a strong in
uence of the individual's �tness, although it is fully independent

3The rotation direction is either clockwise or counter clockwise and remains unchanged during all experiments.
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from the actual genome. Another parameter de�nes the duration of the simulation. In our

experiments, a lower bound emerged for the execution time: if the duration was shorter than the

time the robot needed to drive straight across the maze, very high �tness values were assigned

to the metabolisms, because the uninterrupted straightforward movement of the robot, the

default behavior, granted a high reward. So the execution time should be slightly longer to

ensure encounters with obstacles.

6 Robot Navigation - Results

The settings of the parameters of the robot experiments are shown in the Koza tableau in

table 1 for the GP system and in table 2 for the cellular reactor.

The development of average �tness and length of the individuals is shown in Fig. 11. The

number of nodes in the reaction graph G determines the length of the genome. The minimum

length of the functional code remains constant during the evolution, but the overall length

increases. The functional code of the genome is equivalent to the kernel of the representing

graph G. A node outside the kernel will never change its concentration due to any reaction,

so it can be discarded without any consequences for the dynamics of the metabolism.

7 Veri�cation and Analysis of the Results

The use of a simulator for the evolution of arti�cial chemistries with the desired capabilities

may be deemed too simpli�ed a version of the real problem. To address this objection, we

tested the solution with a real world robot in a real world with real time requirements. The

evolved graph remained completely unchanged, only some parameters that took the di�erent

time scales of the simulator and the real robot into consideration were changed. Above all, due

to the faster movement of the real robot we had to amplify the sensor induced substance in
ow

so that the in
ow function (30) got an additional multiplying term. A sequence of photos of a
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typical object avoiding turn is shown in Fig. 12.

An analysis of the reaction graph (Fig. 13) leads to an interesting correspondence to results

from Parkinson and Blair [32]. They report that the motile bacteria E. coli has nearly all

its exteroreceptors at its front end (see Fig. 14, right). According to their argument, this is

a plausible strategy for placing receptors, because the front end of the cell is exposed to an

increased 
ux of substances from the environment which increases the e�ciency of detecting

food. In Fig. 14, left, the metabolic network is inserted into a schematic view of the robot and

connected with the actuators and sensors. Only the front and left sensors as well as the motor

are connected with the network. In our robot navigation experiments, it is quite important for

the robot (i.e. for the controlling metabolism) to detect obstacles at its front end, because if it

is bumping into obstacles, the �tness decreases drastically. The graph in Fig. 14 shows that a

good metabolism just makes use of the substances representing the front sensors of the robot

(represented by the "1") , and, in an super�cially strange way, of the left sensors (represented

by "3"). In other words, the metabolism increases the concentration of the motor substance

if an obstacle is present in front of the robot. The concentration of the substance signaling an

obstacle on the left side of the robot is increased, too (though there might not be any obstacle!).

However, the left sensors will measure the obstacle during the counter clockwise rotation with

a short delay, and the concentration has already been increased by the metabolism, so that a

rotation is not interrupted by a short 
uctuation of the motor substance concentration below

the activation threshold. This results in an continuous turn that lasts long enough to avoid

the obstacle.

The evolved metabolism thus only uses the sensors with the maximum bene�t and the shortest

reaction time to achieve the goal of obstacle avoidance. It realizes this in a very elegant and

e�cient way. The small kernel is a result of the real time requirements of the problem, because

the metabolism maximizes its return on investment (its �tness) if it does not waste its time on

computing non-essential metabolites but rather important substances, in this case the motor
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substance a.

8 Conclusion

This paper proposes a solution to the problem of programming an arti�cial chemistry, a spe-

cial branch of Arti�cial Life research. The emergent properties of a highly complex dynamical

system are predetermined |or programmed| by arti�cial reaction graphs, a special repre-

sentation for a Genetic Programming system, that is used here to evolve increasingly useful

arti�cial metabolisms. Appropriate features of the metabolisms are measured "online" during

the system's development and are used to solve a computational problem, here the simulated

task of robot navigation. This problem has a strong need for speed and robustness of the so-

lution, so that the algorithm evolves e�cient and fast sensor information processing pathways

in the simulated metabolism. Individuals have been successfully transferred into a real world

robotic experiment. We also found intriguing similarities to the use of exteroreceptors during

chemotaxis in motile bacteria like E. coli.

The use of biochemical plausible reaction graphs, plausible at least at the material balance

level, ensures reaction networks, which may act as a model for a potential "wet" chemical

implementation of a robot control system. This work can be seen as a model application of

an interconnection-free, decentralized and lean control architecture consisting of an arti�cial

chemistry as the information processing device.
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Parameters Values

Objective: Evolve an arti�cial reaction network that is able to

control an autonomous robot in a maze with a min-

imal number of collisions (chemotaxis).

Terminal set Species fa; b; c; d; eg, other species

Function set Reactions of type 4,5,6, and 7

Selection scheme (�; �)

Population size � = 50; � = 250

Crossover probability 0.7

Mutation probability 0.9

Termination criterion Steady state

Max. number of generations 500

Maximum size of graphs Unlimited

Initialization method Grow

Table 1: Koza tableau with parameter settings for the GP system in the robot navigation

experiment. The size of the terminal set (and therewith the size of the graphs) are potentially

in�nite.
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Parameters Values

Reactor size: 20 � 20 toroidal reactor with Moore neighborhood

Neighborhood radius r 1

Initial �ll level 50%

Input 10 % In
ow of each input substance b; c; d; e

Output Rotation of motors according to concentration of a

Termination criterion No. of iterations (de�ned execution time)

Consumption rate � of actuator

substance a

0.9

Actuator substance concentra-

tion threshold amin

0.1

Reactor cycles between sensor

processing

10

Execution time per individual 1200 reactor cycles

Table 2: Tableau with parameter settings for the cellular reactor for the robot experiments. The

number of reactor cycles ensures a su�ciently long execution time per individual. The values

of � and amin proved to be satisfactory for the experiment.
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while :terminate() do

Draw s out of P ;

if 9 S 2 Neighborhood of s then

8 si 2 S � P do

Draw si out of P ;

od

if 9 a rule rj 2 R with S = Sj then

S0 = Set of products according to reaction rj ;

�

8 s0i 2 S 0 do

insert s0i in P ;

od

�

od

Figure 1: Pseudo code of reactor algorithm A. This algorithm does not include in
ow and

out
ow of molecules as required for computations (see Sect. 3 for details).
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Figure 5: Detecting a pathway in a reaction graph. From left to right: (i) The start node and

the target node are set. (ii) Depth-�rst search from start node to target node determines the

path. (iii) The pathway is extracted from the reaction graph, including all necessary nodes.

(iv) The pathway is deleted from the reaction graph. Graph and pathway are shown without

inhibitive/catalytic edges.
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while :terminate() do

Draw graph g out of P ;

while evaluateMetabolism(g) do

Fill in input set substances Ig(t);

Update reactor using alg. (8) according to g;

Measure output set concentration ~st(Og) at time t;

UseOg to solve problem;

Compute out
ow�(t);

od

Evaluate total �tness f(g);

Update population (variation);

od

Figure 8: Pseudo code visualization of the main loop of the algorithm as shown in Fig. 7.
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Figure 9: The Khepera simulator. A small robot navigating in a random environment.
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Figure 10: Schematic view of the Khepera robot. The robot has six proximity sensors in the

front and at both sides and two backward proximity sensors. It can be controlled by setting the

rotation direction and speed of its two motors (currently zero). The numerical values indicate

the proximity of obstacles. In the current situation, the robot has an obstacle in front of its

left rear sensor (indicated by the high numerical value). This obstacle is also measured by the

right rear sensor and determined to be more remote from there.
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Figure 11: Left: Development of �tness values during the run. The individuals are sorted in

descending order. Right: Development of length of genome.The �gure shows the minimal,

maximal and average length per generation of the whole genome and the kernel.
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Figure 12: Movement of a real Khepera robot. The Khepera encounters a wall and turns

counter-clockwise (top left to bottom right). Wide-angle view of a top mounted camera looking

down on a 1m2 test maze.
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Figure 13: The kernel of the resulting arti�cial chemistry. The total graph has nearly 50 nodes

and 70 edges and is not shown here. The kernel is labeled according to the function of the

nodes. The dotted line indicates a catalytic e�ect.
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Figure 14: Left: The reaction network of the best individual as it is connected with the sensors

and actuators of the robot. Note that the non-functional parts of the genome are omitted.

Right: The chemoreceptors of E. coli are located at the front of the cell and form a "nose".

Picture taken from [32]
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