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THE DERIVED CATEGORY OF QUASI-COHERENT

SHEAVES AND AXIOMATIC STABLE HOMOTOPY

LEOVIGILDO ALONSO TARRÍO, ANA JEREMÍAS LÓPEZ,

MARTA PÉREZ RODRÍGUEZ, AND MARÍA J. VALE GONSALVES

Abstract. We prove in this paper that for a quasi-compact and semi-
separated (non necessarily noetherian) scheme X, the derived category
of quasi-coherent sheaves over X, D(Aqc(X)), is a stable homotopy cate-
gory in the sense of Hovey, Palmieri and Strickland, answering a question
posed by Strickland. Moreover we show that it is unital and algebraic.
We also prove that for a noetherian semi-separated formal scheme X,
its derived category of sheaves of modules with quasi-coherent torsion
homologies Dqct(X) is a stable homotopy category. It is algebraic but
if the formal scheme is not a usual scheme, it is not unital, therefore
its abstract nature differs essentially from that of the derived category
Dqc(X) (which is equivalent to D(Aqc(X)) in the case of a usual scheme.

Introduction

A basic structure that arises in homological algebra and homotopy theory
is that of triangulated category. Part of its axioms were stated by Puppe
[P], and the crucial octahedral axiom was established by Verdier in his the-
sis ([V2], published only recently). It is interesting to note that only the
abridged version [V1] and an account of the theory in [Ha] was available in
the sixties and the seventies. Though this structure alone gives a lot of tools
and permits the generalization of previous results only made previously ex-
plicit in algebraic or topological terms (the book [N3] is a nice example),
it is very frequent that in real applications triangulated categories come to-
gether with a richer structure. Two essential examples that come to mind
are D(R), the derived category of complexes of modules over a commutative
ring R, and HoSp, the category of (non-connective) spectra up to homo-
topy. There are parallel constructions in both categories that could be, in
principle, transported to other contexts. In this vein, Hovey, Palmieri and
Strickland have defined in [HPS] the concept of stable homotopy category.
It consists of a list of additional properties and structure for a triangulated
category.
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The rich theory exposed in loc.cit., together with the list of examples of
categories where these axioms are fulfilled show the great interest of this
notion. Let us cite some additional examples: categories of equivariant
spectra, categories of local spectra (for generalized homology theories like
K(n) or E(n)), the homotopy category of modules over a ring spectrum,
the stable category of representations of a finite group over a field. This
examples are taken from the introduction of [St]. In his paper, Strickland
points out a conspicuous case that was left out of this list, namely the
“derived category of quasi-coherent sheaves over a nonaffine scheme” which
we will denote D(Aqc(X)) for a scheme X. Much to our surprise this all-
important case had not been settled already in the literature —not even
implicitly.

One issue that arises frequently is that in general, if A is an abelian
category, its derived category D(A) may not have “small hom-sets” due to
its construction via calculus of fractions.1 In [AJS1, Corollary 5.6] it is
shown that if A is a Grothendieck category, i.e. abelian with a generator
and exact filtered directed limits, then D(A) exists, i.e. it has “small hom-
sets”. This is shown by presenting D(A) as a full subcategory of K(A) (the
category of complexes in A with maps up to homotopy), a consequence of
the fact that D(A) is a Bousfield localization of D(R) where R is the ring of
endomorphisms of a generator which is known to have “small hom-sets” by
an explicit construction of unbounded resolutions. This, together with the
fact that Aqc(X) is a Grothendieck category, paves the way to check most
of the conditions of stable homotopy category. There are, however, at least
two conditions whose status does not follow from this, namely, the closed
structure and the existence of strongly dualizable objects.

In this paper we prove that the category D(Aqc(X)) is a “stable homotopy
category” in the sense of [HPS], at least when X is quasi-compact and
separated. In fact we do not need the full separation hypothesis but a slightly
weaker condition called “semi-separation”, already used by Thomason and
his collaborators and students in K-theory of schemes, see [TT]. It was also
considered independently with the characterization used here in the context
of moduli problems.

We prove an analogous result for formal schemes, namely, if X is a noe-
therian semi-separated formal scheme the derived category of sheaves with
quasi-coherent torsion homologies, Dqct(X) (cfr. [AJL2]), is a stable homo-
topy category.

We also show that for a quasi-compact and separated scheme X the cat-
egory D(Aqc(X)) is unital and algebraic in the sense of [HPS]. On the other
hand if X is a noetherian semi-separated formal scheme the category Dqct(X)
is algebraic but most often non unital. This gives a clue on the difference

1Though we prefer the framework of sets and classes à la von Neumann-Gödel-Bernays,
for those readers fond of universes, it means that to construct D(A) we may need to change
our universe.



QUASI-COHERENT SHEAVES AND STABLE HOMOTOPY 3

between the structure of the derived categories associated to usual schemes
compared to those associated to formal schemes.

There is an aspect that we have not treated at all in this paper, and that
seems to be very important for some people working in the field, namely the
existence of a good model category whose associated homotopy category is
D(Aqc(X)). In any case, for us it is enough to use implicitly the DG struc-
ture of the category C(Aqc(X)) that allow us to perform all of the relevant
constructions. For the work on model category structures on C(Aqc(X)), we
will content ourselves with mention the papers [Ho] and [Gi].

Let us describe in finer detail the contents of this paper. In the first
section we recall the axioms in [HPS] and the fact that for any scheme X
the category D(Aqc(X)) is triangulated, possesses coproducts (because we
are dealing with unbounded complexes) and that Brown representability
holds, being Aqc(X) a Grothendieck category.

The second section, which may have an independent interest, gives the
essential sorites of the semi-separated maps of schemes. They are maps in
which the diagonal is affine, though the original definition by Thomason was
defined by the existence special bases of open subsets. This point is settled
in the remark after Proposition 2.3. A scheme X is semi-separated, i.e. the
canonical map X → Spec(Z) is semi-separated, if and only if the intersection
of two affine open subsets of X remains affine. This is the consequence
of separation that is used in (Čech) computations in the cohomology of
schemes. We have included this section here due to a lack of a complete
treatment in the literature.

The third section deals with the closed structure. While it is well-known
that the derived tensor product respects quasi-coherence, it is clear that the
usual functor RHomX(−,−) does not. But it can be fixed composing with
the quasi-coherator functor (recalled in 3.5). This definition of the internal
hom functor may seem clumsy, but it is convenient for checking the adjoint
property. In the fifth section we show that the internal hom previously
defined can be identified with the derived functor of the internal hom in the
abelian category Aqc(X), which is QX HomX(−,−) as long as we consider
the derived funtor with quasi-coherent K-injective resolutions. This can be
considered a technical point and the uninterested reader may skip it.

The fourth section shows the existence of strongly dualizable generators.
We proceed recalling the fact proved by Neeman that D(Aqc(X)) is com-
pactly generated. In this category a compact object is a perfect complex.
Then, we show that a perfect complex is strongly dualizable concluding that
D(Aqc(X)) is generated by strongly dualizable objects. Together with the
previous remarks we obtain our main result stated as Corollary 4.9.

The last section deals with the case of formal schemes. Here quasi-
coherent torsion sheaves —introduced and studied in [AJL2]— come into
being a natural alternative extending the concept of quasi-coherent sheaves
on a ordinary scheme. We prove that for a noetherian semi-separated formal
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scheme X its derived category of sheaves of modules with quasi-coherent tor-
sion homologies, Dqct(X), is a stable homotopy category following a similar
path to the case of usual schemes with an extra twist here and there due to
the peculiarities of quasi-coherent torsion sheaves. Note that the lack of tor-
sion flat resolutions forces us to work with Dqct(X) instead of its equivalent
subcategory D(Aqct(X)). Again the closed structure and the existence of
strongly dualizable generators are the parts that need to be dealt carefully
with.

1. The axioms

In this section we set the stage by recalling the definition of stable ho-
motopy category and some basic definitions that will be used throughout
the paper. We also show that part of the conditions that define a sta-
ble homotopy category are well-known to hold for the derived category of
quasi-coherent sheaves on any scheme.

1.1. Let us enumerate briefly the five axioms of an abstract stable homotopy
category. Let T be a category, we say that T is a stable homotopy category
if the following hold:

(i) T is a triangulated category [V1].
(ii) T is a symmetric closed category in the sense of [EK].
(iii) T possesses a system of strongly dualizable generators2 [HPS, Defi-

nition 1.1.2].
(iv) T possesses arbitrary coproducts.
(v) A cohomological functor taking values in T (see below) is repre-

sentable, i.e. it is of the form HomT(−,X) with X ∈ T.

The definition of triangulated category is recalled in [HPS, Definition
A.1.1.1]

A symmetric monoidal category is a category together with an internal
bifunctor (“tensor” or “smash” bifunctor) associative and commutative to-
gether with a unit object. This data given up to natural equivalence satis-
fying certain coherence commutative diagrams. It is said to be closed if it
possesses another bifunctor (“internal hom” or “function space”) suitably
adjoint to the previous one. For more details see [HPS, Definition A.2.1] or
the original source [EK].

The different notions of generator that will be used are discussed through-
out the paper, specially in 1.2 and 4.5.

Denote by Ab the category of abelian groups. A functor from a triangu-
lated category to Ab that takes triangles to exact sequences is often called a
homological functor. In [HPS] it is called an exact functor. A cohomological
functor is a contravariant such functor that takes coproducts to products. To
summarize, given a triangulated category T, we say that a functor To → Ab

2Generators in the sense that T is the smallest localizing subcategory of itself that
contains them, see 4.5 below.
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is cohomological if it takes triangles to exact sequences and if it takes co-
products in T to products in Ab, otherwise said, if the corresponding functor
T→ Ab

o preserves coproducts.

Along this paper, for a scheme (X,OX ), we will consider the category of
sheaves of OX -Modules and denote it by A(X). We will mainly consider
its full subcategory of quasi-coherent OX -Modules and denote it by Aqc(X).
For their basic properties see [EGA I, §2.2]3.

1.2. On an additive category C, a set of objects {Eα /α ∈ L} is called a
set of generators if, for an object M ∈ C, HomC(Eα,M) = 0, for all α ∈ L
implies M = 0. If C possesses coproducts, the existence of a single generator
is equivalent to the existence of a set of generators taking as single generator
the coproduct of all the objects in the family. Usually, it is more convenient
to work with the set of generators than with its coproduct. That is because
often, each object in the set may have a finiteness property that is not shared
by the whole coproduct.

Recall that an abelian category A is a Grothendieck category if it possesses
a generator and satisfies Grothendieck’s axiom AB5 from [Gr, 1.5] which is
equivalent to the existence of coproducts and the exactness of filtered direct
limits cfr. [Gr, Proposition 1.8].

Lemma 1.3. Let X be a scheme, the category Aqc(X) is a Grothendieck
category.

Proof. First of all, Aqc(X) is an abelian category, by [EGA I, Corollaire
(2.2.2)]4. The category A(X) possesses exact direct limits thus also does
Aqc(X) because direct limits of quasi-coherent sheaves are quasi-coherent
sheaves by loc. cit. Furthermore, direct limits are exact in the full category
of sheaves of modules [Gr, Proposition 3.1.1], in other words Aqc(X) is an
AB5 category. Finally, it possesses a generator by [EE, Corollary 3.5]. �

1.4. An interesting feature in Enochs and Estrada proof of the existence of
a generator for Aqc(X) is its expression as the category of quasi-coherent
modules over a quiver ring representation. Given a scheme X, take a cov-
ering by affine open subsets {Uα}α∈L0

and cover each Uα ∩ Uβ by affine
subsets {Vαβγ}γ∈Lα,β

. Now take a vertex for every Uα and every Vαβγ

with α, β ∈ L0 and γ ∈ Lα,β. Draw an edge • ← • for every inclusion
Vαβγ →֒ Uα. This gives a quiver that expresses the underlying struc-
ture of the covering. This quiver carries a natural ring representation,
take for every vertex corresponding to Uα the ring OX(Uα) and for ev-
ery vertex corresponding to Vαβγ the ring OX(Vαβγ), to every edge take

3We will add a reference to [EGA I60] for the benefit of readers using the free
www.numdam.org version. Unfortunately, in this case there is no equivalence though the
results follow easily from [EGA I60, §1] together with the well-known fact that a sheaf F
is quasi-coherent if and only if its restriction to an affine open set U = Spec(A) is such

that F|U ∼= fM for a certain A-module M .
4See the previous footnote.
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the restriction homomorphism OX(Uα) → OX(Vαβγ). Let R = R(X,U)
be the ring representation associated to the scheme X and the covering
U = {Uα, Vαβγ}α,β∈L0,γ∈Lα,β

. A module over a ring representation of a graph
R is the data of an R(v)-module M(v) for each vertex v and a morphism
M(r) : M(v) → M(w) for each edge r : v → w that is R(v)-linear. Such
a representation M is called quasi-coherent if for each edge r as above the
morphism 1⊗M(r) : R(w)⊗R(v) M(v)→M(w) is an isomorphism of R(w)-
modules. Then there is an equivalence of categories between quasi-coherent
sheaves on X and quasi-coherent module representations on R(X,U). Ac-
tually, what is proved in [EE] is that the category of quasi-coherent module
representations of an arbitrary representation by rings R of a quiver pos-
sesses a generator.

Note that if X is quasi-compact and quasi-separated we may choose a
finite quiver to represent Aqc(X) as its quasi-corent module representations.
As an example, take X = P1

K . Using the obvious two affine open subsets,
we obtain the quiver • → • ← • and its representation

K[t]→ K[t, t−1]← K[t−1].

Remark. The existence of a generator in Aqc(X) has been well-known under
some hypothesis over the scheme X for a long time. The first to prove it
in general was Gabber in an unpublished letter to Conrad [C, p. 28]. For a
quasi-compact and quasi-separated scheme it is shown to exist in [TT, B.3.],
that uses [EGA I, Corollaires (6.9.9), (6.9.12)]5.

1.5. If A is an abelian category we will denote by C(A) its category of
complexes and by D(A) its (unbounded) derived category. Conditions on its
homologies will be denoted by a subscript in D. We will denote by K(A) the
homotopy category of complexes of A. As we recalled in the introduction,
the construction of D(A) via calculus of fractions does not guarantee that
it has small hom-sets. However, if A is a Grothendieck category then D(A)
has small hom-sets by [AJS1, Corollary 5.3]. This is achieved by identifying
D(A) with the subcategory of K(A) formed by K-injective complexes. A
complex I• is K-injective if for every acyclic complex A• ∈ K(A) the complex
Hom•(A•, I•) is acyclic. The dual notion is called K-projective. These
notions are due to Spaltenstein [Sp, 1.5]. An important property of K-
injective objects is that

HomK(A)(M
•, I•)→̃HomD(A)(M

•, I•).

for every M• ∈ K(A). The notion of K-injective complex is extremely useful
as it allows to compute right derived functors. A list of equivalent charac-
terization of these complexes can be found in [L, Proposition (2.3.8)]; note
that in loc.cit. K-injective is called q-injective.

Theorem 1.6. Let X be a scheme. For the category D(Aqc(X)) the axioms
(i), (iv) and (v) from 1.1 always hold.

5See [EGA I60, (9.4.9)] together with [EGA IV1, (1.7.7)].



QUASI-COHERENT SHEAVES AND STABLE HOMOTOPY 7

Proof. Most of this assertions are classic.
The statement (i) is trivial because a derived category is triangulated by

construction (cfr. [L, Example (1.4.4)]).
The existence of coproducts (iv) is due to the fact that a coproduct in

A(X) of a family of objects in Aqc(X), remains quasi-coherent by [EGA I,
Corollaire (2.2.2)]6. But coproducts of sheaves are exact because the cate-
gory of sheaves of modules A(X) satisfies AB5 by [Gr, Proposition 3.1.1], as
recalled before. Thus coproducts of complexes represent coproducts in the
derived category.

Finally, (v) is satisfied because a cohomological functor from the derived
category of a Grothendieck category to Ab is representable by [AJS1, The-
orem 5.8]. �

2. Semi-separated maps

In this section we will discuss a mild generalization of separated maps
that it is stronger than quasi-separated and that encompasses the most
useful property of separated maps for cohomology. Semi-separated schemes
have already been considered in the context of cohomology and K-theory by
Thomason and Trobaugh [TT] and Thomason’s students through a condition
on the existence of certain affine bases of the topology of X (see Proposition
2.4 below and the remark after 2.5). In the context of moduli problems they
arise as schemes with affine diagonal, see, for instance, the introduction of
[To]. Neither of these references give a systematic development of its main
properties nor they give the equivalence between both characterizations, so
we do it here.

Definition. A map of schemes f : X → Y is called semi-separated if the
associated diagonal map ∆f : X → X×Y X is affine. For the notion of affine

map and its basic properties, see [EGA I, §9.1]7. We will use the notation
∆X|Y for ∆f indifferently.

Remark. Note that a separated morphism is semi-separated because a closed
embedding is an affine map [EGA I, Proposition (9.1.16) (i)]. Also, an affine
morphism is quasi-compact [EGA I, Proposition (9.1.3)], so it follows that
a semi-separated morphism is quasi-separated.8

Lemma 2.1. Let f : X → Y and g : Y → Z be morphisms of schemes. If g
is semi-separated, then the canonical morphism h : X ×Y X → X ×Z X is
affine.

6Cfr. footnote on page 5.
7[EGA II, §1]
8You may susbstitute the citations in this paragraph by [EGA II, Proposition (1.6.2)]

and [EGA II, Proposition (1.2.4)]
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Proof. By [EGA I, Proposition (0.1.4.8)] (or use Yoneda’s lemma) we have
a cartesian square

X ×Y X
h
- X ×Z X

Y

p

?
∆g
- Y ×Z Y

f×Zf

?

where p and h denote the obvious natural morphisms. Now ∆g is affine
by assumption and therefore h is affine by base-change [EGA I, Proposition
(9.1.16)]9. �

Proposition 2.2. In the category of schemes, we have the following:

(i) An embedding (or more generally a radical morphism) is semi-
separated.

(ii) The composition of semi-separated maps is semi-separated.
(iii) If f : X → Y is a semi-separated S-morphism and g : S′ → S is a

scheme map, then fS′ : X ×S S′ → Y ×S S′ is semi-separated.
(iv) If f : X → X ′ and g : Y → Y ′ are semi-separated S-morphisms,

then f ×S g : X ×S Y → X ′ ×S Y ′ is semi-separated.
(v) If the composition of two morphisms g ◦ f is semi-separated then f

is semi-separated.
(vi) If a morphism f is semi-separated then the same is true for its

reduced associated morphism fred.

Proof. To see (i), note that a radical morphism, in particular, an embedding
is separated by [EGA I, Proposition (5.3.1), (i)], so it is semi-separated. For
(ii), let f : X → Y and g : Y → Z be semi-separated maps. We have the
following commutative diagram

X
∆X|Z

- X ×Z X

X ×Y X

h

-

∆X|Y
-

(2.2.1)

By hypothesis ∆X|Y is affine and, being g semi-separated, h is also affine
by Lemma 2.1. As a consequence, ∆X|Z is affine as wanted. With (i) and
(ii) proved, the argument [EGA I, Remarque (0.1.3.9)] proves that (iii) and
(iv), are equivalent, so let us prove the former. Note that (X×S S′)×(Y ×SS′)

(X×S S′) ∼= (X×Y X)×S S′ and ∆X×SS′|Y ×SS′
∼= ∆X|Y ×S idS′ so the result

follows from [EGA I, Proposition (9.1.16) (iii)]. To prove (v) set f : X → Y
and g : Y → Z. Factor f as

X
Γf
−→ X ×Z Y

p2

−→ Y.

9[EGA II, Proposition (1.6.2)]
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Using (iv) we see that p2 = (g ◦ f) ×Z idY is semi-separated and Γf is
semi-separated by (i), therefore, by (ii), f is semi-separated.

Finally, the diagram

Xred
fred

- Yred

X

jX

?
f

- Y

jY

?

where jX and jY are the canonical embeddings, commutes. By (i), (ii) and
(v) it follows that fred is semi-separated10. �

Proposition 2.3. To be semi-separated is local on the base. In other words,
let f : X → Y be a morphism of schemes and let {Vα}α∈L be an open covering
of Y , then f is semi-separated if, and only if, its restrictions f−1(Vα)→ Vα

are semi-separated for all α ∈ L.

Proof. The “only if” part follows easily from Proposition 2.2. For the “if”
part, let us check that the map ∆X|Y is affine. Let Uα := f−1(Vα) for
each α ∈ L. Note that Uα ×Y Uα

∼= Uα ×Vα Uα, therefore if we check
that {Uα ×Vα Uα}α∈L cover X ×Y X, we are done. And this follows from
an argument similar to the last part of the proof of [EGA I, Proposition
(5.3.5)]11. �

Proposition 2.4. Let Y be an affine scheme. Let {Uα}α∈L be an affine
open covering of X. A morphism of schemes f : X → Y is semi-separated
if, and only if, for any pair of indices α, β ∈ L the open subset Uα ∩ Uβ is
affine.

Proof. Note that the open subsets Uα×Y Uβ constitute an affine covering of

X ×Y X and ∆−1
f (Uα ×Y Uβ) = Uα ∩ Uβ which is affine by hypothesis. So,

this means that ∆f is affine i.e. f is semi-separated. �

2.5. In the previous proposition the affine base scheme plays a very limited
role, in fact, the characterization is independent of it, so the condition is
equivalent to saying that the canonical map X → Spec(Z) is semi-separated.
In this case we say simply that the scheme X is semi-separated.

Remark. Proposition 2.4. shows us that being a semi-separated scheme
in our sense is precisely the same as Thomason and Trobaugh’s notion in
[TT, Appendix B.7]. Note that the same applies to the definition of semi-
separated morphism.

Corollary 2.6. A scheme X is separated if, and only if, X is semi-separated
and given an affine open covering {Uα}α∈L of X the canonical morphism

Γ(Uα,OX)⊗ Γ(Uβ ,OX)→ Γ(Uα ∩ Uβ ,OX)

10For the first cite to EGA in this proof we could use [EGA II, Proposition (5.5.1)], for
the second [EGA I60, (3.5.1)] and for the last [EGA II, Proposition (1.6.2)]

11[EGA I60, Proposition (5.5.5)]
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is surjective.

Proof. This a restatement of [EGA I, Proposition (5.3.6)]12.

Example. Let K be a field. The line “with its origin doubled”, X i.e.
the scheme obtained gluing two copies A1

K of along A1
K \ {0} using the

identity as gluing map is semi-separated. Note that an open subset of X
is the complementary subset of a finite number of closed points. The most
problematic case arises from removing one of the doubled points. Denote by
01 and 02 the two points corresponding to the origin then (X \01)∩(X \02)
is affine and for the rest of couples of affine subsets the fact that their
intersection is affine is clear from this. However X is not separated as it
is well-known. If we do the same thing with the plane A2

K , we obtain a
scheme X ′ which is not semi-separated. Denote again by 01 and 02 the two
points corresponding to the origin. The intersection of affine open subsets
(X ′ \ 01) ∩ (X ′ \ 02) (both isomorphic to A2

K), is A2
K \ {0}, which is not

an affine open subset. Therefore X ′ is not semi-separated. Note that X ′

is quasi-separated because it is noetherian, being of finite type over a field.
We conclude that the implications

separated ⇒ semi-separated ⇒ quasi-separated

are all strict.

Corollary 2.7. A morphism f : X → Y is semi-separated if, and only if,
for every open subset V of Y such that V is semi-separated, then the open
subset f−1(V ) of X is also semi-separated.

Proof. The direct implication is a consequence of Proposition 2.2. The con-
verse follows immediately from Proposition 2.3. �

Remark. As an example of the importance of the semi-separatedness condi-
tion let us mention the following result of Totaro [To, Proposition 8.1]. For
a smooth scheme X over a field the fact that every coherent sheaf on X is
a quotient of a vector bundle is equivalent to X being semi-separated. This
gives a condition that implies that the natural map Knaive

0 (X)→ K0(X) in
K-theory is an isomorphism. In order to study quasi-coherent sheaves on
more general situations like algebraic spaces or algebraic stacks we expect
that this condition is the right one to obtain results generalizing those that
hold for schemes.

3. Closed structure

3.1. Derived tensor product. From now on, we will abbreviate and
denote simply by D(X) the category D(A(X)) and by K(X) the category
K(A(X)). We recall the definition of tensor products in this category. A
complex P• is called K-flat if for every acyclic complex A• ∈ K(X) the
complex P•⊗L

OX
A• is acyclic [Sp, Definition 5.1]. Given complexes F• and

12[EGA I60, Proposition (5.5.6)]



QUASI-COHERENT SHEAVES AND STABLE HOMOTOPY 11

G• in D(X), we may compute F• ⊗L
OX
G• taking a K-flat resolution [Sp,

Propostion 6.5] of either F•, P•
F → F

•, or of G•, P•
G → G

•. In other words

P•
F ⊗OX

G•−̃→F• ⊗L
OX
G•←̃−F• ⊗OX

P•
G .

where the tensor product of complexes is defined as usual (cfr. [L, (1.5.4)])
and the isomorphism is understood in the derived category. This is not
trivial because K-flat resolutions are not unique up to homotopy —i.e. are
not unique in K(X). See §2.5, especially (2.5.7), in loc.cit. for a discussion
of ⊗L in D(X) (denoted there ⊗)13.

3.2. Internal hom. There is another essential bifunctor defined on the
category D(X), namely, RHom•

X . Given complexes F• and G• in D(X), we
define it deriving the functor Hom•

X (defined, for instance in [L, (2.4.5)]).
To compute it, fix a K-injective resolution G• → I•G . So we have

RHom•
X(F•,G•) = Hom•

X(F ,I•G).

Remark. The existence of K-injective resolutions for sheaves of modules on
a ringed space is due to Spalstenstein [Sp]. The reader will find a proof valid
for any Grothedieck category (in particular for Aqc(X) for any scheme X)
in [AJS1, Theorem 5.4].

Lemma 3.3. On a quasi-compact and semi-separated scheme X, every
F ∈ D(Aqc(X)) has a K-flat resolution (in K(X)) P•

F → F
• made up of

quasi-coherent sheaves.

Proof. The lemma is a very slight generalization of [AJL1, Proposition (1.1)].
We have substituted the hypothesis of separated by semi-separated. In the
proof of the cited result it is only used the fact that a finite intersection of
affine open subsets of X is affine, as for instance, to assert that the maps
λi (Remark (b) at the end of page 11 in loc.cit. ) are affine. But this holds
precisely in the semi-separated case as follows from Proposition 2.4. �

3.4. Using the previous lemma we are able to define a bifunctor

−⊗L
OX
− : D(Aqc(X)) ×D(Aqc(X))→ D(Aqc(X))

whenever X is a quasi-compact and semi-separated scheme. Indeed, the
tensor product of quasi-coherent modules is again quasi-coherent by [EGA I,
Corollaire (1.3.12), (i)]14. Therefore if F ,G ∈ D(Aqc(X)) we have F• ⊗L

OX

G• ∼= P•
F ⊗OX

G• and this last complex is made of quasi-coherent sheaves.

3.5. The quasi-coherator. Recall briefly that, for a quasi-compact and
quasi-separated scheme X, the canonical inclusion i : Aqc(X) → A(X) has
a right adjoint QX : A(X) → Aqc(X). The functor i is exact so it in-
duces a ∆-functor i : D(Aqc(X))→ D(X) with right adjoint RQX : D(X)→
D(Aqc(X)). We denote this adjunction by i ⊣ RQX . Most of the time one

13See [L, §2.5]. In [L, Definition (2.5.1)] the terminology q-flat is used for K-flat.
14[EGA I60, Corollaire (1.3.12), (i)]
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omits writing the functor i, leaving it implicit. The definition of QX goes
back to [I2, p. 187, Lemme 3.2]. One can find its construction also in [TT,
B.12, Lemma]. This functor is sometimes called the quasi-coherator. It is
clear that the essential image of i is contained in Dqc(X) where by this we
denote the full subcategory of D(X) formed by the complexes whose homolo-
gies are quasi-coherent sheaves. If X is quasi-compact and semi-separated
scheme then the induced functor D(Aqc(X)) → Dqc(X) is an equivalence
of categories with quasi-inverse induced by RQX as is provided by [BN,
Corollary 5.5] or [AJL1, Proposition (1.3)]. In both references the separated
hypothesis can be weakened to semi-separated.

3.6. One must be careful with the functor QX and its derived functor RQX ,
they do not commute with localization. If j : U →֒ X is the canonical
inclusion of an open subset U into its ambient scheme X, then for F• ∈ D(X)
the canonical map j∗RQXF

• → RQU j∗F• need not be an isomorphism, even
in simple cases.

Let us illustrate this fact by an example. First of all note that the functor
QX being a righty adjoint is left exact and therefore R0QXF = QXF with
F ∈ A(X), therefore it is enough to treat the case of QX . Now consider
X = Spec(R) with R a discrete valuation ring. This affine scheme has two
points, the generic point ξ corresponding to the zero ideal, and the closed
point x corresponding to the maximal ideal. There is just a nonempty

open subset different from X, U = {ξ}. To give a sheaf of R̃-Modules F
is the same as to give a R-linear map M → L where M is a R-module
and L is a K(R)-vector space where K(R) denotes the field of fractions of
R. Note that M = F(X) and L = F(U). The sheaf F is quasi-coherent
precisely when M ⊗R K(R) ∼= L and the map M → L is the canonical
restriction map. Note that QXF is the sheaf whose associated map is M →
M ⊗R K(R) and the map QXF → F is the obvious one. Take any F that is
not quasi-coherent. Then the sheaf QU j∗F corresponds to the K(R)-vector
space L while j∗QXF corresponds to M ⊗R K(R) and the natural map
M ⊗R K(R) → L is not an isomorphism by assumption. (Note that here
Enochs and Estrada’s description of sheaves as module representations of
the quiver ring R → K(R) is isomorphic to the category of sheaves over
Spec(R).)

3.7. The internal hom. Let X be a quasi-compact and semi-separated
scheme. The functor QX allows us to introduce an internal hom-functor
(or function space functor) in Aqc(X) and, deriving it, in D(Aqc(X)). It
is well-known that for F ,G ∈ Aqc(X) ⊂ A(X) it is not guaranteed that
HomX(F ,G) ∈ Aqc(X). However, QXHomX(F ,G) is obviously a quasi-
coherent sheaf. With this in mind, we define

Hom
•
X(F•,G•) := RQXRHom•

X(F•,G•)

for F•,G• ∈ D(Aqc(X)). In what follows we will often argue by localizing
to small open subsets. The definition of Hom makes it clear that does not
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localize by the previous discussion on RQX . In every instance that we need
to use a localization argument we will refer the property we want to show to
a property of HomX that is compatible with localizations (by its definition).

Proposition 3.8. Let X be a quasi-compact and semi-separated scheme.
Let F ,G,H ∈ D(Aqc(X)) we have a natural isomorphism in D(Aqc(X))

HomD(Aqc(X))(F ,Hom
•
X(G,H))→̃HomD(Aqc(X))(F ⊗

L
OX
G,H).

In other words, we have an adjunction − ⊗L
OX
G ⊣ Hom

•
X(G,−) in the

category D(Aqc(X)).

Proof. Consider the following chain of isomorphisms:

HomD(Aqc(X))(F
•,Hom

•
X(G•,H•)) ∼=

∼= HomD(X)(F
•,RHom•

X(G•,H•)) (i ⊣ RQX)

∼= HomD(X)(F
• ⊗L

OX
G•,H•) ([L, (3.5.2), (d)])

∼= HomD(Aqc(X))(F
• ⊗L

OX
G•,H•).

For the first and last isomorphisms note that the canonical embedding func-
tor i : D(Aqc(X)) → D(X) is full because it factors through the equiva-
lence of categories D(Aqc(X)) → Dqc(X) in 3.5 and the full embedding
Dqc(X) →֒ D(X). The composed isomorphism is the one we were looking
for. �

Remark. We also have that the adjunction − ⊗L
OX
G ⊣ Hom

•
X(G,−) holds

internally in D(Aqc(X)) for every G ∈ D(Aqc(X)), i.e. we have the following
canonical isomorphism for all F and H in D(Aqc(X))

Hom
•
X(F ,Hom

•
X(G,H))→̃Hom

•
X(F ⊗L

OX
G,H).

This follows formally from the axioms of closed category, see [L, Exercise
(3.5.3) (e)].

Theorem 3.9. Let X be a quasi-compact semi-separated scheme. The cat-
egory D(Aqc(X)) has a natural structure of symmetric closed category. In
other words, axiom (ii) of 1.1 holds.

Proof. First, the data (D(Aqc(X)),⊗L
OX

,OX ) together with the compati-

bility diagrams correspond to a monoidal category. Indeed, by [L, Exam-
ples (3.5.2) (d)] this is the case for (D(X),⊗L

OX
,OX). But the category

D(Aqc(X)) is equivalent to Dqc(X), that is a full subcategory of D(X).

Once we know that the bifunctor ⊗L
OX

restricts to D(Aqc(X)), all the di-
agrams corresponding to the coherence axioms belong to this subcategory.
The adjunction − ⊗L

OX
G ⊣ Hom

•
X(G,−) for every G ∈ D(Aqc(X)), holds

by Proposition 3.8. It is clear that both bifunctors are ∆-functors in either
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variable. Finally, consider the diagram

OX [r]⊗L
OX
OX [s]

∼
- OX [r + s]

OX [s]⊗L
OX
OX [r]

θ
?

∼
- OX [r + s]

(−1)rs

?

where θ is defined as in [L, (1.5.4.1)]. With the sign introduced in this
definition it is clear that the square is commutative, having in mind that
OX is K-flat considered as a complex concentrated in degree 0. Note that θ
corresponds to T in [HPS, Definition A.2.1(4)]. �

4. Strongly dualizable generators

4.1. Let T be a triangulated category. An object E of T is called compact
if the functor HomT(E,−) commutes with arbitrary coproducts. Another
way of expressing this condition is that a map from E to a coproduct factors
through a finite subcoproduct.

Proposition 4.2. Let X be a quasi-compact semi-separated scheme. The
category D(Aqc(X)) is generated (in the sense of 1.2) by compact objects.

Proof. This is a generalization of [N2, Proposition 2.5], where it is stated
for a quasi-compact, separated scheme. The proof of loc.cit. is based on
Lemma 2.6 there. Note that the only property of separated schemes that
it is used in the proof of the Lemma is that the intersection of open affine
subschemes is affine, something that holds when X is just semi-separated
by Proposition 2.4. �

4.3. A complex F• ∈ D(Aqc(X)) is called strongly dualizable if, and only if,
the canonical map

Hom
•
X(F•,OX )⊗L

OX
G• −→Hom

•
X(F•,G•)

is an isomorphism for all G• ∈ D(Aqc(X)), [HPS, Definition 1.1.2].
A complex E• ∈ C(X) is called perfect if for every x ∈ X there is an

open neighborhood x ∈ U ⊂ X such that, denoting j : U →֒ X the canonical
inclusion, the complex j∗(E•) is quasi-isomophic to a bounded complex made
up of locally free finite-type Modules over U .

Proposition 4.4. Let X be a quasi-compact semi-separated scheme. A
perfect complex in D(Aqc(X)) is strongly dualizable.

Proof. Let E• be a perfect complex and G• ∈ D(Aqc(X)). Choose a K-
injective resolution G• → I•G in such a way that

RHom•
X(E•,G•) = Hom•

X(E•,I•G).

Being E• a perfect complex and I•G of quasi-coherent homology, it follows
that Hom•

X(E•,I•G) has quasi-coherent homology too, by [TT, Theorem
2.4.1]. Now, using the equivalence of categories D(Aqc(X))→̃Dqc(X) from
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3.5 we have that Hom
•
X(E•,G•) ∼= RHom•

X(E•,G•). The same argument
applies to Hom

•
X(E•,OX), so we are reduced to prove that

RHom•
X(E•,OX )⊗L

OX
G• −→ RHom•

X(E•,G•)

is an isomorphism in D(X). After taking appropriate resolutions, we see
that this is a local problem. Restricting to a small enough open set we can
assume that each E i are free modules of finite type for every i ∈ Z and in
this case the fact that the map is an isomorphism is clear. �

4.5. In 1.2 we have defined what it means for an object of an additive
category to be a generator. Note, however that the notion used in the
definition of stable homotopy theory is stronger (see [HPS, Definition 1.1.4
(c)]). To distinguish both notions, we will say, for a triangulated category
T in which all coproducts exist, that a set of objects S generates T in the
strong sense if the smallest triangulated subcategory closed for coproducts
that contains S is all of T, in accordance with 1.1 (iii) (=[HPS, 1.1.4 (d)]).
These two notions agree, for the cases we are interested in, by [N2, Lemma
3.2] which says that T is a triangulated category generated by a set of
compact objects {Tλ /λ ∈ Λ} containing all translations (suspensions) of its
members if and only if this set generates T in the strong sense.

Lemma 4.6. Let X be a quasi-compact semi-separated scheme and let U
be an affine open subset of X and denote by j : U →֒ X, the canonical
inclusion. If E• is a compact object in D(Aqc(X)) then its restriction, j∗E•,
is a compact object in D(Aqc(U)).

Proof. X is semi-separated and U affine implies that j is an affine map. As
a consequence the functor j∗ is exact and induces a functor in the derived
category without need to derive it. Note that j∗ preserves quasi-coherence.
Let {F•

λ /λ ∈ Λ} be a set of objects in D(Aqc(U)). The canonical morphism
φ : ⊕λ∈Λ j∗F

•
λ →̃ j∗ ⊕λ∈Λ F

•
λ is an isomorphism. Therefore we have the

following

⊕λ∈Λ HomD(Aqc(U))(j
∗E•,F•

λ) ∼=
∼= ⊕λ∈Λ HomD(Aqc(X))(E

•, j∗F
•
λ) (j∗ ⊣ j∗)

∼= HomD(Aqc(X))(E
•,⊕λ∈Λj∗F

•
λ) (E• compact)

∼= HomD(Aqc(X))(E
•, j∗ ⊕λ∈Λ F

•
λ) (φ isomorphism)

∼= HomD(Aqc(U))(j
∗E•,⊕λ∈ΛF

•
λ). (j∗ ⊣ j∗)

So we conclude that j∗E• is a compact object. �

Proposition 4.7. Let X be a quasi-compact semi-separated scheme. An
object in D(Aqc(X)) is compact if and only if it is a perfect complex.

Proof. Suppose first that X is affine, namely X = Spec(A). By [AJS2,
Lemma 4.3], in D(A-Mod) ∼= D(Aqc(X)) the compact objects are just the
perfect ones.
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Now, for general quasi-compact semi-separated X, let E• be a compact
object. Let U be an affine open subset of X and denote by j : U →֒ X, the
canonical inclusion. By Lemma 4.6, j∗E•, is a compact object and therefore,
by the previous discussion it is perfect. But to be perfect is a local condition,
therefore E• is perfect.

Let us see now that perfect implies compact. Let E• be a perfect complex
and {F•

λ ∈ D(Aqc(X)) /λ ∈ Λ}. Consider the canonical map

φ : ⊕λ∈Λ RHomX(E•,F•
λ) −→ RHomX(E•,⊕λ∈ΛF

•
λ)

We want to show first that φ is an isomorphism in D(X), a local question,
therefore we may take a point x ∈ X and an open neighborhood V ⊂ X of
x such that E•|V is a bounded complex of free finite type modules. Replace
X by V . If the complex E• has length one then it is trivial. If the complex
has length n > 1, suppose that Eq is the first nonzero object for a certain

q ∈ Z. Then there is a distinguished triangle Eq[−q]→ E• → E ′•
+
→ with E ′•

of length n− 1. The isomorphism holds for Eq[−q] and for E ′• by induction,
therefore it has to hold for E•. Now, arguing as in [TT, Theorem 2.4.1]
we have that RHomX(E•,F•

λ) ∈ Dqc(X). We have the following chain of
canonical isomorphisms

⊕λ∈Λ HomD(Aqc(X))(E
•,F•

λ) ∼=

∼= H0(⊕λ∈Λ RHom•
X(E•,F•

λ)) (H0 commutes with ⊕)

∼= H0(⊕λ∈ΛRΓ(X,RHom•
X(E•,F•

λ))

∼= H0(RΓ(X,⊕λ∈Λ RHom•
X(E•,F•

λ)) (by [L, Corollary (3.9.3.3)])

∼= H0(RΓ(X,RHom•
X(E•,⊕λ∈ΛF

•
λ)) (via φ)

∼= HomD(Aqc(X))(E
•,⊕λ∈ΛF

•
λ).

And this shows that E• is compact in D(Aqc(X)). �

Remark. The fact that for a quasi-compact and separated scheme X, a per-
fect complex is a compact object in D(Aqc(X)) and reciprocally is already
stated in [N2, Example 1.13 and Corollary 2.3].

Theorem 4.8. Let X be a quasi-compact semi-separated scheme. Axiom
(iii) holds in the category D(Aqc(X)).

Proof. The proof is contained in the previous discussion. Indeed, by Propo-
sition 4.2, D(Aqc(X)) is compactly generated. By the discussion in 4.5 this
means that there exists a set of compact objects such that the smallest trian-
gulated subcategory of D(Aqc(X)) closed for coproducts is all of D(Aqc(X)).
Proposition 4.7 tells us that the compact generators are perfect complexes.
But perfect complexes are strongly dualizable by Proposition 4.4, so we have
completed the proof. �

Corollary 4.9. Let X be a quasi-compact semi-separated scheme. The cat-
egory D(Aqc(X)) is a stable homotopy category in the sense of [HPS].
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Proof. Combine Theorems 1.6, 3.9 and 4.8. �

Corollary 4.10. Let X be a quasi-compact semi-separated scheme. The
category D(Aqc(X)) is an unital algebraic stable homotopy category in the
sense of [HPS].

Proof. The adjective “algebraic” just means that the set of generators is
formed by compact objects [HPS, after Definition 1.1.4] and this holds by
Proposition 4.7. And “unital” means that the unit for the tensor product
bifunctor, OX , is compact, which is clear. �

Remark. Some readers may wonder if given a scheme X, replacing the cate-
gory D(Aqc(X)) by Dqc(X), the semi-separation hypothesis could be relaxed.
It does not seem so, at least for property (ii) —being a closed category.
One should invoke the equivalence mentioned in 3.5, and again, the semi-
separated hypothesis is present. Note that the equivalence implies that in
this case Dqc(X) is also a stable homotopy theory.

Remark. By [BvdB, Theorem 3.1.1.(2)] (or [LN, Theorem 4.2.] with a dif-
ferent construction in the separated case), the category D(Aqc(X)) is not
only algebraic, but even monogenic (i.e. generated by a single compact ob-
ject). Note that in [LN] it is used systematically the equivalence between
D(Aqc(X)) and Dqc(X).

5. On the closed structure of D(Aqc(X))

In this section we will discuss a rather technical question, the relationship
between the closed structures in Aqc(X) and D(Aqc(X)) where X denotes
a (quasi-compact and semi-separated) scheme. It is independent of the rest
of the discussion in the present paper, so it can be skipped if the reader is
not interested. In short, the definition in 3.7 of the internal-hom functor in
D(Aqc(X)) is not as the derived internal-hom functor in Aqc(X), as a matter
of fact it is defined as a certain composition of functors. This definition is
convenient for our proofs. We will show however that, whenever X is quasi-
compact and semi-separated, this can be interpreted as the derived functor
of the internal hom defined for Aqc(X) as long as we derive in the sense of
quasi-coherent sheaves i.e. with injective quasi-coherent resolutions.

For a scheme X, recalling the definitions of 3.5 and abbreviating as usual
D(X) and K(X) for D(A(X)) and K(A(X)), respectively, we have a com-
mutative diagram

K(Aqc(X))
i

- K(X)

D(Aqc(X))

qqc

?
i

- D(X)

q

?

where the map i : K(Aqc(X))→ K(X) is induced from the map i : Aqc(X)→
A(X) by additivity and the functors qqc and q are the canonical ones from
a homotopy category to its derived category.
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Let X be a scheme. Let G• ∈ D(Aqc(X)). Let us denote by Rqc(QX ◦
Hom•

X(G•,−)) the derived functor of the functor

QX ◦ Hom•
X(G•,−) : K(Aqc(X))→ D(Aqc(X))

i.e. for a complex F• ∈ K(Aqc(X)), take a K-injective resolution in Aqc(X)
F• → I•F , then

Rqc(QX ◦ Hom•
X(G•,F•)) = QX(Hom•

X(G•,I•F )).

Remark. The reader should be aware that, in general, it can be very different
to take derived functors in the sense of D(Aqc(X)) or of D(X). We will use
the notation Rqc for right derived functors in D(Aqc(X)). For an iluminating
discussion and further references cfr. [TT, B.4].

Proposition 5.1. Let X be a quasi-compact semi-separated scheme. Let
G• ∈ D(Aqc(X)). There is natural tranformation of ∆-functors

φG• = φ : Rqc(QX ◦ Hom•
X(G•,−)) −→Hom

•
X(G•,−).

Proof. Here and for the sake of simplicity we leave the functor i implicit in
the formulas. There are canonical natural transformations

ξ : q ◦ Hom•
X(G•,−) −→ RHom•

X(G•,−) ◦ qqc

and

ξ′ : qqc ◦QX −→ RQX ◦ q.

Together they induce the natural transformation

ξ′′ : qqc ◦QX ◦ Hom•
X(G•,−) −→ RQX ◦ RHom•

X(G•,−) ◦ qqc

but by the 2-universal property of derived functors this should factor through
the universal map

η : qqc ◦QX ◦ Hom•
X(G•,−) −→ Rqc(QX ◦ Hom•

X(G•,−)) ◦ qqc

by a natural transformation

φ : Rqc(QX ◦ Hom•
X(G•,−)) −→ RQX ◦ RHom•

X(G•,−)

which is our desired map. �

5.2. Let K• ∈ K(Aqc(X)) and K• → I•K be a K-injective resolution in A(X),
we have a commutative diagram

K• α
- I•K

QXI
•
K

γ

-

α′ -

where γ is the counit of the adjunction i ⊣ QX and α′ is the map adjoint to α.
Note that we omit the functor i for simplicity. Now, α is a quasi-isomorphism
and so is γ because I•K has quasi-coherent homology [AJL1, Proposition
(1.3)], therefore, by the commutativity, α′ is a quasi-isomorphism, too. It is
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clear that QXI
•
K is K-injective in K(Aqc(X)). Indeed, let A• be an acyclic

object of K(Aqc(X)), then

HomK(Aqc(X))(A
•, QXI

•
K) ∼= HomK(X)(iA

•,I•K) = 0

the last equality due to the fact that the functor i is exact —therefore iA•

is acyclic— and that I•K is K-injective.
There is a commutative diagram

QX(Hom•
X(G•,K•))

ξ′′
- Hom

•
X(G•,K•)

η
-

Rqc(QX Hom•
X(G•,K•))

φ

-

that may be described as follows. The map η is obtained applying the
functor QX ◦ Hom•

X(G•,−) to α′. To make ξ′′ explicit, we first apply the
functor Hom•

X(G•,−) to α and obtain

QX(ξ) : QX(Hom•
X(G•,K•))→ QX(RHom•

X(G•,K•))

then we let H• := RHom•
X(G•,K•) and α′′ : H• → I•H a K-injective resolu-

tion. Applying QX to this map we obtain ξ′ : QX(H•) → RQX(H•). Now
our desired description is ξ′′ = ξ′ ◦ QX(ξ). Note that φ is the unique map
that makes the diagram commute.

Lemma 5.3. Let X = Spec(A) be an affine scheme. Then, the natural
transformation φX,G• is an isomorphism for any G• ∈ D(Aqc(X)) ∼= D(A).

Proof. Let K• ∈ K(Aqc(X)) as in 5.2 and K• → I•K be a K-injective resolu-

tion in K(X). Note first that QX(−) = ˜Γ(X,−) and being X affine it is exact
whenever it is restricted to quasi-coherent sheaves. Take P • → Γ(X,G•) a

K-projective resolution in K(A) and let P• := P̃ •. The map φ in the last
diagram from 5.2 is identified with the composition of isomorphisms:

˜Hom•
X(G•, QXI

•
K) −̃→ ˜Hom•

X(G•,I•K) −̃→ ˜Hom•
X(P•,I•K)

thus φ is an isomorphism in D(Aqc(X)). �

Lemma 5.4. Let X be a quasi-compact semi-separated scheme, U a quasi-
compact open subset of X and u : U →֒ X the canonical embedding. There is
a natural isomorphism iX ◦Rqcu∗ →̃Ru∗ ◦ iU . (Notation as in the beginning
of the section).

Proof. By [AJL1, Proposition (1.3)] it is enough to show that Rqcu∗ →̃RQX◦
Ru∗ ◦ iU . Let K• ∈ K(Aqc(U)) and let iUK

• → I• be a K-injective resolution
(in K(X)). The induced map K• → QUI

• is a K-injective resolution in
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K(Aqc(U)). We have the following isomorphisms

Rqcu∗K
• ∼= u∗QUI

•

∼= QXu∗I
• ([TT, Appendix B.13])

∼= RQX(u∗I
•) (u∗I

• K-injective)

∼= RQXRu∗iUK
•. (I• is a resolution of iUK

•)

and our result follows. �

Theorem 5.5. Let X be a quasi-compact semi-separated scheme. Then, the
natural transformation φG• is an isomorphism for any G• ∈ D(Aqc(X)).

Proof. Again we omit for simplicity the functors i and i. Let U be a quasi-
compact open subset of X and u : U →֒ X the canonical embedding. We
will see that for every G• ∈ D(Aqc(X)) the morphism φG• ◦ Rqcu∗ is an
isomorphism. The theorem is the special case in which X = U . Let s(U)
denote the smallest number of open affines that are needed to cover U , we
will argue by induction on s(U).

If s(U) = 1 then U is an affine open subset of X and being X semi-
separated, the functor u∗ : Aqc(U)→ Aqc(X) is exact, therefore

Rqc(QX Hom•
X(G•,Rqcu∗K

•)) ∼= Rqc(QX Hom•
X(G•, u∗QUI

•))

where K• → I• is a K-injective resolution, which implies that K• → QUI
•

is quasi-coherent K-injective resolution in K(Aqc(X)). In this case it holds
that φG• ◦Rqcu∗ = φG• ◦u∗ and agrees with the composition of the following
chain of isomorphisms:

Rqc(QX Hom•
X(G•, u∗QUI

•)) ∼=
∼= QXu∗Hom•

U (u∗G•, QUI
•) (u∗QUI

• is K-inj. in K(Aqc(U)))

∼= u∗Rqc(QU Hom•
U (u∗G•,K•))

∼= Ru∗RQURHom•
U (u∗G•,K•) (by Lemma 5.3 for u)

∼= RQXRu∗RHom•
U (u∗G•,K•)

∼= RQXRHom•
X(G•,Ru∗K

•)

∼= RQXRHom•
X(G•, u∗K

•). (by the previous Lemma)

Take now U such that s(U) = n > 1. Take a finite covering U =
⋃n

i=1 Ui

where every Ui is an affine open subset of X. Denote by ui : Ui →֒ X and by
u′

i : Ui →֒ U the canonical embeddings. Let V :=
⋃n

i=2 Ui and W := U1 ∩ V .
It is clear that s(V ) = n−1. Also, observe that W =

⋃n
i=2(Ui∩U1) and the

open subsets Ui ∩ U1 are affine for every i ∈ {2, . . . , n} by semi-separation
(Proposition 2.4), therefore s(W ) ≤ n − 1. Let v : V →֒ X, w : W →֒ X,
v′ : V →֒ U and w′ : W →֒ U denote the canonical open embeddings. As
V and W are quasi-compact the maps v, w and u1 are quasi-compact and
quasi-separated. Consider the distiguished triangle obtained applying the
functor Ru∗ to the the Mayer-Vietoris triangle in D(U) associated to K• ∈
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D(Aqc(U)) for the open cover U = V ∪W .

K• −→ Ru′
1 ∗u

′
1
∗
K• ⊕ Rv′∗v

′∗K• −→ Rw′
∗w

′∗K• +
−→

(cfr. [L, Proof of Lemma (4.7.5.1), p. 188] and [AJL1, Proof of Corol-
lary (1.3.1)]). By Lemma 5.4, it yields a triangle in D(Aqc(X)) (ommiting
iX , iU . . . from the notation)

Rqcu∗K
• −→ Rqcu1 ∗u

′
1
∗
K• ⊕ Rqcv∗v

′∗K• −→ Rqcw∗w
′∗K• +

−→

Let K•
1 := Rqcu1 ∗u

′
1
∗K•, K•

2 := Rqcv∗v
′∗K• and K•

1 2 := Rqcw∗w
′∗K•, then

the previous triangle becomes

Rqcu∗K
• −→ K•

1 ⊕K
•
2 −→ K

•
1 2

+
−→ .

Applying the natural transformation φX,G• we obtain the following commu-
tative diagram (that we display transposed)

Rqc(QX Hom•
X(G•,Rqcu∗K

•))
φ
- Hom

•
X(G•,Rqcu∗K

•)

Rqc(QX Hom•
X(G•,K•

1 ⊕K
•
2))

?
φ1⊕φ2

- Hom
•
X(G•,K•

1 ⊕K
•
2)

?

Rqc(QX Hom•
X(G•,K•

1 2))
?

φ1 2
- Hom

•
X(G•,K•

1 2)
?

+

?

+

?

Note that φ2 and φ1 2 are isomorphisms in D(Aqc(X)) by the induction
hypothesis, while φ1 is an isomorphism because s(U1) = 1. We conclude
that φ is an isomorphism as wanted. �

6. The case of formal schemes

In this last section, we will prove how to transport the previous results to
the context of formal schemes and quasi-coherent torsion sheaves as defined
in [AJL2]. Let us recall briefly some basic facts and notations that will be
used throughout this section.

Let (X,OX) be a noetherian formal scheme with an ideal of definition
I. Denote by A(X) the category of all OX-modules. Consider the functor
Γ ′

X: A(X)→ A(X) defined by

Γ ′
XF := lim

−→
n>0

HomOX
(OX/In,F)

for F ∈ A(X). This functor does not depend on I but only on the topology of
the sheaf of rings OX. Let At(X) be the full subcategory of A(X) consisting
of sheaves F such that Γ ′

XF = F ; it is a plump subcategory of A(X). This
means it is closed for kernels, cokernels and extensions (cfr. [AJL2, begin-
ning of §1]). We will consider the subcategory Aqct(X) := At(X)∩Aqc(X). It
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is again a plump subcategory of A(X) by [AJL2, Corollary 5.1.3] and it de-
fines a triangulated subcategory of the derived category D(X) := D(A(X)),
namely Dqct(X), the full subcategory of D(X) formed by complexes whose
homology lies in Aqct(X). The inclusion functor Aqct(X)→ A(X) has a right
adjoint denoted Qt

X (see [AJL2, Corollary 5.1.5]). By taking of K-injective
resolutions we have a ∆-functor RQt

X : D(X)→ D(Aqct(X)).

Lemma 6.1. Let X be a locally noetherian formal scheme, the category
Aqct(X) is a Grothendieck category.

Proof. The fact that it is abelian and possesses direct limits follows from
[AJL2, Corollary 5.1.3]. Indeed, the category Aqct(X) is a plump subcategory
of A(X) and a plump subcategory of an abelian category is abelian, being
stable for kernels, cokernels and extensions (cfr. [L, (1.9.1)]). Direct limits
in Aqct(X) are exact because they are just direct limits in A(X). Finally,
the existence of a generating set follows from [AJL2, Lemma 5.1.4], a set
of generators is given by a set of representatives of isomophism classes of
coherent torsion sheaves. �

Theorem 6.2. Let X be a locally noetherian formal scheme. For the cate-
gory D(Aqct(X)) the properties (i), (iv) and (v) always hold.

Proof. This is similar to the proof of Theorem 1.6. Once again, (i) is trivial
because a derived category is triangulated. The existence of coproducts (iv)
is due to the fact that a coproduct in the category A(X) of sheaves belonging
to Aqct(X), remains quasi-coherent torsion by [AJL2, Corollary (5.1.3)]. But
coproducts of sheaves are exact as recalled before. Finally, (v) is satisfied
using again [AJS1, Theorem 5.8]. �

6.3. Let f : X → Y be a map of locally noetherian formal schemes and let
J ⊂ OX and K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂ J . If
fn : Xn → Yn with Xn := (X,OX/J n+1) and Yn := (Y,OY/Kn+1) is the
morphism induced by f , for each n ∈ N, then f can be expressed as [EGA I,
§10.6]15

f = lim
−→
n∈N

fn.

We say that a locally noetherian formal scheme X is semi-separated if the
diagonal map ∆f : X → X ×Spec Z X is an affine morphism where f : X →

SpecZ is the canonical map. By [EGA I, Proposition (10.16.2)]16 the mor-
phism f is affine if, and only if, f0 is. As a consequence, we can transport
the results of §2 to the context of locally noetherian formal schemes. In
particular, the following is true:

Proposition 6.4. Let X be a locally noetherian formal scheme and {Uα}α∈L

be an affine open covering of X. The formal scheme X is semi-separated if,
and only if, for any pair of indices α, β ∈ L the open subset Uα∩Uβ is affine.

15[EGA I60, §10.6]
16Unfortunately, there is no reference for this in [EGA I60]
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Proof. Follows immediately from the previous remark and Proposition 2.4.

6.5. We will now recall briefly for noetherian formal schemes the notions
given in Section 3 for ordinary schemes. For every F• ∈ D(X) there exists
a K-flat resolution P•

F→̃F
• [Sp, Proposition 5.6]. As a consequence there

exist a derived functor

F ⊗L
OX
− : D(X) ×D(X)→ D(X)

defined by F• ⊗L
OX
G• ∼= P•

F ⊗
L
OX
G•. Given F•,G• ∈ Dqct(X) the complex

F•⊗L
OX
G• has quasi-coherent torsion homologies. Indeed, by [AJL2, Propo-

sition 5.2.1 (a)], this is a local question and we can assume that X = Spf(A),
where A is a noetherian I-adic ring. Let X = Spec(A) and κ : X→ X be the
completion morphism. Let Z = V (I) be the closed subscheme of X associ-
ated to the ideal of definition. The exact functors κ∗ and κ∗ restrict to in-
verse isomorphisms between the categories Dqct(X) and DqcZ(X) ⊂ Dqc(X)
of those complexes whose homologies are supported in Z [AJL2, Proposition
5.2.4]. Thus for F•,G• ∈ Dqct(X) we have

F• ⊗L
OX
G• ∼= κ∗κ∗F

• ⊗L
OX

κ∗κ∗G
• ∼= κ∗(κ∗F

• ⊗L
OX

κ∗G
•)

and the result follows from the fact that κ∗F
• ⊗L

OX
κ∗G

• ∈ DqcZ(X) by

loc.cit. Corollary 3.1.1 and [L, (2.5.8)]. This allows us to define a bifunctor

−⊗L
OX
− : Dqct(X)×Dqct(X)→ Dqct(X)

together with the usual associativity coherence inherited from the bifunctor
−⊗L

OX
− in D(X).

Moreover, if X is semi-separated (or of finite Krull dimension) the functor
RQt

X provides an equivalence of categories between Dqct(X) and D(Aqct(X)).
To see it, it is enough to realize that in the proof of [AJL2, Proposition 5.3.1],
separated case, it is only used the fact that the intersection of two open affine
subsets is again affine (the semi-separation of X).

6.6. The category Dqc(X) is not well-behaved unless X is an ordinary scheme.
It is not guaranteed that Aqc(X) —and therefore Dqc(X)— has all coprod-
ucts, see [AJL2, §3]. On the contrary the subcategory Dqct(X) ⊂ Dqc(X)
has good properties, see loc.cit. §3 and §5, and constitutes a suitable choice
of cohomological coefficients for formal schemes.

The only drawback of this choice is that Dqct(X) does not contain the cate-
gory Dc(X) —the derived category of complexes with coherent cohomology.
This can be repaired as follows. Denote by Γ := RΓ ′

X the right-derived
functor of Γ ′

X and by Λ the functor

Λ := RHom•
OX

(RΓ ′
XOX,−) : Dqc(X)→ D(X).

Consider the category D̂(X) defined as the essential image of the functor

Λ and D̂qc(X) the subcategory of D̂(X) which corresponds to the essential
image of the functor Λ restricted to Dqc(X). The functors Λ and Γ restrict
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to quasi-inverse equivalences between the categories Dqct(X) and D̂qc(X)
[AJL2, Remarks 6.3.1 (1), (3)].

By the previous discussion, the results that we proved on Dqct(X) could

be transported by the equivalence to D̂qc(X). From now on, we will con-
centrate on Dqct(X). We warn the reader that these equivalences are not
compatible with their canonical inclusions in D(X). Observe that Dc(X) is

now a subcategory of D̂qc(X) because for all F• ∈ Dc(X) the canonical map
F• → ΛF• is an isomorphism as follows from applying [AJL2, Proposition
6.2.1 (1)] to the case E = OX.

Remark. Let A~c(X) be the category formed by those sheaves in A(X) which
are direct limits of its coherent submodules. The categories Aqct(X) ⊂
A~c(X) ⊂ Aqc(X) are plump subcategories of A(X). The category D~c(X) ⊂
Dqc(X) is the subcategory formed by the subcomplexes whose homologies
belong to A~c(X), see loc.cit. beginning of §1. We have that

Γ(D~c(X)) = Γ(Dqc(X)) = Dqct(X),

so the relation Λ = ΛΓ in loc.cit. Remark 6.3.1 (1) shows that

Λ(Dqct(X)) = Λ(D~c(X)) = Λ(Dqc(X)) = D̂qc(X).

In [AJL3, Theorem 0.1] it is proved that Λ|D~c(X) is isomorphic to the left

derived functor of the completion functor. That is why we interpret D̂qc(X)
as a completion of Dqc(X) for the canonical topology of OX. Note that
ΛΛ = Λ [AJL2, (b) in Remark 6.3.1 (1)].

6.7. Let X be a semi-separated noetherian formal scheme. In Dqct(X) there
is an internal hom defined (and to our knowledge introduced) in [AJS3, §1.2]
as:

Hom
•
X(F•,G•) := RQt

XRHom•
OX

(F•,G•).

for F•,G• ∈ Dqct(X). Using the same techniques as in Proposition 3.8 the
reader can check that

HomDqct(X)(F
•,Hom

•
X(G•,H•))→̃HomDqct(X)(F

• ⊗L
OX
G•,H•).

i.e. , for G ∈ Dqct(X) we have an adjunction − ⊗L
OX
G ⊣ Hom

•
X(G,−) in

Dqct(X).

Theorem 6.8. Let X be a noetherian semi-separated formal scheme. The
category Dqct(X) has a natural structure of symmetric closed category. In
other words, property (ii) of 1.1 holds.

Proof. The unit object for − ⊗L
OX
− is RΓ ′

XOX . We remark that there

is a canonical isomorphism RQt
XRΓ ′

XOX
∼= RΓ ′

XOX in Dqct(X). We will
denote this object by O′

X for convenience. Now reasoning as in Theorem 3.9,

the data (Dqct(X),⊗L
OX

,O′
X) together with the corresponding compatibility

diagrams define a monoidal category because using [L, Examples (3.5.2)
(d)] this is the case for (D(X),⊗L

OX
,OX). The category Dqct(X) is a full
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subcategory of D(X), and it is stable for the tensor product. To see that O′
X

is the unit object, consider the following chain of isomorphisms

F ∼= F ⊗L
OX
OX
∼= RΓ ′

XF ⊗
L
OX
OX (F ∈ Dqct(X))

∼= F ⊗L
OX

RΓ ′
XOX ([AJL1, Corllary (3.1.2)])

= F ⊗L
OX
O′

X.

And analogously F ∼= O′
X⊗

L
OX
F . The adjunction −⊗L

OX
G ⊣Hom

•
X(G,−),

holds for any G ∈ Dqct(X) by the discussion in the previous paragraph.
Again, it is clear that both bifunctors are ∆-functors in either variable and
that the square

O′
X[r]⊗L

OX
O′

X[s]
∼
- O′

X[r + s]

O′
X[s]⊗L

OX
O′

X[r]

θ
?

∼
- O′

X[r + s]

(−1)rs

?

commutes by [L, (1.5.4.1)]. �

6.9. Let X be a formal scheme. A complex E• ∈ C(X) is called perfect if for
every x ∈ X there is an open neighborhood U of x and a bounded complex
of locally-free finite type modules F• together with a quasi-isomorphism
F• → E•|U in C(U) or, what amounts to the same, an isomorphism F•→̃E•|U
in D(U) (cfr. [I1, Corollaire 4.3]).

Proposition 6.10. Let X = Spf(A) be an affine formal scheme such that A
is an I-adic noetherian ring. The category Dqct(X) is generated by a compact
object.

Proof. Using [AJL2, Propositions 5.2.4] it follows easily that the category
Dqct(X) is equivalent to DI(A), the full subcategory of the derived category
of A-modules such that its homologies are I-torsion. But this triangulated
category is generated by any Koszul complex K• associated to a sequence
of generators of I by [BN, Proposition 6.1], or, for a somehow more detailed
proof, [DG, Proposition 6.1]. Now K• is a perfect complex of A-modules (in
fact, it is strictly perfect), by [AJS2, Lemma 4.3], it is also a compact object
in D(A), and therefore in DI(A). We conclude that DI(A) is generated
by a compact object, or, what amounts to the same so does the category
Dqct(X). �

Lemma 6.11. Let X be a noetherian formal scheme and let U be an affine
open subset of X and denote by j : U →֒ X, the canonical inclusion. If E• is
a compact object in Dqct(X) then its restriction, j∗E•, is a compact object
in Dqct(U).

Proof. By [AJL2, Proposition 5.2.6] we have that Rj∗ takes complexes in
Dqct(U) into complexes in Dqct(X). Let {F•

α /α ∈ A} be a set of objects in
Dqct(U). By [AJL2, Proposition 3.5.2] we have an isomorphism

φ : ⊕α∈A Rj∗F
•
α →̃Rj∗ ⊕α∈A F

•
α,
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therefore

⊕α∈A HomD(U)(j
∗E•,F•

α)

∼= ⊕α∈A HomD(X)(E
•,Rj∗F

•
α) (j∗ ⊣ Rj∗)

∼= HomD(X)(E
•,⊕α∈ARj∗F

•
α) (E• compact)

∼= HomD(X)(E
•,Rj∗ ⊕α∈A F

•
α) (φ isomorphism)

∼= HomD(U)(j
∗E•,⊕α∈AF

•
α). (j∗ ⊣ Rj∗)

Note that the map j is adic because it is an open embedding. By [AJL2,
Corollary 5.2.11 (b)] the adjunction j∗ ⊣ Rj∗ restricts to the subcategory of
objects with quasi-coherent torsion homologies. So we conclude that j∗E•

is a compact object. �

Proposition 6.12. Let X be a noetherian formal scheme. The compact
objects in Dqct(X) are the perfect complexes.

Proof. Let us see that perfect implies compact. Let E• be a perfect complex
and let {F•

λ /λ ∈ Λ} be a family of complexes in Dqct(X). We will see first
that the canonical map

φ : ⊕λ∈Λ RHomX(E•,F•
λ) −→ RHomX(E•,⊕λ∈ΛF

•
λ)

is an isomorphism in D(X). This is a local question therefore we may take
a point x ∈ X and an open neighborhood V ⊂ X of x such that E•|V is a
bounded complex of free finite rank modules. Take V for X and let us check
that φ is an isomorphism. But this is clear. If the complex E• has length
one then, it is trivial. If the complex has length n > 1, suppose that q ∈ Z

is the first integer such that Eq 6= 0, that exists because E• is bounded.

Then there is a distinguished triangle Eq[−q] → E• → E ′•
+
→ with E ′• of

length n − 1. The fact holds for Eq[−q] and for E ′• by induction, therefore
it has to hold for E•. Arguing as in [TT, Theorem 2.4.1] we have that
RHomX(E•,F•

λ) ∈ Dqct(X). Now we have the following chain of canonical
isomorphisms

⊕λ∈Λ HomD(X)(E
•,F•

λ) ∼=

∼= H0(⊕λ∈Λ RHom•
X(E•,F•

λ)) (H0 commutes with ⊕)

∼= H0(⊕λ∈ΛRΓ(X,RHom•
X(E•,F•

λ))

∼= H0(RΓ(X,⊕λ∈Λ RHom•
X(E•,F•

λ)) (by [AJL2, Proposition 3.5.2])

∼= H0(RΓ(X,RHom•
X(E•,⊕λ∈ΛF

•
λ)) (via φ)

∼= HomD(X)(E
•,⊕λ∈ΛF

•
λ).

which show that E• is compact in Dqct(X).
Conversely, let us see that a compact object E• ∈ Dqct(X) is a perfect

complex. Let us assume first that X is affine, i.e. X = Spf(A) where A is
an I-adic noetherian ring. Consider the completion morphism κ : Spf(A)→
Spec(A). Let K• be a Koszul complex associated to a sequence of generators
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of I. By the proof of Proposition 6.10 K• := κ∗K̃• generates Dqct(X), and by
4.5 the smallest triangulated subcategory stable for coproducts containing
K• is all of Dqct(X). Applying [N1, Lemma 2.2] the thick subcategory17 of
Dqct(X) formed by its compact objects is the smallest one that contains K•

but all its objects are perfect because the subcategory of perfect complexes
of Dqct(X) is thick and contains K• as can be seen adapting the argument
in [TT, Proposition 2.2.13].

Assume now that X is a noetherian formal scheme and that E• is a com-
pact object in Dqct(X). Let U be an affine open subset of X and denote by
j : U →֒ X the canonical inclusion. By Lemma 6.11 j∗E• = E•|U is com-
pact and by the previous discussion it is perfect, but being perfect is a local
question, therefore E• is a perfect complex. �

Lemma 6.13. Let X be a noetherian formal scheme and let U be a open
subset of X. Let F• ∈ Dqct(X) and G• ∈ Dqct(U) a compact object. If
α : G• → F•|U is a morphism in Dqct(U) there exist compact objects G′• ∈

Dqct(U) and G̃• ∈ Dqct(X), an isomorphism β : G̃•|U→̃G
• ⊕ G′• and a mor-

phism α̃ : G̃• → F• in Dqct(X) such that it extends α ◦π1 : G•⊕G′• → F•|U,

i.e. there is an isomorphism β : G̃•|U→ G
• ⊕ G′• such that the diagram

G̃•|U

G• ⊕ G′
•

β ≀
?

α◦π1
- F•|U

eα|U

-

commutes.

Proof. Suppose first that X is affine, i.e. X = Spf(A) where A is an I-adic
noetherian ring. Let κ : X → Spec(A) be the completion morphism. Put
Z := X \ U and a ⊃ I be an open ideal of A such that Z = V (a). Let
J := κ∗ã and let DJ (X) be the full subcategory of D(X) whose objects
are the complexes with J -torsion homology [AJL2, Proposition 5.2.8]. Set
DqctJ (X) = DJ (X)∩Dqct(X). The equivalence of categories κ∗ : Dqct(X)→
DI(A) restricts to an equivalence between DqctJ (X) and Da(A). Thus the
triangulated category DqctJ (X) is generated by a compact object. Applying

[N2, Theorem 2.1] we obtain a compact object G̃• ∈ Dqct(X) and a morphism

α̃ : G̃• → F• in Dqct(X) that extends α ◦ π1 : G• ⊕ G•[1]→ F•|U.
If X is not affine, then let X = U ∪W1 ∪ · · · ∪Wn, where n ≥ 1 and

W1 . . . Wn are affine open subsets of X. By the affine case we know that
there is a compact object G•1 ∈ Dqct(W1) and a morphism α′ : G•1 → F

•|W1

in Dqct(W1) that extends α◦π1|U∩W1
to W1. Let u : U→ U∪W1, w : W1 →

U ∪W1 and j : U ∩W1 → U ∪W1 be the canonical inclusion maps. In this

17Thick subcategory = triangulated and stable for direct summands.



28 L. ALONSO, A. JEREMÍAS, M. PÉREZ, AND M. J. VALE

setting, we obtain a morphism of triangles

G̃•1
- Ru∗(G

• ⊕ G•[1])⊕ Rw∗G
•
1

- Rj∗(j
∗(G• ⊕ G•[1]))

+
-

F•|U∪W1

eα1

?

- Ru∗(F
•|U)⊕ Rw∗(F

•|W1
)

via α◦π1 and α′

?

- Rj∗(j
∗F•)

via α◦π1

?
+

-

Since G̃•1 |U
∼= G• ⊕ G•[1] and G̃•1 |W1

∼= G•1 then G̃•1 is a compact object in
U ∪W1. Furthermore α̃1 extends α ◦ π1 : G• ⊕ G•[1]→ F•|U to U ∪W1.

If n = 1 take α̃1 = α̃. If n > 1, proceed as before in n steps obtaining

a compact object G̃• together with a morphism α̃ : G̃• → F• in Dqct(X)
satisfying the desired conditions. �

Proposition 6.14. Let X be a noetherian formal scheme. The category
Dqct(X) is generated by compact objects.

Proof. Let F• ∈ Dqct(X), F• 6= 0. There exists an affine open subset U ⊂ X

such that F•|U 6= 0. By Proposition 6.10, Dqct(U) is compactly gener-
ated, therefore there is a compact object G• ∈ Dqct(U) together with a map
α : G• → F•|U such that α 6= 0. By the previous lemma α provides a non

zero morphism α̃ : G̃• → F• in Dqct(X) with G̃• a compact object. �

Lemma 6.15. Let X be a noetherian semi-separated formal scheme, E• ∈
Dqct(X) and F• ∈ D(X). We have the following isomorphism:

Hom
•
X(E•,RΓ ′

XF
•)−̃→Hom

•
X(E•,F•).

Proof. It is enough to check that there is an isomorphism

RHom•
X(E•,RΓ ′

XF
•)−̃→RHom•

X(E•,F•)

and this follows at once from [AJL2, Corollary 5.2.3]. �

Proposition 6.16. Let X be a noetherian semi-separated formal scheme
and E• ∈ Dqct(X) a perfect complex, then E• is strongly dualizable.

Proof. Let G• ∈ Dqct(X). We need to check that

Hom
•
X(E•,O′

X)⊗L
OX
G• −→Hom

•
X(E•,G•)

is an isomorphism. We have remarked in the proof of Theorem 6.8 that
O′

X = RΓ ′
XOX. The fact that E• is perfect implies that RHom•

X(E•,RΓ ′
XOX)

and RHom•
X(E•,G•) belong to Dqct(X). Therefore we are reduced to prove

that the canonical map

RHom•
X(E•,RΓ ′

XOX)⊗L
OX
G• −→ RHom•

X(E•,G•)

is an isomorphism in D(X). By the previous lemma we have the isomorphism

RHom•
X(E•,RΓ ′

XOX)−̃→RHom•
X(E•,OX)

which reduces us to check that the canonical map

RHom•
X(E•,OX)⊗L

OX
G• −→ RHom•

X(E•,G•)
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is an isomorphism in D(X). But this is a local problem and we can argue as
at the end of the proof of Proposition 4.4. �

Theorem 6.17. Let X be a noetherian semi-separated formal scheme. The
property (iii) holds in the category Dqct(X).

Proof. By Proposition 6.14, Dqct(X) is compactly generated. It follows then
from 4.5 that there exists a set of compact objects S such that the smallest
triangulated subcategory of Dqct(X) closed for coproducts containing S is the
whole category. As compact objects are perfect complexes by Proposition
6.12 and perfect complexes are strongly dualizable by Propostion 6.16, the
result follows. �

Corollary 6.18. Let X be a noetherian semi-separated formal scheme. The
category Dqct(X) is a stable homotopy category in the sense of [HPS].

Proof. By Theorem 6.2, D(Aqct(X)) satisfies the properties (i), (iv) and (v),
but by 6.5 this category is equivalent to Dqct(X), so it has the same proper-
ties. The rest of the conditions are dealt with in 6.8 and 6.17. �

Corollary 6.19. Let X be a noetherian semi-separated formal scheme. The
category Dqct(X) is an algebraic stable homotopy category in the sense of
[HPS].

Proof. The adjective “algebraic” just means that the set of generators is
compact which is true by Proposition 6.12. �

Remark. Note that the category Dqct(X) is seldom a unital stable homotopy
category. Let X = Spf(K[[T ]]) where K is a field. Then, in this case, O′

X

may be represented by the complex OX → MX in degrees 0 and 1 with
MX := κ∗(K((T ))∼). And this complex is not perfect because H1(O′

X) =
κ∗((K((T ))/K[[T ]])∼) is not coherent.

Remark. We conjecture that the methods similar to those of [BvdB, §2]
and [LN, §4] can be extended to prove that for a semi-separated noetherian
formal scheme X, the category Dqct(X) is monogenic.
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Étude cohomologique des faisceaux cohérents. I. Publications Math. I.H.E.S.
11 (1961).
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