
Chapter #

NON-FUNCTIONAL REQUIREMENTS
ELICITATION

Luiz Marcio Cysneiros1 and Eric Yu2

1Department of Mathematics and Statistics
York University
 cysneiro@mathstat.yorku.ca

2Faculty of Information Studies
University of Toronto
yu@fis.utoronto.ca

1. INTRODUCTION

Software developers are constantly under pressure to deliver code on

time and on budget. As a result, many projects focus on delivering
functionalities at the expense of meeting non-functional requirements such
as reliability, security, maintainability, portability, accuracy, among others.
As software complexity grows and clients demand higher and higher quality
software, non-functional properties can no longer be considered to be of
secondary importance. Many systems fail or fall into disuse precisely
because of inadequacies in these properties. These non-functional aspects
have been treated as properties or attributes after the fact. While these
properties have always been a concern among software engineering
researchers, early work have tended to view them as properties or attributes
of the finished software product to be evaluated and measured. Recent work
offer the complementary view that they should be treated as requirements to
be dealt with from the earliest stages of the software development process
[6][7], and then throughout the entire life cycle.

2 Chapter #

This chapter will start by defining NFRs and showing its importance
within the software development process. It continues by showing an
approach to elicit NFRs and pointing out future trends in the treatment of
NFRs.

2. NON-FUNCTIONAL REQUIREMENTS

2.1 What are Non-Functional Requirements?
NFRs are also known as Quality Requirements [4] [2] and unlike

Functional Requirements, NFRs state constraints to the system as well as
particular notions of qualities a system might have, for example, accuracy,
usability, safety, performance, reliability, security. Hence, we can say that
while functional requirements state “what” the system must do, NFRs
constrain “how” the system must accomplish the “what”. As a consequence,
NFRs are always linked to a Functional Requirement [11][6].

Functional requirements address specific problems and are therefore
typically implemented through particular localized modules or components.
Although they are often stated informally, they can be formalized whenever
necessary.

On the other hand, NFRs define global constraints on a software system
or subsystem, on a functional requirement, on the development process or on
the deployment processes. They are global in the sense that they arise from
all parts of the system and from their interactions. There are well developed
notations for specifying functional requirements, e.g., Structured English,
Use Cases/UML, and various formal methods approaches. In comparison,
NFRs are much harder to specify or to characterize formally. As a result,
they are generally stated informally in requirements documents, making
them difficult to enforce during development and difficult to be evaluated by
the customer prior to delivery. NFRs are hard to be evaluated by
stakeholders because they may be interpreted differently under different
contexts.

Functional and non-functional requirements frequently appear together,
as the non-functional needs to refer to the functional. Suppose we are dealing
with a system to control an Automatic Teller Machine (ATM). There would
be a functional requirement “The system must allow the customer to
withdraw money”. Associated to this functional requirements we could have
one or more NFRs such as “For security reasons, transactions should be
completed within 5 minutes requiring a response time of less than 3sec in at
least 90% of the cases. But the system must also be secure when transmitting

#. Non-Functional Requirements Elicitation 3

data, thus encryption should be used which may compromise the 3 secs
goal”

A common approach to understand how an NFR will constrain the
functional requirement is to decompose the NFR into sub-goals represented
by a graph structure inspired by the And/Or trees used in problem solving
methods. This process continues until the requirements engineer considers
the NFR sufficiently satisfied.

Another important characteristic of NFRs is that meeting different NFRs
may lead to conflicting solutions to be dealt with. For example, to address
security concerns one might have several choices, among them, setting a two
level password or to use biometrics. Using a two level password would
conflict with usability concerns while the use of biometric devices might
conflict with cost concerns. Another example can be seen within the clinical
analysis laboratory domain. We could have the following functional
requirement:” The system must have a file containing all the clients to be
used by the Marketing Division”. Together with this functional requirement
we have the following NFR: “This file must be complete enough to allow the
Marketing Division to analyze prospective new clients”. But an NFR
associated with client’s attendance states: “Patient’s admission must take
less than 4 minutes”. In this case, having a comprehensive file with all the
information needed by the marketing division would possibly be conflicting
with the goal of admitting a patient in less than 4 minutes.

2.2 Why NFRs

 There has been work showing that complex systems must deal with
non-functional aspects [10] [23] [5]. These Non-Functional aspects should
be dealt within the process of Non-Functional Requirements (NFR)
definition.

Errors due to omission of NFRs or not properly dealing with them are
among the most expensive type and most difficult to correct [23] [12] [7].
Recent work points out that early-phase Requirements Engineering should
address organizational and Non-Functional Requirements, while later-phase
focus on completeness, consistency and automated verification of
requirements [26].

There have been reports showing that not properly dealing with NFRs
have led to considerable delays in the project and consequently to significant
increases in the final cost. The development of a real time system by
Paramax System Corp. experienced major delays in its deadlines and
significant increasing costs which put the deployment in risk. There were
many reasons for that, but one of the most important reasons relies on the
fact that performance was neglected during the development of the software

4 Chapter #

leading to several changes in both hardware and software architecture, as
well as in either the design and code of the software [17].

A more serious problem related to NFRs can be seen in the London
Ambulance Service Report [14] [3]. The London Ambulance System was
deactivated just after its deployment because, among other reasons, many
non-functional requirements were neglected during the system development
such as: reliability (vehicles location), cost (emphasis on the best price),
usability (poor control of information on the screen), and performance (the
system did what was supposed to do but he performance was unacceptable).

2.3 Approaches for dealing with NFRs

Most of the early work on NFRs focused on measuring how much a
software system is in accordance with the set of NFRs that it should satisfy,
using some form of quantitative analysis [1] [13] [15] [22], offering
predefined metrics to assess the degree to which a given software object
meets a particular NFR.

Recently, a number of works proposed to use approaches which
explicitly deal with NFRs before metrics are applicable [6][2] [8][16]. These
works propose the use of techniques to justify design decisions on the
inclusion or exclusion of requirements which will impact on the software
design. Unlike the metrics approaches, these latter approaches are concerned
about making NFRs a relevant and important part of the software
development process.

Boehm and In [2] propose a knowledge base where NFRs are prioritized
through stakeholders’ perspectives, dealing with NFRs at a high level of
abstraction. Kirner [16] describe properties for six NFRs from the real-time
system domain: performance, reliability, safety, security, maintainability and
usability. This work provides heuristics on how to apply the identified
properties to meet the NFRs and later measure these NFRs. However, it
lacks a broader approach that can be applied to other NFRs, in the real-time
domain or in other domains.

A significant advance was introduced when NFRs where treated as
competing goals that are extensively refined and traded off among each other
in an attempt to arrive at acceptable solutions. The NFR Framework is one
of the few works to deal with NFR starting from the early stages of software
development through a broader perspective. The NFR Framework [6]views
NFRs as goals that might conflict among each other and must be represented
as softgoals to be satisficed. The softgoal concept was introduced to cope
with the abstract and informal nature of NFRs. Each softgoal will be
decomposed into sub-goals represented by a graph structure inspired by the
And/Or trees used in problem solving. This process continues until the

#. Non-Functional Requirements Elicitation 5

requirements engineer considers the softgoal satisficed1 (operationalized).
Initially vague, NFRs are eventually operationalized in terms of techniques
that can be implemented. Operationalizations can be viewed as functional
requirements that have arisen from the need to meet NFRs. However, as
important as getting a well-formed and as-complete-as-possible set of
requirements, we need to understand and systematize how requirements will
drive the rest of software development, especially during the design phase.
None of the above work tackle this problem.

Approaches to NFR could be classified into product-oriented and
process-oriented. Product-oriented approaches are those concerned with
measuring how much software complies with non-functional requirements.
They do not help to prevent problems but are helpful to evaluate the degree
of compliance with non-functional needs.

Process-oriented approaches focus on the software development process.
It aims to help software engineers searching for alternatives to sufficiently
meet NFRs while developing the software. It also helps to justify design
decisions. Under the process-oriented approach we may follow guidelines
such as the ISO 9126 or using a goal-oriented approach such as the KAOS
framework [28] [6]. One of the advantages of the goal-oriented approach is
that it can be used to model and reason about both functional and non-
functional requirements.

2.4 Dealing with NFRs

 Dealing with NFRs involves many different activities such as eliciting,
modelling, and analyzing. Each of these activities has its own challenges.

 Eliciting NFRs calls for understanding the domain and gathering
organizational knowledge. Because NFRs are generally stated and because
they are not as clear in stakeholders’ minds as functional requirements,
eliciting them poses a great challenge. Existing knowledge about NFRs
should be used whenever possible to guide on NFRs elicitation.

 Once NFRs are elicited, they have to be modelled. Modelling NFRs
allows them to be organized for better visualization and understanding. It
will help software engineers to analyze NFRs.

 Analyzing NFRs calls for reasoning about how well each NFR is being
satisfied and to reason about possible conflicts. This might calls for further
refining NFRs and it might also bring new conflicts to light. Alternatives
must be found to deal with conflicts allowing tradeoffs to be made among
different stakeholders. Each alternative must be evaluated to express to

1 We use, here, the same notion used in [Chung 00] that an NFR can rarely be said to be satisfied. Goal

satisficing suggest that the solution used is expected to satisfy within acceptable limits. The term
satisfice was coined by Hebert Simon to express “good enough” alternatives.

6 Chapter #

which degree it may introduce positive or negative influence to one or more
NFRs. For example, satisficing security might call for the use of some
encrypting mechanism, but the use of this mechanism might conflict with
performance needs.

 In this work, we will describe a strategy to deal with NFRs from the
early phases of requirements engineering to design. We will first describe
how to elicit NFRs, where we will be describing an approach for gathering,
modelling and analyzing NFRs. Then, we will show how these NFRs can be
incorporated into the design process.

3. ELICITING NFRS

We propose to elicit NFRs using a strategy anchored in the Language
Extended Lexicon (LEL) [18]. LEL is used to capture the vocabulary used
in practice in the domain. Its objective is to register the vocabulary of a
given UofD2. It is based upon the following simple idea: understand the
problem’s language without worrying about deeply understanding the
problem. LEL is mainly used to register terms (words or phrases) peculiar to
a specific field of application.

LEL is useful not only for understanding the domain but also as a starting
point for creating different models throughout the process. The strategy uses
LEL as a natural language-oriented front-end to support the NFR elicitation
process. In addition, capturing the vocabulary in an organized form benefits
the reuse of the domain knowledge.

To elicit NFRs you may use an existing LEL or, in case it does not yet
exist, you must build a new one. You must add to the existing, or recently
created LEL, the NFRs desired by the stakeholders. To do that, you run
through all the LEL symbols using a knowledge base on NFRs, expressed in
the form of catalogues, to ask ourselves and the stakeholders (whenever
possible) whether each of the NFRs presented in this knowledge base applies
to each of the LEL symbols. Once you have the LEL showing all the desired
NFRs and some of their operationalizations, we represent these NFRs in a
set of NFR graphs using the NFR Framework extended with a few new
features. The NFR framework allows a deeper level of modelling and
reasoning about NFRs than within the LEL. Finally you examine the set of
NFR graphs looking for possible interdependencies. Figure 1 illustrates the
approach.

2 “Universe of Discourse is the general context where the software should be developed and operated.

The UofD includes all the sources of information and all known people related to the software. These
people are also known as the actors in this UofD.”

#. Non-Functional Requirements Elicitation 7

LAL
Knowledge

Base on
NFRs

Primary NFR LEL
Symbol

LEL with
NFRs

NFR
Graph

Interdependencies

Changes due to Conflict
Resolution

1 2 3

Introduce NFRs
in the LEL Represent

NFR

Knowledge on
the Problem

Identify and
Solve
Conflicts

Client

New Notions
New Behavioral Responses
New Symbols

Positive and Negative Influences
Conflicts
Design Decisions

LEL
Knowledge

Base on
NFRs

Primary NFR LEL
Symbol

LEL with
NFRs

NFR
Graph

Interdependencies

Changes due to Conflict
Resolution

1 2 3

Introduce NFRs
in the LEL Represent

NFR

Knowledge on
the Problem

Identify and
Solve
Conflicts

Client

New Notions
New Behavioral Responses
New Symbols

Positive and Negative Influences
Conflicts
Design Decisions

Figure #-1. Eliciting Non-Functional Requirements

3.1 Using the LEL to support NFRs elicitation on
earlier phases of requirements engineering

LEL is based on a controlled vocabulary system composed of symbols
where each symbol is an entry expressed in terms of notions and behavioural
responses. The notions record the meaning of the symbol and its
fundamental relations with other entries. The behavioural responses specify
the connotation of the symbol in the UofD. Each symbol may also be
represented by one or more aliases and will be classified as a subject, a verb
or an object.

The construction of the Lexicon is guided by the principles of minimal
vocabulary and circularity. The circularity principle prescribes the
maximization of the usage of Lexicon symbols when describing Lexicon
entries, while the minimal vocabulary principle prescribes the minimization
of the usage of symbols exterior to the Lexicon when describing Lexicon
entries. Figure 2 shows an example of an entry in the LEL. The underlined
words/expressions are other symbols of the LEL.

8 Chapter #

Figure #-2. One Entry of a Symbol Before Analyzing it for NFR

Since the LEL is not a function-oriented description, it has entries which

refer both to the functional and to the non-functional perspectives.
Although the LEL can handle non-functional aspects of the domain, at

least the very first version of the LEL is usually mainly composed of symbols
related to functional requirements. This is due to the very abstract nature of
non-functional requirements and because quality aspects, in spite of their
importance, are usually hidden in people’s minds. However, it does not mean
you cannot register information about non-functional requirements. If you
happen to find out that one symbol requires an NFR, you should represent it
in the symbol notions. A well-defined set of symbols representing the
vocabulary of the UofD is an important step to be taken.

We have extended the LEL to help NFRs elicitation. The LEL is now
structured to express that one or more NFRs are needed by a symbol. It is
also structured to handle dependency links between one NFR and all the
notions and behavioral responses which are necessary to satisfice this NFR.
Figure 6 shows these new features of the LEL. This extension is
implemented in an extended version of the OORNF tool [24]

Building LEL consists of identifying all the meaningful terms (words or
sentences) used in the UofD. Each term will be a LEL symbol and must
contain at least one notion and one behavioral response. One good approach
to start gathering LEL symbols is to read documents used in the domain.
These documents usually contain several terms which would become LEL

#. Non-Functional Requirements Elicitation 9

symbols. Notions and behavioral responses for these symbols may not be
perceived at first and would have to be elicited by interviewing related
stakeholders and users or sending them questionnaires. Hence, validating
already elicited symbols with stakeholders and users is a constant activity
carried out several times during LEL construction. When you define notions
and behavioral responses for a symbol you must use, whenever possible,
existing symbols to express these notions and behavioral responses. If you
are using the OORNF Tool [24], the tool will automatically identify that you
have used a symbol and mark it as such by underlining it. You may also
check if any terms used to express notions and behavioral responses are
good candidates to be LEL symbols. Frequently, when we are defining a
symbol we discover new symbols that will have to be detailed later. This
process goes on until no new symbols arise.

As we can see in Figure 1, the first step for building the non-functional
perspective is to enrich the existing LEL with the NFRs customers desire. To
do that, you run through all the LEL symbols using the NFR knowledge base
to ask yourself and the stakeholders if any of the NFRs in this knowledge
base may be necessary for each of the LEL symbols.

3.2 Using Catalogues to Enhance the Lexicon with NFRs

Now that we have LEL done, we must enrich it with NFRs. NFRs are
usually complex, global, conflicting and numerous. Aside from that, both
software engineers and stakeholders are not used to recognizing NFRs.
Because of that, we will use a knowledge base, here presented in the form of
catalogues, to guide the requirements engineering through possible needed
NFRs and the possible operationalizations for each NFR found.

In this work, we will present two catalogues as examples, one for privacy
and another for traceability. You are encouraged to update these catalogues
with further operationalizations and to keep your own catalogues on NFRs.
Doing so will facilitate future reuse of acquired knowledge on NFR
elicitation.

3.2.1 The NFR Framework

As said before, the NFR Framework [5][6]views NFRs as goals that
might conflict among each other and must be represented as softgoals to be
satisficed. Each softgoal will be decomposed into sub-goals represented by a
graph structure inspired by the And/Or trees used in problem solving. This
decomposition is done using contribution links. Contribution links can be
categorized as an or contribution or an and contribution. Contribution links
allow one to decompose NFRs to the point that one can say that the

10 Chapter #

operationalizations to this NFR have been reached (i.e., the goals are no
longer “soft”). Operationalizations can be viewed as functional requirements
which have arisen from the need to meet NFRs. This can explain why we
frequently face doubts about whether a requirement is functional or non-
functional. Take for example a clinical analysis laboratory. We may have
stated a requirement like: “Samples should be traceable so one can know, at
different times, where this sample is”. This may appear to be a functional
requirement while, in fact, it is a functional requirement: “The software must
handle samples” constrained by the NFR Traceability. The fact that an NFR
when operationalized may result in new functional requirements points to
the virtual impossibility of eliciting all the functional requirements before
eliciting non-functional requirements. An iterative process where you elicit
some of the functional requirements then look for NFRs which will, in its
turn, generate new functional requirements is more likely to be adequate.
The NFR framework also uses correlation links to show contributions
(positive and negative) from one NFR to another. Figure 3 and 4 will show
examples of NFR graphs used to represent the knowledge base on NFRs.

Contribution links are the core of design decisions. By reasoning about
how different operationalizations would contribute to satisfice a softgoal,
one may decide which the best alternative to pursue is. Based on the
semantics of the contribution links [Chung 00], decision values are
propagated from an offspring to its parents allowing one to visualize what
impact would come from adopting one alternative instead of another.

3.2.2 The Catalogues

Figure 3 shows a catalogue for privacy. We can see for example, that
Privacy can be refined into Limit Use and Disclosure of Data, which is
further decomposed into Minimize Disclosure and Collection of Personal
data and later decomposed, among other options, into Reduce Need for
Personal Data. To satisfice the latter, we may find three options: Use
Anonymous Payment, Use Digital Certificates and Use Anonymous
Profile. These options can be used alone or together to achieve different
needs for privacy. Notice that to Use Digital Certificates while contributing
to Privacy will eventually hurt Maintainability since personal data change
over time. The use of Public Key Cryptography can implement Digital
Certificates but may also have negative impact on Performance.

Figure 4 shows the catalogue for Traceability. We can see in this figure
that Traceability is first decomposed into Traceability for Processes and
Things. Processes will tackle concerns about being able to reconstruct all
the steps of a Process such as furnishing a piece of equipment. When we
furnish a piece of equipment several steps are usually involved in the

#. Non-Functional Requirements Elicitation 11

process. If some piece of equipment (e.g. a laptop computer) shows
problems when tested before shipping, the manufacturer might want to be
able to trace all the steps involved in furnishing that laptop to trace the cause
of the problem.

Figure #-3. Catalogue of Privacy Alternative Solutions

Tracing Things may involve many different options. Here, the term

Things might be applied, but not necessarily restricted, to people, objects
and information. One might want to trace the places some object is or has
been located. One might also want to trace what changes were made to an
object or to a piece of information in order to assure Security and
Reliability. Another option is that one might want to trace times for an
object or information. For example, one might want to know when an object
was moved from one place to another, or simply when one object was
changed. Finally, it is also possible that we may want to keep trace of
whole-part relationships expressing for example that an object was
aggregated to another or one was split from another. Each of these options

Softgoal

Operationalization

Claim

Contribution Link

Correlation Link

Softgoal

Operationalization

Claim

Contribution Link

Correlation Link

12 Chapter #

Figure #-4. Catalogue of Traceability Alternative Solutions

can be refined to different possibilities for operationalizations. For example,
Trace Change might be refined into Have Changes Traced. This will
call for the need to store information about when an object or information
was changed. For example, in a hospital, I may want to trace every change
made to a patient record so I can precisely follow the treatment prescribed to
a patient and the associated pathology. On the other hand, when storing
schedule for Nurses shift, I may want to keep the last used schedule just in
case one nurse fails to show up and I have to ask another nurse to do a
double shift. Knowing the last schedule may help on such a decision but
further storage of previous schedules would not be necessary. Thus,
operationalizing this goal can be done in two different ways. You can Store
all states for a giving Thing or you can simply Store Last State. Notice
that to Store all states hurt (contribute negatively) to both time and space

Or

Or
Or

Or

Or Or
Or

Or

Or
Or

Or
Or

Or
Or

Or
Or

Or
Or

Or

Or
Or

Or

Or

Or

Or

#. Non-Functional Requirements Elicitation 13

performance, but will also help (contribute positively) to security and
reliability. Tradeoffs should be made to evaluate which alternative would
prevail for the case being studied.

3.2.3 Using the Catalogues to enrich LEL with NFRs

In Adding NFRs to LEL, catalogues will be used as guidance for
knowledge reuse. Remember that although we only show two catalogues
here, you may create your own catalogues. Chung [6] provides catalogues on
security, accuracy and performance. A comprehensive, although not
exhaustive, list of possible NFRs can also be found in Chung [Chung 00].
The set of catalogues will be first used to remind you of the possible NFRs a
system might need. As stated before, you may ask yourself and the
stakeholders and end users (whenever possible) if any of the NFRs may be
needed for each symbol of the LEL. Hence, starting from the first LEL
symbol you will ask if performance, traceability, security, privacy and so on
would somehow be important or impact the concept represented by the
symbol. If the answer is positive, you may represent this NFR as a notion for
this symbol. Then again, using the catalogue you may investigate the
possible alternatives for operationalizing this NFR. You may then represent
the operationalization in the notions or behavioral response of the symbol,
whichever appropriate. It is also possible that operationalizing this NFR
requires to add notions or behavioral responses to one or more other
symbols. If none of the operationalizations satisfices stakeholders’
expectations you must find new ways for satisficing this NFR and later
update the catalogue.

Suppose you are developing an information system (LIS) for a clinical
analysis laboratory. For each of the symbols present in LEL you will ask
yourself and the stakeholders what possible NFRs would have to be achieved
in order for this symbol to be considered completely represented. Suppose
you were analyzing the symbol Sample and realized that traceability would
be important to Sample since the laboratory cannot afford to lose samples. In
Figure 5, it is possible to see in the symbol’s notions the addition of the NFR
Traceability. NFRs will be represented in the notions using the following
pattern: “Has NFR”+NFR

Now that you know a Sample has to be traceable, you have to reason
about how this might be achieved. You may use the catalogue trying to reuse
existing operationalizations or you can simply ask yourself and the
stakeholders how this traceability should be achieved. You may also apply
both approaches, which in fact has been most effective.

14 Chapter #

Figure #-5. Symbol After One NFR was Picked up

One response you could get is: “one should be able to know where a
sample is now and where it has been before”. Reflecting about the
behavioral response placed in the symbol Sample, you could realize that this
answer was not sufficient to achieve the traceability NFR since we were not
specifying how one could actually know where a sample is at any needed
time. Checking the catalogue you could see that one way to operationalized
traceability for places is to Keep a History of Places. Thus you could
realize that to know the exact position of a sample at any time, it is necessary
to scan this sample every time it is transported from one place to another. To
represent this knowledge, you could create a new symbol called Scan
Sample (Figure 6).

Another answer you could get from questioning about the NFR
traceability to the Sample entry is: “every time a sample is aliquoted
(expression used in this domain meaning to create an aliquote, or yet to draw
from one recipient to another) this procedure has to be recorded so one can
know which sample was originated from another sample”. Notice that this
answer is expressed in the catalogue in the form of the Trace Whole-Part
Relationship goal. You should then represent this answer as an entry in the
behavioral responses (LIS keeps a record of what sample is originated from
another) of the symbol Aliquote sample (Figure 7).

#. Non-Functional Requirements Elicitation 15

Figure #-6. A Symbol Created to Satisfice a NFR From Another Symbol

Figure #-7. Consequences of Satisficing the NFR of the Symbol Sample.

As you add a new behavioral response to the symbol Aliquote Sample,

you must also create a dependency link between this behavioral response and
the NFR traceability stated in the notions of the symbol Sample. This link is
represented in the tool by a pattern following the rule: “NocaoOrg [” + LEL
symbol + “&” + NFR + “&” + internal number]. The string “NocaoOrg” is
used to differentiate this entry so one can clearly see that this notion or
behavioral response exists to operationalize a NFR present in “LEL symbol”.
LEL symbol will contain the LEL symbol which has the NFR which
originated the need for this notion or behavioral response. NFR will contain

16 Chapter #

what NFR in the referenced symbol has originated this notion or behavioral
response. This is necessary since a symbol may have more than one NFR in
its notions. The internal number is used by the tool for traceability purposes.
In the case of the example addressed in the paragraph above we have the
following pattern: NocaoOrg [Aliquote Sample/ Alicote
Sample&Traceability&80807]. Notice that one behavioral response can be
traced to more than one symbol. That is the case in Figure 7 where the last
behavioral response in the symbol Aliquote Sample has links to the
Aliquote Sample symbol itself and to the Sample symbol. This pattern is
used mainly by the OORNF tool although it can be also used as a quick
guide to find out what NFR in which symbol has originated the need for a
particular notion or behavioral response.

We can see the behavioral responses representing the operationalizations
for the above situations represented in Figure 7, respectively as a behavioral
response in the Aliquote sample symbol (LIS keeps a record of what sample
is originated from another) and another behavioral response in the Sample
symbol itself (Employee has to scan samples every time a sample arrives in
the sector).

You must proceed this way for all the symbols of the lexicon, thus at the
end of the process you end up having the lexicon expressing at least the
basic necessary NFRs and some of their operationalizations.

 Representing NFRs in the LEL will help you to start getting acquainted
with necessary NFRs and possible operationalizations to them, but LEL is
not the best tool to deal with dependencies among NFRs since they
frequently involve many conflicts among possible solutions to satisfice one
or more NFR. Thus, once you have the lexicon enhanced with NFRs you
will fully represent and reason with NFRs using the NFR Framework with
some slight adaptations.

3.3 Refining NFRs using NFR graph

In accordance with [Chung 00], for us an NFR has a type, which refers to
a particular NFR as for example security or traceability. It also has a subject
matter or topic, for example Sample as showed in the above example. We
would then represent it as Traceability [Sample].

The NFR framework was extended to represent the operationalizations in
two different ways. We called them dynamic and static operationalizations.
Dynamic operationalizations are those that call for some action to be carried
out. Static operationalizations express the need for some data to be used in
the design of the software to store information which is necessary for
satisficing the NFR. Figure 8 shows an example of an NFR graph where we
can see these two types of operationalizations. Categorizing

#. Non-Functional Requirements Elicitation 17

operationalizations as Dynamic and Static will later help map these
operationalizations into attributes or operations belonging to a class.
Cysneiros [9] shows how to integrate NFRs into Class diagrams.

On top of the Figure 8 (extracted from a case study for a Light Control
System), we can see the root of this graph represented as Safety [Room],
meaning that room is a place which has to be safe regarding illumination
aspects, i.e. the room has to have enough light so that people do not stumble
and fall.

Figure #-8. An Example of a NFR Graph

One of the operationalizations that represent part of this NFR satisficing

can be seen on the left side of the figure represented by a bold circle
denoting a static operationalization. Here, we can see the need of some
information in the system which represents the minimum illumination in lux
that can be used in a room.

On the bottom of the figure we can see dotted circles representing
dynamic operationalizations. One of them, Safety [Room.Malfunction.User.
Get informed], represents that the user may be informed of any malfunction
that occurs in the room. The letter S inside each node represents that this
sub-goal is Satisficed. The letter P is used for those ones that are Partially
satisficed or D for those ones that are Denied.

It is important to stress that the identifier that appears close to the NFR on
the root of the graph (NFR Topic) must be a LEL symbol. In Figure 8 we see
that the root node is represented by Safety [Room], so room must be an LEL
symbol. If one cannot find the word or sentence intended to be used as a
topic for an NFR, then either one symbol represented in the LEL has an alias
not yet defined or the LEL is incomplete and therefore, must be updated.

Reasoning about different NFRs frequently leads to tradeoffs to be made.
To understand and reason about the different alternatives involved in these

S Safety

[Room]

Safety
[Room.
Light scene.
Current light scene >=
Safe Illumination]

Safety
[Room..
Malfunction of OLS.
All CLG set on]

Safety
[Room.
Malfunction]

S S
Safety
[Room.
Light Scene.
Safe Illumination=14 lux]

S S

SS

S S

S S SS
Safety
[Room.
Malfunction.
Ols]

Safety
[Room.
Malfunction.
Motion Detector]

S S
Safety
[Room.
Malfunction.
User.
Get informed]

SS
Safety
[Room.
Malfunction.
Motion Detector.
Set room as occupied]

SS
Safety
[Room.
Malfunction.
FM
Get informed]

Facility Manager

18 Chapter #

tradeoffs you might need to further clarify some NFRs’ operationalizations
and to negotiate which NFR should be denied or partially denied prejudicing
another NFR. To do that, whenever possible, you might talk to the
stakeholders who would be affected by such decisions. To be able to trace
NFRs and their operationalizations back to these stakeholders you should
represent above the NFR graph the source in the UofD for the information
expressed in the graph.

To build the NFR model, you must go through every entry of the LEL
looking for notions that express the need for an NFR. For each NFR found
one must create an NFR graph where this NFR will be the root of the graph.
This graph must be further decomposed so it expresses all the
operationalizations necessary to satisfice this NFR.

Let us take for example the symbol Inspect Result belonging to a case
study for a clinical analysis laboratory. One NFR we find in the notions of
this symbol is Traceability, since the system must assure, in case of
conflicting test results, that someone can figure out what problems happened
that led to the conflict. Figure 9 shows the entry for this symbol and
illustrates how an NFR graph would be originated from there, while Figure
10 shows the navigation facilities of the OORNF tool, where we can see the
notions and behavioral responses that were added to satisfice the NFR
Traceability [Inspect Test] (Figure 9). In this case, there were only
behavioral responses.

Figure #-9. Creating an NFR graph

Traceability [Inspect Test]

#. Non-Functional Requirements Elicitation 19

Once we have represented the NFR graph root, we have to find out its
operationalizations. We can do it by either using catalogues such as those
presented in section 3.2.1 or the OORNF tool to examine what notions and
behavioral responses were added to the LEL to satisfice an NFR. These
notions and behavioral responses will be candidates to operationalize this
NFR. These two approaches are not conflicting; in fact, they are
complementary to each other.

Using the behavioral responses shown in Figure 10, we represent possible
operationalizations of the Traceability [Inspect Test] NFR as it can be seen
in Figure 11. Once we have done that, we try to see what possible sub-goals,
if any, would represent an intermediate step between the graph root and its
operationalizations. We also try to find out if additional decompositions can
be made to satisfice Traceability, checking the alternatives presented in the
catalogue.

Figure #-10. Navigating an NFR to Find its Operationalizations

We may proceed in two different ways:
1) We can precede the evaluation in a bottom-up approach. For

example, taking the operationalization Traceability[Which tests were
repeated] may direct us to understand that between Traceability
[Inspect Test] and these operationalizations we might have an
intermediate decomposition Traceability [Tests].

2) Decomposing the root using a top-down approach. For example, if we
use the catalogue for traceability presented before we can imagine
that we could need to decompose Traceability [Inspect Test] into

20 Chapter #

Traceability [Trace Changes]. By doing so we could realize that aside
from registering who entered results, we could also have to register
the new value and the time the change happened. Since we are dealing
with the delicate subject of finding problems in test results that could
lead to serious harm to patients, we decided to do it storing all values
instead of only storing the last change.

Figure #-11. A First Approach to Decomposing an NFR

Figure 12 shows the resultant graph after reasoning about Traceability
for inspect test.

Figure #-12. Resultant NFR Graph

Note that since we are representing the actor of the UofD who is directly
interested in the NFR, we can represent different viewpoints for the same
NFR. You just have to build two different graphs with the same root. Each
one will operationalize the NFR according to individual viewpoints, which
can be either similar or conflicting.

Figure 13 shows an example for dealing with different viewpoints for the
same NFR. Here we show the NFR Operational Restriction for a clinical
analysis laboratory information system. We represent two different
viewpoints, one from the manager of the medical bureau (area responsible
for reviewing and signing patient’s reports) and the manager of the
processing area (area responsible for processing all the tests and to enter
results). Through the manager of the medical bureau viewpoint to satisfice
operational restrictions regarding patient’s record, the system would have to
be able to electronically sign the patient’s report, meaning the system should

Traceability
[Inspect Test]

Traceability
[Who entered

results]

Traceability
[Which tests
were repeated]

SS SS

SS
Traceability
[Inspect Test]

Traceability
[Who entered

results]

Traceability
[Which tests
were repeated]

SS SS

SS
Traceability
[Test]SS Traceability

[Changes]

Traceability
[When results

Changed]

SS Traceability
[All Results]

SS

#. Non-Functional Requirements Elicitation 21

be able to identify when all the results are ready and print them with no
further delays using some authorized signature previously digitalized.
However, when we consulted the manager of the processing area about this
same NFR, she said that although she recognized the need for shortening the
patient’s report delivery time, not all the tests could be electronically signed
because of reliability concerns. Some results could fall into a range of results
that would demand a physician to review them before they can be printed
and signed. Once we identified this conflict, shown as a dotted line with a
minus sign, we started some negotiations between both viewpoints. An
agreement was achieved to allow patient’s reports to be electronically
signed, but only for those with results falling under pre-defined limits.

Figure #-13. The Same NFR Through Different Viewpoints

After we have carried out this process for each of the LEL symbols, we

will have a set of NFR graphs that will model the non-functional perspective.
As such, we can now analyze all the graphs to check for possible conflicts
and different design solutions which might be then negotiated with the
stakeholders.

It is important to emphasize that all the effort on NFR tradeoffs due to
positive and negative interdependencies will take place in the non-functional
perspective, i.e., using the NFR framework. What will be integrated into the
functional perspective will be the result one gets after all the necessary
reasoning on NFRs interdependencies and its consequences, i.e. the
operationalizations.

 We propose three heuristics to help find these interdependencies.

P
Op. Restriction
[Patient’s Report]

P
Time Restrictions
[Print Patient’s Report]

Manager of the Medical Bureau

D Claim [As soon as al the results
are ready and reviewed the report
must be printed]

P
Time restrictions
[LIS.
Eletronicaly Signs
Patient’s Report]

S Reliability
[Eletronicaly sign
Patient’s Report]

S
Reliability
[test]

S Reliability
[Range to be
Eletronicaly signed]

S

-

Reliability
[LIS .
signs if
all results are
within range]

Manager of the Processing Area

P Time Restrictions
[Results Ready]

S PTime Restrictions
[Results
to Inspect]

Time Restrictions
[Admitted
Tests]

S
Op. Restriction
[Patient’s Report]

S Time Restrictions
[Results Ready]

S Time Restrictions
[Not all Reports can be eletronically signed]

S Time Restrictions
[Signed Reporta have to be Reliable]

-

+

PP
Op. Restriction
[Patient’s Report]

PP
Time Restrictions
[Print Patient’s Report]

Manager of the Medical Bureau

D Claim [As soon as al the results
are ready and reviewed the report
must be printed]

PP
Time restrictions
[LIS.
Eletronicaly Signs
Patient’s Report]

SS Reliability
[Eletronicaly sign
Patient’s Report]

SS
Reliability
[test]

SS Reliability
[Range to be
Eletronicaly signed]

SS

-

Reliability
[LIS .
signs if
all results are
within range]

Manager of the Processing Area

PP Time Restrictions
[Results Ready]

SS PPTime Restrictions
[Results
to Inspect]

Time Restrictions
[Admitted
Tests]

SS
Op. Restriction
[Patient’s Report]

SS Time Restrictions
[Results Ready]

SS Time Restrictions
[Not all Reports can be eletronically signed]

SS Time Restrictions
[Signed Reporta have to be Reliable]

-

+

22 Chapter #

Compare all NFR graphs of the same type searching for possible
interdependencies. For example, we may put all the NFR graphs which have
the type Safety together to see if there are any interdependencies among
them.

Compare all the graphs classified in the knowledge base [29] as possibly
conflicting NFRs. For example, compare graphs of Security with graphs of
Usability.

Pair-wise compare all the graphs which were not compared while
applying the above heuristics.

The conflict shown in Figure 13 was found by applying Heuristic 1.

4. RELATED WORK

 GRL (Goal-Oriented Language) is a language created to support

requirements elicitation centred in the idea of goals [20]. The main focus of
GRL lies on NFRs and the constructs of the NFR framework are
incorporated in GRL. There are three categories of elements in GRL,
intentional elements, links and actors.

 Intentional elements are used to express the intentions behind the
process. It helps to understand the “whys” involved in the process. There are
four intentional elements in GRL:Goal, Softgoal, Task and Resources. Using
these elements we can model alternatives to the existing process, criteria
used to reason among the different alternatives, and the reasons that led to
choose on specific alternative.

 It is also possible to find detailed work on two important NFRs, security
and privacy. Yu [27] uses the i* Framework [Yu97] to propose an approach
to model and reason about privacy in the presence of other NFRs. In a
complementary work, Liu [21] explores the concept of actors from the i*
Framework to elicit, represent and reason about security with a special
attention to internet concerns. Since both privacy and security are strongly
related to relationships among actors such as stakeholders, customers and
malicious users, the focus on actor supported by i* plays an important role.

5. PRATICAL IMPLICATIONS

 We have shown here an approach to elicit NFRs. It is based on the use of

a lexicon, LEL, to support the modelling of both functional and non-
functional models. LEL has been used in several real life case studies with
good results. Validating LEL with layman stakeholders such as physicians
and nurses has been easy and productive. After building LEL we enrich it
with NFRs using catalogues to guide on the search for NFRs. This part of the

#. Non-Functional Requirements Elicitation 23

strategy aims to facilitate the process of gathering knowledge about NFRs
and support some initial refinement of NFRs.

 After NFRs are represented in LEL they are represented using NFR
graphs which will allow for further refinements and reasoning about possible
conflicts and the necessary tradeoffs. Here, the objective is to facilitate the
software engineering on finding the set of possible solutions to each NFR
and to support negotiation with different stakeholders to achieve a
compromise when conflicts are detected.

 The strategy proposed here has been applied to different real life case
studies. The results point out that using the strategy one might expect to get a
more complete software through the perspective of stakeholders and end
users with a more efficient use of manpower involved in software
development.

We envision that future work on NFRs should address several different
aspects. First, it should concentrate on building a knowledge base covering
various NFRs and their operationalizations to the greatest extent possible.
Second, it should investigate methods to at least partially automate graph
generation and conflict detection. Finally it should investigate how NFRs
should be handled in emerging software engineering paradigms such as
agent orientation where, among other challenges, an agent has the autonomy
to decide not to provide a service for another agent at run-time.

7. REFERENCES

[1] Boehm, B. “Characteristics of Software Quality” North Holland Press, 1978.
[2] Boehm, Barry and In, Hoh. “Identifying Quality-Requirement Conflicts”. IEEE Software,

March 1996, pp. 25-35
[3] Breitman, K. K, Leite J.C.S.P. and Finkelstein Anthony. The World's Stage: A Survey

on Requirements Engineering Using a Real-Life Case Study. Journal of the Brazilian
Computer Society No 1 Vol. 6 Jul. 1999 pp:13:37.

[4] Chung L., “Representing and Using Non-Functional Requirements: A Process Oriented
Approach” Ph.D. Thesis, Dept. of Comp.. Science. University of Toronto, June 1993.
Also tech. Rep. DKBS-TR-91-1.

[5] Chung, L., Nixon, B. “Dealing with Non-Functional Requirements: Three Experimental
Studies of a Process-Oriented Approach” Proc. 17th Int. Con. on Software Eng. Seatle,
Washington, April pp: 24-28, 1995.

[6] Chung, L., Nixon, B., Yu, E. and Mylopoulos,J. “Non-Functional Requirements in
Software Engineering” Kluwer Academic Publishers 2000.

[7] Cysneiros, L.M. and Leite, J.C.S.P. “Integrating Non-Functional Requirements into data
model” 4th International Symposium on Requirements Engineering – Ireland June 1999.

[8] Cysneiros,L.M., Leite, J.C.S.P. and Neto, J.S.M. “A Framework for Integrating Non-
Functional Requirements into Conceptual Models” Requirements Engineering Journal ––
Vol 6 , Issue 2 Apr. 2001, pp:97-115.

24 Chapter #

[9] Cysneiros,L.M. and Leite, J.C.S.P. “Using UML to Reflect Non-Functional

Requirements” Proceedigns of the 11th CASCON, IBM Canada, Toronto Nov 2001
pp:202-216

[10] Dardenne, A.. van Lamsweerde A, Fickas, S.. “Goal Directed Requirements
Acquisition”. Science of Computer Programming, Vol. 20 pp: 3-50, Apr. 1993.

[11] Evaluation of Natural Language Processing Systems, http://www.issco.unige.ch/ewg95
1995.

[12] Ebert, C. “Dealing with Nonfunctional in Large Software System”s. Annals of
Software Engineering, 3, 1997, pp. 367-395.

[13] Fenton, N.E. and Pfleeger, S.L. "Software Metrics: A Rigorous and Practical
Approach" 2nd ed., International Thomson Computer Press, 1997.

[14] Finkelstein, A. and Dowell J. “A comedy of Errors: The London Ambulance Service
Case Study” Proceedings of the Eighth International Workshop on Software
Specification and Design, IEEE Computer Society Press pp 2-5 1996.

[15] Keller, S.E. et al “Specifying Software Quality Requirements with Metrics” in Tutorial
System and Software Requirements Engineering IEEE Computer Society Press 1990
pp:145-163

[16] Kirner T.G. , Davis A .M. , “Nonfunctional Requirements of Real-Time Systems”,
Advances in Computers, Vol 42 pp 1-37 1996.

[17] Lindstrom, D.R. “Five Ways to Destroy a Development Project” IEEE Software,
September 1993, pp. 55-58.

[18] Leite J.C.S.P. and Franco, A.P.M. “A Strategy for Conceptual Model Acquisition ” in
Proceedings of the First IEEE International Symposium on Requirements Engineering,
SanDiego, Ca, IEEE Computer Society Press, pp 243-246 1993.

[19] Leite, J.C.S.P. et.al. ” Enhancing a Requirements Baseline with Scenarios.”
Requirements Engineering Journal, 2(4):184-198, 1997.

[20] Liu, L. and Yu E. “Designing Web-Based Systems in Social Context: A Goal and
Scenario Based Approach” 14th International Conference on Advanced Information
Systems Engineering (CAiSE’02), Toronto, May 27-31, 2002. LNCS 2348 Springer
Verlag. pp. 37-51.

[21] Liu, L., Yu, Eric. and Mylopoulos, J. “Analyzing Security Requirements As
Relationships among Strategic Actors” Proc. of the 2nd Symposium on Requirements
Engineering for Information Security, North Carolina – October 2002.

[22] Lyu, M.R. (ed.) "Handbook of Software Reliability Engineering" McGraw-Hill, 1996.
[23] Mylopoulos,J. Chung, L., and Nixon, B., “Representing and Using Non-functional

Requirements: A Process-Oriented Approach”, IEEE Trans. on Software Eng, 18(6),
pp:483-497, June 1992.

[24] Neto, J.S.M. "Integrando Requisitos Não Funcionais ao Modelo de Objetos" M.Sc.
Dissertation at PUC-Rio, Mar/2000.

[25] Rational et al, “Object Constraint Language Specification” 1997.
Http://www.rational.com.

[26] Yu, Eric “Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering” Proc. of the 3rd Interna. Symp. on Requirements Eng. Jan 1997 pp:226-
235

[27] Yu, E. and Cysneiros, L.M. “Privacy in the Presence of Other Competing
Requirements” Proc. of the 2nd Symposium on Requirements Engineering for
Information Security, North Carolina – October 2002.

[28] VanLamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour” Proc
of the 5th IEEE Int. Symp. on Requirements Engineering, pp:249-262, 2001.

