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The more a man knows about himself
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the greater his chance of suddenly,

one fine morning, realizing who in fact he is
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Chapter 1

Introduction

Suppose we want to use an intelligent agent (computer program or robot) for performing tasks
for us, but we cannot or do not want to specify the precise task-operations. E.g. we may
want to use a team of intelligent agents which can play soccer together. It is very complex to
write a program which outputs the best movement for each agent in each situation. Rather,
we want to let the agents play together and create the possibility for them to learn to improve
their playing abilities. Learning could be done by trying out different soccer strategies and
observing which strategy leads to the best game results.

Most real world problems require sequential decision making: the agent selects and exe-
cutes an action and this causes some change in the state of the world. Given the new world
state the agent selects a new action and so on. Examples of such problems are driving a car,
cleaning an office, and playing soccer. In this thesis we are interested in developing intelligent
agents which can learn to solve such tasks. There are two optimization methods which enable
an agent to learn from the results of its interaction with the world in order to maximize
its performance over time: the one we will use and describe in this thesis is reinforcement
learning (RL), another possibility is to use evolutionary methods such as genetic algorithms
(Holland, 1975).

An agent uses a policy for selecting actions. RL methods improve their policy by apply-
ing it in their environment and by monitoring and learning from the resulting experiences
(experimental data). To learn as much as possible, it is important that the agent explores
its environment. An exploring agent tries different actions even when it believes that one
particular action is best. Without such exploration, the agent may always see the same world
states and thus it cannot learn about new, possibly highly rewarding, situations.

Perception of the environment. An intelligent agent is situated in a particular envi-
ronment and is equipped with sensors through which it receives inputs to describe the state of
the environment. The world (environmental) state at a given moment is an exact description
of the environment, including all objects present in the environment and their parameters
such as position, rotation etc. The agent’s inputs do not always describe the complete state
of the environment, but may give a partial and noisy description. Figure 1.1 shows the Chi-
nese wall with three doors in it. The agent sees a particular door, but since all doors look
alike it cannot use its input to know exactly where it is.

Using these inputs, the agent selects and executes an action which affects the environment
in some way. Take as an example the agent before the chinese wall. It can stand still, go
forward, rotate, and open the door. If the agent opens the door, there is a clear impact on
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AGENT

INPUT

Figure 1.1: An agent who s unable to distinct multiple doors in front of the chinese wall using
its current sensory input only.

the environment. But also when the agent goes forward or rotates, the environment changes
since it includes the agent. The agent’s action selection policy is determined by a function
which maps sensory inputs to actions. This function forms the core of the agent’s behavior
and therefore is our main interest.

Modeling and control. Autonomous agents can be used for different goals. The goal
on which we will focus in this thesis, is to learn to control an agent. Here we are interested
in learning an action selection policy which solves a specific problem, where we use the
term learning for adapting what has been experienced. For many real world problems it
is necessary that we have an adaptive autonomous agent — it is a very costly and time
consuming procedure to have a human programmer program a particular policy for an agent,
and the resulting behavior often fails completely if the environment changes.

Another goal is to study an animal’s or animat’s (some artificial creature or system)
behavior in order to better understand its behavior or reaction in particular situations. This
can be done by designing a model of the creature and by simulating its behavior with a
computer under a wide variety of circumstances. By carefully analyzing the observed behavior,
the model may show discrepancies with the real or desired behavior and can be changed
accordingly. Examples of interesting behaviors or phenomena to model are: the foraging
behavior of a bee, fire spreading in forests or buildings, chewing lobsters, and the reaction of
the human immune system to treatment with particular drugs.

Reward functions. When we want to use intelligent agents for solving a particular
task, we must use evaluation methods which judge how well the agent performed. Analo-
gous to research in animal biology (where people experiment with living animals to teach
some behavior by giving rewards or punishments), our evaluation method will be a reward



function assigning rewards and punishments to particular actions in particular environmental
situations. These rewards serve to reinforce a particular behavior and hence comes the name
reinforcement learning, the main topic of this thesis.

Reinforcement learning. In this thesis we consider reinforcement learning (RL) meth-
ods which optimize the policy of an agent by learning from trial and error. The goal is to
select for all environmental (or world) states the action which leads to the maximal sum of
future rewards. At each time step the agent receives input by observing the world state with
its sensors, selects and executes an action based on this input, and receives a reward signal
(see Figure 1.2). In order to learn a rewarding policy, the agent uses its experiences (exper-
imental data) to learn a walue function which estimates the expected future sum of rewards
given that the agent is in a particular world state and selects a particular action. When we
have an optimal value function, no planning is needed for selecting an action, and therefore
we say that the agent follows a reactive strategy. Another advantage of learning is thus that
no time-consuming planning is needed, although the accuracy of the value function should be
extremely high for optimal decision making.

INPUT ACTION

Figure 1.2: The feedback loop of a RL agent. The agent receives environmental inputs through
its sensors, selects an action which changes the state of the environment and receives a reward
signal. Based on the rewards it receives, it adapts its policy.

Applications of RL. The earliest success in RL is Samuel’s checkers playing program
(1959). His program uses a linear polynomial to evaluate a set of selected features. To make
the evaluation of the current board position more precise, the program uses lookahead search.
Then he trained the value function by letting the program play against itself, which resulted
in the first program which was able to beat its programmer.

Probably the biggest success in RL is Tesauro’s TD-Gammon (1992), a backgammon
playing program consisting of a feedforward neural network trained by a variant of RL (Sutton,
1988) and self-play. TD-Gammon achieved world class level play and won some matches
against some human world class players (Tesauro, 1995).
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Other successful applications of RL to complex problems were reported by Zhang and Liu
who used RL with time-delay neural networks (LeCun et al., 1989) for iteratively repairing
job-shop schedules (Zhang and Liu, 1996), and by Crites who used a team of reinforcement
learning agents to train a neural network for controlling multiple elevators in a simulated
environment (Crites and Barto, 1996).

The potential of the practical applicability of RL approaches is huge, since it is often easy
to set up a system which interacts with an environment and monitors its experiences. Using
those generated experiences, the learning method can improve the policy. In backgammon
for example, we only need to have a program which allows to play games and a learning
architecture which can be used for improving the policy by using newly generated learning
examples. Then we can let the computer play and learn for some time until it has succeeded
in learning what we wanted it to learn. This is much simpler than designing a position
evaluator by hand. E.g., Berliner’s BKG backgammon program (1977) took many man years
to construct, but its level of backgammon play was already much lower than that of TD-
Gammon learning for 3 months on a RS6000 computer.

Complete vs incomplete information. In the following, we will make a distinction
between decision making based on complete state information and decision making based
on incomplete state information which causes uncertainty about the true state (remember
the chinese wall where we cannot exactly infer where we are — the input allows for many
different positions). An incomplete description of the world state is caused by sensory inputs
which only partially reflect the true state. In the real world, such partially observable world
states are very common, since sensors are imperfect or the exact state is not measurable with
practical sensors because states may look exactly the same. Finally, it may be impossible to
give a full description of the world state, since too many dynamic objects would need to be
described.

The reason of making the distinction is that uncertainty in the state makes the task much
more complex.! We first describe RL in fully observable environments and then describe RL
in partially observable environments.

1.1 Reinforcement Learning

Complete state information. When the agent’s sensors can be used to obtain a complete
description of the world state, its decision making process is facilitated considerably. However,
what does complete state information mean? Does it mean that the agent needs to describe
all positions of objects and the values of all their attributes in the environment? The answer
is no. There are two ways for obtaining a complete state description:

(1) If the agent has a local view of its environment, e.g. it is equipped with a camera,
it would still receive a complete description if its sensory input provides it always with a
unique view of the environment. Although most realistic agent’s are equipped with such local
sensors, they are in general unable to know the values of dynamic attributes. Therefore they
can only obtain a complete description for static (unchanging) environments for which only
their own position matters.

(2) The agent has a global view of the environment (e.g. by using multiple camera’s on
the ceilings of all different rooms) containing the values of all dynamic attributes, and its own

"Whereas there are efficient algorithms for finding solutions to problems with complete state information,
no such algorithms exist for incomplete state information problems.
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position in the environment. Values of static attributes are unimportant. E.g., suppose that
the agent can go to a cupboard and open its drawer. Since the drawer can be open or closed,
this fact may influence the effect of the action and hence the agent’s decision making. If the
position of the cupboard is constant, there is no need to use it as input information next to
the position of the agent, since the effect of executing the open drawer action will just depend
on the agent’s position and the state of the drawer.

Markov decision processes. Many problems consist of making a sequence of decisions,
where some decision in a specific world state causes some change of this state. Such problems
can be modeled as Markov decision processes/problems (MDPs) and most work in RL has
been done in finding solutions to such problems. Making decisions is done by using a policy
which selects actions based on the world state. The goal is to find the policy which maximizes
the expected cumulative future reward.

Markov property. A Markov decision process is a process where the transition proba-
bilities to the possible next states only depend on the current state and the selected action of
the agent. This means that all relevant historical information for determining the next state
is present in the current state. Although physicists assume that this so-called Markov prop-
erty holds in the universe, for decision making it is also important that the Markov property
is satisfied from the agent’s perspective (who may not always be able to perceive the exact
state of the universe). This means that all information which may influence the future of the
agent is at all times present in the agent’s description of the state. Therefore, for MDPs,
the agent is in principle able to exactly learn how the world evolves (although this may be
indeterministically). This is of course impossible for many real world problems.

MDP characterization. A Markov decision problem is characterized by a model which
consists of a complete transition model containing the transition-probabilities to all states
given all state/action pairs, a reward model containing all rewards for all possible transitions
and a discount factor which makes rewards received in the future less important than im-
mediate rewards. The reward model is given by the designer and determines which agent’s
behavior is preferred. The discount factor has the effect that collecting immediate rewards is
preferred to postponing collecting them for a while.

Dynamic programming. Algorithms based on dynamic programming (DP) (Bellman,
1961; Bertsekas and Tsitsiklis, 1996) may be used to compute optimal policies for MDPs
when a complete model of the MDP is available. DP algorithms use this model for iteratively
computing the value function. Unfortunately, a complete model is in general not available,
so that DP on the a priori model often cannot be used. Furthermore, the number of states
is sometimes so large that it becomes infeasible to store the whole model.

Heuristic DP. There exist a variety of RL methods which can be used to learn the
policy without the need for an a priori model. Instead of creating a precise model (with
all states, transition probabilities etc.), constructing a simulator or putting an agent in a
real environment for generating experiences is much easier. Heuristic DP (RL) methods can
be used as stochastic iterative approximation algorithms and learn from trials in which the
agent’s policy is used in the simulated or real environment to generate novel experiences.
Then RL methods learn from these experiences to improve the approximation of the value
function.

TD(A)-learning. Temporal difference (TD) methods (Sutton, 1988) are a particular
kind of RL method which can be used to learn to predict the outcome of a stochastic process
given a set of state sequences generated by the process. TD methods are driven by the
difference or TD-error between two successive state values and adapt the former state’s value
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to decrease this difference. Sutton (1988) introduced the TD()) framework by creating a set
of TD methods parameterized by a variable A which weighs the degree of influence of state
values in the distant future relative to the values of immediately successive states. This makes
it possible to learn from effects of actions which show up after a long time. Although TD
methods are essentially prediction methods, they can also be used for learning to control by
extending the system with a model for simulating actions. Then actions can be tried one for
one and the predictions of the resulting states can be used for selecting the action.
Q-learning. A well known RL algorithm is Q-learning (Watkins, 1989), which uses its
policy to try out sequences of actions through state/action space and uses the rewards re-
ceived from the environment to learn (estimate) the expected long-term reward for executing
a specific state/action pair. Q-learning repeatedly performs a one-step lookahead backup,
meaning that the Q-value 2 of the current state/action pair is adapted towards the immedi-
ately received reward plus the value of the next state. Thus, Q-learning is essentially a TD
method. Q-learning works well for particular problems. It uses the feedback in a rather inef-
ficient way as the feedback is only used for updating a single Q-value at a time. This makes
it very slow for solving large problems with long delays until a reward signal is returned.
Q-learning has been proven to converge to the optimal value function for MDPs (Watkins
and Dayan, 1992), however, if all state/action pairs are tried infinitely many times.
Q(X)-learning. Q(A)-learning (Watkins, 1989; Peng and Williams, 1996) combines
TD(A) methods with Q-learning to propagate state/action updates back in time so that mul-
tiple state/action pairs (SAPs) which have occurred in the past can be updated. Sequences of
SAPs often lead to the same future state/action trajectories and therefore multiple previous
Q-values of executed SAPs depend on the current experience. That is probably why Q())-
learning has outperformed Q-learning in a number of experiments (Lin, 1993; Rummery and
Niranjan, 1994). Q(X) especially outperforms Q-learning for problems where (1) intermediate
rewards are missing or not very informative, (2) the environment is not very stochastic, and
(3) many actions have to be selected before a specific goal state has been reached. Larger
values for A increase the variance in the updates, however, since the range of the Q-values
of possible state/action pairs far away in the future is usually much larger than Q-values of
SAPs which occur immediately. Therefore, when the problem contains a lot of noise or when
the variance in emitted rewards of state/action pairs is large, the advantages in using large
values for X is much smaller since the larger variance in the updates slows down converging.
Indirect RL. Q-learning and alternatives are direct RL learning methods which means
that they directly estimate the Q-values from the results of the interaction with the world.
This is in contrast with indirect or model-based RL methods which first estimate a model
of the transitions and rewards and then apply dynamic programming techniques to compute
policies. World models (WMs) integrate all observed experiences in a model so that the loss
of useful information is minimal. Modeling approaches have several advantages besides their
efficient usage of experiences. E.g. they are useful for efficiently exploring the environment,
since they allow the agent to know what has not yet been learned. Since the quality of a
computed policy depends on how well the WM fits the real unknown underlying Markov
decision process, we can increase its accuracy in the interesting (e.g. unexplored or highly
rewarding) areas until near optimal policies have been computed.
The combination of world modeling and dynamic programming tends to be time consum-
ing due to the dynamic WMs which require that the slow DP algorithms compute a new

2QQ-value stands for Quality value.
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policy after each experience (when used in an online manner). More efficient methods par-
tially recompute policies after new information comes along. A simple method, which is
very fast, uses model-based Q-learning or Real-Time Dynamic Programming (RTDP) (Barto
et al., 1995), which outperforms standard Q-learning due to the higher informed update steps.
Even more efficient algorithms manage the cascade of updates which are computed by DP,
by assigning priorities to the updates. A well known method for doing this is Prioritized
Sweeping (PS) (Moore and Atkeson, 1993), which enables us to (partially) recompute the
value function and policy at all times with few informative updates.

Exploration. RL uses multiple trials for resampling the utility of selecting particular
SAPs for learning (near) optimal strategies. A policy needs to map all states to actions,
and therefore finding the optimal policy needs all state/action pairs being tried out. Initially
large parts of the state space are unknown and estimates of actions may be erroneous. To
examine the effects of alternative (non-greedy) actions, actions are selected by an exploration
rule. Good exploration rules use the policy and possibly additional information to select a
promising alternative action about which the agent has gathered insufficient information (in
theory each action could be the best possible action, but some are more likely to be optimal
than others). Exploration rules “buy” information — the agent would probably obtain more
immediate reward by selecting the action that currently looks most promising — in the hope
that this information can be used to increase the reward intake in later life. Exploration
rules can be split into (1) undirected exploration which uses pseudo-random generators to try
their luck on generating novel interesting experiences, and (2) directed exploration which uses
additional information for learning utilities for trying out exploration actions (Schmidhuber,
1991c; Thrun, 1992; Wiering and Schmidhuber, 1998a).

Function approximators. Most real world problems consist of a large or infinite amount
of states due to continuous valued variables or a large number of state-variables.®> To be able
to store and learn value functions for such state spaces, we need to approximate the value
function by function approximators. Function approximators consist of many adjustable pa-
rameters which map an inputvector to an output vector. The parameters of the function
approximator are trained on learning examples so that the difference between the desired
output and the output of the function approximator on the examples is minimized. Well
known examples are feedforward neural networks (Rumelhart et al., 1986; Van de Smagt,
1995), linear or cubic spline interpolation (Press et al., 1988), and Kohonen networks (Koho-
nen, 1988).

1.2 Reinforcement Learning with Incomplete Information

When states are partially observable (due to e.g. imperfect sensors) the agent cannot always
map its inputs to unique environmental states. This uncertainty about the real state makes
choosing an optimal action very difficult. Problems with insufficient input information to
distinguish between two different states are called partially observable Markov decision prob-
lems (POMDPs) (Sondik, 1971), and they are the hardest problems for RL — even solving
deterministic POMDPs is a NP-complete problem (Littman, 1996).

Algorithms for solving POMDPs are based on using some kind of internal state which
summarizes previous events. The state produced by combining the internal state and the
current input can then be used by the agent’s policy for selecting an action. Operations

3If we have 20 binary valued variables, our whole state space consists of 22° (> 1,000,000) states.
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research has developed several algorithms for finding optimal solutions to POMDPs. Most of
these select an action on the basis of so-called belief states. Belief states describe the agent’s
knowledge about the world as a probability distribution over all possible states (Lovejoy,
1991). Since the number of belief states and candidate policies increase exponentially as we
perform more planning steps, exact algorithms are computationally too expensive for problems
containing more than 100 states (Littman et al., 1995a). Therefore, heuristic methods are
needed to solve them in reasonable time. There are many possible heuristic algorithms, e.g.,
function approximators may be useful or we may keep the input representation small by only
using short term memory of interesting events. Most real world problems are POMDPs,
since it is usually not feasible to have perfect state information. Therefore the number of
applications is huge. An example of a POMDP is the task of determining optimal dates for
appointments and (often expensive) check-ups for patients with a serious disease (Peek, 1997).

Changing environments. Solving a task in a changing (non-stationary) environment
is another complex problem. Changing environments could be: (1) environments where the
outcome of executing an action changes over time, e.g. when an effector is damaged, or (2)
environments where attributes of objects in the environment change over time, or (3) where
the goal changes.

Although the agent could have complete state information, it cannot compute an optimal
policy if it does not know the transition function or reward function in future time-steps.
Therefore it has to find out what changes and this is very hard. Consider a vacuum-cleaning
robot in a specific environment where chairs and tables move around and where reference
points such as doors and windows may be opened and closed. If we need to know the exact
state of the environment for computing the best vacuum cleaning trajectory, we would need to
find out how the chairs and tables are moved around. Dealing with many dynamic variables
is a challenging issue, since they cause an explosion of the state space. Fortunately, decision
making in most situations only needs to use few variables and therefore huge reductions of
the state space can be made by making the variables context dependent. E.g., an agent only
needs to know whether a drawer is open or closed when it sees a cupboard and wants to take
something out of it.

Multiple agents in RL. Recent research in RL focuses more on problems featuring
multiple autonomous agents, e.g, (Mataric, 1994). When agents adapt their behavior, the
environment of an agent (which contains the other agents) will change. Thus, multi-agent
problems are changing environments from the perspective of each agent. To make such
problems fully observable the planned actions or policy of other agents need to be given as
part of the input, which again blows up the state space when there are many agents.

There are two kinds of multi-agent problems: (1) agents take part of a cooperative commu-
nity and try to achieve the maximal reward for the entire group, and (2) agents try to optimize
their own rewards and may compete (but also cooperate) with other agents to achieve their
goals. Using RL for the first problem, i.e. for learning community policies, poses many, still
unresolved, problems. These include among others: agent-organization (which subgroups are
formed and which interactions will take place), task specialization (what is the function of each
subgroup/individual), and communication languages to make interaction possible (Lindgren
and Nordahl, 1994; Steels, 1997).

The second problem, i.e. of maximizing the reward intake of an individualistic rational
agent in an environment with other agents, has been studied for the largest part by game
theory (Myerson, 1991). A well known problem where agents have to choose between cooper-
ation and competition is the prisoner’s dilemma (Axelrod, 1984; Sandholm and Crites, 1995).
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It is interesting to note that researchers from experimental economics have found their way
to reinforcement learning algorithms for explaining rational human behavior (Roth and Erev,
1995).

An illustration of the increase of RL work in multi-agent problems is the major interest
in learning robotic soccer teams, for which already world-championships are held (Kitano
et al., 1997). A successful example in multi-agent RL in which agents have to cooperate is a
problem studied by Crites and Barto (1996). They used RL to learn elevator controllers for
a (simulated) building containing four elevators and were able to outperform even the best
conventional elevator dispatchers.

1.3 Current Problems of RL

Although promising, the current state of the art of RL is not very well developed and much
exciting work still remains to be done. TD-Gammon is a major success for reinforcement
learning and in this section we will review the major challenges to obtain the same kind of
success for other problems.

RL as a tool for building intelligent systems. RL provides us with useful tools
which need to be combined with particular intelligent design methods to make it really work.
One important factor which contributes to the success of a RL application is the utility of the
chosen function approximator for representing the value function for the problem at hand.
The feedforward neural network used in TD-Gammon was very well chosen since it allowed
to generalize over the state space, thereby making it possible to select among possible moves
in situations which had never occurred during training. The smoothness of the value function
in a stochastic game like backgammon makes generalization much easier.

Although RL is a promising method, using it for attacking a complex problem is not
straightforward. In this thesis, we describe the current state of the art in the research for RL
methods and face the current problems associated with learning value functions:

e Exploration. Experimental data makes it possible to predict the consequences of par-
ticular behaviors. However, data can be costly to obtain. Then, how can we efficiently
gather data to train the system?

e Uncertainty. In real world problems, information about the state of the environment
is often incomplete. This makes the process of decision making under uncertainty an
important issue. The problem is NP-complete (Littman, 1996), however, thus we would
like to find heuristic algorithms which are useful for solving problems containing many
states.

e Generalization. Function approximators can be used to generalize from the expe-
riences with one situation to similar situations so that it is not necessary to store or
encounter each possible situation.* Although function approximators are in theory a
powerful method for storing input-output mappings and can be used potentially in
combination with RL, there still needs to be done a lot of research before we can really
exploit this combination. Often, function approximators are chosen on an ad hoc basis

*Even when it is possible to store all states, experiencing all of them would clearly be inefficient in terms
of time and other costs.
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resulting in unexpected successes or catastrophes. Furthermore, when applied to a par-
ticular task, some function approximators result in much faster training times or final
performance levels than others. We would like to know which function approximators
are most useful in combination with RL and on which task features this depends.

e Model-based learning. Model-based learning can significantly speed up reinforce-
ment learning. We can use statistical world models to estimate the probability of
making a transition to each possible successive state, given that some action has been
executed in some state. These world models can be used to store experimental data
much more efficiently, to detect what the agent does not know, i.e. has not experienced,
to incorporate a priori knowledge about the problem, to explain what the agent has
been doing all the time, to compute a new policy if the goal changes, and to overcome
problems due to forgetting or interference of multiple problems. A lot of research has to
be done, however, before we can efficiently combine model-based learning with function
approximators.

e Multi-agent RL. Current RL methods have been designed for single agents. When
multiple agents are used, many new challenging issues arise: e.g. if a group of agents is
acting together, which agents were responsible for the given outcome? How can we let
the agents cooperate in specific plans? How can we organize the agents? We also need
to transform single agent RL methods so that they can be applied to multiple agents
and that may not always be straightforward. Given their flexibility and power, one
of the ultimate goals of RL would surely be to solve complex problems with multiple
agents.

1.4 Goals of the Thesis

This thesis aims at describing all topics of interest in RL and proposing solutions to the
current topics of interest. First of all, we aim to giving a clear description of the principles
of reinforcement learning. Then, our goal is to develop new methods to (1) handle the
exploration problem, (2) deal with uncertainty in the state description, (3) combine model-
based RL with function approximators, and (4) apply RL to multi-agent problems. We hope
that we have succeeded in explaining these topics in an understandable way to those readers
who are not familiar with reinforcement learning, while still keeping the more professional
reinforcement learning researcher interested by presenting many different and novel insights
which found their way through this thesis.

All issues will be considered from a computer scientist’s point of view: throughout the
thesis, we will consider the algorithmic and computational issues for finding good solutions
and use experiments to compare different methods.

Finally, we hope that with this thesis, current understanding of issues which are needed
to be resolved to make RL useful for solving complex real world problems has increased
significantly. Examples of problems which we would think could be solved with RL in the
future include: controlling forest fires (Wiering and Dorigo, 1998), directing traffic flow,
debugging computer programs, routing messages on the internet (Di Caro and Dorigo, 1998),
and regulating combustion engines to reduce COs emission.
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1.5 Outline and Principal Contributions

First part

The first part of the dissertation describes the Markov decision process framework, dynamic
programming, and reinforcement learning. The presented algorithms are described in the
context of problems involving full state information.

Chapter 2 describes MDPs and dynamic programming. This will serve as a general
framework and to introduce the notation used throughout this thesis.

Chapter 3 describes reinforcement learning together with the newly developed fast online
Q(A) approach and a novel team Q()\)-learning algorithm.

Fast online Q(\)-learning. Typical online Q(\) implementations (Peng and Williams,
1996) based on lookup-tables are unnecessarily time-consuming. Their update complexity is
bounded by the size of state/action space. We describe a novel online Q(A) variant which is
more efficient than others — it has average update complexity which is linear in the number
of actions.

Team Q(X)-learning. When dealing with multiple agents, it may happen that agent tra-
jectories meet. Rather than only letting agents learn from their own experiences, we can make
use of such crossing points so that agents can learn from the experiences of other agents. Our
novel Team Q(A) method is a new algorithm for linking agent trajectories.

Finally, at the end of Chapter 3 we describe the results of experiments with maze-tasks
to evaluate existing algorithms and our novel RL algorithms.

Chapter 4 describes model-based learning. It shows how world models can be estimated
and describes a model-based version for Q-learning (RTDP) (Barto et al., 1995). Then we
review prioritized sweeping (PS) and introduce an alternative PS variant which manages
updates in a more exact way. We also present an experimental comparison between the
different model-based reinforcement learning approaches.

Chapter 5 describes exploration in reinforcement learning. Active data gathering or
exploration (Fedorov, 1972; Schmidhuber, 1991a; Thrun and Moller, 1992; Cohn, 1994) is
important for efficient learning, because otherwise lots of time is wasted on improving the
approximation on what is already known, whereas large parts of the state space are badly
fitted by the model. We have constructed a novel exploration approach which is based on
model-based RL (MBRL).

Learning exploration models. We study the problem of collecting useful experiences for
MBRL through exploration in stochastic environments. The novel method is based on learn-
ing an exploration value function and relies on maximizing exploration rewards for visits of
states that promise information gain. We also combine MBRL and the Interval Estimation
algorithm (Kaelbling, 1993). Results with maze experiments demonstrate the advantages of
our approaches.

Second part

The second part of the dissertation describes generalizations of the MDP framework described
above: partially observable MDPs, continuous MDPs and function approximation, and multi-
agent learning.

Chapter 6 describes POMDPs in more detail, reviews approaches to solve them and
presents our novel approach: HQ-learning.
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HQ-learning attempts to exploit regularities in state space. Its divide-and-conquer strat-
egy discovers a subgoal sequence decomposing a given POMDP into a sequence of reactive
policy problems (RPPs). RPPs are problems for which each state which is mapped to an
identical input by the sensors require the same optimal action. This makes it possible to
store their solution in one representation. The only “critical” inputs are those corresponding
to transitions from one RPP to the next. HQ is based on two cooperative temporal difference
learning rules: the first learning rule learns a decomposition of the task into a temporal se-
quence of subtasks and the second rule learns policies to solve the subtasks. HQ does not need
an a priori model of a POMDP and experiments show that it is able to find good solutions
for large deterministic partially observable maze-tasks.

Chapter 7 describes function approximation methods which can be used in combination
with Q(X)-learning for learning the value function for large or continuous input spaces. We
describe linear networks, a new variant of neural gas (Fritzke, 1994), and CMACs (Albus,
1975a). Then we will also show how these methods can be combined with world models.

CMAC models. We will in particular focus on CMAC models consisting of a set of inde-
pendent filters which produce evaluations which are combined for selecting an action. The
models are used to estimate the dynamics of each independent filter.

Multi-agent soccer. As a test environment for the function approximators we use simulated
soccer. The task is to learn policies which outperform a fixed opponent. Results are shown
for varying team sizes and different strengths of opponent teams.

Chapter 8 concludes this thesis, reviews what has been done, and outlines interesting
directions for future work.



Chapter 2

Markov Decision Processes

This chapter describes dynamic programming (DP) in the context of Markov decision pro-
cesses (MDPs). The reader who is not familiar with Markov processes (MPs) is adviced to
read Appendix A first. MPs can be used to formalize stochastic dynamic processes. Section
2.1 formally describes Markov decision processes (MDPs). MDPs are controllable Markov
processes and solving a MDP means finding the policy which maximizes some specific reward
criterion. Section 2.2 describes DP algorithms which are able to compute the optimal policy
for MDPs. Problems of DP are that they need a tabular representation for the state/input
space and that they are computationally expensive for large numbers of states. In Section
2.3 we show results of DP algorithms on maze problems and evaluate their computational
demands as magze sizes increase. In Section 2.4 we describe some of the difficulties of using
the MDP framework directly for real world problem solving and describe some extensions for
dealing with more general decision problems. Finally, in Section 2.5 the conclusions of this
chapter are given.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a controllable dynamic system whose state transitions
depend on the previous state and the action selected by a policy. The policy is based on a
reward function which assigns a scalar reward signal to each transition. The goal is to compute
a policy for mapping states to actions which maximizes the expected long-term cumulative
(discounted) reward, given an arbitrary initial state.

Basic set-up. We consider discrete Markov decision processes consisting of:
e A time counter t =0,1,2,3,...

e A finite set of states S = {51, 52, S53,...,Sn}. We denote the state at time ¢ as s;. To
simplify notation, we will also use the variables 1 and j € S to refer to states.

e A finite set of actions A = {Ay, As, As,..., Ay }. We denote the action at time ¢ as ay.
e A probabilistic transition function P. We use P;j(a) := P(s¢11 = j|s¢ = i,a; = a) for

1,7 € S and a € A to define the transition probability to the next state s;11 given s;
and ag.

13
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e A reward function R maps a transition from state/action pair (SAP) (i,a) to state
J to scalar reward signals R(i,a,j) € IR. We assume that the reward function is
deterministic, although it could in principle also be stochastic. We denote the reward
at time ¢t as r;.

e The discount factor v € [0, 1] is used to discount rewards received in the future. An
agent is interested in accumulating as much future reward as possible. By exponentially
decaying rewards with the number of time steps until the reward is received, immediate
rewards are made more important than rewards received after a long time.

e P;,;+ defines the initial probability distribution over all states. Pj,;:(s) is the probability
the agent starts in state s.

2.1.1 Value Functions

Given the transition and reward functions, the goal is to find the policy IT* which maps
states to actions (a¢* = II*(s)) with maximal expected discounted future reward. For defining
how good a policy II is, a value function VI is used.! The value VI(s) is a prediction of
the expected cumulative rewards received in the future given that the process is currently in
state s and the policy II is used throughout the future. Value functions are used to enable
the evaluation of the available policies.

There are two common ways for dealing with the future: one method constraints the
future until some finite horizon, whereas the other method allows the process to go on forever
by using an infinite horizon.

2.1.2 Finite Horizon Problems

For many problems there is a bound on time (often called deadline). This means that the
policy has to stop at some point and has to accumulate as much reward as possible during
its limited “life-time”. In this case the value function V is time dependent and therefore we
have to write V; to account for the number of steps left in the future (¢). Furthermore we
have a non-stationary (time dependent) policy I = {II;,Ils, ..., II7}, with horizon limit 7'
The horizon-bounded value function le:l is allowed to make T decisions with policy IT and
equals:

T-1

VI (i) = E(Y_ R(st, TI(s4), se41)]s0 = 4)
t=0

Here we start with state sg, and add all transition rewards, where a transition to state s;i1
is caused by selecting action a; = TI(s;) in state s;. The expectation operator F is used to
account for the probability distribution over the state-trajectories.

Computing the optimal policy. Computing optimal solutions for deterministic short-
est path problems can be efficiently done with Dijkstra’s shortest path algorithm (Dijkstra,
1959). For general problems consisting of non-deterministic transition functions and arbi-
trary reward functions we need to use a more advanced and generalized algorithm. To find
the optimal policy IT*, we can proceed as follows: first we find the optimal action when only

"When it is clear which policy we are using, we may drop the policy-index and simply write V')
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1 step can be made from each state, and compute the optimal value function V*. Thus, first
we compute for all states 1 € S:

V() = mgX{Z Pij(a)R(i;a,5)}

and set the 1-step policy action in each state 1 € S to:

I (i) = argmax{} _ Pij(a)R(i,a, )}

Once we have calculated the optimal value function Vj* we use it to compute V5 and so
on for steps 1,...,T. The idea is that within ¢ steps, the maximal reward we can obtain
with the best action is equal to the immediate reward plus the cumulative reward obtained
from making the optimal ¢ — 1 steps from the next state. Thus, we use the value function to
accumulate the maximal attainable reward over more and more steps. Finally, the expected
future cumulative reward over T steps is reflected in the value function V7. Given V", we
compute V}' ; as follows:

Vit () = mgx{z Pij(a)(R(i,a,5) + Vi (5)}

and we set the t + 1-step policy actions to the action a which maximizes the value function:

[Ty (1) = arg mgx{z Pij(a)(R(i,a,j) + Vi (5))}

2.1.3 Infinite Horizon Problems

Sometimes we do not want to pose a bound on the time counter ¢, since we would like the
agent to continue “forever” or we do not have any a prior: information about the duration
of the problem we wish to solve. For such MDPs, we can use the infinite horizon case. For
dealing with unlimited time-bounds, we cannot simply sum all future rewards: we must make
sure that the summary operator over the future rewards returns a bounded (finite) value.
This is usually done by using a discount factor v which weighs future rewards in a way which
assigns high weights to immediate rewards and weights which go to 0 for rewards which will
be received far away in the future (Lin, 1993) 2

Since we are dealing with an infinite horizon, we want to compute a stationary policy.
Fortunately, the optimal policy for infinite horizon problems are always stationary since the
specific time step becomes meaningless due to the infinite future. The value function VT for
policy II starting at state 7 is given by:

o0

V(i) = E(Y_ v'R(st, T1(s4), se11)]s0 = i)
=0

Given a fixed policy II, the actions in all states are fixed and the transition probability
only depends on the current state. For a deterministic policy, the transition matrix P with

Instead of using discounting, we may also use the average reward over all future steps (Van der Wal, 1981;
Schwartz, 1993; Mahadevan, 1996).
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transition probabilities P;; is given by:3
Bij = Pi(T1(3))
Furthermore, we define the reward matrix R with rewards R;; as follows:

Now we can calculate the value function for policy II as follows:

V=% "+'"P'Diag (PR") (2.1)
t=0

Diag'(PRT) returns the main diagonal of the matrix PRT. This is a vector which contains the
average single step reward for the different states. When we multiply this with the discounted
average number of times that the states are visited in the future, we get the value function.

By making use of the fact that a state value equals the immediate reward plus the expected
value of the subsequent state, Equation 2.1 can be rewritten as:

V1 = yPV" + Diag (PRT) (2.2)
and we can solve this by computing:
VIl = (I — yP)"'Diag (PRT)

Note that for ergodic Markov chains it holds that when 0 < v < 1, the inverse (I —yP)~! can
be computed, since (I —P) is non-singular. However, there are better ways to calculate VI
than by inverting a matrix, which may introduce rounding-errors due to an ill-conditioned
matrix. We can compute the value function by iteration (Van der Wal, 1981; Bertsekas and
Tsitsiklis, 1996). Each step improves the value function so we are sure that the computation
will converge to the optimal value function. Thus, we iteratively compute for a certain policy
I1, and for all states 4:

V(i) = ZPij(Rz’j +9VI(45))

By updating the value function in this way, we essentially execute an additional lookahead
step. The iteration will converge to the expected cumulative reward obtained by the policy.

For the optimal policy, we always select that action in a state which maximizes the value
of that state. Thus, for the optimal value function V* the following holds:

V(i) = max Z Pij(a)(R(i,a,5) + V(7))

This equation is known as the Bellman equation (Bellman, 1961) and is the basis for dynamic
programming. Every optimal policy satisfies the Bellman equation and every policy which
satisfies the Bellman equation is optimal.

3In case of stochastic policies we can compute the transition and reward functions by taking the action
probabilities into account.



2.1. MARKOV DECISION PROCESSES 17

2.1.4 Action Evaluation Functions

Q-functions evaluate actions given a specific state. They are functions of the form Q™(i, a),
and they return the expected future discounted reward when the agent is in state 7, action a
will be executed, and policy II will be followed afterwards. For each policy II, we can calculate
the action evaluation function QU (i,a), Va € A and Vi € S:

Q"(i,a) = Z Pij(a)(R(i,a, ) +vV(5)) (2.3)

A policy can exploit a given Q-function by selecting in each state the action which maxi-
mizes that Q-function. Thus, we have:

II(7) = arg mgLX{QH(i, a)} (2.4)

In general applying Equation 2.4 creates a new policy which will not be equal to the one
before, and thus after computing a new policy we compute a new Q-function for it according
to 2.3. By repeatedly alternating these computations, the Q-function converges to the optimal
Q-function Q*. The optimal policy II* selects the action which maximizes the optimal action
value function Q*(7,a) for each state i € S:

IT*(i) = argmax{Q"(i, )}

Sometimes Q-values of different actions are equal. In such cases the agent is allowed to
randomly select between the optimal actions.

2.1.5 Contraction

Although there may exist multiple optimal (deterministic) policies which differ in selecting
an action for a state from actions with equal Q-values, there is only one optimal value or
V-function: V*, what we will show now. A V-function is a function of a state ¢ and the
actions of the policy. The optimal V-function is the one where the policy receives most future
rewards for all states s:

V(i) = max{V1(i)}

Dynamic programming computes V* by iteratively using a backup operator B. The operator
B performs a one-step lookahead by evaluating all possible actions and selecting the optimal
action:

B(V (i) = max ) P;j(a)(R(i,a, ) + vV (5))

Thus, B may change actions in order to improve the value function or it may just compute a
better estimate of the value function (without changing actions).

We will denote the use of the operator B on V as simply : BV. For the optimal value
function V*, the following must hold:

BV*=V*

This means that V* is a fixed point in the value function space. B is a contraction operator,
which means that each time we apply B on an arbitrary value function V', we get closer to the
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fixed point V*.* This is a necessary condition for contraction and means that convergence
will take place as we apply B infinitely many times (Bellman, 1961). To define a distance
measure, we use the largest absolute difference between two values V;(7) and V*(i) for some
specific state ¢ (i.e. the max norm is used). This distance gets smaller when B is applied.
First we define the max norm distance function:

IV = Villoo = max [V*(s) — Vi(s)],

where |a| denotes the absolute value of a. Then we show:

||BV* — BV1||
max; |[BV*(i) — BVy(i)]
max; |(max, 3 Pij(a)(R(i,a,7) + V(7)) — (maxy 35 Py (b)(R(1, b, 5) + vV1(7)))]

<
max; max. (3 Pij(c) (R(i, ¢, j) +vV*(4))) = (2 Pij(c) (R(, ¢,5) +vV1(5)))] =
max; max. |(3 PZJ(C)(WV (1) =7V1(1))] <
ymax; [V*(j5) = V1(j)| =
NV = Vil H

Since this holds for all starting value functions V;, and V* is a fixed point, there cannot
be any local minima. Thus, we have shown that operator B applied on the value functions
strictly brings the value functions closer when v < 1.

2.2 Dynamic Programming

Dynamic programming (DP) can be used to compute optimal policies for (infinite horizon)
MDPs (Bellman, 1961). There are three well known algorithms for computing the policy and
value function: policy iteration, value (greedy) iteration, and linear programming. Policy
iteration completely evaluates a policy by computing the value function after which the policy
is changed so that always the actions are chosen with maximal Q-values. Value iteration
changes II(s) whenever (s, a), for all @ € A have been computed. Linear programming (LP)
maximizes the value function subject to a set of constraints (D’Epenoux, 1963; Littman,
1996). We will show the policy and value iteration algorithms, and solving a MDP as a linear
programming problem.

2.2.1 Policy Iteration

Policy iteration computes optimal policies and always terminates in finite time (Littman,
1996; Bertsekas and Tsitsiklis, 1996). This can be easily seen, since there are |A||S‘ policies,

® The algorithm consists

and policy iteration makes an improvement step at each iteration.
of an iteration over two subroutines: policy evaluation and policy improvement.
The algorithm starts with an arbitrary policy and value function. The policy II is evaluated

by using the transition matrix P and the reward function R:

VR = (I — yP) ' Diag'(PRT)

“Strictly speaking, the distance never increases, i.e. B is a non-expanding operator. However, we will see
that if the discount factor is smaller than 1, the distance decreases.

Policy iteration does not solve a MDP in polynomial time in the number of states and actions, however
(Littman et al., 1995b).
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Note, that instead of fully evaluating the policy, we may also repeatedly use the following
equation for all states i to synchronously update VI

V(i) = Z Py (T)(R(i,T1(3), §) +~V"(5))

and stop when the largest difference between both sides of the equation is smaller than some
specific threshold e. This may speed up policy evaluation significantly, although when € is too
large the resulting policy may not be optimal. In general € is called the Bellman residual (the
error which remains after iterating), and the resulting imperfect value function is bounded as

follows (Williams and Baird, 1993; McDonald and Hingston, 1994; Singh and Yee, 1994):

2ve

V(z) > V*(z) — -
Y

After evaluation we make a policy improvement step. First we compute the action evalu-
ation function with elements Q(7,a) which assigns the long term expected discounted reward
when action a is selected in state 1:

Q"(i,a) = Z Pij(a)(R(i, a,5) +yVT(4))

Then, we improve policy IT by taking the action in each state which maximizes the action
value function Q" (s, a):
TI(s) = arg max{Q"(s,a)}
a

The policy evaluation and improvement steps should be repeated for a specific number of
times until the policy is not changed anymore. Then the algorithm stops with the optimal
value function V* and an optimal policy IT*.

The complexity of the algorithm mainly lies in the evaluation part. Inverting an n X n
matrix costs O(n?®) when no clever methods are used. We can speed this up to about O (n2807)
(Press et al., 1988). This can be sped up further by using a stopping condition (minimal error
requirement). The number of evaluate-improve repetitions is usually quite small, but depends
on the problem complexity. In the worst case it may be O(]A|lS]), the total number of policies,
which may happen in case policy iteration always makes a single improvement step of the
policy. For simple problems, e.g., when a goal state is accessible from all states and when all
rewards are negative, the number of repetitions will be very small.

2.2.2 Value Iteration

Value iteration, also called greedy iteration, does not fully evaluate a policy before making
policy improvements. The algorithm starts with an arbitrary policy II and an arbitrary value
function V' and repeats the following steps for all 1 € S. First, the Q-function for all actions
in state ¢ are computed:

Q(ira) = 3 Pij(a)(R(i,a, j) +7V (7)) (2:5)

Then, we calculate the new value function:

V(i) = max{Q(i,a)}
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Then, we change TI(7) so that the action a which maximizes the value function in a state 1
will be chosen:

(i) = argmax{Q(i. )}

The algorithm halts when the largest difference between two successive value functions is
smaller than e. Synchronous value iteration updates the values in step (2.5) by using the value
function from the previous time step, whereas asynchronous value iteration immediately uses
the already recomputed state values for calculating other state values.

Value iteration repeatedly performs a one-step lookahead. This is a big difference with
policy iteration which evaluates the policy completely by looking ahead until no more changes
can be seen. In contrast to policy iteration, value iteration is not guaranteed to find the
optimal policy in a finite number of iterations (Littman, 1996).

When M = max; max, | }_; Pij(a)R(i,a,j)| and we start with a value function V9 which
is initialized with sufficiently small values, then the number of iterations t* needed to execute
the (synchronous) value iteration algorithm until ||V — V*|| <, is (Littman, 1996):

log(M) + log () + log(1=5)
log(%)

For particular MDPs differences in value functions for different policies may only be seen
when € — 0. This means that value iteration may need many iterations; it will certainly need
more iterations than policy iteration. However, value iteration does not need to evaluate the
policy completely, and this may significantly speed up computation.

=T (2.6)

2.2.3 Linear Programming

We can also define a MDP as a linear programming problem. A linear program consists of a
set of variables, a set of linear inequalities (constraints), and a linear objective function. In
(D’Epenoux, 1963; Littman, 1996) a linear program is described with variables V' (i), for all
1 € S. The goal is to minimize:

> V)
Under the following constraint for all @ € A and all 7 € S:

V(i) 2 3 PH(RG,a,) + 4V (i)

The intuitive meaning is that we are searching for a value function for which all constraints
hold. The one for which the values are minimized is the least upper bound of these value
functions and therefore the true maximum. The linear programming problem consists of IV
variables and N X M constraints. For large N and M, the linear programming approach can
be practical by using special large-scale LP methods (Bertsekas and Tsitsiklis, 1996).

2.3 Experiments

To compare the dynamic programming methods policy iteration and value iteration we have
created a set of mazes. We do not use linear programming here since the problem contains
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(too) many states. The reasons for using mazes as case study are: optimal policies can easily
be calculated, their complexities can easily be adapted, and many other researchers have used
them so that they can be seen as a general testbed for algorithms solving (discrete) MDPs.

2.3.1 Description of the Maze Task

The story. Someone is living in a city which suffers from disasters. Therefore he has decided
that he needs to look for a better place to stay. From inherited stories, he has found an old
map of the environment which shows a place which is very rich, safe and contains lots of
food. Using the map, he wants to find out what the best way is for going to the land. The
environment consists of impassable mountains, open fields and dense forests. To cross open
fields and dense forests costs a day, but it costs more effort to cross open fields than dense
forests. The man also knows that there will be a specific probability that his actions are not
executed as he wanted. Which method should the pilgrim use in order to plan his way to the
promised land by the least effort?

More formally. We use a quantized map consisting of a number of states (25 x 25, 50
x 50, or 100 x 100). In each state the agent (pilgrim) can select one of the four actions: go
north, go east, go south, go west. Sometimes an action gets replaced by another action due
to the weather conditions which make it impossible to know in which direction the agent is
heading. It is important to note that each area looks different to the agent since the agent
may look at the flora and fauna and discovers that no area looks the same. This important
property of the environment allows the agent to uniquely identify the state in which he is
walking.

Figure 2.1 shows an example maze, where blocked (mountain) states are represented by
black fields, and penalty (forest) states are represented by grey fields. Open fields are white.
The starting state, indicated by the letter S, is located 1 field north/east of the south-west
corner. The goal state (G) is located 1 field south/west of the north-east corner.

Reward functions. Actions leading to a mountain area (blocked field) are not executed
and are punished by a reward of —2. Normal steps through open fields are punished by a
reward of —1. Dense forests areas are difficult to cross, since they may harm the agent or
involve some risk. Therefore by executing an action which leads to a forest field the agent
receives a penalty of 10 points (R = —10). For finding the goal state, a reward of 1000 is
returned. The discount factor v is set to .99.

Comments about the complexity. The mazes we use are somewhat more complicated
than commonly used mazes, since the agents do not only have to find the shortest path to the
goal, but also try to circumvent crossing punishing states. Furthermore, since we use noise
in the execution of actions (we replace selected actions by random actions without informing
the agent about which action was really executed), the agent wants to find the policy which
collects most reward on average. This means the agent has to use the local rewards to find
the globally most rewarding policy.

For each different maze-size we have generated 20 different randomly initialized mazes,
all with a maximum of 20% blocked fields and 20% punishment fields (these are inserted
randomly). We discarded mazes that could not be solved by Dijkstra’s shortest path algorithm

5The discount factor can be seen as the probability that the process continues — instead of using a discount
factor we can multiply all transition probabilities by v and add transitions with probability (1-v) from each
state to an absorbing zero-value state. Thus by using a discount factor, we implicitly model the fact that an
agent may halt before finding the goal.
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(Dijkstra, 1959). One of the randomly generated mazes is shown in Figure 2.1. Selected
actions are replaced by random actions with 10% probability (the noise in the execution of
actions is 10%).

Figure 2.1: A 50 x 50 maze used in the experiments. Black fields denote mountains (blocked
fields), grey fields denote passable dense forests (penalty fields). The agent starts at S and
has to search for the way of the least effort to the goal G.

Traditional methods. We can solve planning problems by specifying them within the
MDP framework. An advantage compared to more traditional planning problems is that
MDPs allow stochasticity in the state transition function. E.g., for the problems considered
above, A* planning (Nilsson, 1971; Trovato, 1996) would not work. It would select an action
in a state and always expect to see the same successor state, which will often not be the
case. Therefore it will not compute the optimal way. The same holds for Dijkstra’s algorithm
(1959) which is a method for computing the shortest path for deterministic problems only.

2.3.2 Scaling up Dynamic Programming

To examine how DP algorithms scale up, we executed policy iteration, synchronous value
iteration and asynchronous value iteration on the a prior: models of the 20 mazes of the
different sizes. We used ¢ = 0.001. For value iteration, we tried the following stopping
conditions for the iteration:

(A) maxs{|Viy1(s) — Vi(s)|} < €, which is the commonly used stopping condition, and

(B) maxs{Vit1(s) — Vi(s)} < e. This stopping conditions makes sense if we know that
value iteration approximates the optimal value function from below, i.e. if the initial value
function is definitively smaller than the optimal value function, then value iteration will
initially increase all values until the goal relevant information (i.e. the shortest path to the
goal) has been backpropagated to all states. Since condition (B) is less strict than (A), the
value iteration algorithm will stop earlier.

Results. The results of policy iteration (which uses the first stopping condition) on the
different maze sizes are given in Table 2.1, and Tables 2.2 and 2.3 show the results with
asynchronous and synchronous value iteration using the two different stopping conditions.
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We can see a huge difference between policy evaluation and value iteration if we compare
the number of times the Bellman backup operator was called for each state. Policy evaluation
is an order of magnitude slower than value iteration (both using condition A). This difference
can be explained by the fact that initial full policy evaluations are expensive since the policy
implements many cycles with high probability through the state space. Therefore, there are
many recurrences which need to be solved. Value iteration quickly learns policies which are
more directed towards the goal state, and therefore only low probability cycles remain which
do not cause large problems due to the fact that we cutoff low update steps. Asynchronous
value iteration (B) performs the best, and uses the update information earliest — in a way it
is more “online” than the other approaches.

Stopping condition (B) performs much better than (A). Using condition (B), asynchronous
value iteration needs to iterate as many times as the length of the solution path. After this,
stopping condition (A) will continue updating, since the value function does not yet reflect all
cycles between states emitting negative rewards. Although this changes the value function,
it hardly affects the policy. Value iteration with stopping condition (A) can cost the same
number of iterations for different maze sizes. Note that the number of iterations is determined
by the discount factor, transition function, and the reward function and not by the maze size.
Compare this also with Littman’s upperbound in equation 2.6 which computes t* = 1822. In
practice the algorithm takes less than 762 iterations.

‘ Maze Size H Policy Iterations ‘ no. Backups ‘ Cum. Reward ‘

25 x 25 11 +1| 3040 £ 380 942 + 12
50 x 50 19 +£ 2| 6450 £ 480 844 + 24
100 x 100 34 £ 3 | 12650 £ 680 691 + 28

Table 2.1: Computational costs for policy iteration to compute 0.001-optimal policies for the
different maze sizes. The number of policy iterations tracks the number of policy improvement
steps, whereas the number of backups tracks how often the Bellman backup operator (to look
one step more ahead) was called for each state. The last column indicates the cumulative
rewards obtained by the computed policy during a single trial starting in S.

| Maze Size | no. Backups (A) | Cum. Reward (A) | no. Backups (B) | Cum. Reward (B) |

25 x 25 669 + 221 939 + 14 43 £ 3 939 £ 13
50 x 50 758 £ 0 841 £+ 27 7T £ 3 841 £ 27
100 x 100 758 £ 0 705 £+ 31 142 £ 3 705 £+ 31

Table 2.2: Computational costs for asynchronous value iteration using two different stopping
conditions to compute 0.001-optimal policies for the different maze sizes. Note that for value
iteration, the number of iterations equals the number of evaluations.

A typical solution path is shown in Figure 2.2. The path crosses a small number (6) of
penalty states. Note that due to the discounting, and the large goal reward, ways round
penalty states are often not preferred (this would decrease the discounted bonus of the final
goal reward). Thus, we have to be careful of using discounting. The task has become more
like finding the shortest path, which also crosses the least number of penalty states, instead
of finding the least punishing path to the goal. Note that when the goal reward would have
been 0, no penalty states would be crossed by an optimal policy.
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| Maze Size | Iterations (A) [ Cum. Reward (A) | Iterations (B) | Cum. Reward (B) |

25 x 25 668 + 205 939 + 14 7™+ 1 939 + 14
50 x 50 759 + 2 841 £+ 27 138 + 3 841 £ 27
100 x 100 762 + 4 705 £ 31 264 £ 6 705 + 31

Table 2.3: Computational costs for synchronous value iteration to compute 0.001-optimal
policies for the different maze sizes.

Figure 2.2: A found solution in a 50 X 50 maze by asynchronous value iteration. The solution
path 1s highlighted, penalty states which occurred on the path are made slightly darker. Note
that the agent sometimes leaves the optimal path due to the stochasticity.

We note that DP algorithms do not scale up badly, although found solutions are not always
optimal (caused by early-stopping of the iteration). The number of iterations for computing
a policy with value iteration using a cutoff for evaluating the policy does not depend on the
size of the state space. Since iterations take more time for larger state spaces (we update each
state value), the time needed to compute a policy scales up linearly with the size of the state
space since for maze-worlds the number of transitions is linearly dependent on the number of
states (although for fully connected state-spaces this would be quadratic).

The number of iterations for policy iteration using the same stopping condition (A) seems
to depend on the size of the state-space, though. The computational time for policy iteration
in our example is about 64 times longer for the 100 x 100 maze compared to the 25 x 25
maze. This implies that for this particular problem, the algorithms have complexity O(n3/ 2)
in which n is the number of states.

Comment. We also used 200 x 200 magzes, with discount factor v = .99. However,
the computed policies did not achieve to find a direct way to the goal. It seems that even
although action punishment was used, the goal was so far away that its reward was ” discounted
away” and thus the policy was indifferent to different pathways. Using v = 0.999 solved
the problem, however. Thus, we have to analyse the problem before setting the discount
factor — if pathways to the goal are very long, v should be large or alternatively we could
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use the average reward criterion (Van der Wal, 1981; Schwartz, 1993; Mahadevan, 1996).7
Asynchronous value iteration with v = 0.999 and stopping condition (B) needed 290 + 7
iterations and achieved a trial reward of 409 + 30.

Conclusion. The experimental comparison shows evidence that value iteration outper-
forms policy iteration. This is to our knowledge an unknown result and is due to the fact that
value iteration uses information earlier. Early policy updates cause less initial cyclic behavior
of the policy, which makes the policy evaluation process hard. We also saw that we can stop
the evaluation once the value function improvement is small, which makes DP much more
efficient. Finally, we observed that DP does not scale up badly.

2.4 More Difficult Problems

In this chapter, Markov decision processes and dynamic programming were described. In
this section, we describe some difficulties for the practical utility of MDPs and give a short
description of some possible methods which allow to (at least partially) deal with these diffi-
culties.

2.4.1 Continuous State Spaces

When the state space is continuous, we have to use a function approximator for representing
the value function, since there is not a finite number of states which we can represent in a
lookup table. A function approximator maps an input vector (which describes a state) to its
value. Combining DP with function approximators was already discussed by Bellman (1961)
who proposed using quantization and low-order polynomial interpolation for approximately
representing a solution (Gordon, 1995a). There are two methods for combining function
approximators with DP algorithms:

(1) We can just approximate the value function by the function approximator. Then we
can use a finite set of sampling states for which we perform value iteration (Gordon, 1995b).
After computing B(V (7)) with the Bellman backup operator for all sampling states i, we
learn a new function approximation by fitting these new sample points. Gordon (1995) shows
conditions under which the (approximate) value iteration algorithm converges when combined
with function approximators.

(2) We can approximate the value function and the reward and transition functions by
using state quantization and resampling. Given the probability density function of the state
space and the positions of the quantized cells, we can use sampling techniques to estimate the
transition function and the reward function. We may use Monte Carlo simulations to sample
states from within each cell, select an action, use the MDP-model to find the successor state
and map this back to the next active cell. By counting how often transitions occur, we can
estimate the transition probabilities and likewise we can estimate the reward function. Then
we can use DP on the approximate model.

"The average reward criterion (ARC) has other problems, however. E.g., consider an environment with
many positive rewards. Using ARC, an agent may quickly go to a terminal state, neglecting larger reward
sums obtainable in a trial.
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2.4.2 Curse of Dimensionality

Completely evaluating a policy scales up with O(n?) when n is the number of states. Therefore
when the number of states is very large, DP techniques become computationally infeasible.

The number of states scales with the number of dimensions d as O(n?), where n is the
number of values a variable can have in each dimension. When the number of dimensions
becomes large the state space will explode, and DP cannot be used anymore with tabular
representations. This is known as Bellman’s curse of dimensionality. One method to cope
with this large number of states is to use function approximators as described above. Other
ways to reduce the number of states are:

(1) Only store important states. When the state space is large, most states have probabil-
ity zero of being visited, and therefore they do not need to be stored. Since the policy moves
around on a lower dimensional manifold than the dimension of the state space would suggest
(Landelius, 1997), we can just compute a policy for the states which are likely to be visited.

(2) Another way to deal with multiple variables, is to reduce the exponential number of
states which result from combining all variables. This can be done in the following two ways:

(a) A state is usually described by all components, but often some components are not
very useful. Instead we can decrease the number of variables by using principal component
analysis, see e.g. (Jollife, 1986).

(b) We can break states into parts by making independency assumptions between vari-
ables and compute separate value functions for the different parts (blocks). For evaluating a
complete state, we add the evaluations of the parts. This can be done by models based on
Bayesian networks or probabilistic independence networks (Lauritzen and Wermuth, 1989).

A similar approach based on CMACs (Albus, 1975a) will be used in Chapter 7.

2.5 Conclusion

In this chapter, we have described dynamic programming methods for computing optimal
policies for MDPs. We also evaluated them on a set of maze tasks of different sizes. The ex-
perimental results showed the, to our knowledge, novel result that value iteration outperforms
policy iteration. The reason for this is that policy iteration wastes a lot of time evaluating
cyclic policies. Value iteration updates the policy while evaluating it and in this way uses
the information earlier and more efficiently. We also saw that DP can quickly solve problems
containing thousands of states and that we have to be careful to discount the future too much,
especially in case of large goal rewards. Finally, we discussed some problems which limit the
applicability of the MDP framework for real world problems: continuous state spaces and the
curse of dimensionality. A final severe limitation of DP is that it needs a model of the MDP.
In the next chapter we describe reinforcement learning methods which learn policies and do
not need a model.



Chapter 3

Reinforcement Learning

In the previous chapter we showed how dynamic programming can be used to compute optimal
policies for Markov decision problems. Although dynamic programming techniques are useful
for solving a wide range of problems, they need a world model consisting of the reward and
transition functions of the Markov decision problem as input. Since for real world tasks, world
models are not a priori available, they have to be developed first. Engineering a model is not
an easy task however: many interesting problems are very messy (complex and unspecified)
(Vennix, 1996), and modeling them is a very complex and time consuming process. For most
complex problems a complete model is not even needed, since it is unlikely that the agent
(policy) will traverse all states — the agent’s subjective world is only an approximation of
the objective world.

Reinforcement Learning. Reinforcement learning (RL) provides us with a framework
for training an agent by exploring an environment and learning from the outcomes of such
trials (Samuel, 1959; Sutton, 1988). In reinforcement learning problems, an agent receives
input from the environment, selects and executes an action, and receives reward which tells
how good its last action was. The goal of the agent is to select in each state the action
which leads to the largest future discounted cumulative rewards. To solve this, RL methods
(Watkins, 1989; Bertsekas and Tsitsiklis, 1996; Kaelbling et al., 1996) try out different action
sequences and learn how much long term reinforcement the agent receives on average by
selecting a particular action in a particular state. These estimated values are stored in the
Q-function which is used by the policy to select an action.

Direct vs. Indirect RL. This chapter describes direct RL methods which learn the Q-
function directly from experienced interactions with the world. Direct methods are opposed
to indirect RL approaches, which first estimate a world model from the experiences and then
use DP-like methods to compute the Q-function using the imperfectly estimated model. This
type of model-based approaches will be discussed in the following chapter.

TD()) and Q-learning. In the next sections, we will describe the most important RL
methods: TD(X) methods (Sutton, 1988) and Q-learning (Watkins, 1989). These methods are
driven by the error or difference between temporally successive predictions or Q-values. There
have been some successful applications of these methods: Tesauro showed impressive results
with TD-methods by designing TD-Gammon, a program which learned to play backgammon
by self-play (Tesauro, 1992). For the knowledge representation he used a feedforward neural
network, which was able to generalize well, given the facts that there are about 10?° different
backgammon positions and that the program reached human expert level after about 300,000

27
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training games. Other successful applications of RL to complex problems were done by Zhang
who used TD(A) with time-delay neural networks (LeCun et al., 1989) for iteratively repairing
job-shop schedules (Zhang and Liu, 1996), and by Crites who used a team of Q-learning agents
to train a neural network for controlling multiple elevators in a simulated environment (Crites
and Barto, 1996).

Outline. Section 3.1 describes the principles of RL. Section 3.2 describes TD(\) methods
(Sutton, 1988). Tt describes the distinctions between two existing algorithms for dealing with
eligibility traces; replacing and accumulating traces (Singh and Sutton, 1996). Section 3.3
describes Q-Learning (Watkins, 1989), and Section 3.4 describes Q(\)-learning (Peng and
Williams, 1996) which combines Q-learning and TD-learning. In Section 3.5, we introduce a
more efficient online Q(\) algorithm (Wiering and Schmidhuber, 1998b), which improves the
worst case update complexity for online Q(\)-learning from O(|S||A|) to O(|A|) where |S]| is
the number of states, and |A| the number of actions.! In Section 3.6, we present Team TD()),
a novel idea for combining trajectories generated by multiple agents, and we will also present
the Team Q(A) algorithm which combines this idea with our Q()) algorithm. In Section 3.7,
we demonstrate the practical speed up of the novel online Q()) algorithm by comparing it to
the previous one discussed in (Peng and Williams, 1996) on experiments with 100 x 100 mazes.
Then we also show experimental results with the replace and accumulate traces algorithms,
and with our Team Q(X) algorithm. In Section 3.8, we finish with a short conclusion.

3.1 Principles of Algorithms

In reinforcement learning we have an agent and an environment, and we want to iteratively
improve the agent’s policy by letting it learn from its own experiences. This is done by
testing the policy in the environment, i.e. we let the agent execute its behavior and observe
which actions it executes in which states and where it obtains rewards or punishments. Using
such experiences consisting of input, action and received reward, we adjust the agent’s policy.
Testing the policy has to be done with care. If we would simply test policies by always
(greedily) selecting the action with the largest value, the agent might repeat the same behavior
trial after trial. Although we would perfectly learn the Q-function for this behavior, the agent
would not be able to learn from (completely) distinct experiences which may change the
value function and the policy.? The reason why the agent might repeatedly select suboptimal
actions is that alternative optimal actions may be underestimated due to the small number of
experiences and unlucky results (biased in a negative way) when they were executed. Thus,
we need a certain amount of exploration.

Exploration/Exploitation. For reinforcement learning we must use exploration which
exploits the policy but selects non-policy actions as well. If we repeatedly test all actions
in all states, we get sufficient experiences to estimate the real evaluation of each action.
Exploration actions aim at trying out new experiences which can be used to improve the
policy and is opposed to exploiting actions which bring the agent more immediate reward.
The exploration/exploitation dilemma (Thrun, 1992) is to find a strategy for choosing between
exploration and greedy actions in order to achieve most reward in the long run and will be

'This algorithm can also be applied to implement an O(1) algorithm for online TD()) learning with a
tabular representation of the value function.

ZFor stochastic environments the agent may learn from novel experiences, although for small noise values
the probability distribution over trajectories is still very peaked towards the greedy trajectory.
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the topic of Chapter 5. In this chapter we assume that there is a given exploration rule X
which relies on the policy for choosing the action. The simplest rule, which we use in this
chapter is the Max-random exploration rule which selects the greedy action with probability
P4 and selects a random action (all with equal probability) otherwise.

Online vs. offline RL. We distinguish online RL and offline RL. Online RL updates
modifiable parameters after each visit of a state. Offline RL delays updates until a trial is fin-
ished, that is, until a goal has been reached or a time limit has expired. Without explicit trial
boundaries offline RL does not make sense at all, because it would not be able to learn from
the whole sequence. But even where applicable, offline RL tends to get outperformed by on-
line RL which uses experience earlier and therefore more efficiently (Rummery and Niranjan,
1994). Online RL’s advantage can be huge. For instance, online methods that punish actions
(to prevent repetitive selection of identical actions) can discover certain environments’ goal
states in polynomial time (Koenig and Simmons, 1996), while offline RL requires exponential
search time for them (Whitehead, 1992).

Now we will focus on different methods for learning from experiences. A reinforcement
learning agent starts in a specific starting state (s1) and repeats the following cycle throughout

a trial:
a¢ = Choose an action with policy II and exploration rule X given s;
r+ = Execute the selected action, and receive a scalar reward
s¢1+1 = Observe the new state
IT = Use the experience to update the policy

The last step updates the policy after a new experience (a quadruple < s, as, ¢, Sp41 >) is
known.

3.1.1 Delayed Reward and Credit Assignment Problem

Reinforcement learning algorithms have to be able to deal with delayed reward and the credit
assignment problem. The problem of delayed reward is that the results of actions are often
not immediately known, e.g. in some problems reward is only given after some goal has been
reached. From this the problem of credit assignment follows: since we do not have a unique
measure of goodness for each independent action, we have to split the final reward signal
obtained by a whole sequence of actions in the contributions of single actions, and not all of
them are likely to be equally responsible for the final outcome. For example if an agent follows
a particular path and finally reaches a goal, it is not immediately clear which actions did and
which actions did not bring the agent closer to the goal — see Figure 3.1. Even if there are
many trajectories connecting a state and the goal, we cannot be sure which action is optimal
in that state as long as the state is not connected to the goal by the optimal trajectory (which
possibly consists of parts of all generated trajectories).

3.1.2 Markov Property

In this chapter we will assume that the environment is stationary, which means that the transi-
tion and reward functions do not change with time. Furthermore, we assume that the Markov
property holds. The Markov property requires that the rewards and probabilities of making
transitions to next states after executing an action in a state are fully determined by the



30 CHAPTER 3. REINFORCEMENT LEARNING

GOAL

START

Figure 3.1: A trajectory going from the start to the goal state. Which actions brought the
agent closer to the goal?

current state/action pair (SAP). More formally, this means that for all possible state/action
sequences the following equation holds:

P(St+1 = i|3t,at) = P(St+1 = i|81,a1, N ,St,at),

where P(sty1 = 1|.) is the conditional probability of being in state 7 at time ¢ + 1.

3.2 TD()) Learning

Temporal difference (TD) learning (Sutton, 1988) can be applied for learning to predict the
outcome/results of a stochastic process.

Prediction problems. Suppose we observe a Markov chain (see Appendix A) which
emits a reward on each transition and always reaches a terminal (e.g. goal) state. The
goal of a prediction problem is to learn the expected total future cumulative reward from
each state. More precisely, in prediction problems we receive training data in the form of
histories (trajectories) of M trials Hy, ..., Hps consisting of sequences of state-reward pairs:
H; = {(s1,71), (s2,72),...,(sn;,rT;)} where s; is the state at time ¢, r; is the emitted reward
at time ¢ and 7Tj is the length of the " trial. The goal is to learn the expected cumulative
future rewards (value) V'(s) for each state s € S:

T

Vis) = E(Z ri|st = s)

i=t

where T is a random variable denoting the trial length, and the expectation operator F
accounts for the stochasticity of the process including different times of occurrence of the
state. Note that a state can be visited zero, one or multiple times during a single trial.
Monte Carlo sampling. We can learn about the outcomes of a Markov chain by using
Monte Carlo (MC) sampling which uses multiple simulations of a random process to collect
experimental data. Then we can compute the expected outcome by averaging the outcomes
of the different independent trials. In what follows, n!(s) will denote the indicator function
which returns 1 if s occurred at time ¢ in the " trial, and 0 otherwise. We simply write
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nt(s) if the trial number does not matter. In offline or batch-mode, MC sampling with the
Widrow /Hoff algorithm (Widrow and Hoff, 1960) estimates the prediction V' (s) of the future
emitted rewards given that the process is currently in state s as follows:

M T; T; ;
i=1 Zt:l nf(s) Z]:t TZ'

Vis) =
) i]\il Z;f;i nf(S)

where we wrote 7% to take the trial number (i) into account. We can also learn more incre-
mentally (online) by updating the predictions after each trial. The online method learns to
minimize the difference between the observed cumulative future reward in the current trial

3 We minimize this difference by

since state s was visited and the current prediction V(s).
performing gradient descent on the squared error function E. We define the error of the visit

of s at time step t, Fy(s) as:

1 T
Ey(s) = 5(V(s) = D7)l (s)=1

i=t

To minimize this error, we first differentiate E;(s) with respect to V(s):

8Et S T
BV((s)) = (V) = 2l (o=

i=t

From this we construct the update rule which decreases this error using iterative steps with
learning rate «;. The learning rate influences the size of update steps and can be used to
guarantee convergence. We will use oy = 1/k where k is the number of occurrences of state
s

T
AV(s) = —as(V(s) = > 7i)lye(s)=1

i=t

The problem of learning on the MC (Widrow/Hoff) estimates is that the variance in the
updates can be large if the process is noisy, and therefore many trials are needed before the
confidence intervals of the estimates become small (the variance goes down with the square-
root of the number of state occurrences). The variance can be reduced by using information
contained in the structure of the generated state sequence. E.g. suppose a visit of some state
is always followed by a visit of one particular state (which can also follow other states). When
the first state is visited 10 times and the second 100 times, we could compute the first state’s
value by using the value of the second state since our experiences tell us with certainty that
we will make a transition to this state. .The second state’s estimate is computed over 100
trials and thus a more reliable estimate than the MC estimate of the first state which is an
average of the results of 10 trials.

3.2.1 Temporal Difference Learning

We can reduce the variance in the updates by using temporal difference (TD) learning. TD
methods do not only use future rewards, but also the current predictions of successive states

®For online learning the values V(s) are initialized before learning to some value such as 0.
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for updating state predictions. Temporal difference methods such as Q-learning and TD())
methods enforce a time continuity assumption (Pineda, 1997): states which are visited in the
same time interval should predict about the same outcomes.* In essence, TD methods try to
minimize the difference between predictions of successive time steps.

TD(0) updating. Instead of adjusting a state’s prediction on the cumulative reward
received during the entire future, we can also just learn to minimize the difference between
the current state’s prediction and the reward which immediately follows the visit of the state
plus the next state’s prediction. The TD(0) algorithm, which is by the way very similar to Q-
learning is exactly doing this. The learning algorithm uses temporal differences of successive
state values to adapt the predictions. Let’s define V(s;)’s TD(0)-error e; as:

et = (’f‘t + V(St+1) — V(St)) (31)
This can be simply used to adjust V'(s):
AV (s¢) = ag,eq

TD(0) has the largest bias inside the TD-family, since the learning signal is very much cor-
related with the current state. Its variance is small however, since in general we may expect
to have only small TD(0) errors. Sutton showed (1988) that by repeatedly learning from
sequences with TD(0), the estimates asymptotically converge to the true expected outcome.

TD(A) methods. TD()) methods are parameterized by a value A and although they use
the entire future trajectory for updating state predictions, rewards and predictions further
away in the future are weighted exponentially less according to their temporal distance by
the parameter A. TD(A) methods have been proved to converge with probability 1 to the
true prediction for all A (Dayan, 1992; Dayan and Sejnowski, 1994; Jaakkola et al., 1994;
Tsitsiklis, 1994; Pineda, 1997) provided each state is visited by infinitely many trajectories
and the learning rates diminish to zero at a suitable rate (see Appendix B). TD(\) uses
A € [0,1] to discount TD-errors of future time steps. The TD(\)-error e} is defined as:

T—t
ei‘ = Z Ai€t+i, and AV(St) - OlstetA (32)
=0

where we use e;4; as defined in equation 3.1. It is important to set the A parameter correctly
for efficient learning, since it determines the tradeoff between the bias and the variance. If A
is larger, the variance of update steps is larger since the cumulative rewards computed over
many steps will generally occupy a much larger range of outcomes than single-step rewards
and the values of successive states.

The TD()) errors above cannot be computed as long as TD(0) errors of future time steps
are not known. We can compute them incrementally, however, by using eligibility traces
(Barto et al., 1983; Sutton 1984; Sutton 1988).

Eligibility traces. Given a new observation, we can immediately update all predictions
of states visited previously in the same trial. In Figure 3.2 we show an example of a simulated
Markov chain. After each new visit of a state, a new TD(0)-error becomes known. The figure
shows how these TD-errors are backpropagated to previous states. To memorize which states

“This time continuity assumption holds for Markov processes and follows from the rules of causality and
the direction of time. For non-Markov processes, the assumption does not hold and thus we should be careful
using TD-learning for them.
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Figure 3.2: A simulated Markov chain going through states 1,2,3,4,.... The figure shows how
TD-errors are backpropagated to all previous states once new states are encountered.

occurred and how long ago they occurred, eligibility traces are used (Barto et al., 1983). The
eligibility of a state tells us how much a state is eligible to learn from current TD-errors.
This value depends on A, the recency of its occurrence and the frequency of its occurrence.
Omitting the learning rate oy for simplicity, V' (s)’s increment for the complete trial is:

T

AV(s) = Y en'(s)
t=1

T T )

= Z Z Nleint(s)
t=1 i=t
T t

— Z Z )\tfietni(s)
t=11i=1
T t

— Zet Z )\tfini(s)
t=1 =1
T

= Zetlt(s) (33)
t=1

Where at the last step we simplified the expression by introducing the symbol [;(s); the
accumulating eligibility trace for state s:

t
le(s) = DN (s)
i=1
Computing this trace can be implemented using the following recursive form:

lep1(s) < Ayg(s) if sp # s
lt+1 (S) — Alt(S) +1 if St = S

Thus, at each time step eligibility traces of all states decay, whereas the currently visited state
has its trace increased. This has the effect that only states which have been visited recently
are made eligible to learn on future examples.
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Now the online update at time ¢ becomes (with learning rate a):
V(s,a) € Sx A do: V(s)+ V(s)+ aseds(s)

The eligibility trace can be thought of as an attentional trace. As long as the eligibility trace
of some state is “on” (larger than 0), this state will have its value adapted on TD errors of
new experiences. The above method uses an accumulating eligibility trace: after each visit of
a state its eligibility trace gets strengthened by adding 1 to it.

3.2.2 Replacing Traces

A different method is to replace traces when a state is revisited. Replacing traces (Singh and
Sutton, 1996) resets the trace if a state is revisited:

lip1(s) < A(s) if s #s
lir1(s) 1 if s =35

The effect is that only recency determines the eligibility trace and that frequency does not
matter. To show the difference between the accumulate and replace traces algorithms, we
will look at the case A = 1 and will analyze the bias of the estimators using a simple example
following (Singh and Sutton, 1996).

Ra; P

Figure 3.3: A Markov chain consisting of two states (starting state A and terminal state B).
Transition probabilities are denoted as P4 and Pg, transition rewards are denoted as R and

Rp.

Consider the Markov chain of Figure 3.3. It consists of two states; the starting state A
and the terminal state B. In A, the transition to the next state is stochastic: a step is made
to A and B with probability P4 and Ppg, respectively. The chain starts at A, we assume
V(B) = 0 and we are interested in computing the value V (A).

Optimal value. The optimal value V(A) can easily be computed according to:

V(A) = Ps(Ra+V(A))+ Pg(Rp+V(B))

which has the following solution:

P
V(4) = P—‘;RA+RB (3.4)
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Replacing traces/First visit MC. Singh and Sutton used A = 1 for the analysis
(which is the worst-case for accumulating traces — for A = 0 both methods perform the
same updates). For this value, it can be shown (Singh and Sutton, 1996) that replacing
traces implements a first-visit Monte Carlo method given batch updates (offline) learning,
and proper learning rate annealing. This method estimates the value of a state by simply
summing the rewards received during a trial after the first time the state was visited. This
means that in case of multiple occurrences of the state during a trial only the first one matters.
For the Markov chain in Figure 3.3, the first visit MC algorithm (note that for this Markov
chain, the replace traces algorithm would make the same updates for all values of \) would
compute V¢(A) as follows given a single trial:

Vi(A) = R(A)+ R(A) +---+ R(A) + R(B)
for which the expectancy over all possible trajectories is (Singh and Sutton, 1996):

(1_1371;%4)2 = Rp + %RA (3.5)
When we compare equations 3.4 and 3.5, we can see that the first visit MC algorithm computes
a correct (unbiased) estimate. The estimate over multiple trials is simply computed as the
average of the estimates for the single trials and thus it is also an unbiased estimate.

Accumulating traces/Every visit MC. The every visit MC method computes the
same updates as the accumulating trace algorithms for A = 1 and proper learning rate an-
nealing. It computes the value V(a) for the Markov chain in Figure 3.3 as follows given a
single (i*") trial:

E{Vf(A)} = Rp + PpRa

R(A) +2R(A) + -+ kR(A) + (k+ )R(B) _ w;
k41 ki1

Considering all possible trials and weighting them according to their probability of occurring,

Vo(A) = (3.6)

the estimate after one trial is:

P(A)
E{V,(A)} = ~\2)
V() = Rn + Ra )
Thus, the estimate for a single trial is biased, with BIAS = E{V.(A)} —V(A) = —R4 211),((’43)).
The estimate over multiple trials is computed as:
M -
Vo(A) = =1 (3.7)
i=1(ki +1)
its bias after M trials is (Singh and Sutton, 1996):
2 Py
— —R 3.8
M+ 12P5 (3:8)

and thus the bias goes to 0 when the number of trials M goes to co. At the first glance it may
seem strange that the bias goes to 0. However, if we have multiple trials we will get many
different outcomes, and due to reasons of combinatorics (e.g. there are 2 possibilities to have
in one trial 2 and in another trial 3 revisits of state A, whereas there is only one possibility
to have two times zero revisits) our estimate is less determined by a single outcome with an
overestimated probability (immediately going to state B).

The analysis of Singh and Sutton furthermore shows that initially the mean squared error
(Bias 4+ Variance) is larger for the first visit MC algorithm, but that it will catch up in the
long run. This implies that for difficult problems replacing traces is the better candidate.
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3.3 Q-Learning

One of the simplest reinforcement learning algorithms for learning to control is Q-learning
(Watkins, 1989; Watkins and Dayan, 1992). Q-learning enables an agent to learn a policy
by repeatedly executing actions given the current state as input. At each time step the
algorithm uses 1-step lookahead to update the currently selected state/action pair (SAP). Q-
learning updates all SAPs along a solution-path a single time, thus moving the final reward
for a trial one step back in the chain. Therefore it takes a lot of time before the goal-
reward will be propagated back to the first SAP. E.g., for learning a solution-path costing
100 steps, naive Q-learning needs to traverse the path for at least 100 trials involving 10,000
SAP-updates. Although slow, Q-learning has been proven to converge to the optimal policy
provided all state/action pairs are tried out infinitely many times and the learning rate is
properly annealed (Watkins and Dayan, 1992). The Q-learning update-rule is as follows:

Conventional Q-learning(s:, aty 7ty St11):

1) e}« (re + YV (str1) — Q(s¢,at))
2) Q(stya1) < Q(s¢,a¢) + s, a)e;

Here V(i) = max, Q(i,a), v is the discount factor which assigns preference to immediately
obtaining reward instead of postponing it for a while, a(s,a) is the learning rate for the kt*
update of SAP (s, a), and €} is the temporal difference or TD(0)-error, which tends to decrease
over time.

Learning rate adaption. The learning rate is determined by ay(s,a) which should be
decreased on-line, so that it fulfills two specific conditions for stochastic iterative algorithms
(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996). The conditions on the learning
rate a(s,a) are:

(1) Y52, ak(s,a) = oo, and

(2) S5 a2(s,a) < oc.

Learning rate adaptions for which the conditions are satisfied may be of the form : o = kLB’
where £ is a variable that counts the number of times a state/action pair has been updated. In
Appendix B, we present a (to our knowledge novel) proof that for % < B <1, both conditions
hold.

3.4 Q(XN)-learning

Q(A)-learning (Watkins, 1989; Peng and Williams, 1996) is an important reinforcement learn-
ing (RL) method. It combines Q-learning and TD(A). Q(A) is widely used — it is generally
believed to outperform simple one-step Q-learning, since it uses single experiences to update
evaluations of multiple state/action pairs (SAPs) that have occurred in the past.

Q’s TD(\) error. First note that Q-learning’s update at time ¢+ 1 may change V (s¢41)
in the definition of €} = (ry + vV (s¢11) — Q(s¢, a¢)). Following Peng and Williams (1996),° we
define the TD(0)-error of V(sty1) as:

err1 = (rey1 + YV (st12) — Vi(sty1))

®The difference with Watkins’ Q(X) (1989) is that he proposed ety1 = (re1 + 4V (s142) — Q(St41,at41)).
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Q(A) uses a factor A € [0,1] to discount TD-errors of future time steps:

Q(s1, ar) < Q(st,a¢) + als4, ar)ey,

where the TD())-error e} is defined as:

er =i+ Y (YN ey
i=1

Here we add e, — the difference between the Q-value of the current state/action and immedi-
ate reward plus next V-value — to the TD(A) error of subsequent steps (computed from the
differences between a V-value and the immediate reward plus the V-value of the next state).

Eligibility traces. Again we make use of eligibility traces (Barto et al., 1983; Sutton
1988). In what follows, 7%(s,a) will denote the indicator function which returns 1 if (s, a)
occurred at time ¢, and 0 otherwise. Omitting the learning rate « for simplicity, Q(s,a)’s
increment for the complete trial is:

k
AQ(s,a) = klggo Ze?nt(s a)

k
= hm Zetn (s,a) + Z ’y>\ em ,a)]
= t+1
= hm Zetn (s,a) -I-Z (YN et (s, a)]
=1
k t—1 o
= lim Y [eln’(s,0) + e Y_(v0) (s, 0) (3.9)
t=1 =1

To simplify this we use the symbol l;(s, a), the eligibility trace for SAP (s,a):

t—1

li(s,a) = Z(Vk)t_ini(sv a),

i=1
and the online update at time ¢ becomes:

V(s,a) €S x A do: Q(s,a) <+ Q(s,a) + alein’(s,a) + eids(s, a)]

We can see that this update is done for all SAPs. This makes online updating very slow.
Fortunately, there are methods to circumvent having to update all SAPs. One of them only
needs O(|A|) updates and will be presented in the next section.

Online Q(A). We will focus on Peng and Williams’ algorithm (PW) (1996), although
there are other possible variants, e.g, (Rummery and Niranjan, 1994). PW uses a list H of
SAPs that have occurred at least once. SAPs with eligibility traces below € > 0 are removed
from H. Boolean variables visited(s, a) are used to make sure no two SAPs in H are identical.
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PW’s Q(\)-update(st, at, 7, S¢41) ¢

1) e < (re + 7V (se41) — Q(st, ar))

2) er = (re+ 7V (st41) — Vise))

3) For each SAP (s,a) € H Do :
3a) li(s,a) < yMi—1(s,a)
3b) Q(s,a) « Q(s,a) + aeili(s,a)
3c) If (i(s,a) <e)

3c-1) H + H)\ (s,a)
3c-2) wisited(s,a) < 0

4) Q(st,ar) < Q(st,ar) + aey

5) lt(St, at) — lt(st,at) +1

6) If (visited(st,ar) =0)
6a) wvisited(st,ar) < 1
6b) H <+ HU (st,at)

Comments. 1. The SARSA algorithm (Rummery and Niranjan, 1994) replaces the right
hand side in lines (1) and (2) by (r; + YQ(st41, atr1) — Q(se, ar)).

2. For “replacing eligibility traces” (Singh and Sutton, 1996), step 5 should be:

Va : li(st,a) = 05 li(s¢,ae) < 1.

3. Representing H by a doubly linked list and using direct pointers from each SAP to its
position in H, the functions operating on H (deleting and adding elements — see lines (3c-1)
and (6b)) cost O(1).

Complexity. Deleting SAPs from H (step 3c-1) once their traces fall below a certain
threshold may significantly speed up the algorithm. If v\ is sufficiently small, then this will
keep the number of updates per time step manageable. For large YA PW does not work
as well: it needs a sweep (sequence of SAP updates) after each time step, and the update
cost for such sweeps grows with y\. Let us consider worst-case behavior, which means that
each SAP occurs just once. Near trial begin the number of updates increases linearly until
at some time step ¢ some SAPs get deleted from H. This happens as soon as t > lolg(gv;).
Since the number of updates is bounded from above by the number of SAPs, the total update
complexity increases towards O(|S||A|) per update for Y\ — 1.

3.5 Fast Q(N)-learning

There have been several ways to speed up Q(\). Lin’s offline Q(X) (1993) creates an action-
replay set of experiences after each trial. Computing the TD(\)-returns can be done linearly
in the length of the history. However, offline Q(\)-learning is in general much less efficient
than online Q(X). Cichosz’ semi-online method (1995) combines Lin’s offline method and
online learning. It needs fewer updates than Peng and Williams’ online Q()\), but postpones
Q-updates until several subsequent experiences are available. Hence actions executed before
the next Q-update are less informed than they could be. This may result in performance
loss. For instance, suppose that the same state is visited twice in a row. If some hazardous
action’s Q-value does not reflect negative experience collected after the first visit then it may
get selected again with higher probability than wanted.

Our proposed method. Previous methods are either not truly online and thus are
likely to require more experiences, or their updates are less efficient than they could be and
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thus require more computation time. We will present a Q()\) variant which is truly online
and efficient: its update complexity does not depend on the number of states (Wiering and
Schmidhuber, 1998b). The method can also be used for speeding up tabular TD()) to achieve
O(1) update complexity. It uses “lazy learning” (introduced in memory-based learning, e.g.,
Atkeson, Moore and Schaal 1997) to postpone updates until they are needed. The algorithm
is designed for Ay > 0 — otherwise we can use simple Q-learning.

Main principle. The algorithm is based on the observation that the only Q-values needed
at any given time are those for the possible actions given the current state. Hence, using “lazy
learning”, we can postpone updating Q-values until they are needed. Suppose some SAP (s, a)
occurs at (not necessarily successive) time steps t1,%,%3,.... Let us abbreviate n¢ = n'(s, a),
¢ = yA. First we unfold terms of expression (3.9):

k t—1
Slem' +e > ¢t inl =
t=1 =1

t1
> [ein’ +et2¢t '] + Z [ein +et2¢t '] + Z [ein +et2¢t '+
t=1

t=t1+1 t=to+1

Since 7' is 1 only for ¢ = t1,to,t3,... and 0 otherwise, we can rewrite this as

to
e e+ Y e+ + Z H )+ =

t=t;+1 t=ty+1
to 1 1 ts
it g 3 b b+ (g D e =
t=t;+1 t=ty+1

to

1 1
i e+ gD et - Zet¢ + e, + (@ )l Z erd’ ZW
Defining A; = Y, e;¢', this becomes:

1 1
e (D~ Ay e+ (Ga tom
This will allow for constructing an efficient online Q(A) algorithm. We define a local trace

Ii(s,a) =St niE;ja), and use (3.10) to write the total update of Q(s, a) during a trial as:

)(Agy — Ay) + ... (3.10)

!
ey, + et2

AQ(s hm Ze (5,a) +1i(s,a)(App1 — Ay) (3.11)

To exploit this we introduce a global variable A which keeps track of the cumulative TD(X)
error since the start of the trial. As long as SAP (s,a) does not occur we postpone updating
Q(s,a). In the update below we need to subtract that part of A which has already been used
(see equations 3.10 and 3.11). We use for each SAP (s, a) a local variable §(s,a) which records
the value of A at the moment of the last update, and a local trace variable I'(s,a). Then,
once Q(s,a) needs to be known, we update Q(s,a) by adding I'(s,a)(A — (s, a)). Figure 3.4
illustrates that the algorithm substitutes the varying eligibility trace I(s,a) by multiplying a
global trace ¢' by the local trace I'(s,a). The value of ¢' changes all the time, but ’(s,a)
does not in intervals during which (s, a) does not occur.
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(s

Figure 3.4: SAP (s,a) occurs at times t1,ta,ts3,.... The standard eligibility trace l(s,a) equals
the product of ¢t and I'(s,a).

Algorithm overview. The algorithm relies on two procedures: the Local Update proce-
dure calculates exact QQ-values once they are required; the Global Update procedure updates
the global variables and the current Q-value. Initially we set the global variables ¢° « 1.0
and A < 0. We also initialize the local variables §(s,a) + 0 and I'(s,a) + 0 for all SAPs.

Local updates. Q-values for all actions possible in a given state are updated before an
action is selected and before a particular V-value is calculated. For each SAP (s,a) a variable
d(s,a) tracks changes since the last update:

Local Update(st, at) :

1) Q(st,at) — Q(St,at) + Ol(St, at)(A — 5(st,at))l'(st, at)
2) 5(st,at) — A

The global update procedure. After each executed action we invoke the procedure
Global Update, which consists of three basic steps: (1) To calculate V' (s¢+1) (which may have
changed due to the most recent experience), it calls Local Update for the possible next SAPs.
(2) It updates the global variables ¢' and A. (3) It updates (st a¢)’s Q-value and trace
variable and stores the current A value (in Local Update).
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Global Update(s, at, e, S¢11) ¢
1) Va € A Do

1a) Local Update(sii1,a)
2) e« (re + 7V (st41) — Q(st, at))
3) er = (re + YV (st41) — Vi(sy))
4) ¢t V. ’)/A(ﬁt_l
5) A A+ et
6) Local Update(st,at)
7) Q(st,ar) < Q(st,at) + ase, ar)e}
8) ll(St, at) — ll(St, at) + #

For “replacing eligibility traces” (Singh and Sutton, 1996), step 8 should be changed as follows:
Va: U'(s,a) < 0; (s, at) #

Machine precision problem and solution. Adding e;¢' to A in line 5 may create
a problem due to limited machine precision: for large absolute values of A and small ¢!
there may be significant rounding errors. More importantly, line 8 will quickly overflow any
machine for yA < 1. The following addendum to the procedure Global Update detects when
¢! falls below machine precision €,,, updates all SAPs which have occurred (again we make
use of a list H), and removes SAPs with I'(s,a) < €, from H. Finally, A and ¢’ are reset to
their initial values.

Global Update : addendum

9) If (visited(st,ar) =0)
9a) H « HU (st,at)
9b) wisited(st,a) < 1
10) If (' < en)
10a) Do VY(s,a) € H
10a-1) Local Update(s,a)
10a-2) I'(s,a) + I'(s,a)¢
10a-3) If (I'(s,a) < €n)
10a-3-1) H < H \ (s,a)
10a-3-2) wisited(s,a) < 0
10a-4) 6(s,a) «+ 0
10b) A+ 0
10c) ¢' «+ 1.0

Comments. Recall that Local Update sets 6(s,a) < A, and update steps depend on
A — §(s,a). Thus, after having updated all SAPs in H, we can set A < 0 and (s,a) < 0.
Furthermore, we can simply set I'(s,a) < I'(s,a)¢’ and ¢' < 1.0 without affecting the
expression ['(s,a)¢’ used in future updates — this just rescales the variables. Note that if
YA = 1 no sweeps through the history list will be necessary.

Complexity. The algorithm’s most expensive part are the calls of Local Update, whose
total cost is O(|A]). This is not bad: even simple Q-learning’s action selection procedure
costs O(|A]) if, say, the Boltzmann rule (Thrun, 1992; Caironi and Dorigo, 1994) is used.
Concerning the occasional complete sweep through SAPs still in history list H: during each
sweep the traces of SAPs in H are multiplied by [ < e,;,. SAPs are deleted from H once their
trace falls below e,,. In the worst case one sweep per n time steps updates 2n SAPs and costs
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O(1) on average. This means that there is an additional computational burden at certain
time steps, but since this happens infrequently our method’s total average update complexity
stays O(|A]).

The space complexity of the algorithm remains O(|S||A|). We need to store the following
variables for all SAPs: Q-values, eligibility traces, previous delta values, the “visited” bit,
and three pointers to manage the history list (one from each SAP to its place in the history
list, and two for the doubly linked list). Finally we need to store the two global variables.

Comparison to PW. Figure 3.5 illustrates the difference between theoretical worst-case
behaviors of both methods for |A| = 5, |S| = 1000, and v = 1. We plot updates per time step
for A € {0.7,0.9.0.99}. The accuracy parameter € (used in PW) is set to 10~¢ (in practice less
precise values may be used, but this will not change matters much). The machine precision
parameter €, is set to 10715, The spikes in the plot for fast Q()) reflect occasional full sweeps
through the history list due to limited machine precision (the corresponding average number
of updates, however, is very close to the value indicated by the horizontal solid line — as
explained above, the spikes hardly effect the average). No sweep is necessary in fast Q(0.99)’s
plot during the shown interval. Fast Q needs on average a total of 13 update steps: 5 in
choose-action, 5 for calculating V' (s¢y1), 1 for updating the chosen action, and 2 for taking
into account the full sweeps.
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Figure 3.5: Number of updates plotted against time: a worst case analysis for our method and
Peng and Williams’ (PW) for different values of X. (A) Number of updates per time step.
(B) Cumulative number of updates.

Multiple Trials. We described a single-trial version of our algorithm. Omne might be
tempted to think that in case of multiple trials all SAPs in the history list need to be updated
and all eligibility traces reset after each trial. This is not necessary — we may use cross-trial
learning as follows:

We introduce AM variables, where index M stands for the M* trial. Let N denote the



3.6. TEAM Q()\) 43

current trial number, and let variable visited(s,a) represent the trial number of the most
recent occurrence of SAP (s,a). Now we slightly change Local Update:

Local Update(st,at) :
1) M < visited(s¢,at)
2) Q(ss,a:) < Q(st,at) + ase, ar)(AM — §(s¢, a¢))l (¢, at)
3) (S(St,at) — AN
4) If (M < N)
4a) l'(st,at) < 0
4b) wisited(st, at) < N

Thus we update Q(s,a) using the value AM of the most recent trial M during which
SAP (s,a) occurred and the corresponding values of §(s¢, at) and I'(s¢, a¢) (computed during
the same trial). In case SAP (s,a) has not occurred during the current trial we reset the
eligibility trace and set visited(s,a) to the current trial number. In Global Update we need
to change lines 5 and 10b by adding trial subscripts to A, and we need to change line 9b in
which we have to set visited(ss, a;) + N. At trial end we reset ¢’ to ¢° = 1.0, increment the
trial counter N, and set AN < 0. This allows for postponing certain updates until after the
current trial’s end.

3.6 Team Q()\)

This section contains a novel idea for using multiple agents with eligibility traces. Consider
that the value function is shared by a number of agents and that we generate multiple trajec-
tories in parallel to learn the value function. Note that the shared value function does not
make it possible for agents to specialize, since the team consists of homogeneous agents. When
we immediately use TD(A) for multiple agents, we will let the agents only learn from their
own experiences. However, sometimes it would be a good thing to let agents learn from each
other if they interact at some point. For example, in a soccer simulation we could reward an
agent for passing the ball to another agent who makes a goal shortly afterwards. In principle,
we could design value functions where the value for passing the ball would be determined by
what happens with the ball afterwards. This makes a new kind of parallel learning possible in
which simultaneously generated trajectories are combined to create new trajectories. In the
following, we will not consider such general cases where agents can interact through passing
objects or through communication, but will consider the case where two agents are said to in-
teract if their trajectories cross each other. In the framework presented in this section, called
Team TD(\), we extend single agent TD(A) by linking trajectories generated by multiple
agents. Then, if an agent’s trajectory traverses another agent’s trajectory, previous steps of
one agent will be updated on the future of the other agent.

3.6.1 Extending the Eligibility Trace Framework

The accumulate traces algorithm computes large eligibility traces for trials in which a state
is visited multiple times. Suppose that some state is visited by two different trajectories. For
one trajectory, the state may be visited a single time and for another the state may be visited
many times. The accumulating traces algorithm will cause much larger state value adaptions
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for the second trajectory, even though both trajectories may be equiprobable. Therefore we
should sometimes be careful in updating a state value.b.

Another view on eligibility traces. In principle there are many ways for manipulating
the traces and we have already seen a couple of them. In the following we want to extend
our reasoning about eligibility traces. An eligibility trace is directly related to the temporal
distance between the time step the state was visited and the time step another state is visited.

Figure 3.6: An example trajectory through state space. The Markov chain consists of three
(abstracted) states A, B and C. At B, the chain can return to B or go to C.

Have a look at Figure 3.6. We are interested in the eligibility traces. As we have seen,
these influence the amount with which a previous state learns on the current transition in
the trajectory. Thus, let’s just consider the sequence of states or temporally directed paths
through state space. E.g., there can be sequences:

A-B-B-C
A-B-B-B-C
A-B-C

For these different sequences, replacing traces only effects the estimate of B and not of A
compared to the accumulating traces. We could also reset the trace from A (to a larger value,
e.g. in this case to A) whenever B is revisited. We could also split a sequence ABBBC into a
tree combining the sequences: ABC + BBB or ABC + BB + BB. In these ways we would
still learn from the transitions numbered 1,2,2, and 3 shown in Figure 3.6. We should note
that by transforming a sequence into a tree and then using TD(\), the updates will in general
not be the same for A > 0. The second tree, however, is just a projection of the sequence unto
a Markov chain, assigning a probability of % to transition BB and % to transition BC. Such
different ways of dealing with eligibility traces could help to strengthen the relationship to
full DP techniques (or full-fledged lookahead searches). The updates become more complex,
however. Therefore although some improvement of the learning speed may be obtained, this
advantage may become a disadvantage due to the larger computational requirements.

3.6.2 Combining Eligibility Traces

A way of extending the eligibility trace framework is to allow for multiple traces. Consider
Figure 3.7. There are two trajectories which have been generated by the same underlying

50Optimally we use the probabilities of generating a trajectory. Storing probabilities explicitly is done in
world models. Similar effects can be obtained by storing and learning from traces in different ways, however
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Figure 3.7: Multiple trajectories through state space. Trajectory one visits states A, B, E, F
in that order and trajectory two visits states G, B, C, D, E, and H.

Markov chain and we want to update all state estimates based on both trajectories. The
simplest is to let states visited by one trajectory only learn on future dynamics of that
trajectory. In this way, we do not use all possible information, however. If two trajectories
meet, there are multiple possible future paths and these can be used to adapt state values.
E.g. in figure 3.7, there is a path between state A visited by trajectory 1 and transition C' — D
visited by trajectory 2, and thus we can adapt state A’s value on C' — D.

The algorithm. The algorithm uses different eligibility traces and history lists for differ-
ent trajectories and keeps track of the order in which states are visited (i.e. the most recently
visited states are the first in the list — if a state is revisited its position in the list advances).
We will first introduce some notation:

H; = {Sli, . ,S;'l} is the history list of trajectory 7 and is an ordered list of all its
visited states.

U (s;) lists all history lists of trajectories which have visited state s;.

pred(s;, H;) lists all states which precede s; in the history list H;.

The general way of connecting traces is as follows. Once two trajectories have visited the
same state s,, (i.e. they meet in s,,), we traverse the whole list of states which were visited
by the trajectories before the meeting state to connect them. Thus, after trajectory 7 has
made a step we perform the following operations:

We insert the new state s, at the end of trajectory 2’s history list:
(1) If s, ¢ H;, then H; = insert(s,,, H;).
We check which trajectories have also visited state s,,. The history lists of these
trajectories are inserted in the lists U(s;) of all states s; previously visited by
trajectory i:
(2) VH # H; € U(sm) ; Vs; € pred(sm,H;) ; if H ¢ U(s;) then
U(s;) =U(s;) U{H}.
Finally, we check which other trajectories have visited state s,,. Then we put

trajectory ¢ in the lists U(s) of all states s previously visited by one of the other
trajectories:

(3) VH # H; € U(sm,) ; Vs € pred(sm, H) ; U(s) =U(s) U{H;}.
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Computing eligibility traces. Above we only described which states learn on which
trajectories. We will now describe how their eligibility traces are computed. Each state s has
an eligibility /%(s) to learn on each trajectory i’s future steps. In the beginning, we initialize
all eligibility traces for all K trajectories and for all states:

Vi,Vs: Ii(s) =0

If a trajectory visits a particular state, this state’s eligibility for that trajectory is updated
as in the fast online Q(A) algorithm. For connecting traces, we also compute new eligibility
traces if we insert a trajectory in the list of visited trajectories of some state. Thus, after we
perform the operation U(s) = U(s) U {H;}, where s € pred(sp,, H;), we also compute:

1) = st

Thus, all states visited by one trajectory H; for which the eligibility trace is 0 for the
other trajectory H;, are assigned an eligibility trace to the trajectory H; which is calculated
by multiplying the eligibility trace of point s,, on the trajectory H; by (Ay)? where d is the
temporal distance along trajectory H; between state s and state s,,. In this way, they will
start learning on the future dynamics from the other trajectory.

To make things more efficient, we traverse the lists backwards and stop once some state
already has non zero eligibility trace on the other trajectory. If such a state is only visited
once, we can be sure that all previous states also have a non-zero eligibility trace. If a state
has been visited multiple times, however, it can be the case that it already has an eligibility
on the other trajectory whereas the preceding states have not (see Figure 3.8). Therefore
we only stop traversing the list backwards, if we find a state with non-zero eligibility which
has not been revisited (see Appendix C for the complete algorithm). If states are revisited
often, the procedure can still be quite expensive, since it is possible that we would traverse
the whole list. The probability that one agent has revisited a large number of consecutive
states is fortunately very low.

X

1 B

Figure 3.8: An example of two trajectories crossing each other where we cannot stop tracing
trajectory 1 back after noticing that state X already has a non zero eligibility trace on trajectory
2. At the moment that trajectory 1 has hit trajectory 2 in X for the first time, X and A got
a non zero eligibility trace on trajectory 2, and therefore B would stay without eligibility if we
would stop in X.

Connecting multiple trajectories. If there are multiple trajectories, things get a
little bit more complicated. Now, if trajectory 2 meets trajectory 3, and trajectory 2 has
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hit trajectory 1 before, we have to follow trajectory 2 and let trajectory 1 states also get
eligibility on trajectory 3.

Again, we first insert the new state in the history list of trajectory i: H; = insert(s,,, H;).
We will now describe the recursive procedure Connect(H;, $,, Hj) which connects all states
visited by trajectory i before state s,, to trajectory j. Furthermore it also connects all states
visited by another trajectory which traverses one of these states to trajectory j.

Connect(H;, Sm, Hj):
(A) Vs; € pred(sm, H;) 5 Ul(s;) =U(s;) U{H;}
(B) Vs; € pred(sm, H;) ; YHy, # H; # H; € U(s;) Connect(Hy, s;, H;)

Then we call this procedure for all pairs which include the new trajectory H; :
VH # H; € U(sym) Connect(H;, $m, H) and Connect(H, sy,, H;).

Some limitations and their implications. There are two problems with the approach.
(1) The Markov property is essential for the possibility to do multiple trace learning, since
otherwise it may not be possible to “jump” from one trajectory to another. (2) The eligibility
trace from a state visited by one trajectory on another trajectory is determined by the order
in which the trajectories meet. However, the usual eligibility traces have the same problem
— we cannot (efficiently) make eligibility traces invariant to the order in which experiences
occur.

Comment. The approach resembles the replacing traces in the manner that it deals
with multiple crossings of trajectories. For computing eligibility traces for single trajectories
we can use the replacing traces algorithm or the accumulating traces. We have used this in
an algorithm based on Team Q()\)-learning which enables us to train a policy with multiple
agents (see Appendix C).

Complexity of the algorithm. Note that the new complexity of the local update rule
depends on the number of agents (trajectories), i.e. it becomes O(K) for a single update step,
where K is the number of agents.

Stopping connecting the lists in the way described above may help to keep the average
computational requirements low. When states are not revisited by the same trajectory, we
could at most connect each state visited by 1 of the trajectories to all other trajectories. Thus,
we could have made T K links after T" steps, which makes an average update complexity of
O(K). In the worst case states are often revisited so that we need to traverse the whole
list backwards. Then the worst case complexity would become O(|H|K), where |H| is the
length of the history list. For most problems, agents will not revisit long sequences of states
and therefore it may be expected that the update complexity scales up linearly with the
number of trajectories. Computationally, we do therefore not expect a large difference in the
update complexity by learning from many independent trials or by learning from combining
the traces. However, if we plan to use multiple agents and generating trajectories is expensive,
there may be a big gain in using the new algorithm, since we learn more on each experience.

3.7 Experiments

In this section, we will describe the following three experimental comparison studies: (1) We
compare our novel fast Q(X) to PW’s Q(A), (2) We compare replacing traces to accumulating
traces, and (3) We compare Team Q(\) to Independent Q(X).
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3.7.1 Evaluating Fast Online Q())

To evaluate the practical performance improvement of the fast Q(A) method over Peng and
William’s Q(A) we use different mazes than in Chapter 2. We created a set of 20 different
randomly initialized 100 x 100 mazes, each with about 20% blocked fields. All mazes share
a fixed start state (S) and a fixed goal state (G) — we discarded mazes that could not be
solved by Dijkstra’s shortest path algorithm (1959). See figure 3.9 for an example maze.

In each field the agent can select one of the four actions: go north, go east, go south, go
west. Actions that would lead into a blocked field are not executed. Once the agent finds the
goal state it receives a reward of 1000 and is reset to the start state. The action execution
is without noise, thus the transition function is deterministic (this makes it possible to use
larger values for \). All other steps are punished by a reward of —1. The discount factor
is set to 0.99.

e

(s)

Figure 3.9: A 100 x 100 maze used in the experiments. Black states denote blocked fields.
White squares are accessible states. There are about 8000 accessible states. The agent’s aim
18 to find the shortest path from starting state S to goal state G.

Experimental set-up. A single run on one of the twenty mazes consisted of 5,000,000
steps. Every 10,000 steps the learner’s performance was monitored by computing its cumu-
lative reward so far. We must note that we measure performance as the cumulative reward
sum, while the agent learns to maximize a discounted sum. Since all emitted rewards are
equal, however, the evaluation criteria measure the same increase/decrease in performance.
The optimal performance is about 41,500 = 41.5K reward points (this corresponds to 194-
step paths). To select actions, we cannot use the Q-function in a deterministic way and by
selecting the action with the largest Q-value, since this quickly leads to repetitive suboptimal
behavior. Instead, we used the Max-random exploration rule, which selects an action with
maximal Q-value with probability P, and a random action with probability 1 — P,,4;. Note
that this probability P,,., has nothing to do with the noise in the exzecution of actions which
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stems from the environment. During each run we linearly increased P, from 0.5 (start)
until 1.0 (end).

To show how learning performance depends on A we set up multiple experiments with
different values for A and (3 (used for annealing the learning rate). As shown in Appendix
B, the learning rate annealing parameter 0 must theoretically lie between 0.5 and 1.0, but
may be lower in practice to increase the learning performance. If A is large and 3 too small,
however, then the Q-function may diverge.”

Parameters. We tried to choose the lowest 3 (and hence the largest learning rate) such
that the Q-function did not diverge. Final parameter choices were: Q(0) and Q(0.5) with
B =0, Q(0.7) with 8 = 0.01, Q(0.9) with 8 = 0.2, Q(0.95) with 5 = 0.3, Q(0.99) with
08 = 0.4. PW’s trace ¢ was set to 0.001. Larger values scored considerably less well; lower
ones costed more time. Machine precision €,, was set to 10716, Time costs were computed
by measuring CPU time (including action selection and simulator time) on a 50 MHz Sun
SPARC station.

Results. Learning performance for fast Q(\) is plotted in Figure 1(A) (results with PW’s
Q(X) are very similar). We observe that larger values of \ increase performance much faster
than smaller values, although the final performances are best for standard Q-learning and
Q(0.95). Figure 1(B), however, shows that fast Q()) is not much more time-consuming than
standard Q-learning, whereas PW’s Q(\) consumes a lot of CPU time for large A.
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Figure 3.10: (A) Learning performance of Q(\)-learning with different values for X\. (B) CPU

time plotted against the number of learning steps.

Table 1 shows more detailed results. It shows that Q(0.95) led to the largest cumulative
reward which indicates that its learning speed is fastest. Note that for this best value A = 0.95,
fast Q(A) was more than four times faster than PW’s Q()).

In the table we can also see that Q-learning achieved lowest cumulative reward, although it
achieved (almost) optimal final performance. Most Q(A) methods also achieved near optimal
performance. An exception is fast Q(0.7) which performed slightly worse. After an analysis
we found that the learning rate decay was not sufficient to keep the Q-function always from
diverging. With a larger learning rate decay (0.05), Q(0.7) performed as well as most other
Q(A) methods.

"Note that we use a constant learning rate o = 1 if we set 8 = 0. We can use such a learning rate if the
environment is deterministic.
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Although fast Q(X) was 2 to 6 times faster than PW’s Q()) for the tested values of A, the
difference could be much larger. PW’s cut-off method works only when traces decay, which
they did due to the chosen A and v parameters. For Ay = 1 (worst case), however, PW would
consume about 100 hours(!) whereas our method needs around 11 minutes.

Finally, we should remark that for stochastic environments, the best value for A = 0.5.
For this value, our algorithm was about 2 times faster than PW’s.

3.7.2 Experiments with Accumulating and Replacing Traces

The accumulate traces algorithm is still used most often, although the replace traces algorithm
(Singh and Sutton, 1996) may work better for difficult problems. Since Q()) is not exact
when combined with exploration (Watkins, 1989; Lin, 1993; Peng and Williams, 1996), we
also tested resetting A (to 0.001) if an exploration action was selected which did not lead to
an increase of the Q-value after a single step (i.e. if Q-learning would increase the Q-value of
the SAP, we do not reset the trace). Thus, we have four methods for using eligibility traces:
accumulate/replace with/without resetting traces for exploration actions.

Task set-up. We use the same 50 x 50 mazes as in the previous chapter. Again we use 20
different generated mazes. We also use noise in the execution of actions: we replace actions
by random actions with 10% probability without informing the agent. We can view this
noise as a change of the transition function: instead of having deterministic transitions, the
transition function becomes stochastic. The new transition function consists of probabilities
{0.925,0.025,0.025,0.025} of making a step towards the intended direction and each of the
other directions. We have used policy iteration (PI) using the a priori model (the exact
state-transition probabilities and reward function of the maze) to compute a solution. We
stopped the policy evaluation once the maximum difference between state values between
two subsequent evaluation steps was smaller than ¢ = 0.001. The policy iteration ended
once the policy remained unchanged after a policy improvement step. Computed over the 20
different mazes, the optimal policy receives a cumulative reinforcement of 78.6K + 2.0K (1K

‘ System H Final performance ‘ Total performance ‘ Time ‘
Q-learning 41.5K + 0.5K 4.5M + 0.3M 390 £ 20
Fast Q(0.5) 41.2K + 0.7TK 8.9M =+ 0.2M 660 + 33
Fast Q(0.7) 39.6K + 1.4K 7.9M + 0.3M 660 = 29
Fast Q(0.9) 40.9K + 1.0K 9.2M + 0.3M 640 + 32
Fast Q(0.95) 41.5K + 0.5K 9.8M + 0.2M 610 £ 32
Fast Q(0.99) 40.0K + 1.1K 8.3M + 0.4M 630 = 39
PW Q(0.5) 41.3K + 0.8K 8.9M + 0.3M 1300 = 57
PW Q(0.7) 40.0K + 0.7TK 7.9M + 0.3M 1330 £ 38
PW Q(0.9) 41.2K + 0.7TK 9.4M =+ 0.3M 2030 + 130
PW Q(0.95) 41.2K + 0.9K 9.7M =+ 0.3M 2700 += 94
PW Q(0.99) 39.8K + 1.4K 8.2M =+ 0.4M 3810 £ 140

Table 3.1: Average results for different online Q(\) methods on twenty 100 x 100 mazes (£
1 standard deviation). Final performance is the cumulative reward during the final 20,000

steps. Total performance is the cumulative reward during a simulation. Time is measured in
CPU seconds.
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means 1000) within 10,000 steps. The standard deviation is caused by the stochasticity of
the environment.

We tested the methods each 10,000 steps for 100,000 steps. Then we recorded the time step
of the first testing trial in which the methods were able to collect 90% of what the PI-optimal
policy collected in that particular maze. A total of 1,000,000 steps were allowed during a
run. Parameters were as follows: We compare A-values € {0.1,0.3,0.5,0.7,0.9}, « (learning
rate) = 1.0, S (the learning rate decay) = 0.2. For accumulate traces with A = 0.9, we used
B (the learning rate decay) = 0.3, which gave the best results (we also tested other learning
rates and decay rates, but these did not work better). We use Max-random exploration for
all methods where the probability of selecting the greedy action was set to Py,q; = 0.7 during
the entire run.
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Figure 3.11: A comparison between different Q(\)-learning methods. Plots show the number
of steps before the policy collected 90% of what the PI-optimal policy collected. Values in the
bozes denote the number of successful simulations (out of 20).

Results. Figure 3.11 shows the results. We observe that resetting traces when selecting
exploration actions is useful for making large A values perform better. Replace traces with
resetting exploration traces achieves the most robust performance for the different A values.
A = 0.5 gives the best overall performance. Due to the penalty states and noise we cannot
use a large constant value for .

Conclusion. Managing the traces in different ways effects learning performance. By
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resetting traces once exploration actions have been executed we can use larger A values which
helps to make more effective use of the eligibility traces. The speed up gained by replac-
ing/resetting traces are not so large, however. Eligibility traces are most useful for large
environments in which the policy makes the same steps (or receives more or less the same
rewards) over time so that A can be large. For complex environments, some more efficient
eligibility trace management seems necessary. We want to keep A large, but this is only
possible if experiences are not noisy, since otherwise the variance of updates gets very large,
which causes large changes of the policy and that makes policy evaluation hard. More effi-
cient managing would therefore try to reduce the noise in the TD-errors. This can be done
by using sampling techniques from a single state (e.g. partial roll outs). In this way, we can
return more valuable TD-updates, which allows us to send information back to many more
states/action pairs. Another possibility is to use variable A and to detect special landmark
states which can be used to return reliable estimates of future rewards.

3.7.3 Multi-agent Experiments

The last experiments in this chapter validate the usefulness of the novel Team Q(X) algorithm.
We use one of the 50 x 50 mazes from the previous experiment and put multiple agents in this
environment which share the same Q-function and policy. The agents select actions one after
the other and after each action the global Q-function is updated. If an agent hits the goal,
it is reset to the starting position whereas the other agents keep their position. We use 2, 4,
8 and 16 agents and compare the Team Q()\) algorithm to using multiple agents which only
learn from their own experiences (Independent Q(A)). The Q(A) method we use is replace
traces with A = 0.9 combined with resetting traces for exploration actions.

We perform 100 experiments for which we always use the same maze (to keep the variance
in our results small). Again we use Max-random exploration and keep Py,q; = 0.7. Our
objective is again to attain 90% of what the PI-policy attains.

Results. Table 3.2 shows the results of the experiments. We also performed experiments
with a single agent.

‘ System/Agents H 1 ‘ 2 ‘ 4 ‘ 8 ‘ 16 ‘
Independent 98 (0.44M) | 98 (0.42M) | 99 (0.43M) | 98 (0.46M) | 99 (0.48M)
Team Q(\) 100 (0.43M) | 100 (0.43M) | 99 (0.45M) | 99 (0.50M)

Table 3.2: (A) A comparison between Team Q(X\) and Independent multi-agent Q(\). Results
show for different numbers of agents (1, 2, 4, 8, and 16) how often a policy was learned which
obtained 90% of the optimal policy (and the total number of actions after which it was found.
M stands for Million). A total of 100 simulations were performed on the same maze.

| System | 1| 2 | 4 | 8 | 16 |
Independent || 58 / 2.1M | 60 / 2.1M | 61 / 2.0M | 65 / 1.7M | 69 / 1.3M
Toam Q(\) 66 / 2.1M | 70 / 2.0M | 83 / 1.7M | 106 / 1.2M

Table 3.3: (A) A comparison between Team Q(X\) and Independent multi-agent Q(\). Results
show time requirements in CPU seconds / the cumulative rewards for an entire simulation.

We note that there are no significant differences between the algorithms. The Team
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Q(A) algorithm attains the 90% level slightly more often, but needs on average more steps.
Although Team Q(A) learns more from agent experiences — for the two agent case it makes
73K additional connections with an average trace of 0.25, and for the 8 player case it makes
570K connections (which equals 57% of all experiences) with average trace 0.24 — this does
not mean that these experiences are always used to improve the policy. A reason why the
differences are so small is that we reset traces which means that only short parts of the
trajectories will be connected.

Table 3.3 shows the time requirements of the multi-agent methods in CPU seconds on a
Ultrasparc 170 MHz workstation. Both algorithms require additional time for multiple agents.
The reason why Independent Q()\) needs more time for more agents is due to the more time
demanding local update rule. The computational cost of the Team Q(\) algorithm scales up
worse. The reason for this is that connecting traces consumes some time due to the loop in
the procedure connect.

We can see, however, that using multiple agents with or without connecting traces works
well if the number of agents is not too large, since the cumulative rewards obtained by the
group of agents stays above 2.0M rewardpoints. The speed up of having multiple agents
operating in parallel is linear in the number of experiences for small number of agents, but
the gain becomes smaller if the number of agents is larger than 4 or 5, which is caused by the
fact that goal-directed information is used later.

We also used the Team Q(A) algorithm in the deterministic 100 x 100 maze with X set
to 0.95 and without resetting traces. Here it turned out that Team Q(\) did perform slightly
worse than the independent version. A reason could be that initial exploration was too large
(0.5). Another problem with connecting traces is that later trajectories are connected to
trajectories which were generated early in the simulation. This causes updates of the value
function using old information (bad trajectories) and may therefore harm the policy.

Discussion. For the maze environment Team Q()) does not lead to improvements. One
of its problems is that new trajectories can be connected to trajectories which were generated
long ago by a completely different and possibly bad policy. Therefore some updates may be
harmful. To update a specific state many different future trajectories are used. Some of which
are created by better policies than others. It is hard to select on which trajectories we want to
learn, since the influence of noise makes it impossible to learn only on the best possible future
trajectories. This is different in model-based RL, which will be discussed in the next chapter,
since in model-based RL we compute a new function based on single transitions which are
always sampled from the underlying MDP. In the case of connecting traces, we use a complete
trajectory which is not just sampled from the MDP, but uses the policy as well. Although
there are ways to improve the algorithm, such as decaying the importance of learning from
trajectories generated a longer time ago, the algorithm may in principle be better suited for
tasks where the agents cooperatively have to solve a task and where one agent is helped by
other agents in its way to reach a specific goal. For such tasks, Team Q(\) may backpropagate
reward to other agents which interacted with the agent in its way reaching the goal.

3.8 Conclusion
We have described the well known reinforcement learning methods temporal difference learn-

ing and Q-learning. These RL methods learn from generating trajectories through state/action
space. For complex tasks in which many steps should be performed, TD()\) methods are ef-
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ficiently combined with Q-learning by our novel fast online Q(\) algorithm. This method
implements exact updates and in contrast to previous online methods, its update complex-
ity is independent of the number of states. Experimental results indicate that single step
lookahead methods like Q-learning learn slower than Q(A) methods. This is especially the
case in deterministic, large environments for which often the same large subtrajectories are
generated. Therefore the fast online Q(A) algorithm is very useful for such problems and the
experimental results showed that it can significantly speed up learning.

The success of TD(\) approaches relies heavily on the utility of the eligibility traces.
For deterministic environments we can use large values of A so that eligibility traces remain
activated for a long time so that state values are updated using the whole future path. Thus,
the estimates may more quickly converge to the true expected results of the Markov chain.
For noisy environments or environments where a lot of exploration is needed, the traces are
less effective, however. We have seen that in particular noisy maze environments, it is useful
to reset traces whenever exploration steps are made. This makes it possible to use larger
values of A\. We have also compared replacing traces to accumulating traces and found a
small advantage in using replacing traces. This is mainly the case for large values of A which
can cause very large (undesirable) updates in the case of accumulating traces.

We have also developed a new framework for combining eligibility traces in the case of
multi-agent Q(A)-learning. The method makes it possible to adjust Q-values of state/action
pairs which occurred in the trajectory of one agent on the future trajectory of another agent
if there exists an interaction point between the trajectories. Experimental results on mazes
did not show advantages of the Team Q(A) algorithm compared to using multiple agents
which all learn from their own trajectories. Although Team Q()) can use experiences more
efficiently, it has the difficulty that it should find out which previously generated trajectories
are worth to learn from. Some may be generated by bad policies and can only damage the
current Q-function.

Another method of using eligibility traces was proposed by Sutton (1995). He introduced
TD-methods for dealing with traces on different time scales, which is a step to approaches
which learn by dealing with the future in different ways. The decaying A-trace is also not
necessary, we could use a variable A\ as well. Thus, we could try to find landmark states
which have small variance and let trajectories backpropagate the values of such landmark
states. However it is considered to be quite difficult to measure variance of changing functions
without a statistical model. Therefore we will forget about eligibility traces for the moment
and turn our heads in the next chapter to indirect reinforcement learning methods which use
experiences very efficiently by estimating a world model.



Chapter 4

Learning World Models

Although world models are usually not known a priori, it is possible to learn the world model
from experiences. Learning world models by RL has wide applicability. If we first learn a
model and then compute a Q-function, we can significantly improve the learning speed for
particular environments. Furthermore, models are useful to improve exploration behavior, to
explain causal relationships, to explain why the agent prefers some choice over another,! and
to report what the agent has been doing most of its time.

This chapter describes how causal models can be learned by monitoring the agent in the
environment and how they can be used to speed up learning. These causal models can be
represented in different ways. We will concentrate on statistical maximum likelihood models
which return a probability distribution over successor states given the current state and
selected action. These models are approximations of the underlying transition and reward
functions of the MDP and can be used by DP-like methods to compute Q-functions. The
model-based RL agent has two goals: (1) to minimize the prediction error of the model so
that optimal or near optimal policies may be computed, and (2) to spend most computational
resources on the most promising parts of the state/action space to obtain high cumulative
rewards with little computational effort.

Outline. We will assume finite MDPs. First we will explain how gathered experiences
are integrated into a model. Dynamic programming (DP) techniques could immediately be
applied to the estimated model, but online DP tends to be computationally very expensive.
The estimated world model is updated after each experience and fully recomputing the policy
is not practical for large state/action spaces. Hence, we will use methods which can change the
policy much faster. These methods direct state value updates towards the most interesting
parts of the space. The first method we will propose uses 1-step lookahead Q-learning (a
member of the family of Real Time Dynamic Programming (Barto et al., 1995) algorithms).
By using the model Q-learning is significantly improved, but the method does not effectively
use the complete model. A second, very efficient algorithm is prioritized sweeping (PS)
(Moore and Atkeson, 1993) which only updates SAPs for which there will be large update
errors. Finally, we present an alternative prioritized sweeping algorithm, which is quite similar
to Moore and Atkeson’s PS, but manages the updates in a different, more exact, way.

Other methods, which we will shortly describe in the discussion are Dyna (Sutton, 1990)

'If an agent is acting in the real world and uses a world model, it can simulate possible scenario’s resulting
from a particular action, and use desired or undesired happenings inside these scenario’s to explain why it
prefers some action.

55
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and Queue-Dyna (Peng and Williams, 1993). These methods learn action models by recording
(frequently) observed experiences and replay these experiences to speed up directed reinforce-
ment learning. These methods work well for deterministic environments, but for stochastic
environments they have no principled way to deal with multiple successor states. E.g. if only
one successor state is replayed, the Q-function will become biased towards it.

4.1 Extracting a Model

In the previous chapter, we updated the Q-function using generated trajectories and made
use of traces to track state dependencies for weighing update steps. Now we want to use con-
nections in the state/action model for updating the Q-function. When we store the complete
model and we are given a new experience, we can propagate a change of a state value to all
other state values using the directed probabilistic graph.

Given a set of examples, we have to choose a model and compute its parameters. To
define which model © and parameters ( reflect the experimental data d best, we can use a
likelihood function. This likelihood function gives us the probability P(©;(|d) that our model
and parameters are the right one given the data. We can rewrite this with Bayes’ rule as:

P(d|©;¢)P((|0)P(O)
P(d)

P(©;(|d) =

Where P(d) is a normalizing constant and denotes the probability of generating the data
(the complete set of generated experiences). One reason why the likelihood function is of
importance is given by the likelihood principle. This tells us that assuming the model is
correct, all the data has to tell us about the goodness of parameters is contained in the
likelihood function (Box et al., 1994).

In our case, we know which model is the right one, namely a connected state/action
transition graph consisting of transition probabilities and rewards. One simple way of induc-
ing these parameters from a set of experiences is to count the frequency of the occurrence
of experimental data, which are quadruples of the form (s¢, a¢, ¢, s141) received during the
interaction with the environment. For this, the agent uses the following variables:

C? = number of transitions from state i to state j after executing action a.

C¢# = number of times the agent has executed action a in state i.

R{. = sum of the rewards received by the agent by executing action a in state 4
after which a transition was made to state j.

The maximum likelihood model (MLM) consists of maximum likelihood estimates which max-
imize the likelihood function. We represent the MLM by matrices of transition probabilities
and matrices of rewards and estimate the parameters of these matrices by computing the
average probabilities over possible transitions and the average reward:

. cy,
Pij(a) « o (4.1)
. R

R(i,a,j) + = (4.2)
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After each experience, the variables are adjusted and then the MLM model is updated. It
is easy to see that these parameters maximize the probability of generating the data (single
experiences).? If observations are without noise (the agent always perceives the real world
state), we have a deterministic reward function and the estimated reward for a particular
transition R(i,a, ) is known (and equal to R(i,a, j)) after a single experience. For estimating
the transition probabilities, we need to have multiple occurrences of the transition in our
experimental data, since there are multiple outcomes (in this case next states) given the
occurrence of each state/action pair and we want to have a good estimate of the probability
of each possible outcome. To see how many experiences we need to compute fairly precise
models, we show the bias and variance of the estimates as a function of the number of times
a state/action pair has occurred.

Bias. There is no bias. This is clear, since experiences are directly sampled from the
underlying probability distribution and we use the correct model consisting of transition
probability and reward matrices and so the estimator is unbiased. Note also that it is a
maximum likelihood model. We do not use a prior on the model, but initialize all counters
to 0 (this has the effect that initial policy changes can be very large though).

Variance. While updating, each transition probability changes in a stochastic manner.
As a measure of the size of update steps, we can use the variance. The variance of I:’ij (a)
after n occurrences of the SAP (7, a) is:

Var(Py(a)ln) = 3 (-

k=0

n

-y () Pyt et = P =)

n

The variance goes to 0 as n — oo and so in the limit we have the exact estimate. To give
an indication of the number of needed occurrences, assume that P;;(a) = 0.5. Then we have
to try out the SAP (4,a) 100 times before the standard deviation Stdev(P;;(a)) = 0.05. For
general problems, however, we do not need to know all transition probabilities as accurately,
but use exploration to focus on some parts of the state space. Note also that since the policy
is computed from the model, learning from new experiences may decrease the performance of
the policy as long as the variance is significant. Therefore model-based learning is in principle
a stochastic approximation algorithm.

4.2 Model-Based Q-learning

The MLM can be combined with the DP-algorithms from Section 2 to compute a policy.
Although the resulting policy may make optimal use of the experiences generated so far, it
usually costs a lot of computational time to use DP-algorithms in an online setting, especially
when the state-space is quite large. A more efficient way to recompute the policy introduces
some bias to choose which computations really need to be performed. One simple, but quite
effective method is using one-step Q-learning on the model — which is the simplest version in
the family of adaptive Real Time Dynamic Programming methods (Barto et al., 1995). This
method updates the Q-value for the current state/action pair after it has been executed and
the model has been updated by:

ZNote that they do not maximize the probability of generating the complete state-trajectories, since many
new (spurious) trajectories become possible.
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Q(i,a) « Y Pj(a)(R(i,a,5) + vV (5)) (4.3)
J
This update rule makes more efficient use of the experiences than standard Q-learning. We
can see this as follows. For Q-learning, a particular update, let’s say of Q(7,a) (which in our
case equals V(7)) will only be used to adapt other Q-values if afterwards there occurs another
state/action pair (j,b) leading to state i. For model-based learning updates are already used
if the model contains a transition from a state/action pair (j,b) to state 7. This transition
does not have to reoccur. A new occurrence of (7,b) will automatically take V(i)’s update
into account. Therefore it may need significant fewer experiences, although single update
steps are computationally more expensive (the update complexity depends on the number
of possible outgoing transitions). Note, however, that for deterministic environments both
methods are identical.
Variance of Model-based Q vs Q. We will now verify whether model-based Q-learning
also reduces the variance in the updates. The expected size of the update of Q(7,a) after its
(n + 1)* occurrence with model-based Q-learning is:

Z ¢(R(z a,j) +vV(j +Z

— (i,,k) +9V () - Q(i, )

n+1

If all the neighbors have not been updated in the meanwhile, this can be simplified according
to:

> PG Ry v )+ 3 EE (R0, v
J k#j
(D (R0 w6+ X CE D R0k + v ()
k#j
Ca) Cinla)
=3Pl o1y Blisad) +9VG) — %ﬁ(mwk)-ﬂ‘/(@))
-5 Py %f“)m(i,a,j)ﬂvu)) - ;f’f‘?(}z(i,a,MMV(M))z

—Z n+1(R(i,a,j)+7V(j) - Q(i,a)))’

For Q-learning where the learning rate anneals as % the variance is:

3 P(@) (= (Rlis0,) +V () — QG a)))?

F n+1
Thus, in case of no updates of any neighbor’s state value, the variances are equal. If some
neighbors have had their values updated, it depends whether their values moved closer to the
previous value of Q(4,a) or not. Usually, in the initial phase all values in the same region
of state space are increasing or decreasing together. For such environments, model-based
learning is expected to make larger update steps, and thus will have larger variance. Note,
however, that Q-learning usually does not anneal the learning rate with % and thus may have
a (much) larger variance.
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4.3 Prioritized Sweeping

We want to use the directed probabilistic graph to efficiently propagate current state-value
updates to other state-values. Although model-based Q-learning is a fast way for using
the model, it only performs a one-step lookahead which makes information passing between
distant states slow. When distant states are connected by high probability trajectories in
a state space, a change in the value of the state at the end of the trajectory will cause a
corresponding change in the other state. Since model-based Q-learning is not able to do such
deep information passing quickly, it may need much more experiences than DP algorithms
which will execute sufficient updates to propagate the change of a state’s value to all other
states. Although this always keeps the value function up-to-date, DP performs so many
updates for each experience, that it becomes very slow. To speed up dynamic programming
algorithms, some management of update-steps should be performed so that only the most
useful updates are made. To find out which updates are important, we consider an experience
as a newsflash: it brings information to a specific region which is in some way connected to
it, but it does not need to be known everywhere (unless it is really big news).

An efficient management method which determines which updates have to be performed is
prioritized sweeping (Moore and Atkeson, 1993). This method assigns priorities to updating
the Q-values of different states according to a heuristic estimate of the size of the Q-values’
updates. The algorithm keeps track of a backward model, which relates states to predecessor
state/action pairs. After some update of a state value, the predecessors of this state are
inserted in a priority queue. Then the priority queue is used for updating the Q-values for
the actions of those states which have the highest priority. For the experiments, we will use
a priority queue for which a promote/remove operation ® takes O(logn) with n the number
of states in the priority queue. Van Emde Boas, Kaas and Zijlstra (1977) describe a more
efficient priority queue which only needs O(loglogn) for a promote/remove operation, but
which only handles integer valued priorities in the interval 1,..., n.

Moore and Atkeson’s PS uses a set of lists Preds(j), where the list Preds(i) contains all
predecessor state/action pairs (j,a) of a state . The priority of state i is stored in A(z).
When state 7 has its value updated, the transition from (j,a) to 7 contributes to the update
of Q(j,a). The priority of a state j is the maximal value of such contributions. The algorithm
is shown on the next page. The parameter U,,,, denotes the maximal number of updates
which is allowed to be performed per update-sweep. The parameter € controls the update
accuracy. The algorithm pushes the current state/action pair on the top of the queue (1),
then it repeats for all queue items: Remove the top state (step 2.1), update it (steps 2.2, 2.3
and 2.6), store the size of the update in the variable D (step 2.4), reset its priority (step 2.5),
assign new priorities to all predecessors of the state (steps 2.7 and substeps), and insert them
if their new priority is larger than the threshold e (step 2.7.2.2.1).

3The operations are also called insert, delete (usually the top element), and heapify which means reinsert
an element once it has been assigned a new priority.
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Moore and Atkeson’s Prioritized Sweeping:

1) Promote the most recent state to the top of the priority queue
2) While n < Upqe AND the priority queue is not empty
2.1 Remove the top state : from the priority queue
2.2 VY a do:
2.2.1 Q(i,a) « ¥, Pi(a)(R(i, a, ) +V (7))
V(1) + max, Q(7, a)
D« |V(i) - V'(i)]
A7) «+ 0
V(i) « V'()
V (j,a) € Preds(i) do:
2.7.1 P%Pﬂ(a)D
2.7.2 If P> A(j)
2.7.2.1 A(j)« P
2.7.2.2 If P>¢
2.7.2.2.1 Promote j to new priority A(y)

N NDNDNDN
N o 0w

2.8 n+<n+1

Our Prioritized Sweeping. Our implementation of the algorithm uses a set of prede-
cessor lists containing all predecessor states of a state. |A(Z)| denotes the priority of state
1. This priority is at all times equal to the true size of the update of value V(i) since the
last time it was processed by the priority queue. To calculate this, we constantly update all
Q-values of predecessor states of currently processed states, and track changes of V(z). Our

PS looks as follows:

Our Prioritized Sweeping:

1) Update the most recent state s: V a do:
1.1 Q(s,a) + 5 Poj(a)(R(s,a,9) + 7V (5)
2) Promote the most recent state to the top of the priority queue
3) While n < Upqe AND the priority queue is not empty
3.1 Remove the top state s from the priority queue
3.2 A(s) « 0
3.3 V Predecessor states i of s do:
3.3.1 V(i) « V(i)
3.3.2 V a do:
3.3.2.1 Q(i,a) « X, Py(a)(RGi,a, ) + 1V (5))
i) < max, Q(7,a)
i)« A(i) + V(i) — V'(i)
If |A(Z)] > €
3.3.5.1 Promote 7 to priority |A(i)]
3.4n+n+1l
4) Make priority queue empty, but keep the A(i) values

w w w
w w w
oW

In Moore and Atkeson’s PS (M+A’s PS), states are inserted in the priority queue before
their Q-values are updated. In our method Q-values of states are updated before the states
are inserted. We do this to have an exact estimate of the update of the state value since it
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has been used for updating the priority of its predecessors. This makes the priorities exact,
whereas M+A’s PS calculates priorities based upon the largest single update of a successor
state. This means that states are only inserted if at some specific time step their successor
state makes a large update step (larger than €). If the update-steps of successor states are
smaller but more frequent it may happen that the states are never inserted in the priority
queue, although the update could be quite large.*

Our version uses priority values of states which are calculated by summing the new change
of the state value with the old change (A(7) in step 3.3.4). This has the advantage of being
exact, but the disadvantage is that in our method Q-values of all actions for a particular
predecessor state have to be updated which is more time consuming.

Clearing the priority queue. Another choice is whether the priority queue should be
emptied or not after the update sweep (PS-call). In the algorithm shown above, our method
empties the queue after the PS-call (step 4) while keeping the A-values of all states. Moore
and Atkeson’s PS does not empty the queue. The decision whether to empty the queue or not
is independent of the selected method. Keeping the queue results in a quite different update
sweep, if, for example, at some time step the size of the update of the current state value
is small. The states still on the queue are then processed. These states have probably been
inserted few time steps ago, but it is also possible that they were inserted while the agent
visited different parts of the state space. Updating them costs time and since the updates
did not belong to the most important U,,., updates at the moment they were inserted in the
queue, we can argue that we do not want to update them at all. Note that our method keeps
the priority values, even when items are not in the priority queue. Then, if their priority is
large enough, they will be inserted in the future anyway — being predecessor of some other
visited state.

4.4 Experiments

We have evaluated the model-based RL methods described in this chapter by performing a
series of maze experiments. The first experiments involve again the same 50 x 50 mazes
used in Chapters 2 and 3. In all experiments selected actions are replaced by random actions
with 10% probability. We have used policy iteration using the a priori model to compute a
solution. We stopped the policy evaluation once the maximum difference between state values
between two subsequent evaluation steps was smaller than € = 0.001. Policy iteration needed
a total of 6450 (£ 480) sweeps for computing the policies. This means that about 13 million
value update steps were performed. We will call this policy the optimal policy, although it is
not guaranteed to be the optimal policy due to the use of the cutoff parameter e (see Chapter
2). Stopping the evaluation prematurely speeds up the process significantly, however.

The optimal solution-paths cost on average a bit more than 100 steps. The optimal policy
receives a cumulative reinforcement of 78.6K + 2.0K (1K means 1000) within 10,000 steps.
Within 2,000 steps, the cumulative reward is 15.7K + 0.6K.

“This could be overcome by making € small enough, although this would result in inserting many more
unimportant) states as well.
p
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4.4.1 Comparison between Model-based and Model-free RL

We compare Q-learning, Q(\)-learning, model-based Q-learning and (our) prioritized sweep-
ing. For all Q(\) experiments, we have used the fast online Q(\) algorithm presented in
Section 3.4.

Experimental setup. To compare the different RL methods, we executed them on 100
different mazes. For all methods we used the Max-random exploration rule, where we linearly
increased P,q; from 0.7 to 1.0 (P4, = 0.7 — 1.0). Thus, in the beginning the agent selects
the action with maximum Q-value with probability 70% and at the end of the simulation it
always greedily selects the action with largest Q-value. We ran 1,000,000 actions during a
trial and recorded the cumulative rewards during intervals of 10,000 (training) actions. After
each 100 trials, we also performed test trials to compute the number of steps to reach the
goal. Finally, we recorded the approximation of the learned value function by calculating the
average distance of state values to the optimal V*-function computed with policy iteration.

Parameters. For Q-learning, we used a = 1.0 and g = 0.1. For Q())-learning, we use
the same learning rate parameters and set A\ = 0.5. For model-based Q-learning there are no
additional parameters to set. We have used our version of the prioritized sweeping method
with clearing the queue. For PS the maximum number of updates U,,q, = 100, and ¢ = 1.0.

Results. Figure 4.1(A) plots the learning performance of the different methods. It clearly
shows the advantage of using model-based RL. Both model-based approaches converge much
faster (the linear increase of cumulative reward is only due to the decreasing amount of ex-
ploration (stochasticity) of the tested policy) and reach much better final performance. The
prioritized sweeping method needs the fewest experiences and reaches near-optimal perfor-
mance levels (record that the optimal policy collects 78.6K + 2.0K) points. Q(A) improves
its performance faster than Q-learning although the final performances are equal.

‘ System H Q-learning ‘ Q(N) ‘ model-based Q ‘ PS ‘
Performance 68K £ 10K | 68K + 15K 76K £+ 4.4K | 78.7K £ 2.0K
Time 78 + 3 149 + 14 277 + 17 308 £ 8
Time for Solution 70 80 40 30

Table 4.1: Final performance levels, average time needed by the different methods for a sin-
gle simulation (1,000,000 steps), and the time needed to reach the interval of the highest
performance.

Table 4.1 shows the final performances and time costs of the methods. Time costs were
computed by measuring CPU time for the entire simulation (including almost neglectable
simulator time) on a 50 MHz Sun SPARC station. Note that the model-based approaches
spend more time: their update-rules loop over all outgoing transitions. They could already
be stopped much earlier, however, and the last row of the table indicates how much time it
costs until the performance reaches the interval of the linear increase in the graphs (which is
due to decaying exploration). Thus, we can see that our prioritized sweeping finds the best
solution and finds this fastest. Prioritized sweeping only consumes more time during the first
trials. When the goal state has been found for the first time, many updates are made. After
the goal has been found a couple of times and most states have been visited, only few updates
are made after each experience (most updates would be smaller than ¢).

Approximation error. Figure 4.1(B) shows the approximation errors of the different
learning algorithms. It is clear that there is not sufficient exploration to learn good value
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Figure 4.1: (A) A comparison between the learning performance of the RL methods. The
plot shows averages over 100 simulations. (B) The approzimation error of the RL methods.
The figure plots the average distance of state values to their optimal values against number of
agent steps. (C) Average number of steps per test-trial. Note the logarithmic scaling of the
y-axis. The peaks in the model-free approaches indicate unsuccessful and long trials.

function approximations. Only PS learns a reasonable value function approximation. The
direct (model-free) RL methods initially increase the approximation error, since they learn
negative state values. After this they hardly improve the value function approximation. It
may seem surprising that the methods were able to learn reasonable policies at all with
such bad value function approximations. This is exactly why (real time) RL methods work:
policies only learn to approximate values of states which they frequently visit. Thus, we
conclude that approximating the performance of the optimal policy tends to be much easier
than approximating the optimal value function.

Test trial results. We have performed test trials after each 100 learning trials. We used
the greedy policy and measured the number of steps needed to reach the goal. The trials
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were stopped if the agent could not find the goal within 1,000,000 steps. In Figure 4.1(C) the
average number of steps per test trial is displayed. The peaks in the model-free approaches
indicate unsuccessful or long trials. The Q(\) agent did not find the goal in 2 mazes. In 1
of these unsuccessful simulations, the goal had been found a couple of times, but the agent
made some update step which ruined its policy. Hence, it could not reach the goal anymore
from trial 1900 onwards — the policy must have been caught in cycles through a number
of states from which it could not escape even though actions were selected/executed non-
deterministically. The Q-learning agent failed for only 1 maze, although its average solutions
for the other mazes were worse than for Q(A) — which we can verify by considering that the
average results are the same.

Comment. We also used value iteration to compute the value function while estimating
a maximum likelihood model. As expected online VI is computationally very demanding: for
simulations consisting of 100,000 steps it required 24,000 CPU seconds (using € = 1.0). Its
performance was also not better than that of PS.

More noise. We also tested the effect of more noise in the execution of actions in the
same mazes. For this we performed 20 simulations using 20 different mazes and 25% noise in
the execution of actions. For Q(X), the best exploration rate for the Max-random exploration
rule is as follows: P4, = 0.7 — 1.0. Figure 4.2(A) shows the results. For Q()), accumulate
traces with the value 0.1 for A worked best. Whereas the performance on the same 20 mazes
with 10% noise was 7% off from maximum performance, with 25% noise the best method is
21% off. Thus the performance of Q())-learning is quite sensitive to noise!

Figure 4.2(B) shows the results of model-based Q-learning with Max-random exploration
with different exploration rates (indicated as (Pezp-0.0, where Py, equals 1 — P45 ), and with
an exploration method which initializes the Q-values to 1000). Model-based Q-learning does
not seem to have any problems with the increased amount of noise. It reached stable perfor-
mance after 140K steps and the final performance is close to optimal. The best performance
of 59K is only 2% off optimal!

To study how well prioritized sweeping deals with more noise, we set up experiments with
our PS method. We use 20 simulations during which 100K steps can be made. We used € = 1.0
and max-updates = 100. Figure 4.2(C) show the results, exploration rates are indicated as
(1 — P,42) and are annealed to 0. Tt indicates that PS works very well, although the initial
value of P.p, = 1 — Ppae should not be too small (0.1). The best result is attained with
Py = 0.5 which achieves a final result of 11.5K, which is 4% off the optimal performance
(12.0K). We expect slightly worse, but in overall similar results for M+A’s PS.

When we compare the three plots, we clearly see that model-based approaches work much
better. This is due to the fact that they are much less sensitive to noise than direct RL
approaches. Finally, we note that PS reaches its near-optimal performance levels much faster
(about 5 times) than model-based Q-learning.

Discussion. Model-free approaches work worse for stochastic environments, since trajec-
tories generated in different trials are not combined in an efficient way. Have a look at Figure
4.3, where we have designed two paths from the start (S) to goal (G). The solid line is the
best known path and the dashed line is the current path. We want to combine the two paths
to learn to go from S to A using the dashed line, and from A to G using the solid line. Given
both lines, model-based RL would easily learn this. Q(X)-methods, however, cannot learn
this in a single pass.® The problem is that for the states just before state A, Q())-learning

5 Although learning from many trials solves the problem — single trials should make much larger improve-
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Figure 4.2: (A) A comparison between different values for X\ and the accumulate and replace
traces algorithms for Q(X)-learning on twenty 50x 50 mazes with 25% noise in the execution
of actions. (B) A comparison between different amounts of exploration for model-based Q-
learning. (C) Different amounts of exploration with prioritized sweeping (note the different
scalings of the X- and Y-azis).

partially learns from A’s state value, and partially from the trajectory shown by the dashed
line after A. When X is large, the TD(\)-return from A will reach point S with a lower value
than the Q-value of the action leading to the solid path (since the complete dashed path is
worse than the solid path). E.g. for A = 1.0, we would compare at each state the entire future
solid path to the dashed path and no changes would be made at all. If X is small, the value
from A would not be returned to 8.6 Prioritized sweeping does not suffer from this problem.

ment steps.

SResetting A at A would solve the problem, but this is difficult for online approaches, since we cannot be
certain before the goal is reached whether we should learn from the current trial or not. If we choose to learn,
the update steps cannot simply be undone.



66 CHAPTER 4. LEARNING WORLD MODELS

Figure 4.3: The difficulty for Q(X\)-learning to improve. The solid line is the current best
known path and the dashed line is the current path consisting of a good part from start S to
point A and a bad part from A to goal G.

The model-based approaches find near optimal performance levels and are able to learn from
less experiences. Prioritized sweeping achieves excellent performance and is able to quickly
solve large mazes.

4.4.2 Prioritized Sweeping: Sensitivity Analysis

In this sub-section, we shortly describe parameter setting for prioritized sweeping (PS). Two
parameters have to be set, and we have analyzed the sensitivity of the learning behavior for
these parameters.

Setting the accuracy parameter

The parameter € controls the level of update accuracy. By setting € to larger values, less up-
dates have to be performed each time step so that the update speed is higher. Of course when €
is set to very large values, the value function will be badly fitted to the experiences and this will
result in performance loss. We tried out values for € out of the set {0.001,0.01,0.1, 1,10, 100}.
We found that the time requirements depends a lot on the values of ¢, where values of 1.0
or larger result in very fast performance (below 40 seconds per simulation of 100,000 actions
with Max-random exploration). Surprisingly, it is not true that a higher accuracy (lower ¢)
always results in better performance — this may result in “overfitting the value function”.
This overfitting happens when the model is not very accurate, but is used to compute an
accurate value function. If we only have partial data, it can happen that some distant states
are connected through high-probability paths, which do not reflect the real MDP very well.
Therefore if we have partial data and make too many update steps, the value function can
become very biased. Therefore we should use more exploration. The values 0.1 and 1.0 for €
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worked best in both performance and time requirements.
Tuning the maximal number of updates

Each update sweep makes a number of updates. In order to increase the update-speed, we
have limited the maximal number U,,,, of updates which are allowed to be made per update
sweep. Computational costs are less sensitive to the maximal number of updates than to
the accuracy parameter, however. We may again ”overfit the policy to a wrong model” —
when we increase the number of updates the performance does not always improve, but may
become worse. If we update less, we will update relatively more on nearby located states,
and thus we will less likely update on a specific erroneously estimated trajectory which may
introduce a large bias in the Q-estimates.

We found that using 100 updates resulted in the best performance for € = 1.0. For larger
problems, having more updates may be necessary to keep the states connected — we may
want to assure that each update could result in an update of any other state lying on the
current shortest path.

4.4.3 Comparison between PS Methods

Our PS method is more selective in calculating the priorities, since it performs a full parallel
backup for determining priorities. Moore and Atkeson’s PS considers only one single output
transition at a specific time-step for computing the priority. We have set up experiments
to compare our PS method to Moore and Atkeson’s PS. We test the policies each 1000
steps for 200,000 steps and record when they collect 90% and 95% of what the optimal PI-
policy collects. One simulation ends when 100,000 actions have been executed. We combine
all methods with Max-random exploration where P,,,; stays 0.7 during the run. We also
measure the required CPU time in seconds on a Ultrasparc 170MHz Sun station. For these
experiments € = 0.1, and U,,4,; = 1000.

‘ PS H Clear Q7 ‘ steps to 90% ‘ steps to 95% ‘ Final Reward ‘ time ‘
Our Yes | 19K + 15K (20) | 23K + 16K (20) 157K £+ 2K | 80 &+ 12
Our No | 15K £ 3K (19) | 17K + 3K (17) 155K + 5K | 82 4+ 12
M+A Yes | 19K + 13K (19) | 21K + 16K (17) 155K £ 5K | 79 + 13
M+A No | 16K £ 5K (19) | 22K + 9K (14) 153K £ 6K | 98 + 16

Table 4.2: Required number of actions for PS methods to find policies for the 50 x 50 mazes
which are 90% and 95% off the mazximal obtainable cumulative reward. Between brackets we
show the number of simulations in which they succeeded.

Results. The results are shown in Table 4.2. For finding 90% optimal policies, the
differences are not very large. However, unlike M+A’s PS, our PS with clearing the queue
found 95% optimal policies in all 20 mazes. Furthermore, this method also reaches the best
final performance. We do not show here that the cumulative rewards for all methods are
more or less the same, although there is a small advantage for not clearing the queue. This
contradicts the final results (the cumulative reward over the final 20K steps), which shows
better results for clearing the queue. The difference can be explained by the fact that not
clearing the queue may speed up initial learning since more updates are performed, but as
seen before many early updates may be harmful since it may lead to more initial bias in the
value function.
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Conclusion. Our PS method profits from exactness and therefore it will always work
well. We expect that our PS method is currently the best model-based RL method for small
to medium-sized discrete MDPs.

4.5 Discussion

Problems of model-based RL. One problem of the methods is that computational memory
requirements can be huge: in the worst case we have to store a full model using O(|S|?|A])
space. On current machines, this becomes infeasible for |S| larger than 5,000. However, for
large problems not all transitions are experienced in the limited lifetime of the agent, so that
only partial models need to be stored. However, sometimes it is a big problem. Take for
example the game of backgammon. For some states, there may be many (>> 1000) successor
states, because there are many possible actions. For such problems we should only store state
transitions of actions which are frequently chosen by the policy or group transitions together
if they lead to states with similar values. Of course this results in some loss of accuracy.

Statistical world models. In this chapter we used statistical world models. The use
of statistical methods makes it possible to estimate models which can be used with dynamic
programming like algorithms. Using statistical learning theory, Kearns and Singh (1998)
proved that a variant of a model-based reinforcement learning method converges in the
probably approximately correct (PAC) framework. That means that we probably succeed in
learning an approximately correct value function after learning on a number of experiences
which is bounded by the logarithm of the probability of success, a polynomial of the size of
the state/action space, and the inverse of the approximation error.

Other world models include functional models consisting of a set of differential equations
which are used in many sciences, e.g., in system dynamics (Vennix, 1996). Such models make
cost assessment much harder, however, since we need to employ simulation techniques for
predicting the results of actions. The advantage of such models is that they can be quite
compact and based on physical properties of the problem. However, there is no systematic
way of learning such models — although evolutionary methods (Holland, 1975; Rechenberg,
1971) could be used, there is no guarantee that these methods will find a correct model.

Other world models. Sutton’s Dyna systems and relatives (Sutton, 1990; Peng and
Williams, 1993) do not estimate a probabilistic transition function, but store trajectories
consisting of sequences of experiences. During the course of learning the system may choose to
learn from previously stored experiences instead of making real world steps. This is useful for
learning in real worlds for which generating new experiences is often much more expensive than
"replaying” old experiences. For deterministic environments, these systems work very well.
They may be less suited for stochastic environments, however, since updates are less informed
and biased to the experiences which are replayed. Instead the PS methods manage the update-
sequences, updates are unbiased, and updates are more informed. An advantage of the Dyna
approach is that it is easy to replay experiences for all kinds of function approximators.

Jordan and Jacobs (1990) and similarly (Nguyen and Widrow, 1989) describe an approach
based on two models: one neural network (the world model) tries to predict the successor
state, and another (the action model) is used for selecting actions. Given some discrepancy
between the desired state and a predicted state, errors are backpropagated from the world
model to the action model so that an action is selected which minimizes that discrepancy.
Since it is a global model, however, only single successor states can be learned, but it can
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generalize well. Schmidhuber (1991) does the same kind of forward modeling with recurrent
models and controllers.

Lin (1993) describes experience replay and action models for TD-learning with feedforward
networks. For experience replay he records experiences and replays them in backward order.
He only records policy actions and not exploration actions, since experiences generated by
exploration actions do not reflect the true dynamics generated by the policy. Experience
replay was compared to learning action models. For learning action models, he learned to
predict the most likely reward and successor state with a feedforward neural network. He
found that using experience replay led to larger speedups than learning an action model. He
did not estimate a probability distribution over successor states in his action model, however.
This would also be very difficult, because he used a partially observable changing environment
for which there were hundreds of possible successor states for each state. Feedforward neural
networks are not well suited for learning such models due to their static architecture, which
makes it difficult to store transition probabilities of a variable number of transitions.

Planning. Planning methods build explicit search trees starting at the goal state as root
note (backward planning) or at the start state (forward planning) in order to connect the
goal and start states. Most planning mechanisms use heuristic functions and build search
trees of a limited length after which they select the step leading to the leave node with the
largest value. Davies, Ng and Moore (1998) discuss online search methods for improving
a suboptimal value function and showed some improvements in performance at the cost of
consuming more time. After the planning phase, they did not adapt the value function,
however. It is also possible to use the planning phase for updating the values of states which
were traversed during the planning process. This can be simply done by adapting state values
to match the results of the planning process (a similar thing is done in (Baxter et al., 1997)
which combine planning with TD())). The problem of planning is that it is computationally
expensive, especially for non-deterministic environments. We also tried (forward) planning
together with adjusting the value function for the planning steps, but found that PS makes
it easier to backpropagate goal-related information. Once the goal is found, PS makes many
updates so that the agent immediately stores trajectories to the goal state from many other
states. For planning, updates are only made if the planning process was successful, and thus
if the goal is found by accident, the planning method will not learn how it got there. We
may use backward planning instead, but then we already need to know where the goal is, and
since the environment is stochastic, it is not clear how we should compute trajectories linking
the goal state to the current state.

4.6 Conclusion

This chapter described RL methods which estimate a maximum likelihood model and compute
the Q-function using the model. We used experiments to compare different RL methods
described so far. We have seen that model-based approaches outperform the model-free RL
approaches in finite stochastic mazes. They make more efficient use of experiences. Model-
based approaches can profit from management techniques to keep computational requirements
for making policy changes small. Prioritized sweeping’s management rule: Focus on the largest
errors (problems) is very effective.

We also showed that the model-based approaches were very resistant against noise. Using
a lot of noise in executing actions hardly influenced the final results, whereas this was not true
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at all for direct RL methods, which suffered a lot from more noise. We consider our mazes
to be a prototype of goal-directed stochastic finite MDPs, where the number of paths leading
to the goal state, the number of possible choices at each step, the amount of noise in the
transition function and the length of the path to the goal are the most important parameters
which determine the problem’s complexity. We think that for such problems, model-based
RL methods will always outperform direct approaches. The difference will be larger if the
noise in the transition function is larger and the length of the path to the goal is larger.

Model-based techniques rely more on the Markov property than Q(A) methods, however,
which can learn policies using Monte Carlo estimates for which the Markov property is not
required.



Chapter 5

Exploration

A reinforcement learning agent only learns from what it experiences and therefore if it always
sees the same world states since it always makes the same decisions, it will not increase its
knowledge or performance. Only when an agent would be following an optimal policy, the
agent does not need to explore. Otherwise there is always some need to select actions which
look suboptimal to the agent. Such actions which deviate from what the agent believes is
best (the agent’s greedy actions) are called exploration actions. Even though it is true that
most exploring actions are indeed not optimal, especially not if the agent already has acquired
a lot of knowledge, exploring is always helpful if the agent has still a long future; changing
something now may be costly, but will be beneficial for a much longer time and thus it will
slowly pay back its costs.

Optimal experimental design (Fedorov, 1972; Dodge et al., 1988) and active learning
(Cohn, 1994) try to gather those experiences (data) which are most useful for computing
good approximative solutions. In reinforcement learning, the problem of selecting exploration
actions is called exploration or dual control (Dayan and Hinton, 1993). Deviating from the
current greedy policy (which always selects the action with the highest Q-value), however,
usually causes some loss of immediate reinforcement intake. This is usually referred to as the
exploration/exploitation dilemma. Therefore, in limited life scenario’s the agent usually tries
to maximize its cumulative reward over time, and it faces the problem of trying to spend as
little time as possible on exploration while still being able to find a highly rewarding policy
(Schmidhuber, 1991a; Schmidhuber, 1996). Another goal, however, could be to find the best
possible policy in a fixed time or to find a near optimal policy in least time. For such problems,
we only care about exploration and thus exploitation can be discarded completely.

Previous work. Thrun (1992) presents comparisons between different directed and
undirected exploration methods. Directed exploration methods use special exploration specific
knowledge to guide the search through alternative policies. Undirected exploration methods
use randomized action selection methods to try their luck in generating useful novel experi-
ences. Previous research has shown significant benefits for using directed exploration (see,
e.g., Schmidhuber 1991, Thrun 1992, and Storck, Hochreiter and Schmidhuber 1995). Koenig
and Simmons (1996) show how undirected exploration techniques can be improved by using
the so called action-penalty rule. This rule penalizes actions which have been selected in
particular states so that the unexplored actions for some state look more promising — this
decreases the advantage of directed exploration.

When we want to solve the exploration/exploitation dilemma, it is also necessary to
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switch between exploration and exploitation. Thrun and Moller (1992) use a competence
map which predicts the controller’s accuracy, and their bistable system switches attention
between exploration and exploitation depending on expected cost and knowledge gain.

Exploration is also very important for dealing with non-stationary (dynamic) environ-
ments. E.g. suppose that we have learned a policy for going from one room to another. Then,
if a door between these rooms had always been closed, the policy could not have learned to
pass through this door. If the door is opened afterwards, the agent should find this out in
order to relearn a better policy for reaching the other room. Dayan and Sejnowski’s dual
control algorithm (1996) is designed for such environments. They slowly increase Q-values,
so that actions which have not been tried out for some time will be selected again.

A completely different exploration approach is described in (Schmidhuber, 1997), where
one agent gets reward if she is able to bring the other agent to regions which he does not
know. Thus, a co-evolutive exploration behavior takes places, where the agent is presented
with a continuous stream of unknown situations until it finally learned a policy for all of
them.

The Interval Estimation (IE) algorithm (Kaelbling, 1993) uses second order statistics to
detect whether certain actions have a potential of belonging to the optimal policy. IE com-
putes confidence intervals of Q-values and always selects the action with largest upper interval
boundary. Previous results (Kaelbling, 1993) show that IE works well for action selection in
bandit problems (Berry and Fristedt, 1985). N-armed bandit problems are problems in which
we can select between n arms, each one with different payoff probabilities and payoffs. Thus,
we have to collect statistics in order to infer which arm to pull. Since pulling arms costs
money as well, and we only have limited time, we want to gain information about the payoff
ratio’s of the arms and infer when we can best focus on the most promising one. Since we are
dealing with stochastic problems, IE is interesting for us, and we will describe how we can
combine TE with model-based RL.

Outline of this chapter. We first describe undirected exploration methods in Section
5.1. In Section 5.2, we describe directed exploration methods which are based on the design of
an exploration reward function. In Section 5.3, we describe model-based exploration and a new
exploration method which extends interval estimation (IE) to model-based RL. In Section 5.4,
we present experimental comparisons between indirect/direct exploration methods. Section
5.5 concludes this chapter with a discussion.

5.1 Undirected Exploration

In this section we will summarize undirected exploration techniques. These methods usually
rely on pseudo-random generators.

5.1.1 Max-random Exploration Rule

The Max-random, also known as pseudo-stochastic (Caironi and Dorigo, 1994) and e-greedy
(Sutton, 1996), exploration rule is the simplest exploration rule. The rule uses a single
parameter P,,., which denotes the probability of selecting the action with highest Q-value:

1) generate a number r from the uniform distribution [0,1]
2) If r < Prs
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2.1) select the action with highest Q-value.
2.2) Else select a random action a € {Ay, As, ..., Apr}.

For step 2.1, it can happen that there are multiple actions which have the highest Q-
value. In this case, we select one of them stochastically. The Max-random rule has the nice
property that the time overhead for selecting an action can be small — in the optimal case
where the max-action stays the same, it is O(1).! A good method for learning policies is
to linearly increase P, after each step during the trial: in the beginning of a simulation a
lot of exploration makes it possible to compare many alternative policies, and at the end the
probability of selecting greedy actions becomes 100%. Thus, exploration becomes more and
more focused around the best found policy.

5.1.2 Boltzmann Exploration Rule

The Boltzmann-Gibbs rule is one of the most widely used exploration rules. The Boltzmann
rule assigns probabilities to actions according to their Q-values. It uses a temperature variable
T, which is used for annealing the amount of exploration. The Boltzmann exploration rule
computes the probability P(als) for selecting an action a given state s and Q-values Q(s, 1)
for all 2 € A as follows:

eQ(s,0)/T

P(als) = W (5.1)
The Boltzmann rule causes a lot of exploration in states where Q-values for different
actions are almost equal, and little exploration in states where Q-values are very different.
This is helpful for risk minimization purposes (Heger, 1994), for which we may prefer not
to explore actions which look significantly worse than others. However, initially learned Q-
estimates can be incorrect due to noise, so some exploration is still needed in case of large
differences in Q-values. Using an annealing schedule for the temperature should get around
this problem, but finding a good annealing schedule can be quite difficult and is reward
function dependent.? Furthermore, since the temperature is a global variable, it may happen
that some state is not visited for a long time, after which the amount of exploration in
this state is very small. Although this last problem could be solved using local temperature
variables, it is still a problem that the agent may concentrate on different trajectories which

it already knows well.

5.1.3 Max-Boltzmann Exploration Rule

Max-random exploration may lead to bad results when particular actions lead to large negative
rewards. It assigns equal probabilities to all non-optimal actions and therefore assigns too
large probabilities to explore really bad actions. Boltzmann exploration has large problems
focusing on the best actions while still being able to sometimes deviate from them. We may
also combine the Max-random and Boltzmann exploration rules. The max-Boltzmann rule
combines taking the “Max” action with the Boltzmann distribution:

'The action with maximal Q-value can be stored when learning the Q-values.
2If we change the reward function by e.g. scaling all rewards, we would interfere with the exploration
behavior. This would not be the case for Max-random exploration.
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1) generate a number r from the uniform distribution [0,1]
2) If r < Praa

2.1) select the action with highest Q-value.

2.2) Else select an action according to the probabilities computed by Eq.
5.1.

Although the rule requires more parameters to set (the temperature T' and P,,,;), there will
in general be more good combinations. We will use this rule for exploration with ambiguous
inputs (in Chapter 6), since there it is important to be almost deterministic for inputs which
are not ambiguous, and to focus on a particular action for an ambiguous input while still
sometimes exploring good alternative actions.

5.1.4 Initialize High Exploration

Another possible exploration rule is to start with high initial Q-values (the Q-function is
initialized to the upperbound of the optimal Q-function) and to use the normal RL update-
rule. Given the fact that action values will drop when they have been explored, taking the
action with maximal Q-value will initially return that action which has been selected least
times. The method is quite similar to counting the number of times particular state/action
pairs have occurred, although it may happen that some actions which have occurred more
often are still preferred above other actions since they are more rewarding.

Different kinds of exploration techniques based on this idea have been used used in e.g.
(Koenig and Simmons, 1992; Prescott, 1994; Koenig and Simmons, 1996). Koenig (1996)
presents a proof that finding a goal at all in particular environments by initializing high and
penalizing actions will only take polynomial time, whereas (Whitehead, 1992) had shown
that zero-rewarding actions may take exponential time for such worst-case environments. An
example of such an environment consists of a simple sequence of states and two actions go
left and go right, and where the action go right brings the agent to the successor state and
the action go left brings the agent all the way back to the initial left-most state. To find the
goal the agent has to select only go right actions. However, if we do not penalize actions,
the probability of selecting a long sequence with only go right actions decreases exponentially
with the length of the path. Thus, we have to record which actions have occurred to find the
goal in polynomial time in the number of states.

5.2 Directed Exploration

For directed exploration, all we need to do is to create an exploration reward function which
assigns rewards to trying out particular experiences. In this way, it determines which ex-
perience is interesting for gaining information (Storck et al., 1995).  Directed exploration
methods learn an exploration value function in the same way standard RL methods learn
a problem-oriented value function. Therefore we may simply define an exploration reward
function determining immediate exploration rewards and let the selected RL method learn ez-
ploration Q-values. We can use the same RL method for learning the exploration Q-function
and the exploitation Q-function.

If we want to solve the exploration/exploitation problem, we have to find a method to
choose which of the two Q-functions to use for action selection. There are different heuristics
for switching from exploration to exploitation. We note that an optimal switching strategy
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is in general hard to compute, except for the most simple problems such as 2-armed bandit
problems (Gittins, 1989; Kaelbling et al., 1996).

5.2.1 Reward Function 1: Frequency Based

Explore actions which have been executed least frequently. The (local) reward function is
simply:

Cs(a)
Kc

Here RF(s,a,*) is the exploration reward assigned to selecting action @ in state s. It is

RE(s,a,%) == — (5.2)

determined by dividing the local counter Cs(a) by a scaling constant K. The asterisk stands
for the don’t-care symbol. In general the resulting policy will try to explore all state/action
pairs uniformly, although the resulting policy still depends on the discount factor. If the
discount factor is 1, the policy will try to follow paths leading to transitions with the minimal
number of occurrences. Still, the resulting exploration behavior can be quite complex. Let’s
have a look at Figure 5.1. After a while, the exploration behavior will much more often
execute the action go-right than go-up since the go-up action leads immediately to transitions
which are well explored. Note that although this environment is deterministic, the same holds
for stochastic environments. Thus, the exploration behavior depends strongly on the topology
of the state space. Furthermore, the exploration behavior depends also on the discount factor.

Q 0000

2

Figure 5.1: A deterministic environment where the frequency based rule cannot explore all
state/action pairs uniformly. The environment consists of a number of states and 2 actions.
Actions lead up or right for most states with the exception of the top state for which both
actions lead to the same successor. After trying out all up-actions a single time, the explorer
becomes aware of the bottleneck transitions (1) and (2) which are crossed so often that up-
actions immediately leading to them will get low exploration values and not be considered for
a long time.

5.2.2 Reward Function 2: Recency Based

Select the actions which have been selected least recently. The reward for exploring SAP
(s,a) is:

—t

RE(S,G,, *) = K—a
T

(5.3)
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where K7 is a scaling constant and ¢ the current time step. Note that the exploration reward
is not entirely local, since it depends on the global time counter. This exploration reward
rule makes a lot of sense for dealing with changing environments.

5.2.3 Reward Function 3: Error Based

The third reward rule is as follows:

RE (54, a1, 5041) = Qei1(st,at) — Qi(se,a1) — Kp (5.4)

Here Q¢(s¢, at) is the Q-value of the state/action pair (SAP) before the update, and Q1(s¢, at)
is the Q-value of the SAP after the last update, which has been made before computing the
exploration reward. The constant Kp ensures that all rewards are negative.> This reward
rule prefers to keep on selecting state/action pairs which have strongly increasing Q-values.
Initially it makes unexplored SAPs prime experiences, due to the negative rewards assigned
to all explored steps.

Comments. (1) Schmidhuber (1991) used the absolute difference |V;y1 — V4| instead of
the directional change. (2) Thrun (1992) combined the error based learning rule with the
frequency based learning rule. He did not find any improvements over just using the frequency
based rule, however.

5.2.4 False Exploration Reward Rules

We can of course construct all kinds of local exploration reward rules. However, we have to
be careful: some rules may look quite good, but may lead to unwanted exploration behavior.
To examine whether an exploration reward rule will work, we should analyze the following
condition: if we continuously select exploration actions, we should never be absorbed in a
subspace of the state space, unless we have gathered so much information that we can be sure
that exploring different subspaces will not change our learned policy.

An example of a wrong exploration reward rule is the following: prefer state/action pairs
for which the successor states are least predictable, i.e. the transition probabilities have high
entropy:

RE(s,a,%) = — Z Pyi.(a) log Psg(a) — ¢ (5.5)
k

Here c is a positive constant ensuring that exploration rewards are negative. That no pref-
erence should be given to exploring high entropy SAPs can be shown by considering the
following counter example.

We have an environment which consists of a number of states connected to each other by
a line. The starting state is in the middle of the line. The agent can select the action go-left
or go-right. In 99% of the cases actions are executed properly and in 1% of the cases they are
replaced by the opposite action. There is a special state located one step before the extreme
right of the line. In this state the action go-left results in a completely random transition
to the state left or right of it. If exploring with the high-entropy exploration rule, the agent
may initially try all actions a couple of times. After a while, it would favor the state at the
right, since the exploration reward is highest there. Therefore it will not sample correctly,

3We use negative rewards so that we can zero-initialize the exploration Q-function and guarantee that
untried SAPs look more promising.
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but continuously go to this state and learn its transition probabilities perfectly whereas other
transition probabilities are approximated much worse. The exploration reward rule considers
the complete randomness as being information carrying, but in this example it is not.

5.3 Learning Exploration Models

We can use all RL methods to learn exploration Q-values. Previous methods used Q-learning
for learning where to explore (Schmidhuber, 1991a; Thrun, 1992; Storck et al., 1995). We
propose to use prioritized sweeping instead. PS allows for quickly learning exploration models
which may be useful for learning Q-values estimating global information gain, taking into
account yet unexplored regions of the state-space.

Replacing reward. A nice option in using separate transition reward values for learning
exploration functions is that all explorative transition rewards can be based entirely on the
current reward. Suppose that an agent selects an action which has already been executed
several times. Computing the exploration reward by averaging over all previous transition
rewards would not result in the desired reward measure. For instance, with frequency based
exploration we would receive rewards: 1,2,...,C;(a) for the first, second, etc. occurrence of
the state/action pair. Our estimated transition reward RE (,a,*) would be the average over
these rewards instead of just equal to C;(a), the current reward value and therefore some
undesired rescaling takes place. Using MBRL, we just replace the estimated reward R(z, a,j)
by RF(i,a,j) for all j with ﬁ’ij (a) > 0, that is, we update all rewards for outgoing transitions
from the current state/action pair to take the latest available information into account.

Never-ending exploration. The exploration utilities continually change — there is
not a stable, optimal exploration function. This is not a problem at all, since the goal of
exploration is to search for alternative paths in order to find better and better policies, and
therefore the exploration policy should never converge. Continuous exploration is useful when
one wants to obtain a good final policy without caring for intermediate rewards. For particular
problems, we may want to increase or switch to exploitation after some time, however. E.g. in
limited lifetime scenarios (Schmidhuber et al., 1996) or bandit problems (Berry and Fristedt,
1985) we want to optimize the accumulative reward over the entire life time. There are a
couple of simple ways to get around purely explorative behavior:

(1) Switch to the greedy policy once the value function (of the real task policy) is hardly
changed. We could implement this as follows: during T'S' steps, compute the change of V. If
this average change per step is smaller than 7, this means that we hardly learn anymore so
that we can switch to the greedy policy.

(2) Anneal the exploration rate P, from 1.0 in the beginning, (always select according
to the exploration model) to 0.0 at the end. If the lifetime is unknown, we can try to predict
it or repeatedly extend the horizon. The latter is sometimes done in game-playing programs
which have fixed “thinking” time for playing an entire game, for which it is never sure how
many moves will be played in total.

(3) Start with exploration and switch after a fixed amount of time to exploitation. This
is useful for huge state spaces for which we can never visit all states.
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5.4 Model-Based Interval Estimation

To explore efficiently, an agent should not repeatedly try out actions that certainly do not
belong to the optimal policy. To reduce the set of optimal action candidates we extend the
interval estimation (IE) algorithm (Kaelbling, 1993) to combine it with model-based RL.
Standard IE selects the action with the largest upper bound for its Q-value. To compute
upper bounds it keeps track of the means and standard deviations of all Q-values. The
standard deviation is caused by the stochastic transition function (although it could as well
be caused by a stochastic reward function). Although IE seems promising it does not always
outperform Q-learning with Boltzmann exploration due to problems of estimating the variance
of a changing Q-function in the beginning of the learning phase (Kaelbling, 1993).
Model-Based Interval Estimation. MBIE uses the model to compute the upper
bound of Q-values. Given a set of outgoing transitions from SAP (7,a), MBIE increases the
probability of the best transition (the one which maximizes vV (j) + R(%,a,7)), depending
on its standard deviation. Then MBIE renormalizes the transition probabilities and uses the
result for computing the Q-values. See Figure 5.2. The left-most transition is the best given
the current state. For this transition we have computed the confidence interval, and set its
probability to its upperbound (0.6) after which we renormalize the other probabilities.

Q O

O O O
045 4. 0.33
[0.3,0.6] 0.6 0.07

Figure 5.2: Model-Based Interval Estimation changes the transition probability of the best
transition from a state/action pair to its upper probability bound. After this, the other tran-
sition probabilities are renormalized.

The following algorithm can be substituted for lines 1.1 and 3.3.2.1 in our PS algorithm
(Section 4.3):

Model-Based Interval Estimation(,a):
a m< Argma:r >0{R(z a,j) +vV(j)}
b n+ C:Z( a)
¢ P+ Py,(a)
22 22
a o)« (Pt g+ o/ P(L=P)+ 32)/(1+ 5)
e Ap « P (a) = Pyn(a)
fVi#m
o ApC;
g F)i—]l'—(a) A Pij(aA) - Wé()@)
h Q(4,a) ¥, P (a)(R(5,a,7) + vV (j))

Here z, is a variable which determines the size of the confidence bounds. Step d elaborates
on the commonly used z,1/P(1 — P)/n, and is designed to give better results for small values
of n — see (Kaelbling, 1993) for details.
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MBIE hybrids. Since MBIE also relies on initial statistics we propose to circumvent
problems in estimating the variance by starting out with some other exploration method and
switching to IE once some appropriate condition holds.

This is done as follows: we start with frequency based exploration and keep tracking the
cumulative change of the problem-oriented value function. Once the average update of the
VI function (computed over the most recent T'S time-steps) falls below € IR*, we (I) copy
the rewards and Q-values from the problem-oriented model to the exploration model, and
(IT) switch to IE: we apply asynchronous value iteration to the model; the iteration procedure
calls MBIE for computing Q-values and ends once the maximal change of some state value is
less than € € IRT.

Simultaneous policy learning. The model-based learner simultaneously learns both
exploration policy and problem-oriented policy. After each experience we update the model
and use PS to recompute the value functions. If actions are only selected according to one
policy, we can postpone recomputing the other value function and policy and use PS or value
iteration once it is required. Note that we can use value iteration here, since we may expect
many changes of the model and only need to recompute the value function once in a long
while.

Comments. Note that we approximate the upper bound of the probability of making
the best transition by assuming the normal distribution. We basically make the distinction
between the best transition and any other transition. We could also compute the optimistic
value function in a different way: first set all transition probabilities to their lower bounds
and then iteratively set the best transitions to their upper bound as long as the probabilities
do not sum to 1. See also (Givan et al., 1998) for a description of confidence bounded Markov
decision problems or see (Campos et al., 1994) for mathematical methods for computing
probability intervals.

5.5 Experiments

In the previous chapter we have used prioritized sweeping with Max-random exploration and
saw that it reaches almost optimal performance levels. Still, the attained value function
approximations were quite bad which indicates that the state space was badly explored. In
this section we perform experiments to find out whether learning exploration models can
speed up finding optimal or almost optimal policies. We will first describe experiments in
which we compare using exploration models to undirected exploration. Here, the goal is to
quickly find good policies. Then we will examine how well the different exploration methods
handle the exploration/exploitation dilemma. Finally, in subsection 5.4.3 we will use the
exploration models and MBIE for finding very close to optimal policies for a maze consisting
of multiple goal states.

5.5.1 Exploration with Prioritized Sweeping

In order to study performance of the directed exploration methods, we combined them with
PS and tested them on 20 different mazes of size 25 x 25, 50 x50, and 100 x 100. The mazes
are the same as in previous chapters and contain 10% noise in the action-execution. The 20
randomly generated mazes consist of about 20% blocked states and 20% penalty states.
Parameters and experimental setup. The accuracy parameter € = 1.0 and U,qp =
100. The discount factor v was set to 0.99 for learning the exploration reward function. We
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compare the following methods:
(1) Max-random with P4, = 0.5.
(2) Frequency based. The constant K¢ is set to 50.

(3) Recency based. Kr is set to 1000.

(4) Error based. Kp is set to 1000. To get better results with the error based rule, we
chose in 50% of the cases the Max-action.

We record how fast the methods are able to learn policies which collect 90% and 95% of
what the optimal PI-policy collects. For this, we have tested the optimal policy for 100 times
20,000 steps, and computed the average over 20,000 steps. The learning methods are allowed
100,000 steps for the 25x 25 mazes and 500,000 steps for the other mazes. The agent is tested

after each 1,000 steps for 10 times 20,000 steps.

| Exploration Rule | 25 x 25 | 50 x 50 100 x100
Max random 4.6K + 0.8K | 26.2K =+ 3.4K | 221K + 80K
Frequency based || 3.9K £+ 1.1K | 17.7K £+ 3.5K | 88K + 22K
Recency based 4.6K + 1.8K | 18.2K + 2.1K | 105K + 12K*
Error based 3.6K + 0.8K* 23K + 23K | 118K £ 40K

Table 5.1: Learning exploration models with PS for the different maze sizes. The table shows
the number of steps which were needed by the exploration rules to find policies which collect
90% of what the Pl-policy collects. Ezplanation: * = 1 simulation did not meet the require-
ments.

| Exploration Rule | 25 x 25 50 x 50 100 x100
Max random 11K + 26K 31K + 12K 254K =+ 108K*
Frequency based | 4.7K £ 2.1K 21.0K + 44K 99K + 29K
Recency based 53K £ 1.6K 31K £ 21K 135K + 48K*
Error based 4.8K £ 1.6K** 44K + 69K** | 161K + 83K*®

The table shows the
number of steps which were needed by the exploration rules to find policies which collects 95%
of what the PI-policy collects. Ezplanation: * ** and *® = in 1, 2, and 5 simulation(s),

respectively, the requirements were not met.

Table 5.2: Learning exploration models for the different maze sizes.

Results. Tables 5.1 and 5.2 show the results. We can see that learning an exploration
model with the frequency based reward rule works best. When state spaces become larger,
the costs of undirected exploration methods such as Max-random exploration increases sig-
nificantly. The costs of frequency based exploration seems to scale up almost linearly with
the size of the state space, however.

Comments. (1). We used v = 0.99 for learning the exploration model. This results in
very global exploration behavior. We also tried out using lower values for y. Those worked
significantly worse. The entirely local policy with ¥ = 0 was only able to find 90%-optimal
policies in 17 out of 20 simulations and took 60,000 steps for the 50 x 50 maze. Higher values
worked better, although v in the interval [0.98,0.99] gave the best results.

(2) Q-learning needed 69K steps to learn 90% optimal policies with Max-random explo-
ration for the 25 x 25 maze. We also tried Q(A) on 100 x100 mazes. We found that A = 0.0
performed best, although we have not tried replacing and resetting traces. Q-learning needed
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14.4M steps before finding reasonable policies (compared to 360K for 50 x50 mazes). There-
fore as expected, we can say that Q-learning scales up much more poorly than model-based
approaches.

(3) In our experimental results, Q(A)-approaches did not benefit from learning exploration
value functions. The results were more or less the same as using Max-random. It seems very
difficult for Q-learning to learn useful exploration values. Since we penalize actions, the major
gain in using exploration reward rules (to select alternative actions for a state) is lost.

Conclusion. Using exploration models can significantly speed up finding good poli-
cies. Using the frequency based reward rule we can compute 95%-policies by sampling all
state/action pairs about 2.5 times. Although the variance in the estimated transition proba-
bilities of the maximum likelihood model is still quite large, this does not seem to matter for
finding good policies. Due to the randomly generated environment, there seem to be many
policies which are quite good and it is not very difficult to learn one of them.

The other exploration techniques do not distribute the number of experiences fairly over
the state/action space, and they have more difficulties finding good policies. The recency
based reward rule might outperform frequency based exploration in changing environments.
Finally, undirected exploration works well for the smallest problems, but consumes a lot of
time for the more difficult problems. Thus, we need to make use of exploration models for
solving large tasks.

5.5.2 Exploitation/Exploration

The previous subsection showed that we are able to quickly learn good policies by using ex-
ploration models. For limited lifetime problems involving expensive robots or experiments,
we want to maximize the cumulative performance over time. This creates the exploita-
tion/exploration problem. In this section we show how well the exploration methods maximize
cumulative rewards.

We set up experiments with 50 x 50 mazes and use prioritized sweeping (¢ = 1.0 and
Upnaz = 100) and let the agent learn for 100,000 steps during which we computed the cumu-
lative and final rewards over intervals of 2,000 steps.

For the methods which learn exploration models, we increase Pp,q; from 0.0 to 1.0 in
order to exploit more and more. We also included a method which uses the frequency based
rule to learn exploration models, but this system shifts to exploitation if the value function
for the task is hardly changed. Each time the goal is found, the system checks whether a
minimal of 2000 steps have been executed for which the average update of the V-function is
lower than 1.0. We will call this system frequency based + stop explore. This system also
uses Ppq: = 0.0 — 1.0 (keeping the system fully explorative before switching to exploitation
does not change things much). For Boltzmann exploration, we linearly anneal T from 10 to
0.1.

Results. Table 5.3 shows that although the value functions of the directed exploration
methods are much better, the final performance for most exploration methods (except Boltz-
mann exploration) is more or less equal. The cumulative reward of using most exploration
models is worse than using Max-random. Remember, however, that good policies are found
earlier using directed exploration and that the difference in cumulative reinforcement is mainly
because exploration policies lead the agent away from the greedy policies, thereby causing
some loss in reward. The table shows that frequency based exploration and stop explore is
able to accumulate a lot of reward. Figure 5.3(A) shows the learning curves for the different
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‘ System H End Rewards ‘ Total Rewards ‘ V-approx ‘ Time ‘
Max random (0.1 — 0.0) 15.0K + 0.7K 560K + 37K | 310 + 40 31 +£3
Max random (0.3 — 0.0) 15.4K + 0.6K 470K + 37K | 320 + 39 32 +3
Max random (0.5 — 0.0) 15.3K £ 0.6K 390K + 17K | 280 + 29 35+ 2
Boltzmann 14K 4+ 4.0K | 250K + 120K | 340 + 72 | 41 + 11
Error based 15.1K + 0.7K | 500K + 120K | 67 + 61 | 260 + 32
Recency based 15.2K + 0.5K 250K + 21K | 30 + 16 | 230 + 16
Frequency based 15.2K £ 0.7K 130K + 18K 21 £ 8| 128 +3
Frequency based + Stop explore || 15.4K 4+ 0.6K 560K £+ 25K 65 + 76 89 + 9

Table 5.3: Results for different exploration rules with prioritized sweeping.

exploration methods. Positive Q-updates refers to the error based exploration rule. Figure
5.3(B) shows that the exploration models are very useful for learning good value function
approximations. The recency and frequency based reward rules work best. They are able to
learn quite good value function approximations. The fact that such good approximations are
attained by sampling all state/actions only 2.5 times (2.5 X 4 x 50 x 50 = 25,000 experiences)
shows that the value function is not very sensitive to noise. The reason is that noisy actions
take the agent to a field closeby so that even in case of strong bias due to noise in the 2.5
experiences for some state, the value function will not differ too much.
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Figure 5.3: (A) A comparison between different (learning) exzploration rules with prioritized
sweeping. The figure plots the cumulative rewards achieved over intervals of 2,000 steps. (B)
The approximation error of the value function, using different exploration methods.

The frequency based + stop explore system scores very high on all objective criteria: the
final performance is very good, the cumulative performance is the best and the obtained value
function is much better than that of indirect exploration methods.

Comments. (1) Initialize high exploration performed very poorly with PS. The reason
for this is that exploration values can keep their large initial values for a long time. (2)
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Error and recency based exploration cost more computational time than frequency based
exploration. The reason is that reward values are bigger in size.

Conclusion. The exploration/exploitation dilemma is not handled very well by the fully
explorative model-based exploration techniques. However, we can augment them simply by
a heuristic switching rule which makes the agent switch from exploration to full exploitation.
Our rule which switched once the value function did not change very much anymore made
it possible to first quickly learn a quite good value function approximation which could af-
terwards be exploited for a long time. Although for the current problem simple undirected
exploration methods also worked quite well, they were unable to learn a good value function.

We expect that for more general MDPs, Max-random exploration will perform worse,
since for the current problems they did not have any problems finding the global terminal
goal state. If there are multiple rewarding states, they may have larger problems and the
advantage of using the directed exploration methods could be larger.

5.5.3 Experiments with Suboptimal Goals

The final experimental comparison shows results with directed exploration methods and MBIE
on a maze with suboptimal goal-states. The maze is shown in Figure 5.4. The starting state
(S) is located 1 field north/east of the south-west corner. There are three absorbing goal
states, two of them are suboptimal. The optimal goal state (G) is located 1 field south/west
of the north-east corner, the suboptimal goal states (F) are located in the north-west and
south-east corners. Selected actions are replaced by random actions with 10% probability.

Reward function. Rewards and the discount factor are the same as before. For finding
a suboptimal goal state the agent gets a reward of 500.

Figure 5.4: The 50 x 50 maze used in the experiments. Black squares denote blocked fields,
grey squares penalty fields. The agent starts at S and searches for a minimally punishing path
to the optimal goal G. Good exploration is required to avoid focusing on suboptimal goal states

(F).
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Comparison. We compare the following exploration methods: Max-random, directed
model-based exploration techniques using frequency based and recency based reward rules,
and MBIE. The latter starts out with model-based exploration using the frequency based
reward rule, and switches to IE once the value function hardly changes any more.

The goal is to learn good policies as quickly as possible. We computed an optimal policy
using value iteration (Bellman, 1961) and tested this optimal policy by executing it for 1,000
steps. We computed its average reinforcement intake by testing it 10,000 times, which resulted
in 7590 + 2 rewardpoints. For each method we conduct 20 runs of 100,000 learning steps.
During each run we measure how quickly and how often the agent’s policy collects 95%, 99%
and 99.8% of what the optimal policy collects. This is done by averaging the results of 1000
test runs conducted every 2000 learning steps — each test run consists of executing the greedy
policies (always selecting actions with maximal Q-value) for 1000 steps.

Parameters. We set the accuracy parameter € = 0.1, and U4, = 100 for both learning
the problem-oriented and exploration value functions. The exploration reward’s discount
factor «y is set to 0.99 for frequency based and to 0.95 for recency based exploration. The
constant K¢ (used by the frequency based reward rules) is set to 50; K7 (used by the recency
based reward rule) is set to 1000. We used two values for P,,q, (for Max-random exploration):
0.2 and 0.4. The value of z, (for MBIE) is set to 1.96 (which corresponds to a confidence
interval of 95%). The combination of MBIE and model-based exploration switches to MBIE
once the value function has not changed by more than 0.1 () on average within the 1000
(T'S) most recent steps.

| Exploration Rule | 95% (freq) | 99% (freq) | 99. 8% (freq) |
MBIE 20 (25K) | 19 (42K) 8 (66K)
Frequency based 20 (24K) 6 (50K) 0 (66K)
Recency based 19 (27K) 18 (55K) 9 (69K)
Max-random 0.2 4 (43K) 4 (52K) 4 (68K)
Max-random 0.4 0(—) 0(—) 0 (—)

Table 5.4: The number of runs of several exploration methods which found p-optimal policies
(and how many steps were required for obtaining it).

‘ Exploration Rule ‘ Best run result ‘ Training Performance

MBIE 7.57K £ 0.05K 350K + 40K
Frequency based | 7.55K + 0.06K -45K £ 9K
Recency based 7.54K + 0.11K -120K 4+ 10K
Max-random 0.2 48K £ 14K -190K + 16K
Max-random 0.4 41K £ 0.3K -62K + 19K

Table 5.5: Average and standard deviation of the best test result during a run and the total
cumulative reward during training.

Results. Table 5.4 shows significant improvements achieved by learning an exploration
model. The undirected exploration methods focus too much on suboptimal goals (which are
closer and therefore easier to find). This often prevents them from discovering near-optimal
policies. On the other hand, model-based learning with directed exploration does favor paths
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Figure 5.5: Cumulative reward during test runs, averaged over 20 simulations.

leading to the optimal goal. Using the frequency based reward rule by itself, the agent always
finds the optimal goal although it fails to always find 99.8% optimal policies.

Figure 5.5 shows a large difference between learning performances of exploration models
and Max-random exploration. It does not clearly show the distinction between frequency
based or recency based exploration and the extension with MBIE. Switching to MBIE after
some time (which happens between 35,000 and 55,000 steps), however, significantly improves
matters. First of all, Table 5.4 shows that this strategy finds optimal or near-optimal policies
in 90% of the cases, whereas the others fail in at least 50% of the cases. The second improve-
ment with MBIE is shown in Table 5.5. MBIE collects much more reward during training than
all other exploration methods, thereby effectively addressing the exploration/exploitation
dilemma. In fact it is the only exploration rule leading to a positive cumulative reward score.

Conclusion. The results with multiple goals showed a large advantage of using directed
exploration methods. Undirected methods are attracted to those rewarding states which
come first on the path and therefore we cannot trust them for finding good policies. The best
method, MBIE, combined directed exploration with confidence levels in order to prune away
actions which almost certainly do not belong to the optimal policy. This results in the best
performance, since it takes care that only actions which can belong to the optimal policy are
selected. Finally, this also results in the highest cumulative performance. We expect that this
method will perform best for most stochastic discrete MDPs, although a disadvantage of the
method is that we need to set the right switching time.

5.6 Discussion

If we use undirected exploration methods, we rely on our random generator for selecting ac-
tions. However, if we learn where to explore, we can direct our exploration behavior so that
more information is gained. We formulated a number of exploration reward rules which de-
termine which information is interesting and which can be used for learning exploration value
functions. Our experimental results with stochastic mazes showed that learning exploration
policies can speed up finding good policies. Especially, when there are particular complex
paths leading to much more rewards then other easier paths, good exploration is essential.
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The frequency based reward rule performed best for the environments we have considered.
We expect this to hold as well for other MDPs. For non-stationary problems, an exploration
policy based upon the recency based reward rule may work best, since it is able to discover
much earlier which fragments of the state space have changed.

Optimal exploration. When it comes to finding optimal policies, methods using exter-
nal MDP rewards for focusing on actions with large probability of being optimal will often
save some SAP visits over methods based solely on exploration reward rules. Furthermore,
cumulative external MDP rewards obtained during training should be taken into account in
attempts at approaching the exploit/explore dilemma. That is why we introduced MBIE,
a method combining Kaelbling’s interval estimation (IE) algorithm (Kaelbling, 1993) and
model-based reinforcement learning. Since MBIE heavily relies on initial statistics, we switch
it on only after an initial phase during which an exploration model is learned (according to,
say, the frequency based exploration reward rule). In our experiments this approach almost
always led to 99.8%-optimal policies. We expect MBIE to be advantageous for all kinds of
MDPs, especially when the reward function is far from uniform. Other exploration methods
do not work well for such problems since their exploration policies do not make distinctions
between different actions leading to different payoffs.

Different topologies. For particular environments it may be a good idea to explore
entire subregions before exploring other subregions. E.g., when there is a bottleneck con-
necting two subregions, both subregions may alternatingly become interesting to explore, but
the bottleneck will become uninteresting after some time. Our exploration rules could detect
such bottlenecks and would spend a lot of time exploring one subspace before going to the
other, since going through the bottleneck brings a lot of negative exploration reward.

Function approximators. The ideas are presented for tabular representations, but can
easily be extended to function approximators. For this we can use the same representation
for the exploration value function as for the original value function. Exploration methods
for large or continuous spaces are more complex, however, since it is infeasible to explore
all states. Therefore we rely on the generalization abilities of the function approximator to
determine the interestingness of experiences. Furthermore, the reward function gets a little
bit more complicated since states may never be visited twice. Therefore the reward function
should be based upon the distribution of previous experiences around a point for which we
compute an exploration value. E.g. a Gaussian function can be used to weigh neighboring
experiences according to their distance.
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Partially Observable MDPs

We have seen how we can efficiently compute policies for Markov decision processes (MDPs)
consisting of a finite number of states and actions. MDPs require that all states are fully
observable, which means that the agent is able to use perfect sensors to always know the exact
state of the world. For real world problems this requirement is usually violated. Agents receive
their information about the state of the world through imperfect sensors, which sometimes
cause world states to be mapped to the same observations. This problem is called perceptual
aliasing (Whitehead, 1992) and is the reason for the uncertainty of the agent about the state
of the world.

As example, have a look at the environment depicted in Figure 6.1. There are a total of
6 states, but the agent can only see 2 different observations: a circle or a rectangle. Thus,
solely based on the current observation the agent can never be certain in which state it is.
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Figure 6.1: An environment consisting of 6 states. Whenever the agent is in the first two
states or in states 4 or 5, it always sees a circle as observation. In the third state it observes
a circle or rectangle, both with probability 50%, and in the sixth state it always observes a
rectangle.

Markov decision problems for which the agent is uncertain about the true state of the
world are called partially observable Markov decision processes (POMDPs, e.g., Littman,
1996). The simplest algorithms for solving them would directly map observations to actions,
but since observations are received in different states which require different actions, such
algorithms will not be able to find solutions. Better algorithms need to use previous observa-
tions and actions which were encountered on the current trajectory through the state space
to disambiguate possible current states. This is not an easy task — even deterministic finite
horizon POMDPs are NP-complete (Littman, 1996). Thus, general and exact algorithms are
feasible only for small problems, which explains the interest in heuristic methods for finding
good but not necessarily optimal solutions.

Hidden state. Since an observation conceals some part of the true underlying state,
we say that some part of the state is hidden. The solution to the hidden state problem
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(HSP) is to update an agent’s internal state (IS) based on its previous observations and
actions. This internal state summarizes the trace of previous events and is used to augment
the information of the current observation in the hope that the state ambiguities are resolved.
Let’s have another look at Figure 6.1. Suppose that the agent sees a rectangle, steps left, sees
a circle, steps right, and sees a circle. Suppose also that there is no noise in the execution
of actions, then in which state is the agent? The answer is in state 3, since only state 3 can
emit a rectangle and a circle symbol. Thus, the augmented state is uniquely defined and
can be used by the policy for selecting the optimal action. Figure 6.2 shows how previous
observations/actions of the environment are stored and used to create the IS. Then the IS is
combined with the current observation to generate a description of the state which is used by
the policy to select an action.
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Figure 6.2: The decision making loop of an agent in a partially observable environment. The
agent receives an observation from the environment defined in Figure 6.1. The recollected
observations and actions are used to create an internal state (IS). This internal state is then
augmented with the current observation and the resulting state is presented to the policy.
The policy then selects an action, which together with the current observation is memorized.
Finally the action is executed and changes the environment.

Outline of this chapter. In Section 6.1, we describe the POMDP framework and
also optimal algorithms from operations research based on dynamic programming algorithms
which allow computing optimal policies by explicitly representing the uncertainty of the state
in a probabilistic description. In Section 6.2, we will describe our novel algorithm HQ-learning,
and show its capability in solving a number of partially observable mazes. In Section 6.3, we
summarize related work. In Section 6.4, we conclude with some final statements about the
problems and algorithms.
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6.1 Optimal Algorithms

Operations research has investigated optimal algorithms for solving POMDPs for some time
already (see Lovejoy (1991) for an overview). They treat POMDPs as planning problems,
which means that the state transition function, reward function, and observation function are
given, and that the goal is to compute an optimal plan. Note that this plan is not represented
by a single sequence of actions, since such a plan would probably not be carried out due to
the stochasticity of the problem (in e.g. the transition function). Instead, the plan is again
represented by a policy mapping states to actions. This is similar to the MDP framework
of Chapter 2. The big difference with MDPs is that even when we know the model of the
POMDP, computing an optimal policy is extremely hard. An agent may confuse different
states due to the noise in the observation function and may be totally mistaken about the
true state of the world. So how can it then compute an optimal policy? Well, it can by taking
its uncertainty into account in its decision making. We will see that this allows for selecting
information gathering actions and goal-directed actions based on maximizing its expected
future discounted cumulative reward.

6.1.1 POMDP Specification

A POMDP is a MDP where the agent does not receive the state of the world as input, but
an observation of this state. Thus, the agent should use multiple observations in its decision

making policy. As for MDPs, the system’s goal is to obtain maximal (discounted) cumulative
reward. A POMDP is formally specified by:

e t=1,2,3,... is a discrete time counter.
e S is a finite set of states.

A is a finite set of actions.

o P(st11]8t, at) denotes the probability of transition to state s;y1 given state s; and action
Q.

R maps state/action pairs to scalar reinforcement signals.

O is a finite set of observations.

P, is the probability distribution over initial states.

P(o|s) denotes the probability of observing a particular (ambiguous) input o in state s.
We write o, = B(st) to denote the observation emitted at time ¢, while visiting state s;.

0 < v <1 is a discount factor which trades off immediate rewards against future
rewards.

6.1.2 Belief States

To compute an optimal policy we need to use an optimal description of the world state.
Due to the uncertainty in action outcomes (noise in the execution of actions) and the partial
observability of world states, we are usually not certain that the agent is in a particular single
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environmental state. Taking the most probable state is possible, but this cannot lead to
optimal policies for particular POMDPs, since it does not take into account that the agent
can be in many different states. For computing optimal policies, we compute occupancy
probabilities over all states. Such a probability distribution over possible world states is
called a belief state. We will denote the belief state at time ¢ as b;, where b;(s) is the belief
that we are in state s at time £. The belief state gives us all necessary information to decide
upon the optimal action (Sondik, 1971) — additional information about previous states and
actions is superfluous.

Computing belief states. At trial start up, the a priori probability of being in each
state s is Py(s). Since the agent is “thrown” in the world at time ¢t = 1, it also receives an
observation (01). Therefore, we can compute the belief state at ¢ = 1 using Bayes’ rule:

bi(s) = P(slor, Py) = ;01(32251(30(10'3)

At time t-1, we know b;_1, the selected action a;—; and after making a new observation o,
we can compute b; as follows:

— P(slo g 1) = P(ot|s) 3= be—1(2) P(s]i, as—1)
be(s) = P(s|og, br—1,ai-1) S Pord) s br1 () Pl ar—1) (6.1)

In the nominator we sum the probabilities of entering state s over the whole ensemble of states.

We can do this, since the state space is finite. The denominator equals P(o¢|bs—1,a:—1) and
can be seen as a normalizing factor to keep the constraint >, b () =1 true.

Example of belief state dynamics. Consider again the environment of Figure 6.1.
Suppose that the actions go-left and go-right are executed with 100% probability. If the
initial probability distribution over states is {0.2,0.2,0.2,0.2,0.2,0} and the agent observes
a circle, then by = {0.22,0.22,0.11,0.22,0.22,0}. Now suppose the agent executes action go-
right and observes a circle. Then the belief state bo = {0,0.33,0.17,0.17,0.33,0}. Again the
agent goes right and observes a circle, then the belief state bs = {0,0,0.33,0.33,0.33,0}, and
again — by = {0,0,0,0.5,0.5,0}. Finally after 4 actions and 5 circles, the agent knows with
certainty that it is in state 5 (thus it could also infer that it started in state 1). In this case,
the actions were deterministic and the uncertainty decreased after each action. In general,
the uncertainty can increase or decrease dependent on the belief state, and the transition
and observation functions.! In such environments the agent can reduce state uncertainty by
visiting particular states with exceptional observations. Such states are generally referred to
as landmark states, which play an important role in designing algorithms for POMDPs.

6.1.3 Computing an Optimal Policy

The policy maps a belief state to an action:
ay = H(bt)

Note that the belief state by has the dimension of the state space (to be precise its dimension
is |S| — 1) and consists of continuous variables. Computing optimal policies for such spaces
is extremely difficult, especially if there are many states. There are some special properties
of the space setup by the belief states, however, which makes it possible to compute optimal

'Even deterministic actions do not imply that the uncertainty or entropy always decreases.
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policies. The important point is that there are finitely many segments in the belief state
space for which the same optimal action is required, when we consider a finite horizon of the
POMDPs. This makes it possible for optimal algorithms to store for all crucial belief states
(the corners of line segments in belief space), the optimal action and the Q-values.

There are two kinds of exact algorithms, one works with vectors in the belief state space,
the other works with pre-generated policy trees which are then evaluated on different segments
of belief space.

DP on vectors in belief state space. We can derive a DP algorithm which at each
iteration computes all possible belief states given the previous set of belief states by using
Equation 6.1 and iterating over all possible actions and observations. Then the algorithm
computes their values — for some belief state b, we can compute its 1-step value as follows:

Vi*(b) = max Z b(s)R(s,a) (6.2)

Note that this value is a linear product of the belief state and the reward function. Then, the
t-step value can be computed using value iteration as follows:

V5 (b) = max Z b(s)R(s,a) + Z Z Z b(s)P(i|s,a)P(olt)Vy 1 (b(o,a)) (6.3)

where b(0, a) is defined as the belief state resulting from observing observation o after selecting
action a in belief state b. Thus, we basically use transition probabilities between belief states
and compute the value of a belief state in a very similar way as for MDPs.

One problem is that although the number of belief states is finite, it grows exponentially
with the horizon of the planning process. Therefore, some pruning in belief state space is
needed to make the computations feasible. We will not discuss those topics further. Interested
readers are referred to Cassandra’s thesis (1998).

Another problem is that we have assumed that we start with an initial belief state which is
known a priori Now assume that we do not yet know the initial belief state when we want to
compute the value function, although this belief state is given later on once we get a problem
instance. It is still possible to store the value function since it is piecewise linear which means
that there are finitely many facets (see (Cassandra, 1998) for a formal proof). We know that
one policy is always best for a specific region of the belief state. Each policies’ value function
is linear in the belief state (see Equation 6.3). Thus, since we always take the maximum of
the linear functions, the optimal value function is a piecewise linear convex function (Figure
6.3). We cannot compute the facets using the simple algorithm described above, however,
since we would need to compute belief state intervals which are recursively refined. Then for
each belief state interval we have to compute the optimal action. Therefore, we need to use
more difficult algorithms for solving this more general problem.

Policy trees. For computing the optimal policy given an unknown a priori state, we
can make use of policy trees (Littman, 1996; Cassandra et al., 1994; Kaelbling et al., 1995).
Policy trees fully describe how the agent should act in the next ¢ steps, and use the sequence
of observations in determining correct action selection (see Figure 6.4).

Given each particular belief state, one t-step policy tree is optimal. We want to know,
however, for which interval in belief state space some particular policy tree is optimal. To
be able to compute this, we can generate all possible t-step policy trees and evaluate them
on each state. Then we are able to compute the value function of a policy-tree as a linear
function of the belief state.
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Figure 6.3: A two state problem defined by the probability we are in state s. We show the
optimal value function for this belief state space, together with & Q-functions of different
policies. Dependent on the belief state, one policy is the best one. Since the Q-functions of
policies are a linear function of the belief state, the optimal value function is a piece-wise
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Figure 6.4: A t-step policy tree. After each action an observation is made and this observation
determines which branch in the tree is followed after which the rest of the policy tree 1is
ececuted.

Thus, again we start simple. If the agent can only select a single action, we say that the
agent executes a 1-step policy tree. We denote the policy tree as p, and p’s root action by
a(p). We compute the Q-value of executing the 1-step policy tree p in state s as:

Q(s,p) = R(s,a(p))

Where as usual R(s,a(p)) is the immediate reinforcement for selecting action a(p) in state s.

Then, we construct a ¢-step policy tree p from a set of t—1-step policy trees {p; i, ... va|t9|1



6.1. OPTIMAL ALGORITHMS 93

by defining which observations has lead to them (we denote p;_1(0) as the policy-tree p;_1
which follows observation o) and by merging these trees by a rootnode with action a(p).

We can compute the value function of a t-step policy tree by combining the value functions
of its t-1-step policy subtrees. The value of executing the t-step policy tree p; in state s can
be computed as:

Q(s,pt) = R(s,a(pe)) +v)_ P(s'ls,a) Y P(ols)Q(s", pe-1(0))

Thus, we just add the immediate reward to the expected value of executing a particular
selected policy subtree (which one depends on the observation) in the next state. We store
all values Q(s, p;) of executing the policy tree p; in state s.

Then, when given a belief state, we can simply weigh the different values according to
their occupancy probabilities to obtain the evaluation of executing a policy tree on a belief
state b:

Q(b.p) = D b(s)Q(s,p)
Now the t-step value of a particular belief state b is the maximal value over all policy trees:
Vi(b) = max Q(b, py)

Complexity. The algorithm is intractable for all but small problems. Especially for long
or infinite planning horizons the costs are infeasible. There are |O!| different t-step observation
sequences, and 1+ |O| 4+ |O?| +...]|0! = (|O[' + 1 — 1)/(|O| — 1) nodes in each t-step policy
tree. Since at each node we can choose between |A| different actions, the total number of
policy trees is |A|(|O|t+1_1)/(|0|_1) which grows superexponentially! Finally, we note that the
number of facets of the optimal value function may be infinite for infinite horizon problems.

Faster optimal algorithms. In principle it is possible that each one of these policy
trees can be optimal for some point in belief space. Fortunately, in practice many policy trees
are completely dominated by other policy trees (a policy tree is dominated if for each possible
belief state there exists another policy tree with larger or equal Q-value), so that they can
be pruned away. This allows for significant reductions in computational time and storage
space. Further reductions are made possible by using particular online generation algorithms,
e.g. the Witness algorithm (Cassandra et al., 1994; Littman, 1996) or algorithms proposed
by (Cassandra, 1998; Zhang and Liu, 1996) which only generate policy trees which have the
possibility of being optimal for some points in belief space. These methods can significantly
reduce computational requirements for practical problems. Still, computing optimal policies
for general problems remains extremely expensive.

Littman et al. (1995) and Cassandra (1998) compare different POMDP algorithms using
belief states. They report that “small POMDPs” (with less than 10 states and few actions) do
not pose a very big problem for most methods. Larger POMDPs (50 to 100 states), however,
can cause major problems. Thus, although the theory allows us to compute optimal solutions,
the gap between theory and practice does not allow us to use these algorithms for real world
problems. Therefore, we will focus on heuristic methods which can be used to find suboptimal
solutions to much larger problems.
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6.2 HQ-learning

We have seen that general and exact algorithms are feasible only for small problems. Fur-
thermore, they require a model of the POMDP. That explains the interest in reinforcement
learning methods for finding good but not necessarily optimal solutions. Examples are the
use of recurrent networks (Schmidhuber, 1991d; Lin, 1993), hidden Markov models (McCal-
lum, 1993), higher order neural networks (Ring, 1994), memory bits (Cliff and Ross, 1994),
and stochastic policies (Jaakkola, Singh and Jordan, 1995). Unfortunately, however, most
heuristic methods do not scale up very well (Littman, Cassandra and Kaelbling, 1995) and
are only useful for particular POMDPs.

We will now describe HQ-learning (Wiering and Schmidhuber, 1997), a novel approach
based on finite state memory implemented in a sequence of agents. HQ does not need a model
and can solve large deterministic POMDPs.

6.2.1 Memory in HQ

To select the optimal next action it is often not necessary to memorize the entire past (in
general, this would be infeasible since the necessary memory grows exponentially with the
order of the Markov chain, see Appendix A). A few memories corresponding to important
previously achieved subgoals can be sufficient. For instance, suppose your instructions for the
way to the station are: “Follow this road to the traffic light, turn left, follow that road to the
next traffic light, turn right, there you are.”. While you are on your way, only a few memories
are relevant, such as “I already passed the first traffic light”. Between two such subgoals a
memory-independent, reactive policy (RP) will carry you safely.

Overview. HQ-learning uses a divide-and-conquer strategy to decompose a given POMDP
into a sequence of reactive policy problems (RPPs). RPPs can be solved by RPs: all states
causing identical inputs require the same optimal action. The only “critical” points are those
corresponding to transitions from one RP to the next.

To deal with such transitions HQ uses multiple RPP-solving subagents. Each agent’s RP
is an adaptive mapping from observations to actions. At a given time only one agent can be
active, and the system’s only type of short-term memory is embodied by a pointer indicating
which one. Thus, the internal state (IS) of the system is just the pointer to the active agent.

RPs of different agents are combined in a way learned by the agents themselves. The first
active agent uses a subgoal table (its HQ-table) to generate a subgoal for itself (subgoals are
represented by desired inputs — if these inputs are unique in a specific region, we call them
landmark states). Then it follows the policy embodied by its Q-function until it achieves its
subgoal. Then control is passed to the next agent, and the procedure repeats itself. After the
overall goal is achieved or a time limit is exceeded, each agent adjusts both its RP and its
subgoal. This is done by two learning rules that interact without explicit communication: (1)
Q-table adaptation is based on slight modifications of Q(\)-learning. (2) HQ-table adaptation
is based on tracing successful subgoal sequences by Q(\)-learning on the higher (subgoal)
level. Effectively, subgoal/RP combinations leading to higher rewards become more likely to
be chosen.

POMDPs as RPP sequences. The optimal policy of any deterministic finite POMDP
with fixed starting state and final goal state is decomposable into a finite sequence of optimal
reactive memoryless policies for appropriate RPPs, along with subgoals determining transi-
tions from one RPP to the next. The trivial decomposition consists of single-state RPPs and
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the corresponding subgoals. In general, POMDPs whose only decomposition is trivial are
hard — there is no efficient algorithm for solving them. This is simple to see, if we consider
an environment where there is only 1 observation (the agent is thus blind). To solve such
problems, all T-step policies have to be tried out from the initial state, where T" denotes the
length of the optimal solution path, which results in |A|T possibilities. HQ, however, is aimed
at situations that require few transitions between RPPs which means that each RPP can be
used for many states.

Architecture. System life is separable into “trials”. A trial consists of at most Tj,qz
discrete time steps t = 1,2,3,...,T, where T' < T},,4, if the agent solves the problem in fewer
than T}, time steps.

There is an ordered sequence of M agents C;, Cg, ... Cp, each equipped with a Q-
table, an HQ-table, and a control transfer unit, except for Cps, which only has a Q-table (see
Figure 6.5). Each agent is responsible for learning part of the system’s policy. Its Q-table
represents its local policy for executing an action given an input. It is given by a matrix of
size |O| x |A|, where |O| is the number of different possible observations and |A| the number
of possible actions. Q;(o¢,a;) denotes C;’s Q-value (utility) of action a; given observation
o¢. The agent’s current subgoal is generated with the help of its HQ-table, a vector with |O)]
elements. For each possible observation there is an HQ-table entry representing its estimated
value as a subgoal. HQ;(0;) denotes C;’s HQ-value (utility) of selecting o; as its subgoal.

The system’s current policy is the policy of the currently active agent. If C; is active at
time step t, then we will denote this by Active(t) = i. The variable Active(t) represents the
only kind of short-term memory in the system.

Selecting a subgoal. In the beginning C; is made active. Once C; is active, its HQ-
table is used to select a subgoal for C;. To explore different subgoal sequences we use the
Max-random rule: the subgoal with maximal H@; value is selected with probability P4z, a
random subgoal is selected with probability 1 — P,,,,. Conflicts between multiple subgoals
with maximal HQ;-values are solved by randomly selecting one. 6; denotes the subgoal
selected by agent C;. This subgoal is only used in transfer of control as defined below and
should not be confused with an observation.

Selecting an action. C;’s action choice depends only on the current observation o;. Dur-
ing learning, at time %, the active agent C; will select actions according to the Max-Boltzmann
distribution (see Chapter 5). The “temperature” T; adjusts the degree of randomness involved
in agent C;’s action selection in case the Boltzmann rule is used.

Transfer of control. Control is transferred from one active agent to the next as follows.
Each time C; has executed an action, its control transfer unit checks whether C; has reached
the goal. If not, it checks whether C; has solved its subgoal to decide whether control should
be passed on to C;y;. We let t; denote the time at which agent C; is made active (at system
start-up, we set t; < 1).

IF no goal state reached AND current subgoal = 6;
AND Active(t) < M AND B(S:) = o;
THEN Active(t + 1) < Active(t) + 1 AND t;41 < t+1

6.2.2 Learning Rules

We will use off-line learning for updating the tables — this means storing experiences and
postponing learning until after trial end (no intra-trial parameter adaptation). In principle,
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Figure 6.5: Basic HQ-architecture. Three agents are connected in a sequential way. Fach
agent has a Q-table, an HQ-table, and a control transfer unit, except for the last agent which
only has a Q-table. The Q-table stores estimates of actual observation/action values and is
used to select the next action. The HQ-table stores estimated subgoal values and is used to
generate a subgoal once the agent is made active. The solid box indicates that the second agent
18 the currently active agent. Once the agent has achieved its subgoal, the control transfer unit
passes control to its successor.

however, online learning is applicable as well (see below). We will describe two HQ variants,
one based on Q-learning, the other on Q())-learning — Q(X\) overcomes Q’s inability to solve
certain RPPs. The learning rules appear very similar to those of conventional Q and Q()).
One major difference though is that each agent’s prospects of achieving its subgoal tend to
vary as various agents try various subgoals.

Learning the Q-values. We want Q;(os,a;) to approximate the system’s expected
discounted future reward for executing action a¢, given o;. In the one-step lookahead case we
have

Qior,at) = > P(sjlor, ©,i)(R(sj,ae) +v > P(sklsj, ae)Vactive(es1) (B(sk))),
s;€8 sLES

where P(s;lo¢, ©,1) denotes the probability that the system is in state s; at time ¢ given
observation o, all architecture parameters denoted ©, and the information that i = Active(t).
HQ-learning does not depend on estimating this probability, although belief states or a world
model might help to speed up learning. V;(o;) is the utility of observation o; according to
agent C;, which is equal to the Q-value for taking the best action:
Vi(or) = max,,c{Qi(or, ;).

Q-value updates are generated in two different situations (T' < T}, denotes the total
number of executed actions during the current trial, and g is the learning rate):

Q.1 Let C; and C; denote the agents active at times ¢t and £ + 1 — possibly 1 = 5. If t < T
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then
Qi(ot, ap) <+ (1 — ag)Qilor, ar) + ag(R(st, at) +yYVj(0t41))

Q.2 If agent C; is active at time T', and the final action ar has been executed, then
Qi(or,ar) « (1 — a@)Qilor, ar) + agR(sr, ar)

Note that R(st, ar) is the final reward for reaching a goal state if T' < T}0,. A main difference
with standard one-step Q-learning is that agents can be trained on Q-values which are not
their own (see [Q.1]).

Learning the HQ-values: intuition. Recall the introduction’s traffic light task. The
first traffic light is a good subgoal. We want our system to discover this by exploring (initially
random) subgoals and learning their HQ-values. The traffic light’s HQ-value, for instance,
should converge to the expected (discounted) future cumulative reinforcement to be obtained
after it has been chosen as a subgoal. How? Once the traffic light has been reached and the
first agent passes control to the next, the latter’s own expectation of future reward is used to
update the first’s HQ-values. Where do the latter’s expectations originate? They reflect its
own experience with final reward (to be obtained at the station).

More formally. In the optimal case we have

HQi(Oj) = E(RZ’ + ,Yti+1ftiHVZ,+1),

where F denotes the average over all possible trajectories. R; = Zii;tli_l Yt R (s8¢, ar), Ci's
discounted cumulative reinforcement during the time it will be active (note that this time
interval and the states encountered by C; depend on C;’s subtask). HV; = max,,co{HQ;(or)}
is the estimated discounted cumulative reinforcement to be received by C; and following
agents.

We adjust only HQ-values of agents active before trial end (N denotes the number of
agents active during the last trial, afgg denotes the learning rate, and 6; the chosen subgoal
for agent C;):

HQ.1 If C; is invoked before agent Cy_;, then we update according to
HQ;(6;) + (1 — agQ)HQi(6;) + apq(Ri + "+ T HViyy)

HQ.2 IfcC; = CN,1, then HQZ(@) — (1 — aHQ)HQi(éi) + OéHQ(RZ' + ’)’tN—tiRN)
HQ.3 If Cl == CN, and 2 < M, then HQz(éz) — (1 — aHQ)HQz(éz) + aHQRi

The first and third rules resemble traditional Q-learning rules. The second rule is an
additional improvement for cases in which agent Cy has learned a (possibly high) value for a
subgoal that is unachievable due to subgoals selected by previous agents.

HQ())-learning: motivation. Q-learning’s lookahead capability is restricted to one
step. It cannot solve all RPPs because it cannot properly assign credit to different actions
leading to identical next states (Whitehead, 1992). For instance, suppose you walk along a
wall that looks the same everywhere except in the middle where there is a picture. The goal
is to reach the left corner where there is reward. This RPP is solvable by a RP. Given the
“picture” input, however, Q-learning with one-step lookahead would assign equal values to
actions “go left” and “go right” because they both yield identical “wall” observations.

Consequently HQ-learning may suffer from Q-learning’s inability to solve certain RPPs.
To overcome this problem, we augment HQ by TD(\)-methods for evaluating and improving
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policies in a manner analogous to Lin’s offline Q(\)-method (1993). TD(A)-methods can
learn from long-term effects of actions and thus disambiguate identical short-term effects of
different actions. Our experiments indicate that RPPs are solvable by Q(\)-learning with
sufficiently high .

Q(A).1 For the Q-tables we first compute desired Q-values Q’(o¢,a;) for t =T,...,1:
QI(OT7 O'T) — R(STa aT)
Q' (01, at) < R(styat) +v((1 = M) Vactive(t+1) (0041) + AQ' (0141, ary1))

Q()).2 Then we update Q-values, beginning with Qx(or,ar) and ending with Q1 (o1, aq),
according to
Qi(Ot, at) — (1 - aQ)Qi(Otaat) + OZQQ’(Ot, at)

HQ()).1 For the HQ-tables we also compute desired HQ-values HQ%(6;) for i = N,...,1:
HQ’N(éN) — RN
HQNy_1(0n-1) + Ry_1 +9"" "Ry
HQj(6:) = Ry + "+ 75 (1 = N)HVi1 + AHQi 1 (6541))

HQ(A).2 Then we update the HQ-values for agents Cy, ..., Cpsin(n,am—1) according to
HQi(6;) + (1 — ag)HQi(6;) + anqHQ5(6:)

In principle, online Q(A) may be used as well. Online Q()\) should not use “action-penalty”
(Koenig and Simmons, 1996), however, because punishing varying actions in response to
ambiguous inputs can trap the agent in cyclic behavior.

Combined dynamics. Q-table policies are reactive and learn to solve RPPs. HQ-table
policies are metastrategies for composing RPP sequences. Although Q-tables and HQ-tables
do not explicitly communicate they influence each other through simultaneous learning. Their
cooperation results in complex dynamics quite different from those of conventional Q-learning.

Utilities of subgoals and RPs are estimated by tracking how often they are part of suc-
cessful subgoal/RP combinations. Subgoals that never or rarely occur in solutions become
less likely to be chosen, others become more likely. In a certain sense subtasks compete for
being assigned to subagents, and the subgoal choices “co-evolve” with the RPs. Maximizing
its own expected utility, each agent implicitly takes into account frequent decisions made by
other agents. Each agent eventually settles down on a particular RPP solvable by its RP and
ceases to adapt. This will be illustrated by Experiment 1 in Section 6.3.

Estimation of average reward for choosing a particular subgoal ignores dependencies on
previous subgoals. This makes local minima possible. If several rewarding suboptimal subgoal
sequences are “close” in subgoal space, then the optimal one may be less probable than
suboptimal ones. We will show in the experiments that this actually happens.

Exploration issues. Initial choices of subgoals and RPs may influence the final result -
there may be local minimum traps. Exploration is a partial remedy: it encourages alternative
competitive strategies similar to the current one. Too little exploration may prevent the
system from discovering the goal at all. Too much exploration, however, prevents reliable
estimates of the current policy’s quality and reuse of previous successful RPs. To avoid
over-exploration we use the Max-Boltzmann (Max-random) distribution for Q-values (HQ-
values). These distributions also make it easy to reduce the relative weight of exploration (as
opposed to exploitation): to obtain a deterministic policy at the end of the learning process,
we increase P,,,, during learning until it finally achieves a maximum value.
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Selecting actions according to the traditional Boltzmann distribution causes the following
problems: (1) It is hard to find good values for the temperature parameter. (2) The degree of
exploration depends on the Q-values: actions with almost identical Q-values (given a certain
input) will be executed equally often. For instance, suppose a sequence of 5 different states
in a maze leads to observation sequence O1 — 01 — 01 — O1 — O1, where O; represents a single
observation. Now suppose there are almost equal Q-values for going west or east in response
to O1. Then the Q-updates will hardly change the differences between these Q-values. The
resulting random walk behavior will cost a lot of simulation time.

For RP training we prefer the Max-Boltzmann rule instead. It focuses on the greedy
policy and only explores actions competitive with the optimal actions. Subgoal exploration
is less critical though. The Max-random subgoal exploration rule may be replaced by the
Max-Boltzmann rule or others.

Using gate-values. The shown learning rules are almost the same as for conventional
Q-learning, but since we use a multiple agent system, the task of one particular agent is
usually not fixed during the learning process. As long as different subgoals of previous agents
are tried out, the subtask of an agent changes. Since during the learning process subgoals of
agents are generated stochastically, we must take care that an agent focuses on the subtask
which it has to carry out most of the times. We can do this by using little exploration, but
also by constructing a learning rule which uses the probabilities of the generated subgoals
of previous agents to determine the magnitude (size) of parameter changes for each learning
step. We can do this by computing gate-values g; which stand for the probability that the
current sequence of 7 — 1 subgoals is selected:

g1 < 1.0,
because before agent 1 is made active, no subgoals are selected.
git1 < giP"% (o)),

which means that the gate-value for agent 7 4+ 1 is equal to the gate-value for agent i mul-
tiplied with the probability that agent 7 has chosen its particular subgoal. For Max-random
exploration PE®(0;) = P0p + 1_‘1;“‘“” if subgoal 0; has maximal HQ-value (we add the prob-

ability of selecting the max-subgoal to the probability of randomly selecting the subgoal) and
PHQ (0j) = 1_18"‘“’ otherwise. These gate-values are then multiplied with the learning rate
to determine the size of each learning step. Note that we make a independency assumption
among subgoals to keep the system simpler. It might be true that different sequences of
subgoals lead to the same system-state, just like in normal Q-learning different sequences of
actions might lead to the same environmental state, but in the general case it is impossi-
ble to calculate all the different combinations of the subgoals which result in the obtained
systemstate. We will call HQ-learning with the gate-values HQG-learning.

6.2.3 Experiments

We tested our system on three tasks in partially observable environments. The first task is
comparatively simple — it will serve to exemplify how HQ discovers and stabilizes appropriate
subgoal combinations. It requires finding a path from start to goal in a partially observable
10 x 10-maze, and can be collectively solved by three or more agents. We study system
performance as more agents are added. The second, quite complex task involves finding a
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Figure 6.6: A partially observable maze. The task is to find a path leading from start S to
goal G. The optimal solution requires 28 steps and at least three reactive agents. The figure
shows a possible suboptimal solution that costs 30 steps. Asterisks mark appropriate subgoals.

key which opens a door blocking the path to the goal. The optimal solution (which requires
at least 3 agents) costs 83 steps. The third task shows that HQG-learning can be used for
inductive transfer — problem solving knowledge acquired in one task can be used to speed-up
solving another, similar, but more complex task.

Learning to Solve a Partially Observable Maze

Task. The first experiment involves the partially observable maze shown in Figure 6.6.
The system has to discover a path leading from start position S to goal G. There are four
actions with obvious semantics: go west, go north, go east, go south. 16 possible observations
are computed by adding the “field values” of blocked fields next to the agent’s position,
where the field value of the west, north, east, and south field is 1, 2, 4, and 8, respectively —
the agent can only “see” which of the 4 adjacent fields are blocked. Although there are 62
possible agent positions, there are only 9 highly ambiguous inputs. (Not all of the 16 possible
observations can occur in this maze. This means that the system may occasionally generate
unsolvable subgoals, such that control will never be transferred to another agent.) There is
no deterministic, memory-free policy for solving this task. Stochastic memory-free policies
(such as the one described in Jaakkola, Singh and Jordan, 1995) will also perform poorly. For
instance, input 5 stands for “fields to the left and to the right of the agent are blocked”. The
optimal action in response to input 5 depends on the subtask: at the beginning of a trial, it
is “go north”, later “go south”, near the end, “go north” again. Hence at least three reactive
agents are necessary to solve this POMDP.

Reward function. Once the system hits the goal it receives a reward of 100. Otherwise
the reward is zero. The discount factor v = 0.9.

Parameters and experimental set-up. We compare systems with 3, 4, 6, 8, and 12
agents and noise-free actions. We also compare systems with 4, 8, and 12 agents whose actions
selected during learning/testing are replaced by random actions with probability 10%. One
experiment consists of 100 simulations of a given system. Each simulation consists of 20,000
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Figure 6.7: left: HQ-learning results for the partially observable maze, for 3, 4, 6, 8, and 12
agents. We plot average test run length against trial numbers (means of 100 simulations).
The system almost always converges to near-optimal solutions. Using more than the required
3 agents tends to improve performance. Right: results for 4, 8, and 12 agents whose actions
are corrupted by 10% noise. In most cases they find the goal, although noisy actions decrease
performance.

trials. Tynee is 1000. After every 500th trial there is a test run during which actions and
subgoals with maximal table entries are selected (P4, is set to 1.0). If the system does not
find the goal during a test run, then the trial’s outcome is counted as 1000 steps.

After a coarse search through parameter space, we use the following parameters for all
experiments: ag = .05, agg = .2, Vi : T; = .1, A = .9 for both HQ-tables and Q-tables.
Ppaz 18 set to .9 and linearly increased to 1.0. All table entries are initialized with 0.

Results. Figure 6.7A plots average test run length against trial numbers. Within 20,000
trials most systems almost always find near-optimal deterministic policies. Consider Table
6.1. The largest systems are always able to decompose the POMDP into a sequence of RPPs.
The average number of steps is close to optimal. In approximately 1 out of 8 cases, the
optimal 28-step path is found. In most cases one of the 30-step solutions is found. Since the
number of 30-step solutions is much larger than the number of 28-step solutions (there are
many more appropriate subgoal combinations), this result is not surprising.

Systems with more than 3 agents are performing better — here the system profits from
having more free parameters. More than 6 agents do not help though. All systems perform
significantly better than the random system, which finds the goal in only 19% of all 1000 step
trials.

In case of noisy actions (the probability of replacing a selected action by a random action
is 10%), the systems still reach the goal in most of the simulations (see Figure 3B). In the
final trial of each simulation, systems with 4, 8, and 12 agents find the goal with probabilities
of 86, 87, and 84 percent, respectively. There is no significant difference between smaller and
larger systems.
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| System | Av. steps | (%) Goal | Av. sol. | (%) Optimal |
3 agents 263 76 30 3
4 agents 60 97 31 6
6 agents 31 100 31 14
8 agents 31 100 31 12
12 agents 32 100 32 6
4 agents 10% noise 177 86 43 2
8 agents 10% noise 166 87 41 2
12 agents 10% noise 196 84 43 0
Random 912 19 537 0

Table 6.1: HQ-learning results for random actions replacing the selected actions with proba-
bility 0% and 10%. All table entries refer to the final test trial. The 2nd column lists average
trial lengths. The 3rd column lists goal hit percentages. The 4th column lists average path
lengths of solutions. The 5th column lists percentages of simulations during which the optimal
path is found.

We also studied how the system adds agents during the learning process. The 8-agent
system found solutions using 3 (4, 5, 6, 7, 8) agents in 8 (19, 16, 17, 21, 19) simulations.
Using more agents tends to make things easier. During the first few trials 3 agents were used
on average, during the final trials 6. Less agents tend to give better results, however. Why?
Systems that fail to solve the task with few subgoals start using more subgoals until they
become successful. But the more subgoals there are, the more possibilities to compose paths,
and the lower the probability of finding a shortest path in this maze.

Experimental analysis. How does the (3-agent) system discover and stabilize subgoal
combinations (SCs)? The only optimal 28-step solution uses observation 2 as the first subgoal
(5th top field) and observation 9 as the second (southwest inner corner). There are several
30-step solutions, however — e.g., SCs (3, 12), (2, 12), (10, 12).

Figure 6.8 shows how SCs evolve by plotting them every 10 trials (observation 16 stands
for an unsolved subgoal). The first 10,000 SCs are quite random, and the second agent often
is not able to achieve its subgoal at all. Later, however, the system gradually focuses on
successful SCs. Although useful SCs are occasionally lost due to exploration of alternative
SCs, near simulation end the system converges to SC (3, 12).

The goal is hardly ever found prior to trial 5200 (the Figure does not show this). Then
there is a sudden jump in performance — most later trials cost just 30 steps. From this
moment on observation 12 is used as second subgoal in more than 95% of all cases, and the
goal is found in about 85%. The first subgoal tends to vary among observations 2, 3 and
10. Finally, around 16,000 trials, the first subgoal settles down on observation 3, although
observation 2 would work as well.

The Key and the Door

Task. The second experiment involves the 26 x 23 maze shown in Figure 6.9. Starting
at S, the system has to (1) fetch a key at position K, (2) move towards the “door” (the
shaded area) which normally behaves like a wall and will open (disappear) only if the agent
is in possession of the key, and (3) proceed to goal G. There are only 11 different, highly
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Figure 6.8: Subgoal combinations (SCs) generated by a 3-agent system, sampled at intervals
of 10 trials. Initially many different SCs are tried out. After 10,000 trials HQ explores less
and less SCs until it finally converges to SC (3, 12).

ambiguous inputs; the key (door) is observed as a free field (wall). The optimal path takes
83 steps.

Reward function. Once the system hits the goal, it receives a reward of 500. For all
other actions there is a reward of -0.1. There is no additional, intermediate reward for taking
the key or going through the door. The discount factor v = 1.0.

Parameters. The experimental set-up is analogous to the one in section 3.1. We use
systems with 3, 4, 6 and 8 agents, and systems with 8 agents whose actions are corrupted by
different amounts of noise (5%, 10%, and 25%). ag = .05, agg = .01 Vi: T; = 2. Ppgy is
linearly increased from .4 to .8. Again, A = .9 for both HQ-tables and Q-tables, and all table
entries are zero-initialized. One simulation consists of 20,000 trials.

Results. We first ran 20,000 thousand-step trials of a system executing random actions.
It never found the goal. Then we ran the random system for 3000 10,000 step trials. The
shortest path ever found took 1,174 steps. We observe: goal discovery within 1000 steps (and
without “action penalty” through negative reinforcement signals for each executed action) is
very unlikely to happen.

Figure 6.10A and Table 6.2 show HQ-learning results for noise-free actions. Within 20,000
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Figure 6.9: A partially observable maze containing a key K and a door (grey area). Starting
at S, the system first has to find the key to open the door, then proceed to the goal G. The
shortest path costs 83 steps. This optimal solution requires at least three reactive agents. The
number of possible world states is 960.
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Figure 6.10: left: HQ-learning results for the “key and door” problem. We plot average test
run length against trial number (means of 100 simulations). Within 20,000 trials systems
with 8 (4, 6 and 8) agents find good deterministic policies in 85% (96%, 96% and 99%) of the
simulations. Right: HQ-learning results with an 8 agent system whose actions are replaced by
random actions with probability 5%, 10%, and 25%.

trials good, deterministic policies are found in almost all simulations. Optimal 83 step paths
are found with 3 (4, 6, 8) agents in 8% (9%, 8%, 6%) of all simulations. During the few runs
that did not lead to good solutions the goal was rarely found at all. This reflects a general
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| System | Av. steps | (%) Goal | Av. sol. | (%) Optimal |
3 agents 224 85 87 8
4 agents 126 96 90 9
6 agents 127 96 91 8
8 agents 101 99 92 6
8 agents (5% noise) 360 92 304 0
8 agents (10% noise) 399 90 332 0
8 agents (25% noise) 442 84 336 0
Random *9310 19 6370 0

Table 6.2: Results of 100 HQ-learning simulations for the “key and door” task. All table
entries refer to the final test trial. The second column lists average trial lengths. The third
lists goal hit percentages. The fourth lists average path lengths of solutions. The fifth lists
percentages of simulations during which the optimal 83 step path was found. HQ-learning
could solve the task with a limit of 1000 steps per trial. Random search needed a 10,000 step
limat.

problem: in the POMDP case exploration issues are trickier than in the MDP case — much
remains to be done to better understand them.

If random actions are taken in 5% (10%, 25%) of all cases, the 8 agent system still finds
the goal in 92% (90%, 84%) of the final trials (see table 6.2). In many cases long paths (300
— 700 steps) are found. The best solutions use only 84 (91, 118) steps, though. Interestingly,
a little noise (e.g. 5%) decreases performance a lot, but much more noise does not lead to
much worse results.

Inductive transfer

Partial observability is not always a big problem. For example, it may facilitate generalization
and knowledge transfer, if different world states leading to similar inputs require similar
treatment. In the next experiment, we exploit this potential for incremental learning: the
system learns to transfer knowledge from a relatively simple maze’s solution to a more complex
one’s.

Task. First the system is trained to solve the maze from the first experiment (see Figure
6.6). After 20,000 trials, the system is placed in the more complex maze shown in Figure
6.11(A), without resetting its Q- and HQ-tables. Then we spend an additional 20,000 trials on
solving the second maze. We compare the results to those obtained by learning from scratch
(using only the more difficult maze for training).

Reward function. Once the system hits the goal, it receives a reward of 200. Once it
bumps against a wall, the reward is -2.0. All other actions are penalized by negative reward
-0.1. The discount factor v is 1.0.

Parameters and experimental set-up. We test systems with 6 and 8 agents for both
transfer learning and learning from scratch. We use HQG, the gate-based HQ system which
leads to more stable learning performance which is an advantage for incremental learning,
although the learning rate is slightly lower and it finds optimal policies less often.

One experiment consists of 100 simulations of a given system. The maximal number of
steps per trial is 1000. Every 200 trials there is a test run.

After a coarse search through parameter space, we use the following parameters for all
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competitors: a? = 0.04, o9 = 0.01, Vi : T; = 0.5, A = 0.9 for both HQ-tables and Q-tables.
P4z is linearly increased from 0.6 in the beginning to 0.9 at the end of the first maze and
then from 0.9 to 1.0 at the end of the simulation (now consisting of 40,000 trials, instead
of 20,000). For systems which learn from scratch, P, is linearly increased from 0.6 in the
beginning to 1.0 at the end of a simulation (also consisting of 40,000 trials).
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Figure 6.11: (A) The system is first trained on the maze from Figure 6.6, then moved to the
similar, but more complex, partially observable maze depicted above. There are 11 possible
ambiguous observations. The optimal solution costs 47 steps. (B) HQ-learning results for
the incremental learning task for 6 and 8 agents, with and without knowledge transfer. The
transfer-based systems are trained for 20,000 trials on the maze from Figure 6.6. Then they are
moved to the maze from Figure 6.11(A), for which they have to learn additional observation-
action pairs. We plot average test run length against trial (epoch) numbers. After being
primed by the first task, the system quickly learns good policies for the second maze.

Results. Figure 6.11(B) plots average test run length against trial numbers, for systems
with and without knowledge transfer. The plot shows performance on the more complex maze,
except for the first 20,000 trials of transfer-based systems, which correspond to performance
on the simpler maze. All systems almost always find near-optimal deterministic policies.
Transfer-based systems with 6 and 8 agents find deterministic policies leading to the goal
in 99%, and 100% of the simulations, respectively. Both systems that learn from scratch
find good deterministic policies in 95% of the simulations. Obviously, knowledge transfer is
beneficial: the system quickly refines solutions to the first partially observable maze to obtain
good solutions for the second maze. For instance, after being moved to the second maze, the
8-agent system has found 75 (90, 100) times a good solution after 600 (1,800, 8,800) trials.
Average trial length after 20,000 trials in the second maze is 59 steps, whereas the optimal
solution requires 47 steps (the worst solution ever found requires 83 steps). Note that the
system often does not immediately find the solution to the new maze. This is largely due to
the new observation in the left corridor for which a new action (go-north) has to be learned.

Why does the system not always find optimal solutions, but sometimes gets stuck in
“local maxima”? One reason may be that “local maxima” are close to global maxima: the
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cumulative discounted reward for a 47-step solution is 195.4 at the starting state, whereas
the cumulative reward for a 83-step solution is only slightly less, namely 191.8.

6.2.4 Discussion

HQ’s advantages.

1.

Most POMDP algorithms need a priori information about the POMDP, such as the
total number of environmental states, the observation function, or the action model.
HQ does not. HQ only has to know which actions can be selected.

. Unlike “history windows”, HQ-learning can in principle handle arbitrary time lags be-

tween events worth memorizing. To focus this power on where it is really needed, short
history windows may be included in the agent inputs to take care of the shorter time
lags. This, however, is orthogonal to HQ’s basic ideas.

. To reduce memory requirements, HQ does not explicitly store all experiences with differ-

ent subgoal combinations. Instead it estimates the average reward for choosing particu-
lar subgoal /RP combinations, and stores its experiences in a single sequence of Q- and
HQ-tables. These are used to make successful subgoal/RP combinations more likely.
HQ’s approach is advantageous in case the POMDP exhibits certain regular structure:
if one and the same agent tends to receive RPPs achievable by similar RPs then it can
“reuse” previous RPP solutions.

. HQ-learning can immediately generalize from solved POMDPs to “similar” POMDPs

containing more states but requiring identical actions in response to inputs observed
during subtasks (see the third experiment).

HQ’s current limitations.

1.

Like Q-learning, HQ-learning allows for representing RPs and subgoal evaluations by
function approximators other than look-up tables. We have not implemented this com-
bination, however.

. An agent’s current subgoal does not uniquely represent previous subgoal histories. This

means that HQ-learning does not really get rid of the “hidden state problem” (HSP).
HQ’s HSP is not as bad as Q’s, though. Q’s is that it is impossible to build a Q-
policy that reacts differently to identical observations, which may occur frequently.
Appropriate HQ-policies, however, do exist.

To deal with this HSP one might think of using subgoal trees instead of sequences. All
possible subgoal sequences are representable by a policy tree whose branches are labeled
with subgoals and whose nodes contain RPs for solving RPPs. Each node stands for
a particular history of subgoals and previously solved subtasks — there is no HSP any
more. Since the tree grows exponentially with the number of possible subgoals, however,
it is practically infeasible in case of large scale POMDPs.

. In case of noisy observations transfer of control may happen at inappropriate times. A

remedy may be to use more reliable inputs combining successive observations.
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4. In case of noisy actions, an inappropriate action may be executed right before or after
passing control. The resulting new subtask may not be solvable by the next agent’s RP.
A remedy similar to the one mentioned above may be to represent subgoals as pairs of
successive observations. Another possibility is to create an architecture which allows
for returning control.

5. If there are many possible observations then subgoals will be tested infrequently. This
may delay convergence. To overcome this problem one might either try function approx-
imators instead of look-up tables or let each agent generate a set of multiple, alternative
subgoals. In the latter instance, once a subgoal in the set is reached, control is trans-
ferred to the next agent.

6. HQ has a severe exploration problem. It relies on random walk behavior for finding
the goal the first time, which can be quite expensive for some problems — in the worst
case the agents needs exponential search time (Whitehead, 1992). Using action-penalty
or counting methods for POMDPs may result in even worse, cyclic, behavior. Thus,
better ways should be found for POMDP exploration. Possibilities include selecting a
consistent action for the same observation so that e.g. counting can be used or using
policy trees (as mentioned above) so that the HSP completely disappears. It remains
a challenging issue to find exploration algorithms which work well for a large variety of
POMDPs and algorithms solving them, however.

6.3 Related Work

Other authors proposed hierarchical reinforcement learning techniques, e.g., Schmidhuber
(1991b), Singh (1992), Dayan and Hinton (1993), Tham (1995), Sutton (1995b), and Thrun
and Schwartz (1995). Their methods, however, have been designed for MDPs. Since the
current focus is on POMDPs, this section is limited to a summary of previous POMDP
approaches and methods related to HQ due to their use of abstract behaviors instead of only
single actions.

Recurrent neural networks. Schmidhuber (1991c¢) uses two interacting, gradient-based
recurrent networks for solving POMDPs. The “model network” serves to model (predict) the
environment, the other one uses the model net to compute gradients maximizing reinforcement
predicted by the model (this extends ideas by Nguyen and B. Widrow, 1989; and Jordan and
Rumelhart, 1990). To our knowledge this work presents the first successful reinforcement
learning application to simple non-Markovian tasks (e.g., learning to be a flipflop). Lin
(1993) also uses combinations of controllers and recurrent nets. He compares time-delay
neural networks (TDNNs) and recurrent neural networks.

Despite their theoretical power, standard recurrent nets run into practical problems in
case of long time lags between relevant input events. Although there are recent attempts at
overcoming this problem for time series prediction (e.g., Schmidhuber 1992; Hihi and Bengio
1996; Hochreiter and Schmidhuber 1997; Lin, Horne and Giles 1996). In general, learning to
control is also more complex, since the system does not only have to predict, but also make
the right choices. Another important difference is that the system itself is responsible for
the generated trajectories. Therefore if some trajectories need little memory, whereas other,
better, trajectories need more memory, the latter may have much smaller probability of being
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found. Furthermore, exploration and system adaptions can cause previously acquired memory
to become useless, since trajectories may change significantly.

Map learning. An altogether different approach for solving POMDPs is to learn a map of
the environment. This approach is currently considered very attractive, and especially suitable
for navigating mobile robots, where the agent has a prior: information about the result of its
actions (the odometry is known). Thrun (1998) successfully applies a map-learning algorithm
to his robot Xavier, which first learns a grid-based map of an office building environment and
then compiles this grid-based map into a topological map to speed up goal directed planning.

Map learning approaches may suffer when state uncertainty and odometry errors are large,
however. Therefore, some mobile robots are equipped with multiple sensors, and inputs from
these sensors are combined to decrease the uncertainty about the state. Van Dam (1998)
describes techniques for fusing the data from different sources in order to learn environmental
models.

Bayse, Dean and Vitter (1997) discuss the complexity of map learning in uncertain en-
vironments. If there is no uncertainty (in observations or actions) in the environment, then
map learning is simple — we can just try all unexplored edges. In case of uncertainty in
both actions and observations, they prove the existence of PAC algorithms, but restrict the
environment in two ways: (1) the agent needs to know the direction in which it went after
executing an action, although it does not have to know to which (unintended) state it went
(this is needed for being able to find the way back), and (2) there should exist some set of
landmarks (with unique observations).

Hidden Markov Models. McCallum’s utile distinction memory (1993) is an extension of
Chrisman’s perceptual distinctions approach (1992), which combines Hidden Markov Models
(HMMs) and Q-learning. The system is able to solve particular small, noisy POMDPs by
splitting “inconsistent” HMM states whenever the agent fails to predict their utilities (but
instead experiences quite different returns from these states). The approach cannot solve
problems in which conjunctions of successive perceptions are useful for predicting reward
while independent perceptions are irrelevant. HQ-learning does not have this problem — it
deals with perceptive conjunctions by using multiple agents if necessary.

Belief state. Some authors have proposed speeding up computing solutions to POMDPs
using belief states by using function approximators. Boutilier and Poole (1996) use Bayesian
networks to represent POMDPs, and use these more compact models to accelerate policy
computation. Parr and Russell (1995) use gradient descent methods on a continuous rep-
resentation of the value function, although the use of a function approximator makes their
method an heuristic algorithm. Their experiments show significant speed-ups on certain small
problems. D’Ambrosio (1996) uses K-abstraction to discretize belief state space and then uses
Q-learning to learn value functions. He shows how his algorithm can find solutions to diag-
nosis problems containing 256 states. A belief network is used for modeling the problem.
The results show that the method can quickly improve its policy, although the success of the
algorithm may heavily depend on the amount of uncertainty the agent has about the true
state.

Memory bits. Littman (1994) uses branch-and-bound heuristics to find suboptimal
memoryless policies extremely quickly. To handle mazes for which there is no safe, determin-
istic, memoryless policy, he replaces each conventional action by two actions, each having the
additional effect of switching a “memory bit” on or off. Good results are obtained with a toy
problem. Thus, the method directly searches in policy space. It may have problems if only
few deterministic policies will lead to the goal. Therefore to better evaluate policies, Littman
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started the agent from each possible initial state.

CIliff and Ross (1994) use Wilson’s (1994) classifier system (ZCS) for POMDPs. There
are memory bits which can be set and reset by actions. ZCS is trained by bucket-brigade and
genetic algorithms. The system is reported to work well on small problems but to become
unstable in case of more than one memory bit. Also, it is usually not able to find optimal
deterministic policies. Wilson (1995) recently described a more sophisticated classifier system
which uses prediction accuracy for calculating fitness, and a genetic algorithm working in
environmental niches. His study shows that this makes the classifiers more general and more
accurate.

Martin (1998) also used memory bits in his system Candide, which could be put on or off
independently by different actions. He used Q(1) and Monte Carlo experiments to evaluate
actions, and was quite successful in solving large deterministic POMDPs. He used a clever
exploration method which did not allow the agent to choose a different action for a specific
observation if that observation is seen multiple times in an experiment.

One possible problem with memory bits is that tasks such as those in Section 6.2.3 require
(1) switching on/off memory bits at precisely the right moment, and (2) keeping them switched
on/off for long times. During learning and exploration, however, each memory bit will be very
unstable and change all the time — algorithms based on incremental solution refinement will
usually have great difficulties in finding out when to set or reset it. Even if the probability of
changing a memory bit in response to a particular observation is low it will eventually change
if the observation is made frequently. Like HQ-learning, Candide did not suffer a lot from
such problems. These systems take care that the internal memory is not changed too often,
which makes them much more stable.

Program evolution with memory cells. Certain techniques for automatic program
synthesis based on evolutionary principles can be used to evolve short-term memorizing pro-
grams that read and write memory cells during runtime (e.g., Teller, 1994). A recent such
method is Probabilistic Incremental Program Evolution (PIPE — Salustowicz and Schmid-
huber, 1997). PIPE iteratively generates successive populations of functional programs ac-
cording to an adaptive probability distribution over all possible programs. On each iteration
it uses the best program to refine the distribution. Thus it stochastically generates better and
better programs. A memory cell-based PIPE variant has been successfully used to find well
performing stochastic policies for partially observable mazes. On serial machines, however,
their evaluation tends to be computationally much more expensive than HQ.

Learning policy trees. Ring’s system (1994) constructs a policy tree implemented in
higher order neural networks. To disambiguate inconsistent states, new higher-level nodes are
added to incorporate information hidden “deeper” in the past. The system is able to quickly
solve certain non-Markovian maze problems but often is not able to generalize from previous
experience without additional learning, even if the optimal policies for old and new task are
identical. HQ-learning, however, can reuse the same policy and generalize well from previous
to “similar” problems.

McCallum’s U-tree (1996) is quite similar to Ring’s system. It uses prediction suffix trees
(see Ron, Singer and Tishby, 1994) in which the branches reflect decisions based on current or
previous inputs/actions. Q-values are stored in the leaves. Statistical tests are used to decide
whether groups of instances in a leave correspond to significantly different utility estimates.
If so, the cluster is split. McCallum’s recent experiments demonstrate the algorithm’s ability
to control a simulated car by learning to switch lanes on a highway-task involving a huge
number of different inputs while still containing hidden state.
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Another problem with Ring’s and McCallum’s approaches is that they have to store the
whole sequence of observations and actions. Hence for large “time windows” used for sampling
observations, the methods will suffer from space limitations.

Consistent Representations. Whitehead (1992) uses the “Consistent Representation
(CR) Method” to deal with inconsistent internal states which result from “perceptual alias-
ing”. CR uses an “identification stage” to execute perceptual actions which collect the infor-
mation needed to define a consistent internal state. Once a consistent internal state has been
identified, actions are generated to maximize future discounted reward. Both identifier and
controller are adaptive. One limitation of his method is that the system has no means of re-
membering and using any information other than that immediately perceivable. HQ-learning,
however, can profit from remembering previous events for very long time periods.

Levin Search. Wiering and Schmidhuber (1996) use Levin search (LS) through program
space (Levin, 1973) to discover programs computing solutions for large POMDPs. LS is of
interest because of its amazing theoretical properties: for a broad class of search problems,
it has the optimal order of computational complexity. For instance, suppose there is an
algorithm that solves a certain type of maze task in O(n®) steps, where n is a positive
integer representing the problem size. Then LS will solve the same task in at most O(n?)
steps. Wiering and Schmidhuber show that LS supplied with a set of conditional plans
(abstract behaviors) can solve very large POMDPs for which the algorithmic complexity (Li
and Vitanyi, 1993) of the solutions is low.

Success-Story Algorithm. Wiering and Schmidhuber (1996) also extend LS to obtain
an incremental method for generalizing from previous experience (“adaptive LS”). To guar-
antee that the lifelong history of policy changes corresponds to a lifelong history of reinforce-
ment accelerations, they use the success-story algorithm (SSA, e.g., Schmidhuber, Zhao and
Schraudolph 1997a; Zhao and Schmidhuber 1996, Schmidhuber, Zhao and Wiering 1997b).
This can lead to further significant speed-ups. SSA is actually not LS-specific, but a general
approach that allows for plugging in a great variety of learning algorithms. For instance,
in additional experiments with a “self-referential” system that embeds its policy-modifying
method within the policy itself, SSA is able to solve huge POMDPs using the proper initial
bias (Schmidhuber et al. 1997a).

Using multiple abstract behaviors

Using abstract behaviors instead of single actions makes it possible to plan on a higher level
and compress solutions, thereby facilitating policy construction considerably. Some early
work in this direction has been performed by Singh (1992) who developed compositional Q-
learning. Other early work was done by Thrun (1995) who developed Skills, a system which
was able to learn and reuse particular reactive policies. HQ-learning went a step beyond these
approaches, however, since it showed how abstract behaviors could directly learn from the
Q-values of subsequent behaviors without taking single action values into account.

Like HQ-learning, Humphrys’ W-learning (1996) uses multiple agents which use Q-learning
to learn their own behaviors. A major difference is that his agents’ skills are prewired — dif-
ferent agents focus on different input features and receive different rewards. “Good” reward
functions are found by genetic algorithms. An important goal is to learn which agent to select
for which part of the input space. Eight different learning methods implementing cooperative
and competitive strategies are tested in a rather complex dynamic environment, and seem to
lead to reasonable results.
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Digney (1996) describes a nested Q-learning technique based on multiple agents learning
independent, reusable skills. To generate quite arbitrary control hierarchies, simple actions
and skills can be composed to form more complex skills. Learning rules for selecting skills
and for selecting actions are the same, however. This may make it hard to deal with long
reinforcement delays. In experiments the system reliably learns to solve a simple maze task.

Sutton, Precup and Singh (1998) and also Parr and Russel (1997) discuss approaches based
on using abstract behaviors for speeding up finding solutions to Markov decision problems.
Using Sutton’s terminology here, these systems consist of options (abstract/macro actions)
instead of single step actions, which are associated with a termination condition. Executing
an option can take a variable amount of time, and that is why the problems are modeled
as semi-Markov decision processes. Precup, Sutton and Singh (1998) prove that RL with
options still converges, as long as we can guarantee that options stop. Results with Q-learning
and abstract behaviors show that their methods significantly speed up policy construction.
Although these approaches have not yet been used for solving POMDPs, the use of options
could, just like HQ’s subgoals, get rid of a lot of hidden state.

Martin (1998) developed Candide, a system which first uses Q(1)-learning to learn a set
of behaviors, after which the system learns to hierarchically compose them to learn to solve
more difficult problems. By first teaching the system a set of basic tasks, it was later able to
learn to combine them in general policies for solving quite difficult block world problems.

Dietterich (1997) developed the MAXQ value function decomposition method for hier-
archical reinforcement learning. It also consists of multiple abstract behaviors which are
combined through learning Q-nodes in a policy tree. Each Q-node determines which branch
of the tree is selected, and is followed by a primitive action (possibly an abstract behavior)
and a descendant if the node is not a leave node. In this way, highly complex behaviors can
be learned by first engineering (by hand) useful abstract policy trees and then learning the
Q-values.

The difference of these approaches compared to HQ-learning, is that HQ-learning learns to
decompose the task into subtasks and at the same time learns behaviors solving the subtasks
without a priori knowledge about the tasks. If solutions do not work, HQ-learning will
change subtasks and try to learn new behaviors solving them. Most other systems use either
a prewired hierarchical decompositions or prewired skills which makes learning faster, but
requires human engineering,.

HQ-learning can also be seen as a system which combines learning a structure and the
parameters of the structure. The structure is adapted to make learning the parameters easier.
Learned parameters which work well ensure that the structure will remain more stable. In this
way, the coupled system can have advantages compared to other one-sided learning systems.
E.g. we also tried using a prewired subtask decomposition so that only policies needed to be
learned. For this we used the first maze (Figure 6.6) and used the subgoals belonging to the
decomposition of the optimal path (SCs 2 and 8). Surprisingly this resulted in worse training
performance than learning the decomposition at the same time. This might be explained
by the fact that the number of goal-finding solutions had become much smaller than that of
the coupled system.. Furthermore, the agent was restricted to learning the optimal solution.
Therefore its learning dynamics suffered from the additional constraints.
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6.4 Conclusion

POMDPs are a difficult class of problems. Exact algorithms for solving them are infeasible
for large problems, and most heuristic methods do not scale up very well. We developed a
new algorithm, HQ-learning, which is based on learning to decompose a problem into a set
of smaller problems solvable by different learning agents. This method has been shown to
solve a number of semi-large, deterministic POMDPs. Since HQ scales up with the number of
required agents and not with the number of states, it can in theory solve very large POMDPs
for which there exist low complexity solutions. HQ does not solve all problems: in particular
it has problems with uncertainty in the actions and observations, although it may still find
competitive solutions for such problems. HQ-learning also supposes a fixed starting state
which is another limitation.

POMDP algorithms are based on the construction of an internal state (IS) based on the
sequence of observations. Efficient POMDP algorithms should therefore focus themselves
on controlling the dynamics of their internal state. Based on recollected experiences, an
algorithm could try to transform its IS using mental actions. If an algorithm could learn
to control these mental actions, an agent might be able to learn the skill of reflection. The
importance of reflection for intelligent behavior may be clear, but many problems remain to
be solved until it becomes realistic. One important question is how mental states can be
constructed as long as they are not automatically associated with obtaining reward.

Finally, there is a need for algorithms which can explore POMDPs more efficiently. Even
map learning algorithms usually rely on random walk behavior for finding some landmark
state (Bayse et al., 1997). As long as exploration issues are not resolved, we cannot expect
to obtain efficient heuristic methods for a large number of POMDPs.

Reinforcement learning approaches using the construction of a priori policy trees or ab-
stract behaviors can play an important role for solving more difficult RL problems. Current
investigations in this direction are already being made on a variety of problems and show
promising results, e.g., (Sutton et al., 1998; Dietterich, 1997). HQ is related to such methods
as well as to exact policy tree construction methods (Kaelbling et al., 1995), since it allows
for using policy trees where each node is represented as a behavior (reactive policy) and tran-
sitions between nodes are stored by subgoals (observations). Thus, HQ-learning can store the
optimal policy for POMDPs given a unique initial belief state. Furthermore, HQ can allow
for compression of policy trees, since often the same action for a particular observation may
be optimal in a large region of the state space. Using policy nodes with M subgoals per
policy (transitions from one node to the next), we might be able to decrease the complexity

of (naive) exact algorithms from O(|A||O|T) to O(|A|‘O‘MK), where K is the length of the
(longest) subgoal sequence. We can see the large gain in case the horizon (T') is large and the
number of subgoals (M) and the length of subgoal sequences (K) is small. More investigation
is needed to combine policy nodes with such exact algorithms, however.
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Chapter 7

Function Approximation for RL

In the first part of this thesis we have described RL methods for finite state spaces for which
it is possible to exactly store the optimal value function with lookup table representations.
For high-dimensional or continuous state spaces, however, we need to employ function ap-
proximators for compactly representing an approximation of the value functions.

Function approximators (FAs) such as neural networks can be used to represent the value
or Q-function by mapping an input vector to a Q-value. FAs consist of many adjustable
parameters which are trained on learning examples to minimize the FA’s approximation error
of the target function. A very useful property of FAs is that they are able to generalize:
if we train a FA on a set of training examples, the FA can interpolate between (or even
extrapolate from) them to create a mapping from inputs to outputs for the complete input
space. Learning a good approximation is very difficult (Judd, 1990), however. It can take a
huge amount of time and even be unsuccessful. We call this the learning problem. However,
sometimes it is possible to learn very useful value functions for huge state spaces after training
the FAs on a relatively small number of training examples. This was demonstrated by the
success of learning to play backgammon ! with neural networks (Tesauro, 1992).

Outline of this chapter. In Section 7.1, we will describe three different function ap-
proximators: linear networks, neural gas (Martinetz and Schulten, 1991; Fritzke, 1994), and
CMACs (Albus, 1975b; Albus, 1975a). Then in Section 7.2, we describe how they can be
combined with direct RL methods. In Chapter 4, we have seen that the use of world models
speeds up computing good value functions. Therefore, we would like to use world models in
combination with function approximators as well. In Section 7.3, we will describe how we can
combine models with the function approximators described in Section 7.1. Then, in Section
7.4, we will describe an experimental study on using function approximators in a challenging
domain: learning to play soccer with multiple agents. Here we compare different methods by
their ability to learn to beat a prewired soccer team. In Section 7.5, we conclude this chapter
with some closing remarks.

7.1 Function Approximation

Principles of FAs. To use function approximators, we construct a u-dimensional input
vector = based on selecting characteristic features for describing the state of the system or

'There are on the order of 10?° positions (states) on the backgammon board, whereas TD-Gammon had
already learned a good policy after learning on about 107 examples.
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agent. Constructing an input vector is quite important, since it provides the FA with all
information to make its estimations from and therefore particular input designs can ease the
burden of the learning problem. When we are constructing an input vector, it is important
not to have ambiguities (see Chapter 6). More generally, we should try to circumvent having
to deal with small distances between input vectors which must be mapped to very different
outputs.? Furthermore, learning speed is largest if all input dimensions contribute something
to the output (the output should be sensitive to all inputs), otherwise it is better to remove
the non-contributing inputs. Usually we do not have a priori knowledge which enables us to
decide which inputs are important and thus we should examine the output’s sensitivity to an
input’s value after some amount of learning time.

FAs receive the input vector =, and compute a scalar output y (it is straightforward to
extend the following presentation to using an output vector) using the mapping F':

y = F(x)

The FA F consists of a number of adjustable parameters (e.g. weights) and processing
elements (nodes, neurons) structured in a specific topology (architecture). The topology can
be static or dynamic. Static topologies are defined a priori by the engineer and during the
training phase only the parameters in the FA are changed. Dynamic topologies develop and
adjust themselves during the learning process. Although dynamic structures could make
learning functions much easier with particular FAs (Baum, 1989), finding correct structures
is generally considered to be a hard problem.

Local vs. Global FAs. There are many different function approximators and each kind
of FA has its own advantages and disadvantages. One important characteristic for FAs is their
degree of locality. We will call a FA a local model if the FA only uses a fraction (e.g. less than
20%) of all processing elements for computing the output given an input. Completely local
models (such as lookup tables) only use a single processing element (e.g. a table entry) for
computing the output. Examples of local models are: Kohonen networks (Kohonen, 1988),
neural gas (Martinetz and Schulten, 1991; Fritzke, 1994), bumptrees (Omohundro, 1991;
Landelius, 1997), decision trees, and CMACs (Albus, 1975b; Albus, 1975a). The counterpart
of local models are global models, which use (almost) the entire representation for deriving the
output. They usually interpolate more smoothly between training examples than local models,
but also tend to overgeneralize more. Examples of global models are linear networks, sigmoidal
feedforward neural networks trained with backpropagation (Werbos, 1974; Rumelhart et al.,
1986), Hopfield Networks (Hopfield, 1982), and Boltzmann machines (Hinton and Sejnowski,
1983).

7.1.1 Linear Networks

Probably the simplest function approximator is a network which is linear in the components
of . The linear network can be written as:

y=wlz+b

2If inputs which are located near to each other require very different outputs, we need to train the FA to
represent steep slopes which is difficult and hinders successful generalization.
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where w is the u-dimensional weight vector and the parameter b is the bias.® Figure 7.1(A)
shows how a linear networks is used for regression tasks where we want to fit a straight u-
dimensional hyperplane through a number of examples. Linear networks can only be used
for learning linear functions, however, and that is why their expressive power is quite limited:
e.g. for the regression problem demonstrated in Figure 7.1(B) linear networks cannot be used
fruitfully.
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Figure 7.1: (A) A linear network’s approximation to a set of training examples (data points).
(B) Training examples which cannot be represented well by a single linear hyperplane.

Training the network. Given a set of training examples: input-output pairs (z;,d;),
where 7 € {1,...,M} (M is the number of training examples), we want to minimize the
mean squared error between the desired outputs d;, and the network’s outputs 1;. For online
learning we derive the learning rule from the squared error function E':

E = %(di —y:)® = %(di — wya;)’

Given a set of example transitions (training patterns) (z;,d;), we can compute w in closed
form. First we collect all vectors z; in the matrix X by putting all vectors as row vectors
in the matrix. Thus, the vector X}, defines the k' row of the m-by-u (m is the number of
training pairs which should be larger or equal to u) matrix X. Then we compute the weight
vector w as:

w=(XTX)1xTd
where d is the m-dimensional vector storing all desired outputs (dy,...,d,,), and (XTX)"1XT
is the pseudo-inverse (Moore-Penrose inverse) of the matrix X (we assume that (X7 X)~!
exists, otherwise we have to use lim,_,o(X7 X + al)~! which always has an inverse for a > 0.
See (Rao and Mitra, 1971) for details).

We can also iteratively find a solution: after differentiating E* with respect to w,
the delta-rule (Widrow and Hoff, 1960) which decreases the error function making updates
of the weight vector with learning rate «ay:

4 we get

3To simplify the following discussion, we put the additional parameter b in the weight vector and add an
input to the inputvector which is always set to 1.
*We assume that the bias is part of the weight vector.
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Aw = ay(d; — ys)z;

Instead of linear networks, usually the much more powerful multi-layer neural networks
are used. Such networks consist of (at least) one hidden layer with non-linear activation
functions and are able to represent any Borel measurable function (Cybenko, 1989). They
can be trained by using the backpropagation algorithm (Werbos, 1974; Rumelhart et al.,
1986) which implements gradient descent on the error function. We refer to Krose and v/d
Smagt (1993) for a full description of these more powerful function approximators.

7.1.2 Local Function Approximators

Global function approximators such as linear or multi-layer neural networks compute the
output using all adjustable parameters. Furthermore, they adapt all parameters on each
example. This creates interference or forgetting problems: after we have trained the FA to
learn a good approximation in some part of the input space and then train it to approximate
different parts of the input space, the learning algorithm tries to use the same parameters to
decrease the error over a new input distribution so that the FA “forgets” what it had learned
before.

Local function approximators (LFAs) do not have this problem. They consist of many
independent processing elements, which we will call processing cells or simply cells. Each
cell has a centre in the input space (a vector) and an output value. Given some input, we
compute cell activations based on the distance between cell centres and the input. For this,
some weighting rule and a distance function is used which ensures that closeby located cells
are activated most. Then, cell outputs are combined by first weighing them by the activities
of the cells and then summing them. Finally, cell centres and outputs are adapted on the
learning example where learning steps depend on cell activities. If we want to approximate
the function in some unknown parts of the input space, most previously trained cells are not
activated since the distance of their centres to the new inputs is too large. Therefore they are
not adapted for these parts and the previously learned function approximation stays more or
less the same.

Winner take all. We can look at such learning architectures as a competition between
the cells for being active in different parts of the input space. Each cell tries to approximate the
target function in some region best so that it will become the most activated cell there. LFAs
can use hard decision surfaces by implementing a winner take all (WTA) algorithm. Using
WTA, only the closest cell is activated ® and this cell will determine the output of the FA.
Examples of LFAs which employ the WTA strategy are 1-nearest neighbor, learning vector
quantization (LVQ) (Kohonen, 1988), and rasters (grids) with fixed or variable resolution
(Moore and Atkeson, 1995). When we use a nearest neighbor scheme with WTA cells to
divide the input space into subregions, we say that we make a Voronoi tessellation of the
input space (see Figure 7.2).

Once we have partitioned the input space, it becomes easy to learn output values. The
output of each cell equals the average desired output of training examples falling inside a
cell’s region. However, learning a good partitioning is a hard problem, and if we change
a partitioning (e.g. by adding or removing a cell), multiple output values of cells are not
anymore up-to-date and need to be reestimated.

5In case of multiple closest neurons, we break ties arbitrarily.
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Figure 7.2: (A) A Voronoi tesselation of the input space derived from using WTA and the
locations of a set of cells (shown as circles). In between each two cells, there is a hard decision
boundary. The constructed tesselation determines those regions of the input space for which
a particular cell is used (is activated) for returning its output.

Soft cell competition. Instead of WTA cells, we can also use a weighted combination of
the outputs of particular closeby located cells as the final output, which results in a smoother
function approximation. This is also referred to as soft competitive learning (Nowlan, 1991).
Examples of smooth LFAs are k-nearest neighbor with & > 1, Delauney triangulizations with
linear interpolations (Omohundro, 1988; Munos, 1996), locally weighted regression (Gordon,
1995; Atkeson, Moore and Schaal 1996), Kohonen networks (Kohonen, 1988), and neural gas
(Fritzke, 1994).

Neural gas

We will now present a novel implementation of a smooth growing neural gas architecture.
We use a set of Z neurons (cells): {ny,...,nz} (initially Z = Z;,;t). They are placed in the
input space by assigning to each a centre wy € IR* (a u-dimensional vector). Apart from the
centre, each neuron n; contains an output ys.

We calculate the overall output of the FA by locally weighting the outputs of all neurons
(although most will have a neglectable influence on the final output). We calculate the
weighting factor g (gate) for each neuron ny based on the cell centres and the environmental
input z using:

e~ dist(wy, ,z)

9k = ZjZZI e~ dist(wj,z)’

(7.1)

where n € IR is a user-defined constant which determines the smoothness of the FA and
dist(w, z) is an arbitrary distance function of the family of L,-norms:®

i=1

5Weighing inputs differently for computing the distance by e.g. an additional parameter vector allows for
more useful decompositions of the input space, although it also requires more parameters to be learned.
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where w(i) and z(i) refer to the value of the i*" feature of the centervector and input, respec-
tively. The overall output of the FA given input x is:

Z
Y=gy
=1

Learning Rules. We want to maximize the probability of returning the correct output
value. Since the output value depends on the locations of the neurons and on the output
values of the neurons, we have to: (1) learn the network structure: move the neurons to
locations where they help to minimize the overall error, and (2) learn correct output values:
make individual neurons correctly evaluate the inputs for which they are used.

In order to let the FA converge, we will anneal the learning rate of neurons so that they
will stabilize over time. For this, we keep track of the overall usage of a particular neuron in
a responsibility variable C; which is initially set to 0. After each example, each neuron n;’s
responsibility variable C}, is adapted:

Cr + Cr+gr

Then, C}, is used to determine the size of n;’s learning rate (and also to determine conditions
for adding a neuron).

(1) Learning Structure. The structure of the neurons is of great importance, since
it determines which states are aggregated together and thus which family of functions can
be represented. We should keep the following principles in mind: (a) neurons should be
placed where they minimize the overall error, and (b) we want to have most neurons (a finer
resolution) in regions with the largest fractions of the overall error.

There are a number of different ways for learning the structure of neural gas architectures,
all based on using particular operations on the neurons. The most common operations are
moving, adding and deleting (or merging) neurons.

Fritzke (1994) presents a particular method for growing cell structures. His method learns
a topology by creating edges which link two neurons which together have been closest to a
particular example. His learning rule moves the closest neuron and its neighborhood to the
input. Furthermore, his method incrementally adds neurons, for which it keeps track of the
total error of neurons when they have won the WTA competition. After a fixed number of
example presentations a neuron is added near the neuron with the largest accumulated error.
This neuron is initialized by interpolating from the nearest neurons and is assumed to be able
to learn to decrease the error in that specific region of the input space.

Instead of using Fritzke’s method, we have created a different method which does not
accumulate error over time, but adds neuron’s when the error on a single particular example
is too large. The details are as follows: If the error |d — y| of the system is larger than
an error-threshold Tg, the number of neurons is less than Z,,,,, and the closest neuron’s
responsibility C}, exceeds the responsibility threshold T¢ (C grows with the density of the
input distribution around neuron nyt), then we add a new neuron nz,1. We set its location
wz41 to z, and set the output value yz,1 ¢ d. Finally we set Z < Z 4 1. Thus if the error
on an example is large, we immediately copy the example to a novel neuron. The method
is a good method to immediately decrease the error of difficult regions in the input space,
but it can also suffer from noisy examples, which causes newly added neurons to approximate
regions by a wrong output value (although they could still adjust themselves later on).
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If no neuron is added, we calculate for each neuron ny (Vk € {1,...,7}) a gate-value hy,
which reflects the posterior belief that neuron nj evaluates the input best:
gkef(dfyk)z
ZJ'Zzl gje_(d_yj)2

We then move each neuron n; towards the example z according to:

hy =

wy,  wi + aghi(z —wy),

where oy, = ag(Ck)_ﬂ, oy is the system learning rate and [ is the learning rate decay factor.
The effect of using the square of hj instead of hj, is that neurons which are not a clear winner
will not adapt themselves very fast. Thus, clear separations are made early on in the process,
whereas finer divisions of the input space emerge only gradually.

(2) Learning Q-values. We update the output y; of neuron ny, (Vk € {1,...,Z}) by:

Yk < Yr + aphi(d — yg)

Note the similarities of our neural gas method with the hierarchical mixtures of experts
(HME) architectures (Jacobs et al., 1991; Jordan and Jacobs, 1992).

Nearest neighbor search. An important issue in local FAs is to search for the set of
neurons which are activated for returning the output. Even LFA’s with smooth competition
usually have only a small number of neurons which have non neglectable activations for
returning the output.

The same problem, called the data-retrieval problem, is known in database systems. Given
the input, finding the closest neuron(s)/data-item is usually implemented by computing the
distance to all neurons and then selecting the closest one(s). The complexity of this is O(Zu),
where Z is the number of neurons, and u the dimensionality of the input space. If we have
thousands of neurons, the input dimensionality is large, and we have to return outputs for a
large number of queries (inputs), then the system gets very slow. A solution to speed up the
search is to use preprocessing and to store the neurons in a datastructure which allows for
faster online search.

We can use datastructures and methods from computational geometry such as Voronoi
diagrams (Okabe et al., 1990). These methods significantly speed up searching for the closest
neuron, but the problem is that the size of such structures is exponential in the dimensionality
of the input space.

K-d trees (Friedman et al., 1977; Preparate and Shamos, 1985; Moore, 1991) are another
datastructure for speeding up nearest-neighbor search. To create a K-d tree, we recursively
partition the population of neurons by dividing the individuals up along a single input di-
mension, which is chosen to keep the tree more or less balanced. The nearest neighbor is then
found by descending the tree to find an initially best candidate, and then backtracking along
the tree to examine whether all alternative siblings are not closer while discarding siblings
which are surely not closer to the input than the current best one. K-d trees can be used to
perform searches in expected time close to min(a*logZ,u”7), where a is a suitable constant
> 1 (Moore, personal communication 1998). This means that searchtime is logarithmic in
7, but exponential in the input dimensionality. In practice the time requirements depends a
lot on the distribution of the data (Omohundro, 1989; Moore, 1991). Constructing K-d trees
takes 6(uZlogZ) preprocessing time (Preparate and Shamos, 1985).
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A problem of the above methods is that they cannot be easily combined with neural gas;
neurons are moved around and added to the system so that the data structures used for
searching should change as well in an incremental way. This makes using these structures
more expensive. Omohundro (1989) describes and experimentally evaluates some incremental
methods for constructing balltrees, data structures very similar to K-d trees.

A quite similar idea, especially suitable for radial basis functions is to use a hierarchy of
neurons, where the higher level neurons are used for clustering lower level neurons. Then
we can descend from the top layer to lower layers and use leaf neurons for the final output.

7 we could

Although the primitive method is not guaranteed to return the closest neuron,
decide to use this neuron anyway or to use backtracking, e.g., used in bumptrees (Omohundro,
1988; Landelius, 1997), afterwards. Such methods can sometimes save a lot of time, see
experimental results with bumptrees in (Omohundro, 1988; Landelius, 1997).

Another possibility which is an O(1) method is to restrict the search among a fixed set
of neighbors which are allowed to be activated. E.g. we can construct (a limited number of)
edges to link neurons which are activated after each other, or we can constrain the search by
using an a priori temporal structure. Although this method may work well, it may be the
case that many more neurons may be needed since different neurons may be implementing
the same function for the same region (only the sequence of examples arriving at the region
was different).

In our experiments we have used the simplest line search method, although it resulted
sometimes in computationally very demanding simulations.

7.1.3 CMACs

The third kind of FAs are also local, but are different from the ones described previously,
since they do not construct a tesselation based on the positions of a number of cells. They
use a fixed a priori decomposition of the input space into subregions. Usually the subregions
are structured in an ordered topology such as hypercubes which makes searching for active
cells much faster compared to the methods described earlier, since random access (instant
lookup) becomes possible. This increased time efficiency is (as usual) at the expense of a
huge increase of the storage space, however. A well known FA which uses (for example)
hypercubes to divide the input space into subregions is the CMAC (Albus, 1975a). A CMAC
(Cerebellar Model Articulation Controller) uses filters mapping inputs to a set of activated
cells. Each filter partitions the input space into subsections in a prewired way such that
each (possibly multi-dimensional) subsection is represented by exactly one discrete cell of the
filter. For example, a filter might consist of a finite number of cells representing an infinite
set of colors represented by cubes with 3 dimensions red, blue and yellow, and activate the
cell which encloses the current color input.

CMACs uses multiple filters consisting of a number of cells with associated output values.
Applying the filters yields a set of activated cells (a discrete distributed representation of the
input), and their output values are averaged to compute the overall output.

The difference with vector quantization methods is that the partitioning is designed a
priort and that multiple cells are activated by using different views on the world.

General remarks on filter design. In principle the filters may yield arbitrary divisions
of the state-space, such as hypercubes, but also more complex partitionings which make use of

"Higher level neurons are centered at the distribution of examples for which they are activated, but nothing
is said about the positions of their lower level neurons.
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preprocessing may be used. To avoid the curse of dimensionality which occurs when one uses
all input-dimensions to construct hypercubes, one may use hashing to group a random set of
inputs into an equivalence class, or use hyperslices omitting certain dimensions in particular
filters (Sutton, 1996). Although hashing techniques may help to overcome storage problems,
it collapses states together which can be widely apart. We expect that this will often not lead
to good generalization performance. Therefore, we prefer hyperslices which group inputs by
using subsets of all input dimensions. E.g. if we say that we see a green object which is larger
than 5 meters, we could already infer that the object might be a tree, although there may be
other options as well such as a green house or a mountain. If we add multiple descriptions
(filters) of the object together, and all descriptions agree with the object, we may be certain
which object we are examining,.

Computing the output. The first step in computing the output is applying all filters
to the input vector. Each filter uses particular input dimensions to create its universe, and
partitions that universe using hyperboxes. Given an input, it projects the input vector in its
universe and examines which of its cells encloses the input.

More formally: a filter is represented as a multi-dimensional array. Given an input z,
the filter uses the relevant features to search for the cell (out of {ci,...,c,, }, where n, is
the number of cells) in which the input can lie. Applying all filters returns the active cells
{f1,-.., f-}, where z is the number of filters.

The output value y given input z is calculated by averaging the outputs of all activated

cells yi (fr): z
y=> y(fr)/z
k=1

where yi(fx) is the output of the activated cell fj of filter k.
Learning rule. Training CMACs is an extremely simple procedure: we just adapt the
output values of all activated cells. Thus, for all activated cells we compute:

ve(fe) < welfi) + Z(d = el 1)),

where « is the learning rate.

Filter design. The design of the filters is very important, since the construction of the
filters determines what can be learned, and how fast that can be learned (more cells need
more examples). There are two important matters in designing filters: (1) Which features to
combine inside each filter. This introduces bias on which relationships can be learned. (2)
How coarsely to divide each filter into cells. This determines the generalization behavior and
the attainable accuracy of a filter. The possible choice of (1) and (2) is restricted by space
limitations, since combining D input features each divided into n. parts, would mean that our
multi-dimensional cube consists of n” cells.® Note that there is no necessity to have a fixed
uniform decomposition. We could also use adaptive variable-resolution filters to optimize the
decomposition of a filter into cells, or activate a variable number of filters for different inputs,
which makes richer descriptions possible for objects which require more specification.

Example of effective filter design. Sometimes a particular filter design for CMACs
can be very effective. E.g. consider Figure 7.3(a) which shows an empty maze with a starting
state and a goal state. We can construct two filters for this maze, one slicing the maze up

8This is the worst case for which all cells can be made active, otherwise if some cells are never activated
an implementation based on hashing tables could significantly decrease space requirements, while keeping the
search for active cells efficient.
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in vertical slices (Figure 7.3(b)) and one for slicing the maze up into horizontal slices (Figure

7.3(c)).

S S

Figure 7.3: (A) A maze with starting state S and goal state G. (B) One filter slices the maze
up into vertical slices (the vertical position does not matter). (C) The second filter slices
the maze up into horizontal slices. Together the filters can be used for efficiently learning a
solution.

These filters do not allow for accurately representing the optimal value function, but the
approximated value function can be used for computing the optimal policy — horizontal
filters (except for the last) will learn that going north is the best action, and vertical filters
(except for the last) learn that going east is the best action. Good filter design also means
that we have to learn less: for the maze in Figure 7.3(a) and the usual 4 actions, we would
only have to learn 10 x 4 instead of 24 X 4 values.

Overgeneralization. If the maze would have blocked states, things get more compli-
cated, since the filters would overgeneralize and filter away the exceptions. If there are few
blocked states, we can still hope but not guarantee that the dynamics of the learning process
will converge to a path which circumvents the blocked states. A more sophisticated approach
to deal with few exceptions is to construct additional filters which are made active in the
neighborhood of these exceptions and which add something to or override the values of the
default filters. With many blocked states, we would store almost all exceptions, which would
mean that we would in principle combine both features in a filter and this would of course be
equivalent to the lookup-table representation.

Generalization by sharing features. CMACs also allow for another kind of general-
ization by using multiple filters sharing the same feature space. In Figure 7.4 we show how
multiple filters on the same input creates a smoother generalization. Using more than the
shown 2 filters would make this even more pronounced. Using many coarse filters leads to
a dynamical refinement of the function — each filter adds something while still being very
general.

7.2 Function Approximation for Direct RL

We have introduced a number of different FAs which can be used for approximating value
functions. In this section we describe how they can be combined with direct RL methods and
we analyse possible problems arising from such combinations. Even if we are well acquainted
with a particular FA, we have to keep in mind that training a FA with RL instead of with
supervised learning puts different demands on the FA. For instance, in RL examples are gen-
erated according to the policy and value function, which themselves are changing. Therefore
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Figure 7.4: (A) A design of two filters which splice a single input dimension in parts. When
added, they allow for a partitioning into 8 different regions. (B) A single filter which partitions
the input into 8 regions. (C) We examine what happens if we receive training examples
(the circles) — the vertical distance to the line is the desired output. We can see that the
combination of the two filters from (A) leads to some kind of generalization behavior. (D)
With a single filter, there is no generalization across cells. The first filter design results in a
smoother function due to its hierarchical approach — some example’s output is dynamically
refined if we add multiple filters.

the function we try to learn is constantly changing, which makes the task very hard. On the
other hand, in supervised learning we are usually interested in the most accurate approxi-
mation, whereas in RL we are much more concerned with the performance of the resulting
policy. As we have seen in Chapter 4, we can have good policies with quite poor value function
approximations. What is important, however, is that the preferential order between different
actions is reflected in the value function.

Representational issues. We are interested in storing the Q-function with FAs. For
this, we need to compute outputs Q(z,a) for all actions a € A. We will do this by using
different functions for different actions F,(z):

Q(z,a) = Fu(z)

A different way would be to put the actions in the input, but this makes learning different
mappings for different actions more difficult. For continuous actions, however, we cannot use
one FA for one action and thus we would need to use different methods, dependent on the
used FA. E.g. for linear networks we could use the action(s) as part of the input and for
CMACs we could discretize the action space. We assume in the following that we have a
finite set of actions.

Thus, with linear networks we will use | A| networks, one for each action. For a multi-layer
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feedforward neural network, we can have different networks for each action or we can share
the hidden units of one network to approximate all Q-values. Lin (1993) compared both pos-
sibilities and found that one network for one action worked better. For other tasks sharing
the hidden layer may be worthwhile, however, since the hidden units need to settle down
to extracting more characteristic features when they are used for describing the complete
problem domain (shared by all actions) and that may improve generalization performance.
E.g. Caruana (1996) added outputs for a prediction problem which puts an additional burden
on the learning task, but lead to an improvement of the learned approximation for the re-
quested output. Baxter (1995) presents a general theory of bias learning based upon the idea
of learning multiple related tasks with a shared representation. Generally speaking, sharing
parameters for learning multiple actions is fruitful if the tasks share mutual information.

The neural gas and CMAC architectures use for each neuron and filter/cell Q-functions
of the form Q(n;,a;) and Q¢(c;, aj), respectively.

7.2.1 Extending Q()) to function approximators

We can combine TD(A), Q-learning, and all Q(A) methods with function approximators.
One should be careful choosing a combination and learning parameters, however, since the
resulting learning system may not always be stable. E.g. if we allow a FA to adapt itself
quickly to maximize learning speed, it can happen that a specific “lucky” trajectory leads to a
large increase of values of states visited by the current trajectory. This may change the overall
value function dramatically and can lead to undesirable large changes of the policy. Although
a large change of the approximation of a FA for supervised learning can also happen, we can
still relearn a previous good approximation since the training set is stored. Since in RL the
policy generates the examples, we may have much larger problems relearning “good” value
functions. Furthermore, since in RL the Q-function changes and the learning examples are
drawn from a noisy source with often a sequence of (highly) correlated examples, there can
be many unreliable updates or drift of the value function. Thus, our FAs should be robust
enough to handle such problems.

Offline Q(A). To learn Q-values we monitor agent experiences during a trial in a history
list with maximum size H,,q,. At trial end, the history list H is:

H = {{$t17atlart1a V(-’Etl)}a ceey {fEt*,at*,Tt*,V(SUt*)}}

Here z; is the input seen at time ¢, a; is the action selected at time ¢, r; is the reward received
at time ¢, V(z¢) = Maz,{Q(x¢,a)}, t* denotes the end of the trial, and ¢! denotes the start
of the history list: t! « 1, if t* < H,p oz, and t! < t* — H,,, + 1 otherwise.

After each trial we calculate examples using offline Q()\)-learning. For the history list
H, we compute desired Q-values Q¥ (t) for selecting action ay, given z; (t = t!,...,t*) as
follows:

Qnew(t*) e
Q) =+ - [A-QUU(E+1) + (1= A) - V()]

Once the agent has created a set of offline Q()) training examples, we train the FAs to
minimize the Q(\)-errors.

Offline multi-agent Q(\). In Chapter 3, we have already discussed using multiple
autonomous agents simultaneously and presented two algorithms for using online Q()) to
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learn a shared value function. We can also combine offline Q(\) with multiple agents by
using a different history-list for each different agent. In the experiments later in this chapter,
we will use these history-lists independently. After having created multiple lists of training
examples, we process the history-lists by dovetailing as follows: we train the FAs starting
with the first history list entry of agent 1, then we take the first entry of agent 2, etc. Once
all fist entries have been processed we start processing the second entries etc.

Online Q(\) for function approximators. To combine online Q(A) with FAs, we use
eligibility traces. The eligibility trace l;(wyg, a) is used for weight (adjustable parameter) wy,

and action a as follows:
t—1

le(wgya) = (YA ¢ (wy, a),
i=1

where (?(wy,a) is the gradient of Q(z;,a) with respect to the weight wy:
_ aQ(mu a)

Bwk

Ci(wka a)
and the online update at time ¢ becomes:
Ywp do: wy  wy + alei¢t(wy, a) + eds(wy, a)]

where as usual €}, = ry + YV (2141) — Q(zt,a¢) and e = ry + YV (2411) — V().

Fast Q(X) can also improve matters in case of LFAs. Suppose a LFA consists of | S| possible
state space “elements” (e.g. neurons or total filter cells). The Q-values of z < |S| elements
are combined to evaluate an input (query). Here the update complexity of fast Q(\) equals
O(z|A]). This results in a speed-up of @ in comparison to conventional online Q(\). For
global approximators z = |S|, so the method is not helpful. For quantized state spaces with
fine resolution, the gain can be quite large, however.

Online Q(\)-learning for CMACs. We will show in detail how we combine fast
Q(A) with a LFA, in this case CMACs. Using a fixed partitioning, a continuous input z; is
transformed into a set of active features: {ff,f3,...,fL}, where z is the number of active
features (tilings).

Before using Q(ff,a) we call the Local Update procedure for all features (f{,..., ff) so
that their Q-values are up-to-date. Local Update stays almost the same (except that we use
different variable names).

The Global Update procedure now looks as follows:

CMAC Global Update(z,at,re, Ter1) ¢

1) For ¢ is 1 to z, Ya€ A Do
1a) Local Update(fit'i'l,a)
2) Vizinr) © maxg Yoy Qi(f )2
3) e« (re + 7V (we11) — Qlzt, ar))
4) et (re + 7V (@e41) — Viw))
5) qst — ,y)\qstfl
6) A A+ et
7) For ¢ is 1 to z Do
7a) Local Update(f}!,a;)
) Qi(ff,at) « Qi(ffar) + a(ff, ar)e}
7c) U'(ft as) < U'(fE, as) + ﬁ
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Remarks about online multi-agent Q()\). To use online Q(\) with multiple agents,
we could use the connecting traces approach from Chapter 3. We have not done so in the
experiments in this chapter, however. We have used different eligibility traces for different
agents, however, since that is a necessity for multi-agent learning.

7.2.2 Notes on combining RL with FAs

In the following we will shortly describe the representational and convergence issues for using
our different FAs for RL.

Linear networks. We know that if the number of input features is small compared to
the total number of (distinct) states, we strongly limit the kind of value functions which can
be represented accurately by linear networks. However, we can use many inputs and higher
order inputs as well, which makes linear networks more powerful. E.g. in the limit we use a
weight for each state, and we have a tabular representation with known convergence results.

The networks try to learn a linear approximation of the Q-functions over the entire input
space minimizing the squared error over all training examples. For many problems, there may
be small differences between the Q-values of different actions. E.g. postponing the optimal
action for one time step may only cause the expected discounted future reward (Q-value) to
decay by the discount factor (if nothing changes, we may still select the optimal action at
the next time step). That’s why the learning dynamics may cause large policy changes which
makes policy evaluation hard. Thus, we should be extremely careful setting the learning rate
for linear nets.

Neural gas. The approximation of a neural gas representation may be very accurate,
especially with a large number of neurons. Since RL becomes much slower when we use many
neurons (retrieval time increases linearly and learning time even worse with the number of
neurons), there exists a tradeoff between accuracy and learning time. Therefore we have to
be careful choosing the number of neurons or alternatively the growthrate of a neural gas
structure. Note that just a few neurons can already be sufficient for learning a good policy
and make the learning problem a lot easier.

For the neural gas, we have to be careful changing the structure. If neurons move fast
around, this may cause large policy changes which makes learning a (more or less fixed)
value function very hard. If we add a neuron, we initialize the Q-value of the selected action
according to the desired Q-value (computed by e.g. offline Q(\) shown above). The Q-values
of the other actions of the new neuron are computed by weighing the Q-values of existing
neurons according to their posterior probabilities hy. One difficulty is that the decision to
add neurons is based on TD-errors, which themselves may be very noisy. Since it is difficult
to decide whether the example is noisy or the FA is unable to learn a correct mapping, we
just add neurons and hope they will shape themselves inside the structure by learning from
future examples.

CMACs. Using CMACs with direct RL may work quite robustly, since it always maps
the same state to the same set of activated cells. Furthermore, CMACs may approximate
the value function arbitrarily well given a large number of filters and cells and is shown to
converge to the least squared error approximation on a set of training data given proper
learning rate annealing (Lin and Chiang, 1997). In practice a lot of CMAC’s functionality
depends on the grouping of states. If a set of states with highly different values is grouped
together by a cell, then the learned mean value of these states may not be very useful and
the cell’s updates will have large variance. If each cell groups states together with similar
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Q-values, then learning may be quite fast.

For RL this means that future trajectories of states grouped by a cell should be as similar
as possible. In general this will not be the case, however. Furthermore cells may be biased
or repelled from particular actions. This can cause problems for learning the policy. E.g.,
some actions which are only good in few states may never get selected. Such problems can
be overcome by making the filters sufficiently specialized, however.

Convergence issues. Tsitsiklis and van Roy (1996) proof convergence of TD(\) methods
for function approximators using linear combinations of fixed basis functions (note that the
linear networks and CMACs belong to this class, neural gas do not since the neurons are
not fixed). In their proof, they stress the importance of sampling from the steady-state
distribution of the Markov chains. This can be done by generating trajectories using the
simulator/real environment. Learning by making single simulation steps starting in a fixed
set of preselected input points may cause divergence (Boyan and Moore, 1995), however.
Finally, Tsitsiklis and van Roy (1996) suggest that higher values of X\ are likely to produce
more accurate approximations of the optimal value function. This may imply as well that
TD(A) methods travel along lower mean squared error trajectories in parameter space for
larger values of A. Unfortunately, little understanding of the convergent behavior of changing
policies as that of using Q(X) with function approximators is available, however.

7.3 World Modeling with Function Approximators

Combining dynamic programming with function approximators was already discussed by
Bellman (1961) who proposed using quantization and low-order polynomial interpolation for
approximately representing a solution (Gordon, 1995a).

Transition modeling. We can use a function approximator to represent not only the
value function, but also the world model. For this, it is best to use local function approxima-
tors. Global function approximators may be very useful for modeling deterministic processes,
but have problems to model a variable number of outgoing transitions due to their rigid struc-
ture. Examples of using global FAs for world modeling are Lin’s world modeling approaches
(1993) for modeling a complex survival environment and explanation based neural network
learning for learning a model of chess (Thrun, 1995). Although using these models helped
speeding up learning a good policy, they cannot be easily combined with DP algorithms.

On the other hand, if we partition the space into a finite set of regions with local function
approximators, we allow for a much higher variety of transitions and estimating transition
probabilities becomes more precise and easier. Furthermore, when we use discrete states, we
have the advantage of being able to apply DP-like algorithms to compute the value function.

Estimating transitions. The largest problem which has to solved before DP can be
used fruitfully in combination with LFAs is that we need a good partitioning of the input
space so that estimated transition and reward functions reflect the underlying model well.
Given the positions of the cells (or neurons), we can use sampling techniques to estimate
the transition function. We may use Monte Carlo simulations to sample a state, map this
to an active cell, select an action, use the simulator or environment to make a transition to
the successor state and map this back to the next active cell. By counting how often each
transition occurs, we can estimate the transition probabilities between cells and similarly we
can compute the reward function (see Chapter 4).

When we have a coarse partitioning, there may be many transitions from a cell which stay
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inside that cell. Those recurrent transitions make computing a correct value function harder.
Only rewarding transitions or transitions going to neighboring cells are useful for computing
the value function and policy, since they show differences between different actions. The finer
the representation, the better we may model the true underlying dynamics, but the larger the
problem of noise. Furthermore, with a fine representation we need much more experiences
before we have learned reliable transition probabilities and rewards, and DP becomes much
slower. Finally, if the partitioning is changing, we have to recompute transition probabilities
and rewards, which may not always be easy.

Note that a model gives us the advantage of different splitting criteria: (1) If a (hypothet-
ical) split will change the value function significantly, we keep it, and continue splitting; (2)
If a current transition is unexpected according to the model, we can split the cell to be better
able to predict the dynamics. Moore and Atkeson’s partigame algorithm (1995) does exactly
the latter: the algorithm greedily executes a goal directed behavior, but whenever executed
actions in a cell do not make a transition to the next cell as expected, the algorithm splits
the cell so that more accurate predictions become possible. A difficulty of this approach is
that stochasticity in the transition function makes it difficult to know whether splitting the
cell will make the ability to predict the successor more accurate or just increase the model’s
complexity. A solution to this may be to use hypothetical splits and collect more experimental
data. Another problem is that single splits may not always be helpful to see any differences,
so that multiple splits (e.g. in multiple dimensions) have to be tried out at the same time
which is computationally quite expensive.

Sometimes, learning a model is not very difficult — if we have a deterministic MDP,
discrete actions and discrete time, we could learn a perfect deterministic transition function
between cells by making the coarseness of the representation sufficiently small, although for
high-dimensional spaces the required space complexity may make this approach infeasible.

Learning imperfect models. Although learning an accurate model is hard, we can
learn useful, but incomplete models. Such models can be used for more reliable and faster
learning of good policies. E.g. consider a soccer environment in which we do not try to
predict the positions of all players and the ball (which would be infeasible due to the huge
amount of possible game constellations), but only try to estimate the position of the ball at
each following time step. Such a model is much easier to learn and even although it may not
be very accurately, it could be quite useful for planning action sequences.

First we will discuss learning linear neural network models and we will see that this leads
to a very simple equation for estimating the value function. Then, we will discuss estimating
models for neural gas and CMAC architectures after which DP or PS is used to compute
value functions.

7.3.1 Linear Models

Linear models are the simplest models, but they can only be used to accurately model a
deterministic evolution of the process. The goal is to estimate the linear model L ° (a square
matrix) which maps the input vector at time ¢, z; to its successor zyy1:

x?_H =zl L+

°To simplify the following discussion, we leave action parameters out of the nomenclature.
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where 27" denotes the transpose of z and 7 is a vector which accounts for white noise. We
also want to model the reward function. For this, we use a linear model w, to compute the
expected reward r; given that we see y:

ry = :cr‘trwr

Note that we use a linear reward function which makes the following short introduction to
linear models somewhat simpler, but for practical use it has some disadvantages. We should
realize that for infinite state spaces, the agent can continuously increase its received rewards
by making actions which follow the direction of the linear reward plane. Therefore optimal
performance can never be reached. We can only use this linear reward function if the state
space is bounded by the transition function. Many other researchers have used a quadratic
reward function, written as (r; = zyw,z¢), which ensures that all positive rewards are bounded.

Computing the models. Given a set of example transitions (training patterns) (z¢, z¢41),
and emitted rewards (z,7¢), we can compute L and w,. First we collect all vectors z; in the
matrix X and the vectors z;;1 in the matrix Y by putting the vectors as row vectors in the
matrices. Then, we can compute L as follows:

L=(XTx)"'XTy (7.2)

Note that if the vectors (Xi,...,X,,) are orthonormal,’® then (X7 X)~! is identical to the
identity matrix I, so that we can simplify Equation 7.2 to:

L=XTy
We compute the weight vector w, for returning the immediate reward as:
w, = (XTX) 1 XTr

where 7 is the m-dimensional vector which stores all immediately emitted rewards (rq,...,7.,).
Computing the value function. We approximate the value of a state by using the
linear network (see above):

V(z) = zTw

where the vector w is the weight vector and for simplicity includes the bias parameter (an
additional on-bit is included in the input vector).
Now we can rewrite the original DP Equation 2.2 from Chapter 2:

V =~PV + Diag' (PRT)

as
w = yLw + w,

for which we require that all absolute eigenvalues of L are smaller or equal to 1 (otherwise
the value function is non-existent). This we can rewrite as:

w = (I —~yL) 1w,

10Tn practice this is not very likely to happen, although it could happen if, for example, we use input vectors
with a single bit on to model different discrete states.



132 CHAPTER 7. FUNCTION APPROXIMATION FOR RL

Which gives us the solution for a linear model.

Bradtke and Barto (1996) present an extensive analysis of linear least squared methods
using a quadratic reward function combined with TD learning. They proof that if the input
vectors are linearly independent and each input vector is of dimension equal to the number
of states, the weights converge with probability 1 to the true value function weights after
observing infinitely many transitions (examples).

These linear models are also called optimal linear associative memory (OLAM) filters
(Kohonen, 1988). There also exist more complicated linear models such as linear quadratic
regulation (LQR) models which extends OLAM by allowing the modeling of interactions
between inputs (Landelius, 1997).

7.3.2 Neural Gas Models

In contrast to global FAs, local models can be simply combined with world models and can
in principle model the underlying MDP arbitrary accurately — we can make a (fine-grained)
partitioning of the input space into cells and compute transition probabilities by counting
how often one cell has been activated after another.

Distributed /Factorial representation. Counting is easiest if we use WTA to create a
set of discrete regions, since after each transition we only have to change three variables: the
counters of the transitions and the variable which sums the transition rewards. If we would
use smooth LFAs, we need to update all transitions between cells which were activated. This
takes much longer: in the worst case of a full distributed probabilistic representation this
takes O(Z2), where Z is the number of neurons. In this case we could just connect cells which
are more activated than some threshold to speed things up.

Since WTA causes discontinuities at the borders of two subspaces, there may be advan-
tages in smoothly combining the values of a set of states (Moore et al., 1997; Munos, 1996).
Schneider (1997) uses multiple states to model uncertainty in model-based learning, and shows
that dealing with uncertainty can be improved by interpolating over a larger neighborhood.

Gordon (1995) shows conditions under which the (approximate) value iteration algorithm
converges when combined with function approximators which compute weighted averages of
stored target values. An interesting insight which he offers is the following: if a sample point
uses a cell with some (normalized) weight, then this weight can be seen as the probability
of making a step to this cell from the sample point. This may be a good way of initializing
transition probabilities after inserting a new cell.

Again we have to learn a neural gas structure and the Q-function. The latter is done by
estimating the model and using our prioritized sweeping algorithm to manage the updates.

Learning structure. We used the same approach as before to learn the structure.
Again, after each game we computed new Q-values according to Q(\), but now we used these
values only to split states and not for computing a new Q-function. We also used the same
conditions as before for adding neurons. Furthermore we initialize the transition variables to
and from the new neuron to 0. Note that we may improve this initialization procedure by
weighing the transitions from neighboring neurons according to their distances. Accurately
initializing the transition probabilities and rewards is difficult, however, since we never know
the exact dynamics at a new (unmodeled) region. Another way to learn the structure is to use
hypothetical splits and model the dynamics at the new hypothetical cells without immediately
using them for evaluating actions. Then we can estimate whether using them for real will
significantly change the transition probabilities and the value function. If they would, we
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keep them, otherwise we try new splits. We have not tried this algorithm, however, although
it has the advantage that newly introduced cells may be guaranteed to improve the model
and we have good initial transition probabilities for them.

Estimating the model /Learning Q. To estimate the transition model for the i*" neu-
t t+1 _ ]
at the next time-step, given the selected action a. Thus, after each (i,a,j) transition we
compute:

ron, we count the transitions from the active neuron n* = 7 to the active neuron n

Cij(a) < Cij(a) +1 and Cj(a) + Ci(a) +1

We can also take all activated neurons (in the smooth competition case) into account by
updating counters dependent on their gates. We do this by computing Vi, Vj:

Cij(a) < Cjj(a) + gfg;-"'l and Cj(a) + C;i(a) + ¢!

These counters are used (see Chapter 4) to estimate the transition probabilities P(j|i,a) =
P(n't! = jin* = i,a). For each transition we also compute in similar ways the average reward
R(i,a,j) by summing the immediate reinforcements over the transition from the active neuron
1 to the next active neuron j by selecting action a.

Our prioritized sweeping. We apply our prioritized sweeping to update the Q-values
of the neuron/action pairs. After each time step, updates are made via the usual Bellman
backup (Bellman, 1961):

QUi,a) < >_ P(jli, )YV (§) + R(ia, )

After each action we update the model and use PS to compute the new Q-function. Details
of the algorithm are given in Appendix D.

7.3.3 CMAC Models

We now describe a world modeling approach for RL which uses CMACs. We know that
learning accurate models estimating transitions between complete world states is very hard
for complex tasks. E.g. the same world state may only appears once in an agent’s life time.
As an example consider a world state consisting of a number of input features for which the
first feature would oscillate between two values: 1 = 1,2,1,2,1,.... A second feature could
oscillate between 3 values, a third between 5 values and so on. If we would use one filter
for each feature, we could easily learn the correct predictive model (in e.g. 2 to 13 steps).
Estimating the transition function of the complete state vector with a single filter would take
a lot of time (e.g. 2 * 3 *5* 7* 11 * 13 = 30030 steps), however, since a complete period
in input space would cost so many steps.

Therefore, instead of estimating full transitions models, we can sometimes profit sig-
nificantly from using a set of independent models and estimating their uncoupled internal
dynamics. In this way, we can study the dynamics of an object by separating it from the rest
of the world. If the separation holds, we can learn perfect models.

Our goals are to (1) create a set of filters which can be used for modeling the world, and
(2) estimate parameters given the set of designed filters.

Creating filters. We have seen that with a completely observable discrete world and
lookup tables, we can estimate a model and perfectly store the transition probabilities to
successor states. This allows to compute answers to questions such as: “what is the expected
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probability of entering the goal state within N steps?” Furthermore, it is for static goal-
directed environments always possible to select an action which is expected to increase the
state value.

For CMAC models, we can in general not answer the question above, and it may not always
be possible to select actions which lead to a larger value for each filter. If filters contradict
each other, e.g., if one filter advises a particular action which is expected to decrease the value
of another filter, learning problems may arise. Usually this happens in the initial phase, but
such problems may be resolved due to learning, however.

Suppose actions are executed which change the world state, but keep the activated cell
of a particular filter the same. Such actions will not be considered by that filter to improve
the state value. After some time, an action is executed which changes the activated cell of
the filter, which is now activated in a much better world state. Therefore, the filter learns a
large preference to select that action immediately. This may lead to a policy change — in a
new trial the new action may be tried out a number of times, but leads to failure. The result
is that other filters will start penalizing that action in their currently activated cells and this
will suppress that action from being selected immediately. Finally, the system may converge
to cell/action values which postpone the action for a while after which it will be selected.

Difference to CMAC-Q. The CMAC Q-learning system uses the overall evaluation of
the complete set of filters to update previous filter/cell/action triples, whereas CMAC models
keep filters separated from each other. Thus, for the example above, Q-learning may learn Q-
values of the filter which approve of the first action, even although the action does not change
the filter’s cell. However, once the other action needs to be selected, the filter itself may not
have learned a large preference for that action. Thus, for Q-learning, the final Q-functions
of filters may contain Q-values of different actions which are much closer to each other than
those learned by the CMAC model (which may use large preferences and disapprovements).

Estimating the model. To estimate the transition model for the k" filter, we count

the transitions from activated cell ff to activated cell f};“ at the next time-step, given the
selected action a. Thus, for all filters £k = 1,..., 7, we compute after each transition:

Cf}éf,:"'l (a) «—C ,if,:"'l (a) +1

These counters are used to estimate the transition probabilities for the k** filter Py(c;|c;,a) =
P(f;é"'l = cj|f,’é = ¢j,a), where ¢; and ¢; are cells, and a is an action. For each transition
we also compute the average reward Ry(c;,a,c;) by summing the immediate reinforcements,
given that we make a step from active cell ¢; to cell ¢; by selecting action a.

Prioritized sweeping (PS). Again we apply prioritized sweeping (PS) to compute the
Q-function. This time we update the Q-value of the filter/cell/action triple with the largest
size of the Q-value update before updating others. Each update is made via the usual Bellman
backup (Bellman, 1961):

Qy(ciya) ZPf(lecz’a a)(YVi(cj) + Ry(eiy a, ¢j))

After each agent action we update all filter models and use PS to compute the new Q-
functions. Note that PS may use different numbers of updates for different filters, since some
filters tend to make larger updates than others and the total number of updates per time step
is limited. The complete PS algorithm is given in Appendix D.
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Incrementally constructing filters. If there would be rare interactions between fea-
tures, we could model them using filters based on their combination. This could mean that
we may start out with a lot of parameters, however. A better way may be to incrementally
construct and add filters. We can construct filters by making new combinations of inputs.
Then we can add them in several ways: (1) we always use them, (2) filters can be only invoked
if some condition holds, e.g. if some other particular filter/cell is activated, (3) filters may
replace other filters if some condition holds.

The good thing of CMACs is that we can easily add filters without making large changes
to the policy. Thus, adding filters may only improve the policy on the long term, although
the improvement is at the expense of larger computational costs (evaluation costs are linear
in the number of filters).

CMAC models are related to different kinds of probabilistic graphical models (Lauritzen
and Wermuth, 1989). Both can be used to learn to estimate the dynamics of some state-
variables. CMACs uses a committee of experts for this, whereas Bayesian networks fuse
probabilistic dependencies according to Bayes’ rule. This makes inference in CMAC models
faster, although they will in general need more space to store an accurate model.

7.4 A Soccer Case Study

We use simulated soccer to study the performances of the function approximation methods.
Soccer provides us with an interesting environment, since it features high-dimensional input
spaces and also allows for studying multi-agent learning.

7.4.1 Soccer

Soccer has received attention by various researchers (Sahota, 1993; Asada et al., 1994;
Littman, 1994a; Stone and Veloso, 1996; Matsubara et al., 1996). Most early research fo-
cused on physical coordination of soccer playing robots (Sahota, 1993; Asada et al., 1994).
There also have been attempts at learning low-level cooperation tasks such as pass play (Stone
and Veloso, 1996; Matsubara et al., 1996). Littman’s (1994) used a 5 x 4 grid world with two
single opponent players to examine the gain of using minimax strategies instead of using best
average strategies. Learning complete soccer team strategies in more complex environments
is described in (Luke et al., 1997; Stone and Veloso, 1998).

Our case study will involve simulations with continuous-valued inputs and actions, and
up to 11 players (agents) on each team. We let team players (agents) share action set and
policy, making them behave differently due to position-dependent inputs. All agents making
up a team are rewarded or punished collectively in case of goals. We conduct simulations
with varying team sizes and compare several learning algorithms: offline Q())-learning with
linear neural networks (Q-lin), offline Q(A)-learning with neural gas (Q-gas), online Q(X)
with CMACs, and model-based CMACs. We want to find out how well these methods work
— what are their strengths and weaknesses? This gives us the possibility to increase our
understanding of why some function approximators work well in combination with RL for
some tasks and why some do not.

Evolutionary computation vs RL. Finally, we will compare the performances of the
RL methods to an evolutionary computation (EC) approach (Holland, 1975; Rechenberg,
1971) called Probabilistic Incremental Program Evolution (PIPE) introduced in (Salustowicz
and Schmidhuber, 1997). A PIPE alternative for searching program space would be genetic
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programming (GP) (Cramer, 1985; Koza, 1992), but PIPE compared favorably with Koza’s
GP variant in previous experiments (Salustowicz and Schmidhuber, 1997). With the compar-
ison to an EC method, we want to find out in what RL is particularly good or bad. When
we look at backgammon, for which both approaches have been used before, the EC method
described in (Pollack and Blair, 1996) was able to learn much faster in the initial phase, but
did not lead to such a good final performance as that of TD-Gammon (Tesauro, 1992). Thus,
it seems that EC can perform a faster coarse search, whereas getting high performance results
in the long term is easier done with RL.

PIPE. PIPE searches for a program which achieves the performance. Each program is
a tree composed of a set of functions such as {sin, log, cos, +, exp}, and terminal symbols
(input variables and a generic random constant). The system generates programs according
to probabilistic prototype trees (PPTs). The PPTs contain adaptive probability distributions
over all programs that can be constructed from the predefined instruction set. The PPTs
are initialized with probabilities for selecting a terminal symbol at a node and probabilities
for selecting a function. If the former probabilities are set to high values, the generated
programs are usually quite small (although learning can cause generated programs to grow
in size). After generating a population of individuals, each individual is evaluated on the
problem (e.g. by playing it one game against the opponent). Then, the best performing
individual (the one which maximizes the score difference) is used for adapting the PPTs: all
probabilities of functions used by the programs of the best individual are increased so that
generating the winning individual gets more probable (e.g. after adapting the probabilities,
the probability that a newly generated program would be the best program from the previous
generation is 20%). Thus, the search always focuses around the best performing program. To
limit the problem of ending up in local minima, a mutation rate is added to the system which
randomly perturbates probabilities in the PPTs. A large difference with GP is that instead
of individuals, a probability distribution over individuals is stored, and that no crossover is
used. Therefore PIPE is closer related to Evolutionary Strategies (ES) (Rechenberg, 1989)
and PBIL (Baluja, 1994).

7.4.2 The Soccer Simulator

We wrote our own soccer simulator, although there are also other, more sophisticated, sim-
ulators available.!! Our discrete-time simulations feature two teams with either 1, 3 or 11
players per team. We use a two-dimensional continuous Cartesian coordinate system for the
field. The field’s southwest and northeast corners are at positions (0,0) and (4,2) respectively.
Goal width is 0.4. As in indoor soccer the field is surrounded by impassable walls except for
the two goals centered in the east and west walls. Only the ball or a player with ball can
enter the goals. There are fixed initial positions for all players and the ball (see Figure 7.5).

Players/Ball. Players and ball are represented by solid circles consisting of a centre
coordinate and a real-valued orientation (direction). Initial orientations are directed to the
east (west) for the west (east) team. A player whose circle intersects the ball picks it up and
owns it. The ball can be moved or shot by the player who owns it. When shot, the speed of
the ball (vp) gains an initial speed (0.12 units/time step) and then decreases over time due
to friction: vp(t + 1) = vp(t) — 0.005 until vy(t) = 0. This makes shots possible of 1.5 units
(37.5% of the length of the field).

1See e.g. RoboCup JavaSoccer from Tucker Balch, which follows Robocup rules, retrievable from

http://www.cc.gatech.edu/grads/b/Tucker.Balch/JavaBots/EDU/gatech/cc/is/docs/index.html.
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1D (-

Figure 7.5: 22 players and ball (in the centre) in initial positions. Players of a 1 or 3 player
team are those farthest in the back (defenders and/or goalkeepers).

Players collide when their circles intersect. This causes the player who made the respon-
sible action to bounce back to his previous positions at the previous time step. If one of the
collision partners owned the ball prior to collision, the ball will change owners. There are
four actions for each player:

e go_forward: move player 0.025 units in its current direction if without ball and 0.8-0.025
units if he owns the ball.

e turn_to_ball: change the player’s orientation so that the player faces the ball.

e turn_to_goal: change the player’s orientation so that the player faces the opponent’s
goal.

e shoot: If the player does not own the ball then do nothing. Otherwise, to allow for
imperfect, noisy shots, turn the agent with an angle picked uniformly random from the
interval [—5°,5°], and then shoot the ball according to the player’s new orientation.
The initial ball speed is: v,ﬂ”it =0.12.

Action framework. A game lasts from time ¢ = 0 to time t.,4 = 5000. The temporal
order in which players execute their moves during each time step is chosen randomly. Once
all players have selected a move, the ball moves according to its speed and direction, and we
set t «+ t+ 1. If a team scores (or t = t.,q), then all players and ball will be reset to their
initial positions.

Input. At a given time ¢, player p’s input vector consists of 14 basic features:

e Three boolean inputs that tell whether (1) the player has the ball; (2) a team member
has the ball; (3) the opponent team has the ball.

e Polar coordinates (distance, angle) of both goals and the ball with respect to the player’s
orientation and position.

e Polar coordinates of both goals relative to the ball’s orientation and position.
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e Ball speed.

These 14 basic features do not provide information about the position of the other players
including the opponents. Therefore, we designed also a more complex input consisting of 16
(1 player) or 24 (3 players) features by adding the following features:

e Polar coordinates (distance and angle) of all other players w.r.t. the player ordered by
(a) teams and (b) distances to the player.

For Q-lin, Q-gas and PIPE, we change the input of distance d and angle p in [-II,II], by
applying the following functions to them before giving the input to the learning algorithms:
d + % and p < e 200°
so that it is able to focus its action selection on small distances and angles. For the other
algorithms it should not matter much.

. This was mainly done to simplify Q-lin’s function representation,

7.4.3 Comparison 1: Q-lin, Q-gas and PIPE

We first compare the following methods: linear networks and neural gas trained with offline
Q(A), and the evolutionary method (Rechenberg, 1971; Holland, 1975; Koza, 1992) PIPE
(Salustowicz and Schmidhuber, 1997). Results have been previously published in (Salustowicz
et al., 1998; Salustowicz et al., 1997a). .

We have used an offline Q(\) variant (using accumulating traces) for training the FAs.
The reason for using offline Q(\)-learning is that reinforcement is only given once a goal is
scored, so that the largest reason of using online learning, improving initial exploration, does
not apply, whereas offline learning is computationally cheaper.

Experimental set-up

Opponent. We train and test all learners against a “biased random opponent” BRO. BRO
randomly executes actions, but due to the initial bias in the action set it performs a goal-
directed behavior. If we let BRO play against a non-acting opponent NO (all NO can do is
block) for twenty 5000 time step games then BRO always wins against NO with on average
72 to 0 goals for team size 1, 45 to 0 goals for team size 3, 109 to 1 goals for team size 11.

We also designed a simple but good team GO by hand. GO consists of players which move
towards the ball as long as they do not own it, and shoot it straight at the opponent’s goal
otherwise. If we let GO play against BRO for twenty 5000 time step games then GO always
wins with on average 417 to 0 goals for team size 1, 481 to 0 goals for team size 3, and 367 to
3 goals for team size 11. For this simulator, GO executes a very good single agent strategy.
Note, however, that GO implements a non-cooperative strategy, this makes it suboptimal for
larger team sizes.

Game duration and inputs. We play 3300 games of length %.,4 = 5000 for team sizes
1 and 11 (we will not show results with 3 players here, since they are very comparable to
those of 1 and 11 players). Every 100 games we test current performance by playing 20 test
games (no learning) against BRO and sum the score results.

For all methods we used the 14 basic input features (so without the additional information
about other players).

Linear network set-up. After a coarse search through parameter space we used the fol-
lowing parameters for all Q-lin runs: «;=0.0001, A=0.9, H,,,4,,=100 (a small size of the history
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list worked best. Although in this case the FA is not trained on all possible examples, the most
important ones leading to goals are learned.) All network weights are randomly initialized
in [—0.01,0.01]. We use Boltzmann exploration where during each run the Boltzmann-Gibbs
rule’s greediness parameter (the inverse of the temperature) is linearly increased from 0 to 60.
The discount factor y=0.99 to encourage quick goals (or a lasting defense against opponent
goals), r¢«, the reinforcement at trial end, is -1 if opponent team scores, 1 if own team scores,
and 0 otherwise.

Neural gas set-up. For Q-gas we used: a;=0.1, 8 = 0.1, A=0.9, H,,,,=100, n = 30 (note
that this large value makes the FAs very local), the initial number of neurons Z;,,;;=10, and we
constrain the maximum of neurons Z,,,,=100. We use Max-random exploration with P4
= 0.7. Parameters for adding neurons are: the required error Tg=0.5 and T¢ = 1000. We
used the Manhattan distance or L; norm, although some trial experiments using Euclidean
distance resulted in similar performances. The components of the neuron centers wy; are
randomly initialized in [—1.0,1.0]. Q-values are zero-initialized. The discount factor y=0.98.
Again ry- is -1 if opponent team scores, 1 if own team scores, and 0 otherwise.

PIPE set-up. We compare our RL methods with the evolutionary search method PIPE
(Satustowicz and Schmidhuber, 1997). PIPE searches for the individual consisting of five
programs (one for each action and one for determining the temperature for the used Boltz-
mann exploration rule) achieving the best score difference when tested against the oppo-
nent. The most interesting parameters for PIPE runs are set to: learning rate=0.2, mutation
rate=0.2, and population size=10. During performance evaluations, we test the current best-
of-generation program (except for the first evaluation where we test a random program). Note
that this is an advantage for PIPE, since the program which is tested is known to outperform
all other programs of the same generation.

Experimental results

We compare average score differences achieved during all test phases against BRO. Figure
7.6 shows results for PIPE, Q-lin and Q-gas. It plots goals scored by learner and opponent
against number of games used for learning (averaged over 10 simulations). Larger teams score
more frequently because some of their players start out closer to the ball and the opponent’s
goal.

PIPE learns fastest and always quickly finds an appropriate policy regardless of team
size. Its score differences continually increase. Q-lin and Q-gas also improve, but in a less
spectacular way. They are able to win on average and tend to increase score differences until
they score roughly twice as many goals as in the beginning (when action selection is still
random).

For the single agent case, Q-gas is able to learn good defensive policies, what can be seen
from the strongly reduced opponent scores. For the multi-agent case, Q-gas slowly increases
its score differences, although its learning performance shows many fluctuations. It seems
that the system is changing its policy a lot and does not seem able to fix a good policy. Still
it is almost always able to win.

For Q-lin the score differences start declining after a while — the linear neural networks
cannot keep and improve useful value functions but tend to unlearn them instead. We will
now describe a deeper investigation of the catastrophic performance breakdown in the 11
player Q-lin run followed by an explanation of neural gas’ instability problems.

Q-lin’s instability problems. Some runs of Q-lin led to good performance, although
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Figure 7.6: Average number of goals scored during all test phases, for team sizes 1 and 11.
Averages were computed over 10 simulations.

sudden performance breakdowns hint at a lack of stability of good solutions. To understand
Q-lin’s problems in the 11 player case we saved a “good” network just before breakdown (after
2300 games). We performed 10 additional simulations, for which we continued training the
saved network for 25 games, testing it after every training game by playing 20 test games. To
achieve more pronounced score differences we set the temperature parameter in the Boltzmann
exploration rule to % — this leads to more deterministic behavior than the value round %
used by the saved network.

Figure 7.7(left) plots the average number of goals scored by Q-lin and BRO during all test
games against the number of games. Although initial performance is very good (the score
difference is 418 goals), the network fails to keep it up. To analyze a particular breakdown we
focus on a single run. Figure 7.7(middle) shows the number of goals scored during the test
phases of this run, and Figure 7.7(right) shows the relative frequencies of selected actions.
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Figure 7.7: Performance breakdown study. Left: average numbers (means of 10 runs) of goals
scored against BRO by a team with 11 players starting out with a well-trained linear network.
Middle: plot for a single run. Right: relative frequencies of actions selected during the single
TUn.

Figure 7.7(middle) shows a performance breakdown occurring within just a few games.
It is accompanied by dramatic policy changes displayed in Figure 7.7(right). Analyzing the
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learning dynamics we found the following reasons for the instability:

(1) Since linear networks learn a global value function approximation, they compute an
average expected reward for all game constellations. This makes the Q-values of many actions
quite similar: their weight vectors differ only slightly in size and direction. Hence small
updates can create large policy changes.

(2) Q-lin adapts some weight vectors more than others — the weight vector of the most
frequent action of some rewarding (unrewarding) trial will grow (shrink) most. For example,
according to Figures 7.7(middle) and 7.7(right), the action go_forward is selected most fre-
quently by the initially good policy. Two games later, however, the behavior of the team is
“dominated” by this action. This results in worse performance and provokes a strong “correc-
tion” in the third game. This suddenly makes the action unlikely even in game constellations
where it should be selected, and leads to even worse performance.

For 11 player teams the effect of update steps on the policy is 11-fold and therefore
instabilities due to outliers can easily become much more pronounced.

The question can be asked whether the RL method is the cause for the learning difficulties
or whether it is the linear networks. Although the linear networks are not very powerful,
they can still be used to reach high performance levels (even although the learned value
function approximation may be very bad). Linear models could get rid of at least some of
the instability problems. We have not tried them, however, since they are computationally
much more expensive.

Neural gas’s instability. Just like the linear network, neural gas is not able to constantly
improve its policy. For the single agent case it quickly diminishes the opponents score to few
goals and increases its own score, but does not keep good policies producing many goals.
We also combined the neural gas with online Q(\)-learning, but this did not improve the
results. Analysing the system, we found one particularly important reason for neural gas’
learning problems: adding neurons usually helps to improve the performance, but sometimes
adding a neuron can ruin good policies. Noise can be responsible for placing a neuron which
starts dominating some region, adds errors to its Q-function approximation, and selects a
wrong action. Ways to solve this problem is to design more clever algorithms for adding
neurons. If a neuron is added, the algorithm makes an unrealistically large update step of
the value function. A way to get around this is to use local greediness values in Equation 7.1
for computing the neuron gate-values. Then we can initialize a greediness value of a newly
added neuron to a very low value and gradually increase it so that it has time to adapt to its
environment before being used fully by the system.

The lesson we have learned here is that (direct) RL methods require evaluating policies
which do not change very fast. Each policy needs many experiences to be completely eval-
uated, and although we can update the value function before we have collected a very large
number of experiences (which would make learning very slow), we should be careful not to
make any large changes based on little experience, since that may cause havoc — previous
“plans” or strategies suddenly may not work anymore. Thus, using state quantization meth-
ods for RL seems a powerful technique, but applying it may be quite difficult since they need
lots of parameter twiddling and lack robust structures. We should try to gradually improve
the structure and make small Q-value updates.

Neural gas models. We also tried using neural gas models, but these did not work
successfully either. One of the main problems of this approach is that transition probabilities
are estimated according to a particular positioning of the neurons, which constantly (and
probably too fast) changes. A second problem was that neural gas models result in many
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outgoing transitions from each neuron, so that there is a lot of uncertainty about predicting
the next state and Bellman backups consume a lot of time. Starting with a fixed structure (and
connective neighborhood) may circumvent this problem, but choosing an a prior: structure
is a difficult design issue on its own. Finally, instability problems are caused by the used
insertion procedure and initialization of new neurons.

Conclusion

We found that linear networks, despite of their lack of expressive power, can be used for rep-
resenting and finding good policies. Since their function approximation of the true evaluation
function is unstable, however, they quickly unlearn good policies once they are found.

The neural gas method showed faster initial learning behavior than the linear networks,
but in our experiments the neural gas systems did not continuously learn to improve policies.
A problem of the neural gas method is that although adding neurons is usually useful, some-
times it leads to bad interference with the learned approximation. Therefore more careful
algorithms for growing cell structures should be used.

Both algorithms performed worse than the evolutionary method PIPE, which tests mul-
tiple different individuals and has a large probability of generating winning programs of the
previous round again, thereby safeguarding the best found policies. Furthermore, PIPE was
able to quickly find good policies, since it was biased to start searching for low complexity
programs, and quickly discovered which features were important to use. Surprisingly, some
low complexity programs implemented very good policies against the fixed soccer opponent.

Learning soccer strategies with a single player or with multiple players does not seem to
be very different in our soccer environment. The only real difficulty with multiple players is
that particular outliers get heavier weight when we use multiple players, thus leading to more
learning instability and requiring more robustness from the FA.

From the current results, we conclude that value function based RL methods should be
extended to make them also profit from (a) feature selection facilities, (b) existence of low-
complexity solutions, (c) incremental search for more complex solutions where simple ones do
not work, and (d) keeping and improving the best solution found sofar.

7.4.4 Comparison 2: CMACs vs PIPE

The previous function approximators were too unstable for reliably learning good soccer
policies. CMACs possess different properties: while still being local, all cells have fixed
locations. This could possibly make them more stable and therefore more suitable for RL.
We will now compare CMACs trained with online Q()), model-based CMACs trained with
PS, and PIPE. Results have been previously published in (Wiering et al., 1998).

Experimental set-up

Task. We train and test the learners against handmade programs of different strengths.
We use a different set-up from the previous experiments to get some results against better
opponents, since we expect that evolutionary computation may be faster when it comes to
finding solutions to simpler problems. The opponent programs are mixtures of the program
BRO which randomly executes actions and the program GO which moves players towards the
ball as long as they do not own it, and shoots it straight at the opponent’s goal otherwise.
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Our five mixture programs, called Opponent(P, ), use BRO for selecting an action with prob-
ability P, € {0, %, %, %, 1}, and otherwise they use GO. Thus, Opponent(1.0) equals BRO and
Opponent(0.0) equals GO.

We test team sizes 1, and 3 (team sizes 3 and 11 do not show large differences in learning
curves, although team size 11 consumes much more simulation time).

For all methods we used the extended input vectors (with the additional player dependent
input features). We have observed that for the neural gas and linear networks there were
minor advantages using extended inputs, although the overall results look more or less the
same. Thus we use 16 inputs for the 1-player case and 24 inputs for the 3-player case.

CMAC-Q set-up. We play a total of 200 games. Every 20 games we test current
performance by playing 20 test games against the opponent and sum the score results. The
reward is +1 if the team scores and -1 if the opponent scores. The discount factor is set
to 0.98. We used fast online Q(\) with replacing traces: A = 0.8 for the 1-player case, and
A = 0.5 for the 3-player case. Initial learning rate (Ir) o, = 1.0, Ir decay rate 8 = 0.3. We
used Max-random exploration with P, = 0.7 — 1.0. We use 2 filters per input (total of 32
or 48 filters) and set the number of cells n. = 10. Q-values are initially zero.

PIPE set-up. For PIPE we play a total of 1000 games. Every 50 games we test per-
formance of the best program found during the most recent generation. Parameters for all
PIPE runs are the same as in previous experiments (Salustowicz et al., 1998).

CMAC model set-up

For the CMAC models, we have some additional special features which improved the learning
performance.

Multiple restarts. CMAC models turn out to be very fast learners: often they converge
to a particular policy after a small number of games. The method sometimes gets stuck
with continually losing policies (also observed with our previous simulations based on linear
networks and neural gas), however. We could not overcome this problem by adding standard
exploration techniques. Instead we reset the Q-function and WM once the team has not scored
for 5 successive games whereas the opponent scored during the most recent game (we check
these conditions every 5 games). This multiple restarts combined with model-based CMACs
(which behaves as a stochastic hillclimber) is a new way for searching policies in RL, but is
also used in operations research (OR) for searching for solutions to combinatorial optimization
problems. Note that it is no problem whatsoever to use multiple restarts with any learning
algorithm for any problem, e.g., it could also be used for lifelong learning approaches.

Non-pessimistic value functions. Since we let multiple players share their policies,
we “fuse” experiences of multiple different players inside a single representation. These ex-
periences are, however, generated by different player histories (scenario’s) and therefore some
experiences of one player would most probably never occur to another player. Thus, there is
no straightforward way of combining experiences of different players. For instance, a value
function may assign a low value to certain actions for all players due to previous unlucky expe-
riences of one player. To overcome this problem we compute non-pessimistic value functions:
we decrease the probability of the worst transition from each cell/action and renormalize the
other probabilities. Then we use PS with the new probabilities. Thus, basically we do a
similar thing as in Chapter 5 for computing optimistic value functions. The difference is that
in Chapter 5, we made good experiences more important. Here we make bad experiences less
important. Details are given in Appendix D.
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Parameters. We play a total of 200 games. Every 10 games we test current performance
by playing 20 test games against the opponent and summing the score results. The reward is
+1 if the team scores and -1 if the opponent scores. The discount factor is set to 0.98. After
a coarse search through parameter space we chose the following parameters. We use 2 filters
per input (total of 32 or 48 filters) and set the number of cells n. = 20, Q-values are initially
zero. PS uses € = 0.01 and a maximum of 1000 updates per time step.

Experimental results
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Figure 7.8: Number of points (means of 20 simulations) during test phases for teams consisting
of 1 player. Note the varying x-axis scalings.

Results : 1-Player case. We plot number of points (2 for scoring more goals than the
opponent during the 20 test games, 1 for ties, 0 for losses) against number of training games
in Figure 7.8.

We observe that on average our CMAC model wins against almost all training programs.
Only against the best 1-player team (P, = 0) it wins as much as it loses. Against the worst
two teams, CMAC model always finds winning strategies.

CMAC-Q(A) finds programs that on average win against the random team, although they
do not always win. It learns to play about as well as the 75% random and 50% random teams.
CMAC-Q(A) performs poorly against the best opponent, and although it seems that the
performance jumps up at the end of the trial, longer trials do not lead to better performances.

PIPE is able to find programs beating the random team and quite often discovers programs
that win against 75% random teams. It encounters great difficulties in learning good strategies
against the better teams, though. Although PIPE may execute more games (1000 vs. 200),
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the probability of generating programs that perform well against the good opponents is very
small. For this reason it tends to learn from the best of the losing programs. This in turn
does not greatly facilitate the discovery of winning programs.

Results : 3-Player case. We plot number of points (2 for scoring more goals than the
opponent during the 20 testgames) against number of training games in Figure 7.9.

Again, CMAC model always learns winning strategies against the worst 2 opponents. It
loses on average against the best 3-player team (with P, = 0.25) though. Note that this
strategy mixture works better than always using the deterministic program (P, = 0) against
which CMAC model plays ties or even wins. In fact, the deterministic program tends to
clutter agents such that they obstruct each other. The deterministic opponent’s behavior
also is easier to model. All of this makes the stochastic version a more difficult opponent.

CMAC-Q is clearly worse than CMAC model — it learns to win only against the worst
opponent.

PIPE performs well only against random and 75% random opponents. Against the better
opponents, it runs into the same problems as mentioned above.
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Figure 7.9: Number of points (means of 20 simulations) during test phases for teams consisting
of 3 players. Note the varying z-axis scalings.

Score differences. We show the largest obtained score differences in Table 7.1 (1 player)
and Table 7.2 (3 players). We should keep in mind that these score differences can have a
large variance and may thus not convey too much information. E.g. in the case of CMAC
models with 1 player, Opponent(0.0) may sometimes win 760-0 against CMAC models, since
the CMAC model had not already found a good policy and its policy had just been resetted
before testing. Although this only happens 2 or 3 times out of 20 simulations, these large
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scores have a tremendous impact on the overall averaged score results. PIPE has a small
advantage there, since PIPE always uses the best found program during the last generation
for testing, and thus effectively diminishes the probability to almost 0 of testing a really
bad policy. Still, the tables show that although PIPE is able to score more against the
bad opponents than CMAC-models or CMAC-Q, PIPE often cannot score against the good
opponents. CMAC-models do score against the good opponents, and were able to find (at
least 1 time) winning policies against all opponents. It is difficult to say whether winning
127-35 is better or worse than winning 68-3, though. We remark that PIPE performs better
against the weakest opponent and CMAC models perform best against the best opponents.

| Learning Algorithm |  1.0[ 075] 05]025] 0.0 |
CMAC-models 852 | 683 27-1[6-15 | 1-146*
CMAC-Q 92-6 | 52-23 | 10-7[ 14| 0-13
PIPE 225-18 | 127-35 [ 19-13 | 0-3 | 0-10

Table 7.1: Best average score differences for the different learning methods against different
strengths of the 1-player opponent. * = Although CMA C-models were sometimes able to score
7 goals, they also sometimes lost 0-760.

| Learning Algorithm 1.0 075] 05]025] 0.0 ]
CMAC-models 161-31 [ 236-100 [ 84-70 [ 6-20 | 0.3-0
CMAC-Q 111-26 | 36-73 | 13-58 | 3-23 | 0-24
PIPE 297-18 | 163-64 [ 30-31 [ 0-11 | 0-21

Table 7.2: Best average score differences for the different learning methods against different
strengths of the 3-player opponent.

Instead of showing score differences, we may also plot relative score differences. We
compute relative scores as:

Player_goals

relative_score =
Player_goals + Opponent_goals

This measure has as a drawback that the scores 1-0 and 10-0 are treated equally, although
this makes comparing results against the strong opponents with results against the weak
opponents easier possible. We plot relative scores against number of games in Figure 7.10.

Here we can clearly see that relative scores against the 1-player team are larger than those
against 3-player teams.

Comments

Filter design. For CMAC-models we used 20 cells for each single-input filter, whereas we
used 10 cells for CMAC-Q. Changing the number of cells does not affect the results very much,
although learning can become slower. Using 4 instead of 2 filters results in good performance
as well, although the computational time is doubled. A single filter results in less stable
learning and worse performance, however. Finally, different filter designs combining different
inputs works good as well. Thus, it seems that the method is quite robust to the actual design
of the filters.
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Figure 7.10: Relative scores (own goals / total goals) for the 3 methods for team sizes 1 and

3.

Non player-sharing policies. We also tried using different representations for the Q-
functions of the 3-player teams. For this, we used CMAC-models and used an independent
model for all players. We did not use the non-pessimistic value function approach, since the Q-
functions were not shared. Against Opponent(1.0), the results were comparable with sharing
policies, except that the CMAC-models now tended to score slightly more (the best result
was 173-27), but did not always win (average points was 1.9). Against Opponent(0.25), the
results were much worse: CMAC models lost on average (0-23), and gained 0 average points.
Thus, it seems that policy sharing improves learning when tasks get more complicated.

Exploration in time critical problems. In certain problems, an agent has to reach
a specific goal before some time criteria or time-horizon has elapsed. For such time critical
problems, policies need to be good and almost deterministic (exploiting or greedy) to be
successful since each bad/non-policy action will waste precious time. This makes exploration
very difficult. Soccer is an example of such a time critical problem. If we play with a policy
that contains too many bad actions against a very good opponent, then the opponent will
score even before one of our own players has approached the ball. Since in each state all actions
are tried about the same number of times, it is very hard to learn which actions are really
bad. This problem is shown by the results of all learners against the 3-player Opponent(0.25)
team. There are no good ways to circumvent this problem with RL. If the agent only receives
reward at a specific goal state, and that goal state is only reachable in a small percentage
of all trials, other ways for initially exploring the policy space are needed such as exhaustive
search, means-end analysis, or a priori knowledge to be able to test policies which perform
well enough so that the goal is found.

7.4.5 Discussion

Online vs Offline Q(\). We used offline Q(A) for the first two FAs and online Q(X) for
CMACs. We switched to online learning because we thought that it might improve learning
performance. Although online learning improves things a little bit, the different function
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approximators are the main reason for the different learning performances. Although all FAs
were often able to learn to beat the simplest fixed opponent, CMACs obtained the fastest
learning performance.

RL vs EC. When we compare RL to evolutionary computation for the soccer task, then
we observe that EC may be better in learning very good performances for the easier problems,
whereas RL is better in finding good policies for more difficult problems. This confirms our
expectations: RL may need more time (e.g. CPU or modeling), but may finally come up with
better solutions for difficult problems.

CMAC models no 1. CMAC models are able to learn good, reactive soccer strategies
against all opponents despite treating all features independently. They prefer actions that
activate those cells of a filter which promise highest average reward. The use of a model
stabilizes good strategies: given sufficient experiences, the policy will hardly change anymore.

The curse of filter dimensionality. First of all, a lot depends on the filter design. For
particular problems, we would need to construct filters combining many context-dependent
features. Such problems would need a lot of cells, which is especially a problem if we use
model-based RL. Still, there may be ways cutting down the number of parameters. E.g. we
could preprocess all “filter spaces” and transform them into lower-dimensional spaces using
Independent Component Analysis, e.g., (Oja and Karhunen, 1995; Bell and Sejnowski, 1998).

Limitations of CMAC models. Note that if there are a huge number of possible
actions, we cannot store world model transitions conditioned on the selected action. Instead
we model only the effect of the best (selected) action. Then we select an action by simulating
all possible actions with a model and evaluating the resulting states using the CMAC. For
this we need to have a simulator or model mapping state/actions to subsequent states. Then
we update the CMAC model according to the selected action.

Independent filter models. In chess there is so much contextual dependent informa-
tion, that CMACs would probably not be the best representation for it. However, we can
generalize our CMAC models to a set of independent filter models. E.g., we could use de-
cision trees (DT) to save a lot of memory, whereas they are only slightly less time-efficient.
DT-models could be used in the same way as CMAC models: we learn Q-values for leave
nodes and we learn transition probabilities and rewards between leave nodes. Furthermore to
allow for the power of the committee of experts, we can use multiple DT-filters, where each
DT-model is based on different subsets of all inputs. Of course, instead of DT-filters, we could
also use unsupervised learning in a preprocessing phase and use the resulting quantizations
for constructing different filters. The thing to remember is that we are interested in using
multiple filters based on different views on the universe so that each policy can be quickly
learned and the combined policy works well for the many different (partial) universes.

Non-stationary filters. Finally, there may be problems if filters are only worthwhile
during a particular stage of a process. After this stage, invoking them would just cost time.
However, nothing forbids us to use temporal sequences of filter-sets or to use a higher-level
decomposition of the process into subprocesses, all with their own filter design.

Learning filters. If we have constructed an architecture with a good set of filters, the
method may be expected to work well. Still, sometimes we would like to learn the filters.
This can be done by different techniques. Since Independent-filter models are quite robust, it
offers many possibilities for changing the architecture without causing large policy changes.
This may make them suitable for incremental policy refinement.
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7.5 Previous Work

There have been quite a few combinations of function approximators and RL. We will give a
sample of what has been done. Chapman and Kaelbling (1991) implemented the G-algorithm,
a method based on incrementally computing decision trees by splitting nodes receiving in-
consistent reinforcement signals. The algorithm used Q-learning for learning the Q-values,
which were stored in the leave nodes. The system was successfully tested on an amazone
environment, where the goal was to learn to shoot arrows at ghosts. One of the drawbacks
of their (and similar) systems is that it could not handle multivariate splitting so that it is
restricted to environments where singular inputs can show a difference. Another problem is
that it may generate huge trees if all inputs are relevant.

Boyan (1992) used hierarchical neural networks to learn the games of Tic Tac Toe and
Backgammon and showed performance gains in using hierarchical nets compared to monolithic
networks. Wiering (1995) extended this work and was able to reach optimal performance levels
on Tic Tac Toe using Q(A)-learning. Furthermore, he showed which precision levels can be
obtained by neural networks learning the evaluation function of the endgame of backgammon.

Santamaria, Sutton and Ram (1996) compare CMACs to memory-based function approx-
imation with Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) on the double integrator
and pendulum swing up problems. They found that both methods profit from a non-uniform,
variable resolution allocation of the cells/neurons, and that CMACs profitted most from this.
They found an elegant way to change the input space by using a skewing function which in-
creases the size of important regions such as those around start and goal states. The obtained
results of both FAs were comparable.

Tham (1995) incorporated a set of CMACs in the hierarchical mixtures of experts (HME)
architecture (Jacobs et al., 1991; Jordan and Jacobs, 1992). He used Singh’s Compositional
Q-learning (CQ-L) architecture (1992) which uses relevant task inputs to gate the different
controllers. His system quickly learned good performance levels for different sequences of
robot manipulator tasks.

Krose and van Dam (1993) use RL with a neural gas architecture for collision free nav-
igation. The system gets 8 distance measures as input and has to learn to steer a vehicle
left or right in a simulated environment. Whenever there is a collision, neurons are added
so that critical regions get high resolution. The system also removes neurons which have
similar values as their neighbors. The experimental results a virtual environment show that
the system can quickly find collision free paths.

Schraudolph, Dayan and Sejnowski (1994) used TD-learning to learn to play Go on a 9 x 9
board and showed that the system achieved significant levels of improvement. The program
learned good opening strategies, but often made tactical mistakes later in the game. In later
phases of the game many complex interactions between stones dominate position evaluation.
This was (to our knowledge) the first time anybody used a whole grid of local reinforcement
signals to evaluate each possible board position, as opposed to just a single scalar evaluation.
This made a big difference in performance.

Thrun implemented neurochess (1995), a program which uses TD-learning and explanation
based neural network learning for learning to play chess. He learned a model to predict likely
sequences of gameplay and used this model for training the position evaluator. The resulting
performance of the neural network was of limited success — a better level of play needs a
more accurate value function which takes the precise board constellation into account.

Recently, Baxter, Tridgell and Weaver (1998) came up with a promising method for learn-
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ing to play chess which is very similar to Samuel’s approach in the sense that it combines
lookahead search with reinforcement learning. Their system used a simple initially hand-
crafted position evaluator which was improved by TD-learning by updating the values of
those leave nodes which result from a lookahead search for the best move. Using lookahead
makes the accuracy of the position evaluator much less important for good play and that
makes learning a useful value function much easier. The system played on the internet chess
server and was able to significantly improve its level of play after learning from only 200
games.

Tadepalli and Ok (1998) describe H-learning, a model-based RL method maximizing aver-
age reward per time step. They show that H-learning outperforms discounted model-based RL
for particular tasks. Furthermore, they extend H-learning by introducing dynamic Bayesian
networks to compactly store the model so that the system can cope with large state-spaces.
The DBN for storing the model is then combined with local linear regression (LLR) for ap-
proximating the value function. The results of this combination on an automated guided
vehicle domain show promising results.

Sampling & approximation

There also exists a different way of using models for computing a value function. We still
represent the value function in a function approximator, but now we generate a set of state
vectors, use the model (or simulator) to perform a one-step lookahead for all states to obtain
more accurate values (possibly in combination with Monte Carlo simulations for stochastic
problems), and train the function approximator to learn the new state values. The method is
in principle a hybrid: we can use one representation for the model (e.g. Bayesian networks),
and use another for the value function (e.g. neural networks). Once we have computed a new
generation of training examples, we use a training method to adapt the function approximator.
The simplest methods use gradient descent to minimize the Bellman error of the generated
examples. This is called the direct method, but is has been shown that it may lead to learning
instability (Boyan and Moore, 1995; Baird, 1995).

To overcome the problem of diverging value functions, Boyan and Moore (1995) used a
method based on learning the value function backwards during which complete “roll-outs” are
used for computing new value estimates while keeping a large batch set of training examples.
This method showed promising results for deterministic problems, but is computationally
expensive for stochastic problems.

Baird (1995) discussed residual gradient algorithms, where steepest descent on the mean
squared error Bellman residual is performed. These methods converge to a local minimum
on the Bellman error landscape, but tend to be slow. Therefore, Baird introduced residual
algorithms which are a mixture between the direct method and the residual gradient method,
combining the property of minimizing the Bellman residual at each step with fast learning.
The method can be applied for stochastic problems by combining two independent successor
states in a single learning example. This is called the two sample gradient method (Bertsekas
and Tsitsiklis, 1996).

We have not used these methods here, because it may be difficult to select a set of target
points. Furthermore the function can change dramatically if the environment is very noisy,
since new target values may be quite different, dependent on the successor state we have
sampled. Finally, for real world learning, we cannot sample from arbitrary points, so that the
method requires engineering or learning a model first.
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7.6 Conclusion

In this chapter we discussed one of the most interesting topics in RL: the application of
function approximators to learn the value function. We described three different types of
function approximators: linear networks, neural gas, and CMACs, as well as ways to combine
them with direct RL and model-based RL. Then we compared them on a soccer learning task.

We found that linear networks had severe learning problems for the soccer task. Although
the linear networks were sometimes able to learn good policies, small update steps of the
weight vectors sometimes cause large policy changes after which good policies are unlearned.

A difficulty of reinforcement learning compared to supervised learning is that the output
value of examples change and are taken from a non-stationary distribution due to policy
changes and exploration behavior. Therefore, in order to receive sufficient data from the
same input/output mapping, the policy should not change too fast, and the used function
approximator should be robust enough so that noise will not affect its approximation very
much. We should be careful in assessing whether we really make an improvement step of a
particular policy, since it is easy to make changes which decrease the performance level of the
policy. Especially if we want to obtain high performance levels, we should circumvent this
from happening.

Approximators which use adaptive state quantization suffer from noise which may cause
quick policy changes, and therefore they are not always very stable. One function approxima-
tor which discretizes the input space using an a priori decomposition, CMACs, turned to be
quite stable, especially when combined with world models. CMAC models are able to capture
lots of statistics, and makes fast and robust learning possible. One problem of CMACs is that
filters combining different input features need to be designed by hand. Therefore, we would
like to use methods which can learn the possible filters.

In this chapter we have not given any special attention to multi-agent RL. Future work
on robotic soccer may profit by studying team strategies and the integration of perceptions
of different agents. By mapping group states to team strategies, a useful abstraction can be
made. Furthermore it may be easier to assign rewards to team strategies than to single player
actions. Therefore it may be a good idea to define a set of team strategies involving reactive
policies for each individual agent.
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Chapter 8

Conclusion

In this final chapter we describe our contributions to different topics of interest in the rein-
forcement learning field. We also describe the limitations of the proposed methods and what
can be done to overcome these limitations. Finally, we close with some final remarks.

8.1 Contributions

8.1.1 Exact Algorithms for Markov Decision Problems
Discussion

First of all, we compared two dynamic programming algorithms and found that value iteration
is faster than policy iteration for computing policies for goal directed problems. The reason
is that policy iteration completely evaluates policies before making policy updates and that
policies in the initial iterations generate many cycles through the state space. Such cycles
are certainly not optimal, but do cost a lot of computation time. On the other hand, value
iteration uses its value function directly for greedily changing the policy whenever it needs to
be changed. In this way it quickly computes goal-directed policies which generate few cycles
and therefore it can stop evaluating policies much earlier. We conclude that methods profit
from immediately using information so that policy changes are made earlier.

Limitations

Solving Markov decision problems with dynamic programming requires a model of transition
probabilities and a reward function for computing policies which is often a priori not available.
Furthermore, if there are many state variables, the computational costs become overwhelming.
The first problem can be solved by using reinforcement learning. For solving the second
problem we need to use function approximators which aggregate states.

8.1.2 Reinforcement Learning

Discussion

We developed a novel online Q(A) algorithm which computes the same updates as previous
(exact) online Q(A) methods, but is able to make updates in time proportional to the number
of actions and the number of active elements of the function approximator. In the case of
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local function approximators, e.g. lookup tables which activate a single element at each time
step, the gain of the new method can be very large. The new algorithm is based on lazy
learning which postpones computations until they are really needed. The novel algorithm
was used in experiments with lookup tables for maze problems and with CMACs for learning
to play soccer. Both applications resulted in a large speed up.

We developed an algorithm for online multi-agent Q(\), called Team Q(X), which allows
updating the Q-value of some state visited by some agent on a change of the Q-value of
another state visited by another agent. The only thing that is required is that there exists
a directed path between the states, which now may go through some crossing point between
the trajectories of the agents. With the new method, information is propagated along many
more trajectories than would be the case if we would only update along single agent histories.
Furthermore, the Team Q()) algorithm can be used for assigning credit in case of general
interactions between agents, such as passing the ball, where we would like to evaluate the
action on the basis of what happens to the ball in the future. Although we expect the
method to be beneficial for solving real cooperative tasks for which agents work as a group,
experimental results in a non-cooperative maze environment did not show that Team Q())
outperformed letting agents learn from their individual traces only.

Limitations

Direct RL methods such as TD(\) and Q-learning have problems to backpropagate infor-
mation over many time steps. Q-learning can only backpropagate information one step in
the past, whereas TD()) can in principle be used to backpropagate information over many
time steps, but this causes a large variance in the updates (especially for stochastic problems)
which delays the convergence of value functions.

The Team Q(A) is able to combine traces of multiple agents, but does not take into account
when these traces have been generated. Therefore, very old traces generated by old policies
are used to change the current value function, which may decrease the policy’s performance.
The algorithm is also not yet made amenable for different kinds of agent interactions — the
only kind of interaction we have implemented so far is when different agents visit the same
state. For more general applications, the algorithm would need a definition of interaction
points between agents. An example interaction point is a player which decides to pass the
ball to another player. This action can be evaluated on the trace of the other agent since the
decision of passing the ball has been made, and may be better than to use the trace of the
player itself, which may just be waiting around in the middle field after having passed the
ball.

Open problems

We would like to have methods which diminish the variance of TD(\)-updates for large values
of A\. One way of doing this is to use variable A. E.g. we can detect stable landmark states
which have been visited so often, that their path to the goal has been optimized already and
their value is quite stable. Then we can use large A values before making a transition to them.
We could also let the A value depend on the standard deviation of some state value. It is a
question whether and how much such methods improve TD())’s abilities.

It is still unclear how we can extend the Team Q(\) method to allow learning mostly from
traces which are useful for improving the policy. For this, we would need to discard some
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traces, while keeping others. One option to do this is to only combine traces which have not
been generated too long ago. Another possibility is to weigh traces according to their recency.
An open question is whether using such more sophisticated methods can really significantly
speed up multi-agent Q(A) which uses separate traces.

A possible large problem of multi-agent RL is when traces connect in a 1-to-many way.
E.g. if a mother is cooking for her children, and afterwards the children get a belly-ache,
then we should be able to trace that back to an ingredient the mother used and punish using
that ingredient or even buying it. The problem is that in this way, the action of cooking has
multiple future paths, since we have to take all her children into account. Therefore the future
branches and probabilities do not sum to 1, which makes credit assignment and computing
value functions really hard. Thus, another open problem is to find neat methods which can
combine such multiple futures into bounded value functions.

8.1.3 Model-based RL
Discussion

In Chapter 4, we described model-based RL approaches and introduced a novel implemen-
tation of the prioritized sweeping (PS) algorithm (Moore and Atkeson, 1993) which is more
precise in calculating priorities for making different updates than the original PS. Experimen-
tal results on some maze problems showed that model-based RL significantly outperformed
direct RL. Furthermore the new PS method is more reliable and leads to better final perfor-
mances than the previous PS.

Open questions

The experimental result may not necessarily hold for other problems containing many possible
outgoing transitions from each state. The price our PS has to pay for its exactness is that
its computational efforts depend on the number of successor states, whereas the previous PS
method is not. Therefore, it is computationally more expensive. Still, for problems with
many successors we expect that the old PS will have much more problems in really making
the most useful updates, since priorities are only based on a single outgoing transition.

Another question is whether even faster management methods can be constructed. Al-
though this seems difficult, different methods could use other criteria or be more careful in
updating states which leave the relative ordering of state values and therefore the policy
unchanged.

Limitations

One problem of model-based RL, is that it heavily relies on the Markov assumption. TD(\)
approaches can much better evaluate a policy in case the Markov assumption is violated,
since in case A = 1, we just test the policy according to Monte Carlo sampling. One way
for extending world models is to use TD(A) world models which combine TD(A) with model-
based learning. Such a model may be useful for learning from learn term consequences of
actions, although there may be many successor states so that it is uncertain whether we can
efficiently use it for problems involving many states.
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8.1.4 Exploration
Discussion

We described novel directed (information based) exploration methods which use a predefined
exploration reward function for learning where to explore. Exploration reward functions are
defined by the human engineer and determine how interesting a particular novel experience
for an agent is. Examples of such reward functions assign penalties to state/actions which
have occurred frequently or recently. Using such reward functions, the agent learns an explo-
ration value function which allows the agent to select actions based on long term information
gain. We used model-based RL for learning the exploration value functions and found large
advantages compared to undirected, randomized exploration methods. Methods which only
select actions according to information gain have as disadvantage that they do not take im-
mediate problem specific rewards into account for selecting actions. To properly address the
exploration/exploitation dilemma, we should only select actions which have some significant
probability of belonging to the optimal policy. Therefore, we constructed model-based inter-
val estimation (MBIE) which takes second order statistics into account for selecting actions.
Since MBIE relies on initial statistics, we combined it with the directed exploration tech-
niques discussed above. Experiments showed that MBIE was able to improve the directed
model-based exploration methods in finding near-optimal policies, while collecting a much
higher reward-sum during the training phase.

Open problems

There are still some unresolved problems in exploration. One problem is how to handle large
or continuous state spaces for which we are never able to visit all states. For such problems
we have to use function approximators and learn exploration functions. MBIE could then
again be implemented by keeping track of the variance of all adjustable parameters of the
chosen function approximator.

Another problem is how to explore efficiently in non-stationary environments. We could
use the recency reward rule for such environments, but how could we use the model effec-
tively? Clearly, we should discount early experiences, but it is in general difficult to set such
discounting parameters. Furthermore, if the environment is partly changing, we should be
able to find out how the environment is changing and thus our exploration policy should be
tuned towards discovering specific changes of the environment.

Another problem in exploration is that in some problems it may be very difficult to achieve
any reward at all. E.g. if only very few action sequences lead to the goal state and all others
lead to some other terminal state, then how could we find the goal at all? We can use
exhaustive search, trying out all action sequences, but there could be exponentially many of
them! It may be that the only possibility is to use a priori goal-directed knowledge in order
to be able to efficiently find the goal. One possibility is to implement a behavior which is
guaranteed to find the goal, although it will most probably not find a very efficient solution.
Such a behavior could be used to generate interesting initial experiences which can then be
used to improve the policy. This process of designing and refining is also referred to as shaping
(Dorigo and Colombetti, 1997).
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8.1.5 POMDPs

Discussion

We described POMDPs in Chapter 6 and introduced a new algorithm, HQ-learning, for
quickly solving some large deterministic POMDPs. HQ-learning is based on decomposing a
problem into a sequence of reactive policy problems which are solvable by policies mapping
observations to actions. Different policies are represented by different agents. Each agent
learns HQ-values which determine for which observations control will be transferred to the
next agent. HQ’s memory is solely embodied in a pointer which determines which agent is
active at the current time step. By using such a minimal representation for the short-term
memory, HQ can quickly learn how to use it.

Limitations

HQ learning is designed for deterministic POMDPs featuring fixed start states. However, HQ
could also be used in combination with map learning algorithms. E.g. we can learn maps
for different regions, where transitions between regions are determined by agent transitions.
We could even go beyond this and hierarchically learn a map where at the lowest level we
have detailed observation or state transitions and at higher levels we have transitions between
regions. The advantage of such an approach is that hierarchical planning becomes possible
for solving large problems.

HQ-learning is a kind of hierarchical decomposition method, but does not learn complete
policy-trees. It could be extended to allow for storing a whole tree containing policy nodes
(instead of singular actions), and observation sequences as transitions. Then, a policy is
followed for some time, after which a transition is made to another policy etc. In this way,
ordinary policy trees of the kind described in (Kaelbling et al, 1995) may be compressed
by allowing for collapsing multiple subsequent branches (or entire subtrees) inside a single
reactive policy.

HQ suffered a lot from the limited exploration capabilities. In many trials, no solution
was found at all, since the policy was generating cycles in state space. If, however, we allowed
our undirected exploration methods to use more randomized actions, we continually execute
a random walk behavior and do not really test the current policy. Such a random walk is
not a very efficient exploration technique, and neither does it make learning the policy easier.
Therefore we should construct directed exploration methods for POMDPs, which is difficult
however, since the input used by the policy is usually highly ambiguous. A way to overcome
this is to use more sophisticated representations for the internal state such as belief states,
but these make policy construction hard in their own ways.

Open questions

A question remains whether we should not use different methods used for combinatorial
optimization for solving POMDPs, since POMDPs are hard problems. E.g. we could use
genetic algorithms (Holland, 1975), tabu search (Glover and Laguna, 1997) or the ant colony
system (Dorigo, Maniezzo and Colorni, 1996; Dorigo and Gambardella, 1997; Gambardella,
Taillard and Dorigo, 1997). Although currently multiple researchers start applying RL for
combinatorial combination problems (e.g. Boyan, 1997), a real comparison between them
would be very interesting. The ant colony system is in effect a RL method and is very
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successful solving a wide range of tasks (Dorigo and Gambardella, 1997). Since general RL
methods are very good in dealing with stochasticity, they may finally outperform methods
such as tabu search for dealing with complex stochastic problems. RL makes small changes
which “on average” improve the policy. Local (greedy) search methods try out all changes
and keep the best, but for stochastic problems they need many evaluations for testing which
swap-move will result in the largest improvement.

8.1.6 Function Approximation
Discussion

We summarized the basics of a number of function approximators and introduced a new
variant of the neural gas algorithm. We also described a novel combination of CMACs and
world models and showed that CMAC-models were able to outperform a number of other
methods (including the combination of Q(\) with linear networks, neural gas, CMACs, and
an evolutionary method called PIPE (Salustowicz and Schmidhuber, 1997) at learning to play
soccer. We noted that for efficient RL, the function approximator should be stable, thereby
allowing a consistent policy evaluation. CMAC models are very stable and easily trained
which makes them a powerful candidate for continuous state or action RL.

Limitations

CMAC models rely on an a prior: defined structure which determines which relations can
be learned between input features. It would be nice to learn the structure by reinforcement
learning. E.g. HQ-learning could be combined with CMACs models, where HQ-learning tries
structural changes and keeps track of the average performance of the function approximator
given that particular input combinations are used. Thus, HQ can learn the structure which
leads to the largest reinforcement intake.

We can also incrementally specialize filters if their predictive ability is small or if the
variance of the Q-values of its cells is large. The advantage of learning a structure of a model
such as CMAGCs is that it is easy to add a filter without changing the overall policy. This
is in contrast with local models such as neural gas where adding neurons can result in large
policy changes.

Other algorithms to learn structures are offline methods such as GA’s and tabu search.
Their problem, however, is that they need to test multiple different structures from which
only few trained structures are used. This results in throwing away a lot of information.
HQ-learning or an incremental approach can learn online and improve a single structure.

8.2 Final Remarks

Reinforcement learning can be used as a tool for designing many different intelligent computer
systems — it can be used for improving simulation models, for designing autonomous vehicles,
for controlling space missions, and for controlling forest fires. Especially for multi-agent
environments, a lot of research needs to be done to make robust and well organized systems.
Such environments often consist of multiple interacting elements which are adapted together
to optimize a specific group criterion determining the desired group’s behavior. RL can be
used very well for solving such problems and in fact we want to use RL for controlling a team
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of forest fire fighting agents which have the goal to minimize the costs of forest fire fighting
operations (Wiering and Dorigo, 1998).

The largest problem of applying reinforcement learning may ultimately be that construct-
ing a reward function can be very hard. First of all, it may be difficult to optimize multiple
evaluation criteria together, since it is difficult to weigh them. E.g. consider a driver of a
racing-car who has the goal to minimize the risk of endangering his life while still maximizing
the probability of winning the race. Which risk should he take or how much worth is his life?

The second problem of reward functions is that in the real world different agents may try
to solve their own task, but doing this, they may interfere with each other. If we consider
a large artificial world with many tasks performed by different RL agents, it is difficult to a
priori construct reward functions which take the interactions into account. If we would just
give each agent their own reward function, they would not care if they would be an obstacle
for other agents performing their tasks and that may ultimately lead to a competition between
agents. E.g. one agent which is hindered by another one, may learn to make it impossible
for the other agent to become an obstacle by closing him in first. This is clearly not what we
want. One solution is to weigh all tasks and design a group reward criterion, but this makes
learning tasks for each agent much harder due to the agent credit assignment problem — how
can we assign credit to each individual agent based on the group’s outcome.

Thus, for complex multi-agent environments, there remain two options: organize the
agents with clearly defined priorities and task-dependencies or let the agent evaluate each
other and pass their evaluations as reward signals to other agents. For the first option,
priorities could be swapped and the best organization maximizing the overall (colony’s) reward
kept. This could result in a set of complete team strategies or a set of interaction protocols
which influence each agent’s perception of the world state. Agents would not be able to
change that organization.

For the second method, agent take social reward signals into account next to their task-
oriented reward function. If we are unable to specify such (social) reward functions, agents
should be able to learn ethical reward functions which improve the group’s behavior. Learning
such reward functions may be very difficult, but it opens up a huge variety of possibilities.
Furthermore, if the task reward functions are well specified, slowly adapting the social reward
functions based on the group’s evaluation may only help.

Since the real world consists of many agents which adapt themselves according to the
rewards they get, RL may be an important tool for studying what kind of “intelligent envi-
ronments” work best. There are so many ways, so that we conclude by stating that there is
no way of knowing which role RL will play in the future. Only time can tell...
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Appendix A

Markov Processes

A Markov process (MP) is a model for capturing the probabilistic evolution of a system. A
Markov process is used to model time sequences of discrete or continuous random variables
(states) which satisfy the Markov property. The Markov property states that the transition
to a new state only depends on the current state. Markov chains are a kind of discrete time
Markov processes which have a finite set of states. The whole dynamics of the system is
governed by the initial state probability distribution and the probabilistic transition function.
For simplicity we consider Markov chains which consist of:

1. A discrete time counter ¢t = 1,2,...,T, where T denotes the length of the process and
may be infinite.

2. A set of states S = {S1,S2,...,Sn}, where the integer N denotes the number of states.
The active state at time ¢ is denoted as s; = 7, with j € S.

3. A probabilistic transition matrix P which determines the probability of the active state
S¢+1 at the next time step given s;. The conditional probabilistic transition function
Pi(st41 = j|st = 1) denotes the probability of making a transition to state j from state
1 at time t. We consider stationary probabilistic transition functions, which have the
property that they are time independent. Therefore we will drop the time index from
P; and simply write P.

4. A probability distribution over initial states : o1, where o01(j) denotes the probability
that the sequence starts in state j.

We will use matrix notation for denoting the probabilistic transition function. The stochas-
tic transition matrix P consisting of entries F;; denotes the probability of making a transition
from state ¢ to state j:

-sz = P(8t+1 = j|8t = Z)

The stochastic matrices we are interested in, have the following properties:
1. Al P; >0
2. Vi€ S, Y Pj <1

Note that most authors require the last sum to be equal to 1. However, with our definition
we allow the process to stop at some point with some probability. This will be useful in our
study of Markov chains with terminal states.
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A.1 Markov Property

For a Markov chain, the transition matrix is independent of previous states and depends only
on the current state, that is for each t =1,2,3,...

p(3t+1 = j|3t = Z) = p(3t+1 = j|3t = 1,8t 1, 731)

When this is true, we say that the Markov property holds.

A.2 Generating a State Sequence

The Markov chain is now the finite state process which is described by the tuple (S, P, 01).
Simulating Markov chains is fairly simple: first we select an initial state s; according to the
probability distribution over initial states o1, and then we just select a state s;y1 given s;
according to the probabilities P(s¢y1|st). The resulting generated sequence of states is often
called a state-trajectory. Each state-trajectory H = (s1, s2,...,Sy), has a specific probability
which can be computed by:

P(H) = o01(s1) H P(s;|si-1)
i=2

If we could observe a huge amount of sufficiently long ! state-trajectories like the one above,
we would be able to compute an approximation to the initial state probabilities and the state
transition function by counting how often initial states or state transitions have occurred and
then averaging them.

A.3 State Occupancy Probabilities

We are interested in predicting the future given a current active state and our model of the
Markov process. However, we cannot just predict a single state-trajectory, since each one of
them may have a tiny probability of really occurring. Instead of state-trajectories, we predict
the probability distribution that each state is active at a specific future time step. These
probabilities are also called state occupancy probabilities. We will denote the state occupancy
probabilities at time ¢ by the vector o; = (p(s; = S1)...p(st = Sp))T. Where ol denotes the
transpose of o.

The dynamics of the state occupancy probabilities over the chain are resulting from re-
cursively applying the following equation:

T _ T
0py1 =0y P

When we want to predict the future, we cannot be sure in which state s; the process is at any
time ¢, and therefore the uncertainty may be quite high. However, when it is possible to use
intermediate results, e.g. when we can observe the state at a particular time-step ¢, this is
useful for calculating o;11. The knowledge of being in a particular state s;, helps to diminish
the prediction error over the next state occupancy probabilities o;11, but does not always
decrease the entropy of 0;11. E.g. look at Figure A.1: we may have a case in which a state j

"We consider regular Markov chains, which means that there exists a number I so that all states are
connected by a path of length at most L.
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goes to two successors [ and m with probability 0.5 each. If at time t — 1, we know s;_1 =1,
we may have a transition to s; = j or s; = k (both probability 0.5) where k goes to state m
with probability 1.0. Then the entropy of the predicted state occupancy probabilities at time
t 4+ 1 given that we are in state ¢ at time ¢t — 1 is: —0.75l0¢g0.75 — 0.25]0g0.25 = 0.81 bits.
After we know that we have stepped to state j at time ¢, and we predict again, the entropy
is —0.5l0g(0.5) — 0.5l0g(0.5) = 1 bit. Thus, additional information may make our prediction
about the future state less certain.

Figure A.1: A Markov chain where entropy is not monotonically increasing.

When we do not know p(s¢1r = j), but we know s, we can compute the state occupancy
probability vector oy which stores the probability that the system is in state i (for i =
1,...,N) at time-step t + k as follows:

. . k
P(St4r = Jlse = i) = Pij
Where PF is the k-step transition matrix. We may also calculate this by using:

Pserr =jlsy=1d) =Y P Pkt
m

with 0 <[ < k which is the Chapman-Kolmogorov equation. The logic behind this equation
is that the probability of going from one state ¢ to another state j in k steps is equal to the
probability of going from ¢ to each possible in-between state m in [ steps (probability le)
and then going from m to j in k — [ steps (with probability PTI;;-Z). Note that the path which
is taken from 7 to 7 does not matter due to the Markov property.

In particular, when k is a power of 2, we may use the following equation which uses
recursion to efficiently calculate the probability:

k

p(serr = jlse = i) = (P2)?

Given o, we can calculate o, by:
T _ Tpk
Opip =03 P
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A.4 Stationary Distribution

The stationary (steady-state) distribution z has the following property: zT = zTP. This

means that the probabilities will not change anymore by looking one step further in time, i.e.
the dynamics of the state occupancy probabilities becomes 0 (a fixed point has been reached).
We can find z by solving 27 = zT P directly (by iteration), or as follows:

T =17(I+ ONE — P)7.,

where ONE is a matrix containing a 1 on each place, and 1 is a vector containing only 1’s.
I is the identity matrix. (Resnick, 1992).

A.5 Properties of Markov Chains

There are some properties of Markov chains which are useful for classifying states, see also
(Resnick, 1992; Bertsekas and Tsitsiklis, 1996).

When it is possible to go from state ¢ to state 7, i.e. Ik so that PZ; > 0, we say that j
is accessible from 1.

If for two states 2 and j, it holds that 7 is accessible from j and j is accessible from 1,
(that means that there is a path from one to the other and v.v.) then we say that 7 and
] communicate.

A Markov chain is irreducible, if there is a path between each pair of states, that is all
states in S communicate with each other.

When P;; =1 for some 7, we say 7 is an absorbing state.

When P;; =0 for all j € S, we say that 7 is a terminal state. Note that this definition
is different from that of most other authors who use the same definition for terminal as
for absorbing states.

When there exists a set of states C' C S, with the property that for each : € C, and
each 7 € § — C, PZ]; = 0, for all k£, and all states in C' communicate we say that C' is
a recurrent class. This means that the process will not leave C', once it has entered a
state 1 € C.

States that do not belong to any recurrent class are called fransient. For transient
states, we have PJ; =0, as k — oo. That means that the probability of returning to a
transient state goes to 0 as the number of steps after the visit goes to infinity, which
means that o4(i) — 0 for ¢t — oo.

A chain is called ergodic, if it is irreducible, the complete set of states S is recurrent
and a stationary distribution exists.
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A.6 Counting Visits

Sometimes it is useful to know the average number of times the process will be in a particular
state 7 starting in the current state ¢ until T" steps in the future. The expected number of
visits K;; of a state j starting in ¢ until 7" steps in the future can be calculated by:

T
Kij =P
=0

For T' — oo, we can calculate the complete counting matrix K with elements K;; by:

o]
K=Y P =(1-pP)",
=0

where I is the identity matrix, and Q! denotes the inverse of (). Note that in this case the
process should terminate, since otherwise K;; goes to oo for at least one ¢, j pair. Termination
may be assured by including a terminal state which is accessible from all other states.

A.7 Examples

Example 1: Look at the following example. The set of states is S = {1,2,3} and the
probabilistic transition matrix P is given by:

0.6 04 0.0

0.3 0.2 0.5

0.0 0.6 0.4
04

\/ 0.2
0.3
0 05
04

Figure A.2: The Markov chain of Example 1.

This Markov chain in shown in Figure A.2. The chain is irreducible since all states
communicate. There are no transient states. The stationary distribution x can be calculated

as follows:
0.6x;y + 0.3z9 = 71

04z1 + 0.2z + 0.5z3 = zo
0.5z + 0.4x3 = I3
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From this follows: z1 = %.’L‘z and x3 = %IEQ. Since 1 + z2 + 3 = 1, we get %:@ =1, and it
follows that z; = 3;9—1, To = é—% and r3 = %. The chain is ergodic. Note that (I - P) is singular,
therefore we cannot compute the counting matrix for the infinite case (in this case all states

will be visited infinitely many times).

Example 2: Now have a look at the following example. Again S = {1,2,3}. Now P is given
by:

0.6 04 0.0
0.0 08 0.2
0.0 04 0.6

State 1, is a transient state, since once the process has left state 1 it will not go back to
it anymore. States 2 and 3 form a recurrent class. The stationary distribution is given by:
T = (0 % %) Note that a transient state has probability 0 in the stationary distribution.
The chain is also not ergodic.

Example 3: Now have a look at the following example. S = {1,2,3}, and P is given by:

0.6 04 0.0
0.2 0.6 0.2
0.0 0.0 0.0

Here, state 3 is a terminal state. Since the terminal state is accessible from all states, this
means that the process will always stop. This also implies that all non-terminal states are
transient states. The chain is not ergodic. We can calculate the future visits matrix K =

(I — P)~L. This gives:

)
2.5
0

S ot Ot

1
1
1

We can see that the terminal state is reached one time from all states, and that the expected
number of transitions between state 1 and 2 is bounded.

A.8 Markov Order

When we consider Markov chains, we make the requirement that the previous states are not
allowed to have any influence on the current transition which is therefore solely based on the
current state. When a transition matrix has this property, we call it memoryless. However,
sometimes states are not uniquely perceived. Instead we may be in the posession of a partial
description of a state. This partial state or observation may not always contain all information
needed to find a perfect prediction of the subsequent state. In such cases previous states may
be used to improve the prediction abilities. Therefore, we will shortly describe Markov chains
where previous visits of states influence the current dynamics.

The Markov order mo of a process is defined as the minimal number of previous steps
which influence the transition function. When Vi € S

p(str1 = 1) = p(St41 = i[st, ..., 51),
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the Markov order is mo = 0 and we see that the current state and the previous states do
not influence the next transition. This means that there is a fixed probability of visiting each
state.

We will use a recursive definition for the Markov order. The Markov order is mo (for
mo > 0) when it is not mo — 1 and when the following holds Vi € S:

p(3t+1 = ’l:|3t, e 73t—|—1—m0) = p(St—l—l = ’l:|3t, e ,31) (Al)

The equation says that no more than mo previous states can be important for determining
the transition probabilities. There are two special cases, the first is when mo = 1, which we
have already seen, since it is a requirement for Markov chains (the Markov property holds).
When mo = ¢, and goes to co as t — oo, we say it is a process of indefinite Markov order.

Dealing with processes with definite Markov order higher than one, which we will call
higher order Markov processes, can be done as follows: we construct new states which are
Cartesian products of the last mo steps. The new space of higher order states, contains N™°
elements (although usually only a small fraction of all elements do occur). In this new space,
however, we can consider Markov chains of order 1.

A.9 Higher Order Transition Functions

When we consider Markov processes of higher order (mo > 1), and we want to predict the

° and mo'" order probabilistic

dynamics of the states, we have to use higher order states ™
transition functions. For this we introduce higher-order states :™° which contain all informa-

tion about the last mo steps (the history of the state trajectory). The state 1™ is defined as

follows. Given: s = Jo,8t-1 = J1,5t-2 = J2,-+ -, St+1-mo = Jmo—1, We compute 1"’ as follows:
mo—1

M= )" sy N (A.2)
k=0

That means that ¢ assigns a number to uniquely describe each different sequence of states.
It is useful to number the (first order states) as follows: S = {0,1,2,..., N — 1}, which gives
the following numbering for :™° : i"° € HS = {0,1,2,...,N™° —1}. HS is the resulting set
of higher order states. Note that when mo =1, ¢"° = s; and HS =S.

For defining higher order transitions of order mo, we use:

pmo(jmo|imo) = P(3t+1 = j7 St = jOa « o St42—mo = jmo—2|3t = j07 vy St4l—mo = jmo—1)7

with i™° and 7™ defined by equation A.2.

Pmo(3™°]i™°) denotes the probability of going from i"™° to j™° in 1 step, based on the last
mo states which are covered in i™°. We can again use matrix notations. We construct the
higher order matrix H P with size N™° x N™° where we define

0

HPimojmo = pmo(j™°|1"™)

’

Note that each row of HP contains only n nonzero elements, since only the first state can
be changed (and thus we could represent the matrix more efficiently). The Markov order is the
longest sequence of previous states needed for determining the probability of all transitions
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from each possible history. For most states ™, the Markov order will be lower, which means
that we do not have to know py,,(j™°|i™), but can rely on p;(5'|i') with I < mo, and therefore
it < i™°. In such cases we can represent the transition function more compactly by a tree.

We can calculate p’, (5™°]i™°) that is the probability of going from ™ to 7™ in n steps
using the previous mo steps as follows:

Pino(3™°[i™?) = H Pjfuo jmo

A.10 Examples

04

0.4

— il () T

02]S,=0

05

Figure A.3: Second order Markov chain be-

fore introducing higher order states. Figure A.4: The resulting Markov chain of
figure 2 after converting the chain to higher

order states and transitions.

Example 4: Given the 2" order (mo = 2) Markov chain in Figure A.3. The states are

{0,1} and in state 1 the next transition depends on the previous state. We construct the
higher order states : HS = {(0,0), (0,1), (1,0),(1,1)} or equivalently: HS ={0,1,2,3}. HP

is given by:

From/To | (0,0) (0,1) (1,0) (1,1)
(0,0) 0.4 0 0.6 0
(0,1) 0.4 0 0.6 0

(1,0) 0 0.2 0 0.8

(1,1) 0 0.5 0 0.5

’

Figure A.4 shows the resulting Markov chain. The resulting higher order transition matrix
is irreducible, does not contain absorbing states or transient states. The stationary occupancy

probabilities are given by 27 = (g % g %). The chain is ergodic. Finally, for the stationary
distribution over the states in Figure A.3, we have probability p(0) = % that we observe a 0,
and p(1) = 22

Example 5: Given the 2" order Markov chain in Figure A.5, we can of course again define

HS and HP in the same way, but now HP would be a 9 x 9 matrix. A better way in this
case is to define HS with four states as follows (not all 9 states are needed) HS = {0, 1, 2,3},
state 0 is the set of 2" order states : {(0,0),(0,1)}, state 1 = {(1,1),(1,2)}, state 2 =
{(2,1),(2,2)}, and finally state 3 = {(1,0)}. Note that we split the original state 1, which
needs the previous state for calculating its transition probabilities, into a set of two states
{1,3}. The resulting Markov chains is shown in Figure A.6. The transition probability matrix
now looks as follows:
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Figure A.5: Ezample 5. Higher order Markov — Figure A.6:  Markov chain with splitted
chain before introducing higher order states. — higher order states.

0.6

03[S, <0

0.4

From/To ‘ (0) (1) (2) (3)

© |06 0 0 04
1) |03 02 05 0
2) 0 0.6 04 0
(3) 0 0 10 0

Note that this matrix is invertible (just check Pv = 0, which means that all v; = 0).
When we would have used the full 9 x 9 higher order matrix, then it would not have been
invertible. This is because some rows would be the same. Therefore an invertible matrix
contains all necessary information and we should not try to make matrices unnecessarily
large by introducing redundant information (as was the case in Example 4).

Now we can calculate the stationary occupancy probabilities: = = (% % % %)T
From these we can calculate the probabilities that we will see each of the states 0, 1, and 2
when the process has settled down in the steady-state distribution by just summing up the

stationary occupancy probabilities of the splitted state 1: (% % %)
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Appendix B

Learning rate Annealing

Consider the following conditions on the learning rate o; which depends on ¢. Here we use ©
to denote the number of visits of a specific state/action pair.

L Y2 ar =00
2. 2 af < oo

The reason for the first condition is that by updating with learning rate oy, each (finite)
distance between the optimal parameter-setting and the initial parameters can be overcome.
The reason for the second condition is that the variance goes to zero, so that convergence
in the limit will take place (otherwise our solution will be inside a ball with the size of the
variance containing the optimal parameter-setting, but the true single-point solution will be
unknown). We want to choose a function f(t) and set oz = f(¢). In (Bertsekas and Tsitsiklis,
1996) f(t) = % is proposed. Here we propose to use more general functions of type : f(t) = tlﬁ’
with 8 > 0, and will proof that for % < B <1, the two conditions on the learning rate are
satisfied.

The function is a step function, since a sum is used. In the following we use a continuous
function in order to make it easy to compute 3. Since there is a mismatch between the
continuous function and the step function, we use two functions, one which returns a smaller
value than the sum (the lower bound function), and another which returns a larger value (the
higher bound function).

For the first condition we use a lower bound on the sum:

> 1 o 1
> = / el
t:lt t=11
[tl_ﬁr
16|,
= o

From this (and from dealing with the special case 3 = 1 separately) follows : 3 < 1.
For the second condition we use a higher bound on the sum:

> 1

=1
— < 1 —=dt
e S L
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= 14

(t — 1)1—2ﬁro
1-26 |,
< 0o

From this follows : 8 > %

Hence we can use the following family of methods for decreasing the learning rate: f(t) =
tiﬁ with % < B < 1. Since in general we want to choose the learning rate as high as possible,
0 should be chosen close to % In practical simulations often constant learning rates are used
(i.e. B =0), but this may prohibit convergence.



Appendix C

Team Q()\) Algorithm

We have extended the Fast Q(\) algorithm to the multi-agent case. The complete Team Q())
algorithm will be described here. We will first introduce additional indices for the different
agents (histories) and use the following variables:

K = Number of agents.

H; = History list of agent 4.

I!(s,a) = Eligibility trace of agent 4.

A; = Global delta trace of agent 4.

¢t = Global eligibility trace of agent i.

di(s,a) = Local delta trace for SAP (s, a) of agent i.

sel f visited;(s,a) = Boolean which is true if SAP (s, a) occurred in the trajectory
of agent .

visited;(s,a) = Last trial number in which SAP (s, a) occurred in the trajectory
of agent j, where 7 may, or may not be equal to ¢. If it is not, there should be a
connected path between SAP (s,a) to the trajectory of agent i.

revisited;(s,a) = Boolean which indicates whether SAP (s,a) has been visited
multiple times by agent .

First we adapt the previous procedures Global Update and Local Update to take into
account that we have to specify the current agent. These procedures should always be used
for the multi-agent Q(\) where the value function is shared by the agents, independent of the
choice whether we connect traces or not. The new Local Update simply adds the contributions
from all agent trajectories to update a Q-value:
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Local Update(s, at) :

1) D+0
2) For i=1 to K Do
2a) If (wisited;(s¢,at) > 0)
2a.1) M « visited;(st,at)
2a.2) D« D+(AM—6;(s¢,a1))li (s, a4)
2a.3) &;(styar) — AN
2a.4) If (M < N)
2a.4.1) li(st,a1) <0
2a.4.2) visited;(s¢,at) < N
3) Q(st,ar) < Q(st,at) + ag(st,ar)D

For Global Update we first have to change the variable-indices to take the active agent (the
agent which made the last step) into account (this is straightforward to do, so we do not show
the new procedure here). In the procedure Global Update’s addendum, we change the first
lines (line 9, 9a and 9b), to make sure that we insert revisited states in the beginning of the
history list. Here the union operator U is implemented as an insertion at the head of a list.

Global Update(s¢,at,1) :
9) If (visited(st,ar) =0)
9a) H; «+ H; U (st,a4)
9b) wisited;(st,at) < N
9¢c) self_visited;(st,ar) < 1
9d) revisited;(s¢,at) < 0
9’) Else
9e) H; < H;/(st,at)
of) H;«+ H;U (St,at)
9g) self_visited;(s¢,ar) <+ 1
9h) revisited;(s¢, at) + 1

Finally, Global addendum should be updated so that we reset the variables revisited;(s,a)
and sel f visited;(s,a) in lines 10a-3.3 and 10a-3.4.

Connecting traces algorithm. Now we have adapted the existing procedures for the
value function sharing multi-agent case. We will call the multi-agent Q(\) method without
connecting traces: Independent Q(\). If we want to connect traces, all we have to do is to
check if an agent executes a SAP which has been executed already by another agent and call
the procedure Connect as shown below. Note that in our algorithm we compare whether the
same SAP has occurred in two agent trajectories, another method would be to check whether
an agent visits the same state as another agent. Although this would cause more links between
trajectories, the second agent may have chosen a different action, since the action selected by
the first agent turned out not to be very good, and therefore learning on that future trajectory
may be more harmful than if we only learn if the same SAP has occurred.

In the procedure Connect, we have the meeting point (s,a) and want to let SAPs from the
trajectory of agent i learn on the future dynamics of trajectory Goal4. The variables Delta
and trace2 store local values of (s, a) for trajectory Goals. Tracel is the eligibility trace of
the current SAP Prev which we insert.
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We traverse the trajectory of agent 7 by going backwards in the chain. The variables Sp;.e,
and Ay, denote the state and action of the history element Prev of agent <. Whenever SAPs
(Prev) from i have not been visited by the trajectory called Goal 4, we insert them in the list
and update the trial, eligibility traces, and é-values. After inserting 1 SAP we take its prede-
cessor and check in which agent trajectories the preceding SAP occurred, so that they may
also start learning on the trajectory of Goal 4. This is implemented by the lines starting from
(3f) below. Essentially it implements a recursive call which stores SAPs from all trajectories
in the history list of Goal 4 if there is a directed path to SAP (s,a) to the list of Goal 4. If we
“hop” over to another trajectory, we recompute the trace variables. Finally line 4 implements
the case in which the SAP Prev already has a non-zero eligibility trace on the trajectory of
Goal 4, but since it has been revisited, its predecessor may still not have eligibility.

Connect(s,a, Prev,i, Goal 4, delta, tracel, trace2, trial) :

1) If (Prev = NULL) return
2) lpew < trace2(li(sprev, aprey)/tracel)
3) If ((uisitedGoal, (SPrev, @Prev) = 0) AND sel f_visited;(Sprey; @Prey) AND
(Inew > €m) AND wisited;(Sprey, @prey = trial)
3a) visitedgoal, (SPrev, @Prev) — Visitedgoal, (S, a)
3b) llgoalA (SPreva aP'rev) <~ lnew
3c) (SG’oalA (SP’reva aP’rev) < delta
3d) Hgoal, < tnsert_at_end_of list(Hgoal,, (SPrevs @Prev))
3e) wvisitedGoal, (SPrev, @Prev) — Visitedgoal, (S, a)
3f) For =1 to K
3f.1) If ((j <> Goals) AND (self_visited;(SprevsQprev)))
3f.1.a) If (j <>1)
3f.1.a.1) new tracel < li(sprev, Aprev)
3f.1.a.2) new_trace2 < lpew
3f.1.a.3) trial < visited;(sprey, Gprev)
3f.1.b) else
3f.1.b.1) new_tracel < tracel
3f.1.b.2) new_trace2 + trace2
3f.1.b.3) trial < visited;(Sprev, Gprev)
3f.1.c) Prev < Prev_history_elt(H;, (sprev, GPrev))
3f.1.d) If ((tracel > €,) AND (trace2 > €,,))
3f.1.d.1) Connect(s,a, Prev,j,Goal 4,delta, new_tracel, new_trace2, trial)
4) Else If (revisited;(Sprevsaprev) AND self_visited;(Sprevs Gprev))
4a) Prev < Prev_history_elt(H;, (Sprev, @Prev))
4b) Connect(s,a, Prev,i, Goal 4, delta, tracel, trace2, trial)

Finally, we have to call the procedure connect. This we do if we observe that the current
SAP (s,a) has also occurred in the trajectory of another agent. There are two ways of con-
necting trajectories: (1) SAPs are inserted in the history list of the active agent so that they
will start learning on what the active agent does in the future. This is done in the first part
of the procedure below (2a). (2) SAPs are inserted in the history list of the other agent so
that SAPs which occurred in the list of the active agent will start learning on the trajectory
of the other agent (3a). Below, we present the complete Team Global Update procedure. Tt
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first calls Global Update and then tries to connect trajectories. We call the active agent Active.

2a
2a
2a
2a
2a
2a

3a
3a
3a
3a
3a
3a

1)
.2)
.3)
.4)
.5)
.6)

Team Global Update(s, at, Active) :
1) Global Update(st,ar, Active)
2) For 1=1 To K
2a) If ((i <> Active) AND (self_visited;(s,a)))

Prev < Prev_history_elt(H;(s,a))
delta < 6 Active (S, a)

tracel « ll(s,a)

trace2 < Uy 4. (8, )

trial < visited;(s,a)

if ((tracel > ¢,,) AND (irace2 > €,,))

2a.6.1) Connect(s,a, Prev,i, Active, delta, tracel, trace2, trial)

1)
.2)
.3)
.4)
.5)
.6)

3) For 1:=1To K
3a) If ((i <> Active) AND (self_visited;(s,a)))

Prev « Prev_history_elt(H sctive(s,a))
delta < 6;(s,a)

tracel < Uy ... .(s,a)

trace2 « li(s,a)

trial < visited gctive (S, @)

if ((tracel > ¢,,) AND (trace2 > €,,))

3a.6.1) Connect(s,a, Prev, Active, i, delta, tracel, trace2, trial)




Appendix D

PS for Function Approximators

D.1 PS for Neural Gas

The model-based update of the Q-value Q(n;,a), Q-update(n;, a) looks as follows:
Q(ni,a) < Y Puj(a)(R(nia,5) vV (j)),
J

where P,.j(a) = P(j|ni,a). The details of our PS look as follows:

Our-Prioritized-Sweeping-NG(z):

1) Compute active neurons: c¢i,...,C,
2) For k = 1 to z do:
2a) Update ¢, --- Va do:

2a.1) Q-update(cg,a)
2b) Set |A(cg)| to oo
2c) Promote c¢j to top of queue
3) While (n < Upar & queue # nil)
3a) Remove top ¢, from the queue
3b) Afcy) «+ 0
3c) V Predecessor neurons ¢ of c¢; do:
3c.1) V(i) + V(i)
3c.2) Va do:
3c.2.1) Q-update(i,a)
3c.3) V(i) + max, Q(i,a)
3c.4) A1) « A() + V() —V'(3)
3c.5) If |A(i)] > ¢
3c.5.1) Insert i at priority |A(:)]
3d) n<n+1
4) Empty queue, but keep A(:) values

Here U4, is the maximal number of updates to be performed per update-sweep. The
parameter € € IR" controls update accuracy.
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D.2 PS for CMACs

The model-based update of the Q-value Q(c,a), Q-update(k,c,a) looks as follows:

Qkle,a) < 3 Pey(a)(Ri(e,a, ) +7Ve(5)),

where Pckj (a) = Px(jlc,a). The details of our PS look as follows:

Our-Prioritized-Sweeping-CMAC(z):

1) Compute active cells: fi,...,f,
2) For k = 1 to z do:
2a) Update fr --- Va do:

2a.1) Q-update(k, fr,a)
2b) Set |Ak(fr)| to oo
2c) Promote (k, fr) to top of queue
3) While (n < Upgae & queue # nil)
3a) Remove top (k,c) from the queue
3b) Ak(c) +~—0
3c) V Predecessor cells k,z of k,c do:
3c.1) V(i) < Vi(d)
3c.2) Va do:
3c.2.1) Q-update(k,i,a)
3c.3) Vi(i) < max, Qk(i,a)
3c.4) Ap(i) « Ap(?) + Vi(d) — Vé(l)
3c.5) If |Ar(z)] >e€
3c.5.1) Insert i at priority |Ag(i)]
3d) n+n+1
4) Empty queue, but keep Ay(i) values

D.3 Non-Pessimistic Value Functions

To compute non-pessimistic value functions for multi-agent CMACs, we decrease the prob-
ability of the worst transition from each filter/cell/action and then renormalize the other
probabilities. Then we use the adjusted probabilities to compute the Q-functions. In the
following Cz-kj(a) counts the number of transitions of cell 7 to 7 in filter & after selecting action

a and C¥F(a) counts the number of times action a was selected and cell 4 of filter k was ac-
tivated. We obtain Pz-lj-(a), the estimated transition probability, by dividing them. Then we
substitute the following for Q-update(k, ¢, a):
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Compute Non-Pessimistic Q-value(k,7,a):

1) m « argmin;{Ry(¢,a,75) +vVi(5)}
2) n<—C:lk(a)
3) P+« PF (a)

4) lefn(a) —

142
5) Ap < Pf (a) — Pk, (a
6) Vj#m 5
~ A Cij(a)
62) Pli(a) « Pf(a) - a1

7) Q-update(k,i,a)

The variable z, which determines the step size for decreasing worst transition proba-
bilities. To select the worst transition in step 1, we only compare existing transitions (we
check whether pij (a) > 0 holds). See Figure D.1 for a plot of the function. Note that if
there is only one transition for a given filter/cell/action triplet then there will not be any
renormalization. Hence the “probabilities” may not sum up to 1. Consequentially , if some
filter/cell/action with deterministic dynamics has not occurred frequently then it will con-
tribute just a comparatively small Q-value and thus have less impact on the computation of
the overall Q-value.

Non-Pessimistic

New P

Figure D.1: The non-pessimistic function (new P) which decreases the probability of the worst
transition decreased as a function of the (mazimum likelihood) probability P and the number
of occurrences n.
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Summary

This thesis describes reinforcement learning (RL) methods which can solve sequential decision
making problems by learning from trial and error. Sequential decision making problems are
problems in which an artificial agent interacts with a specific environment through its sensors
(to get inputs) and effectors (to make actions). To measure the goodness of some agent’s
behavior, a reward function is used which determines how much an agent is rewarded or
penalized for performing particular actions in particular environmental states. The goal is to
find an action selection policy for the agent which maximizes the cumulative reward collected
in the future.

In RL, an agent’s policy maps sensor-based inputs to actions. To evaluate a policy, a value
function is learned which returns for each possible state the future cumulative reward collected
by following the current policy. Given a value function, we can simply select the action with
the largest value. In order to learn a value function for a specific problem, reinforcement
learning methods simulate a policy and use the resulting agent’s experiences consisting of
<state,action,reward,next-state> quadruples.

There are different RL problems and different RL methods for solving them. We describe
different categories of problems and introduce new methods for solving them.

Markov Decision Problems

If the agent’s inputs allow for determining the state of the environment with certainty and
the environment is stationary, we can model the decision making problem as a Markov De-
cision Problem (MDP). In a MDP, the probabilities and expected rewards of transitions to
possible next states only depend on the current state and action and not on any previous
events. Given an exact model of a MDP, we can use Dynamic Programming (DP) methods
for computing optimal policies. Such methods iterate over each state and constantly recom-
pute the value function by looking ahead one step at each time. There are two principal DP
methods: value iteration and policy iteration. Value iteration reupdates the policy after each
improvement of the value function by immediately mapping a state to the action with the
largest value, whereas policy iteration first completely evaluates a policy by using sufficient
iterations, after which a policy update step is performed. Although in theory policy iteration
always converges in finitely many iterations whereas value iteration does not, our experiments
on a set of maze-tasks indicate that value iteration converges much faster to a solution. The
main reason for this is that policy iteration, postponing policy updates, wastes a lot of time
evaluating policies which generate cycles in the state space.



Reinforcement Learning

Dynamic programming methods can only be used if we have an a priori model of the MDP.
Therefore their practical utility is severely limited. In case we do not possess such a model,
we can use reinforcement learning methods which learn policies by interacting with a real
or simulated environment. For this we use trials during which agents generate trajectories
through the state space and let agents learn from the resulting experiences.

RL methods such as Q-learning learn a value function by minimizing temporal differences
between the current state’s value and the reward which immediately follows plus the next
state’s value. Q-learning updates values of state/action pairs along a solution-path by looking
ahead only one single step in a trial, and therefore it takes many trials before a goal-reward
will be backpropagated to the start. TD(A) methods are parameterized by a variable A en
use the entire future for updating the value of a state, although the degree of influence of
state values in the distant future is less than values of immediately successive states. This
makes it possible to learn from effects of actions which show up after a long time. Q(M\)-
learning combines Q-learning and TD(A) and uses single experiences to update values of
multiple state/action pairs that have occurred in the past. Although Q(\) methods can
sometimes learn policies from much less experiences than Q-learning, naive implementations
of the online Q(\) method suffer from a large computational overhead. We have introduced
a novel implementation of the algorithm which makes it possible to efficiently perform the
updates.

If multiple agents are used simultaneously in an environment, they can share the policy
to collect more experiences at each time step which may speed-up learning a policy. Using
“policy-sharing”, agents select actions according to the same policy, but their actions may dif-
fer since they receive different situation specific inputs. In such cases we can use each agent’s
generated trajectory individually to update the shared value function. However, sometimes
there exists an interaction point (IP) between agent’s trajectories such as a state visited by
both of them. In such cases we can connect the trajectories and update values of states
visited by one agent before the IP using values of states visited by the other agent after the
IP. In this way we collect much more experiences to learn from, which may increase learning
speed. We describe an implementation of this Team Q(\) algorithm and evaluate it in a non-
cooperative maze-task using different numbers of agents. The results do not show that the
method improves learning speed. One reason for this is that our implementation allows for
connecting a state-trajectory of one agent with another state-trajectory which may be gen-
erated a long time ago by a possibly much worse policy and learning from such a trajectory
may degenerate the policy. Therefore we need to study the trade-off between the quantity
and quality of learning examples.

Model-based Reinforcement Learning

Q-learning and Q(A) methods are direct memoryless RL methods which directly estimate the
value function from generated state-trajectories. Indirect or model-based RL methods first
learn a model of the MDP and then apply DP algorithms to compute the value function.
When used in an online manner, DP algorithms are very slow since they recompute the value
function after each experience by iterating over all states. To speed up dynamic program-
ming algorithms, some algorithms manage which update-steps should be performed after each
experience so that only the most useful updates are made. One of the most efficient manage-



ment methods is Prioritized Sweeping (PS) which assigns priorities to updating the values
of different states according to a heuristic estimate of the size of the values’ updates. The
original PS algorithm by Moore and Atkeson (1993) calculates state-priorities based upon the
largest single update of one of the successor states. We describe an alternative PS method
which uses the exact update sizes of state values to compute priorities. This may overcome
PS’ problems in case there are many tiny state value updates resulting in a large update,
which remains undetected by PS.

We compare model-based RL methods to direct RL methods on a set of maze-tasks and
observe that model-based RL results in much faster learning performances and better final
policies. Finally, we observe that our PS algorithm achieves better results than the original

PS algorithm.

Exploration

If we test an agent’s policy by always selecting the action with the largest value, we may
end up with a suboptimal policy which has (almost) never visited a large part of the state
space. Therefore it is important that the agent also selects exploration actions and tries
to increase its knowledge of the environment. Usually, however, exploration actions cause
some loss of immediate reward intake. Therefore, if an agent wants to maximize its cumu-
lative reward during its limited life-time, it faces the problem of trying to spend as little
time as possible on exploration while still being able to find a highly rewarding policy (the
exploration/exploitation dilemma). However, if we are interested in learning a policy achiev-
ing some minimal performance level as soon as possible, we do not care about intermediate
rewards and thus only exploration is important.

Exploration methods can be split into undirected exploration methods which use pseudo-
random generators to try their luck on generating novel interesting experiences, and directed
exploration methods which use additional information such as the knowledge of what the
agent has seen or learned in order to send the agent to interesting unknown regions.

Directed exploration methods can be constructed by constructing an exploration reward
rule which makes it possible to learn an exploration value function for estimating global infor-
mation gain for selecting particular action-sequences. Although we can use any RL method
for learning an exploration value function, we propose to use model-based RL for this. Finally,
in order to focus only on state/action pairs which can belong to the optimal policy, we intro-
duce MBIE, an algorithm which uses the standard deviance for computing optimistic value
functions. The results on experiments with maze-tasks featuring multiple goals show that
directed exploration using model-based RL can significantly outperform indirect exploration.
Furthermore, the results show that MBIE can be used to almost always obtain near-optimal
performance levels and that MBIE efficiently deals with the exploration/exploitation dilemma.

Partially Observable Problems

In the real world the agent’s sensory inputs may not always convey all information needed
to infer the current environmental state. Therefore the agent will sometimes be uncertain
about the real state and that makes the decision problem much harder. Such problems are
usually called Partially Observable Markov Decision Problems (POMDPs) and even solving
deterministic POMDPs in NP-hard. To solve such problems, the agent needs to use previous
events or some kind of short-term memory to disambiguate inputs. Exact methods make



use of a belief state, a vector representing the probabilities that the real environmental state
is each of the possible states. Then they use DP algorithms to compute optimal solutions
in the belief state space. Exact methods are computationally infeasible if there are many
states, since they are too slow. Therefore we are interested in heuristic algorithms which
can be used for larger problems, but do not necessarily find optimal solutions. We describe
a novel algorithm, HQ-learning, which is able to learn good policies for large deterministic
POMDPs. HQ automatically decomposes POMDPs into sequences of simpler subtasks that
can be solved by memoryless policies learnable by reactive subagents. Decomposing the task
into subtasks and learning policies for each subtask is done by two cooperating Q(\)-learning
rules. Experiments, on (among other) a large maze-task consisting of 960 states and only
11 different, highly ambiguous inputs, show that HQ-learning can quickly find good or even
optimal solutions for difficult problems.

Function Approximation in RL

An important topic in RL is the application of function approximation to learn value functions
for continuous or very large state spaces. We describe three different function approximators:
linear networks, neural gas, and CMACs, and describe how they can be combined with direct
and model-based RL methods. Then we describe a simulated multi-agent soccer environment
which we use to test the learning capabilities and problems of the function approximators
and RL methods. The goal is to learn good soccer strategies against a fixed programmed
opponent. The results show that the linear networks and neural gas architecture trained with
Q(A) had problems to steadily improve their learned policies. Sometimes, the performance
broke down due to catastrophic learning interference. CMACs was more stable, although
CMAC-models, the combination of CMACs and model-based RL was the only method which

found really good performances and was able to beat some good opponents.

Conclusions

We have shown in this thesis that RL can be used to quickly find good solutions for different
kinds of problems. The methods described in this thesis do not need a model of the world,
but learn a policy for an agent by interacting with the (real) environment. Especially model-
based RL can be very efficient since it is able to use all information. Therefore the practical
utility of (model-based) reinforcement learning is very large and we expect the research field
to grow a lot in importance in the forthcoming years.



Samenvatting

Dit proefschrift beschrijft reinforcement leermethoden (RL-methoden) welke sequentiéle be-
sluitvormings problemen op kunnen oplossen door het leren van proberen en fouten maken.
Sequentiéle besluitsvormings problemen zijn problemen waarin een kunstmatige agent inter-
acteert met een bepaalde omgeving door middel van haar/zijn sensoren (om input te verkrij-
gen) en effectoren (om acties te verrichten). Voor het meten van de goedheid van het gedrag
van een specifieke agent, maken we gebruik van een beloningsfunctie welke bepaalt in hoev-
erre een agent beloond of gestraft moet worden voor het verrichten van bepaalde handelingen
in bepaalde situaties. Het doel is om een actie-selecteer handelsprocedure voor de agent te
vinden welke de totale som der beloningen verkregen in de toekomst maximaliseert.

In een RL-setting worden inputs geprojecteerd op acties door de handelsprocedure van
de agent. Voor het evalueren van een handelsprocedure, leren we een waarde-functie welke
voor elke mogelijke toestand van de wereld de som der beloningen teruggeeft welke in de
toekomst wordt verkregen door het volgen van de huidige handelsprocedure. Als we eenmaal
een waarde-functie hebben verkregen, kunnen we gewoon de actie selecteren met de hoogste
waarde. Om een waarde-functie te leren voor een bepaald probleem, simuleren reinforce-
ment leermethoden een handelsprocedure en gebruiken ze de resulterende ervaringen van de
agent welke bestaan uit <toestand, actie, beloning, volgende-toestand> quadruples om de
toekomstige beloningssom te schatten beginnende in elke mogelijke toestand.

Er zijn verschillende RL-problemen en verschillende RL-methoden om ze op te lossen. We
beschrijven verschillende probleem-categorieén en introduceren nieuwe methoden om ze op te
lossen.

Markov Besluits Problemen

Als de input van een agent toestaat om de toestand van de omgeving met zekerheid te
bepalen en de causale wetten die in de omgeving opgaan zijn onveranderlijk, dan kunnen
we het besluitvorming probleem modelleren als een Markov Besluits Probleem (MBP). In
een MBP hangen de kansen en beloningen van overgangen naar mogelijke opvolgende toes-
tanden enkel af van de huidige toestand en gekozen actie en niet van vorige gebeurtenissen.
Gegeven een exact model van een MBP, kunnen we Dynamisch Programmeer (DP) methoden
gebruiken om optimale handelsprocedures te berekenen. Zulke methoden itereren over elke
toestand en verbeteren de waarde-functie voortdurend door steeds een stapje verder vooruit
te kijken. Er zijn twee voorname DP methoden: waarde iteratie en handelsprocedure iteratie.
Waarde iteratie verbetert de handelsprocedure na elke verbetering van de waarde-functie
door onmiddellijk elke toestand te projecteren op de actie met de hoogste waarde, terwijl



besluitsprocedure iteratie eerst de handelsprocedure volledig evalueert om zo een exact evalu-
atie van de handelsprocedure te verkrijgen, waarna een verbetering van de handelsprocedure
wordt gemaakt. Hoewel handelsprocedure iteratie in theorie altijd in eindig veel iteraties
convergeert en waarde iteratie niet, wijzen onze experimenten erop dat waarde iteratie veel
sneller een oplossing kan berekenen. De hoofdreden hiervoor is dat handelsprocedure iteratie
verbeteringen in de besluitsprocedure uitstelt en dusdanig veel tijd verliest door het volledig
evalueren van handelsprocedures welke wederkerende paden in de toestandruimte genereren.

Reinforcement Leren

Dynamisch programmeer methoden kunnen enkel gebruikt worden als we een a priori model
van de MBP tot onze beschikking hebben. Daarom is hun praktische bruikbaarheid erg
beperkt. In het geval dat we niet over zo’'n model beschikken, kunnen we reinforcement
leermethoden gebruiken welke handelsprocedures leren door te interacteren met een werkelijke
of gesimuleerde omgeving. RL-methoden gebruiken experimenten waarin de agent toestands-
paden door de toestandsruimte genereert waarvan geleerd kan worden. In het optimale geval
leert de agent dusdanig optimale paden te genereren.

RL-methoden zoals Q-leren leren een waarde-functie door tijdelijke verschillen tussen de
waarde van de huidige toestand en de beloning welke onmiddellijk volgt plus de waarde van
de volgende toestand te minimaliseren. Q-leren past waarden van toestand/actie paren welke
op een oplossings-pad liggen aan door in elk opvolgend experiment slechts één stap vooruit te
kijken en daarom zijn er veel experimenten nodig voordat een beloning welke verkregen wordt
bij de doel-toestand teruggepropageerd wordt naar het begin. TD(A) methoden gebruiken de
hele toekomst voor het aanpassen van de waarde van een toestand, hoewel waarden van toe-
standen welke ver in de toekomst liggen minder zwaar wegen dan waarden van onmiddellijk
opvolgende toestanden. Dit maakt het mogelijk om van de gevolgen van acties te leren welke
pas na een lange tijd zichtbaar worden. Q(\) combineert Q-leren met TD(\) en gebruikt
ervaringen om waarden van meerdere toestand/actie paren welke in het verleden zijn opge-
treden aan te passen. Hoewel Q(\) methoden soms handelsprocedures kunnen leren van veel
minder ervaringen dan Q-leren, lijden naive implementaties van online Q(A) methoden onder
een grote computationele overhead. Wij hebben een nieuwe implementatie van het algoritme
geintroduceerd welke het mogelijk maakt om de aanpassingen efficiént te verrichten.

Als meerdere agenten gelijktijdig gebruikt worden in een omgeving, dan kunnen ze de han-
delsprocedure delen om zo meer ervaringen in elke tijdstap te verzamelen welke het leren van
een handelsprocedure kan versnellen. Als we gebruik maken van dit “één handelsprocedure
voor allen”, dan selecteren agenten acties volgens dezelfde handelsprocedure, maar hun acties
kunnen verschillen omdat ze verschillende situatie-specifieke inputs verkrijgen. Voor zulke
gevallen kunnen we paden gegenereerd door verschillende agenten individueel gebruiken om
de gedeelde waarde-functie aan te passen. Soms, echter, bestaat er een interactie-punt (IP)
tussen paden van agenten zoals een toestand welke door beiden bezocht is. In zulke gevallen
kunnen we paden verbinden en waarden van toestanden welke door één agent voor het TP
zijn bezocht, aanpassen door gebruik te maken van waarden van toestanden welke door de
andere agent bezocht zijn na het IP. Op deze manier verzamelen we veel meer ervaringen om
van te leren, hetgeen de leersnelheid wellicht groter maakt. We beschrijven een implementatie
van dit Team Q(\) algoritme en evalueren het in een niet-cooperatieve doolhof-taak waarin
we gebruik maken van verschillende aantallen agenten. De resultaten konden niet aantonen
dat de methode de leersnelheid verbetert. Een reden hiervoor is dat onze implementatie



verbindingen toestaat tussen een toestand-pad van één agent met een ander toestand-pad
welke al een hele lange tijd geleden gegenereerd is door een mogelijkerwijze veel slechtere
handelsprocedure waardoor aanpassingen in de waarde-functie onterecht kunnen zijn. Dus is
er een trade-off tussen de kwantiteit en kwaliteit van leervoorbeelden.

Model-gebaseerd Reinforcement Leren

Q-leren en Q(\) methoden zijn directe RL methoden welke de waarde-functie direct schatten
aan de hand van gegenereerde toestand-paden. Indirecte of model-gebaseerde RL methoden
leren eerst een model van het MBP en gebruiken dan DP algoritmes om de waarde-functie
te berekenen. Wanneer DP algoritmes op een online manier gebruikt worden, zijn ze erg
langzaam omdat ze de waarde-functie na elke ervaring herberekenen en dat doen door over
alle toestanden te itereren. Om DP algoritmes te versnellen, zijn er algoritmes die regelen
welke aanpassings-stappen verricht moeten worden na elke ervaring zodat enkel de meest
bruikbare aanpassingen gemaakt worden. Eén van de meest efficiénte methoden is Prioritized
Sweeping (PS) welke prioriteiten aanwijst voor het aanpassen van waarden van verschillende
toestanden. Deze prioriteiten worden bepaald aan de hand van een schatting van de grootte
van de aanpassingen. Het oorspronkelijke PS algoritme van Moore en Atkeson (1993) berekent
toestand-prioriteiten gebaseerd op de grootste enkelvoudige aanpassing van één van de opvol-
gende toestanden. Wij beschrijven een alternatieve PS methode welke de exacte groottes van
aanpassingen gebruikt om prioriteiten te bereken. Dit kan het probleem van PS verhelpen
als er vele kleine aanpassingen verricht worden welke tot een grote aanpassing van de waarde
van een toestand leiden, maar welke niet door PS gedetecteerd wordt.

We vergelijken model-gebaseerde methoden met directe RL methoden op een verzameling
doolhof-taken en observeren dat model-gebaseerde RL in veel sneller leergedrag resulteert en
veel betere handelsprocedures oplevert. Tenslotte observeren we dat ons PS algoritme betere
resultaten behaalt dan het originele PS algoritme.

Exploratie

Als we de handelsprocedure van een agent testen door altijd de actie met de grootste waarde
te selecteren, dan kan dat uiteindelijk leiden tot een suboptimale handelsprocedure welke
een groot deel van de toestandruimte nog nooit of nauwelijks bezocht heeft. Daarom is het
belangrijk dat de agent ook exploratie acties selecteert en haar/zijn kennis van de omgeving
probeert te verbeteren. Gewoonlijk kosten exploratie acties een bepaalde som aan onmid-
dellijke beloningen. Daarom, als een agent haar/zijn som der beloningen welke in haar/zijn
beperkte levensduur verkregen wordt wil maximaliseren, staat het voor het probleem om zo
weinig mogelijk tijd aan exploratie te verspillen welke echter wel voldoende is om een goed
belonende handelsprocedure te vinden (het exploratie/exploitatie dilemma). Indien we echter
meer geinteresseerd zijn in het zo snel mogelijk leren van een handelsprocedure welke een
bepaald prestatie-nivo levert, dan geven we niks om de beloningen welke in de tussentijd
verkregen worden en dus is enkel exploratie belangrijk.

Exploratie methoden kunnen ingedeeld worden in niet-gerichte exploratie methoden welke
pseudo-random generatoren gebruiken om zo te proberen nieuwe interessante ervaringen te
genereren en gerichte exploratie methoden welke extra informatie gebruiken zoals de kennis
wat de agent al gezien of geleerd heeft om zodoende de agent te sturen naar interessante
onbekende gebieden.



Gerichte exploratie methoden kunnen geconstrueerd worden door een exploratie belonings
functie te construeren waarmee we een exploratie waarde-functie kunnen leren voor het schat-
ten van globale informatie verdiensten voor het verrichten van bepaalde acties. Hoewel
we alle RL-methoden kunnen gebruiken voor het leren van een exploratie waarde-functie,
stellen we voor om model-gebaseerd RL hiervoor te gebruiken. Tenslotte, om enkel op toe-
stand/actie paren te concentreren welke deel uit kunnen maken van de optimale handelspro-
cedure, introduceren we MBIE, een algoritme welke gebruik maakt van de standaard devi-
atie voor het berekenen van optimistische waarde-functies. De resultaten van experimenten
met doolhof-taken bestaande uit meerdere doeltoestanden tonen dat gerichte exploratie met
model-gebaseerd RL ongerichte exploratie duidelijk overtreft. Voorts demonstreren de re-
sultaten dat MBIE gebruikt kan worden om bijna altijd haast optimale prestatie nivo’s te
behalen en verder efficiént omgaat met het exploratie/exploitatie dilemma.

Gedeeltelijk Waarneembare Problemen

In de wereld dragen de inputs van de sensoren van de agent niet altijd genoeg informatie
over om de exacte huidige toestand van de omgeving af te leiden. Daarom zal de agent
soms onzeker zijn over de daadwerkelijke toestand en dat maakt het besluitsprobleem veel
moeilijker. Zulke problemen worden gewoonlijk Gedeeltelijk Waarneembare Markov Besluits
Problemen (GWMBP’en) genoemd en zelfs het oplossen van deterministische GWMBP’en is
NP-moeilijk. Voor het oplossen van zulke problemen moet de agent vorige gebeurtenissen en
een bepaalde vorm van korte-termijn geheugen gebruiken om inputs van de ambiguiteiten te
ontdoen. Exacte methoden gebruiken een geloofs toestand; een vector welke de kansen repre-
senteert dat de echte toestand van de omgeving gelijk aan elk van de mogelijke toestanden is.
Daarna gebruiken ze DP algoritmes om optimale oplossingen in de geloofs toestandruimte te
berekenen. Exacte methoden zijn computationeel onbruikbaar als er teveel toestanden zijn,
omdat ze te langzaam zijn. Daarom zijn we geinteresseerd in heuristieke algoritmes welke
gebruikt kunnen worden om grotere problemen op te lossen, maar welke niet zeker optimale
oplossingen vinden. We beschrijven een nieuw algoritme, HQ-leren, welke goede handelspro-
cedures kan leren voor grote deterministische GWMBP’en. HQ deelt GWMBP’en op in een
opeenvolging van makkelijkere deelproblemen welke opgelost kunnen worden door geheugen-
loze handelsprocedures welke leerbaar zijn door reactieve subagenten. De decompositie van
de taak in subtaken en het leren van handelsprocedures voor elke subtaak wordt gedaan door
twee samenwerkende Q(\)-leerregels. Experimenten op onder andere een grote doolhof-taak
bestaande uit 960 toestanden en slechts 11 verschillende ambigue inputs, tonen dat HQ-leren
snel goede of zelfs optimale oplossingen kan vinden voor bepaalde moeilijke problemen.

Functie Approximatie in RL

Een belangrijk thema in RL is de toepassing van functie approximatie voor het leren van
waarde-functies voor continue of zeer grote toestandruimtes. We beschrijven drie verschil-
lende functie approximatoren: lineaire netwerken, neuraal gas, en CMACs en beschrijven
hoe ze gecombineerd kunnen worden met directe en model-gebaseerde RL-methoden. Dan
beschrijven we een gesimuleerde voetbal omgeving welke we gebruiken om de leercapaciteiten
te testen van de verschillende functie approximatoren en RL methoden. Het doel is om goede
voetbal strategieén te leren tegen een voorgeprogrammeerde tegenstander. De resultaten to-
nen dat de lineaire netwerken en neurale gas architecturen getraind met Q(\) problemen



hadden om voortdurend hun handelsprocedures te verbeteren. Soms stortte de prestatie in
door een catastrofale leerinterferentie. CMACs was meer stabiel, hoewel CMAC-modellen, de
combinatie van CMACs en model-gebaseerd RL de enige methode was welke daadwerkelijk
goede prestaties leverde en in staat was enkele goede tegenstanders te kloppen.

Conclusies

In dit proefschrift hebben we aangetoond dat RL gebruikt kan worden om snel goede oplossin-
gen voor verschillende soorten problemen te vinden. De beschreven methoden hebben geen
model van de wereld nodig, maar leren een handelsprocedure door te interacteren met de
(echte) omgeving. Model-gebaseerde is de meest efficiénte leermethode omdat het de door de
experimenten verkregen data geheel gebruikt. We bevestigen dus dat het praktisch nut van
reinforcement leren erg groot is en verwachten dat het onderzoeksveld aanzienlijk aan belang
zal toenemen in de komende jaren.
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