
1
Explorations in E�cient Reinforcement Learning

ACADEMISCH PROEFSCHRIFT
Ter verkrijging van de graad van doctoraan de Universiteit van Amsterdamop gezag van Rector Magni�cusProf. dr. J.J.M. Franseten overstaan van een door hetcollege voor promoties ingestelde commissiein het openbaar te verdedigenin de Aula der Universiteitop woensdag 17 februari 1999 te 13.00 uur

doorMarco Wieringgeboren te Schagen

2

PromotiecommissiePromotor: Prof. dr. ir. F.C.A. GroenCo-Promotor: Dr. Hab. J.H. SchmidhuberOverige leden: Prof. dr. P. van Emde Boas, Universiteit van AmsterdamDr. ir. B.J.A. Kr�ose, Universiteit van AmsterdamProf. dr. P.M.B. Vitanyi, Universiteit van AmsterdamDr. M. Dorigo, Universit�e Libre de BruxellesProf. Dr. J. van den Herik, Universiteit van Maastricht
Faculteit der Wiskunde, Informatica, Natuurkunde en SterrenkundeUniversiteit van Amsterdam

Cover: design and photography by Marco Wiering.
The work described in this thesis was performed at IDSIA: Istituto Dalle Molle di Studisull'Intelligenza Arti�ciale in Lugano, Switzerland. It was made possible due to funding ofIDSIA, and was supported in part by the Swiss National Fund (SNF) grant 2100-49'144.96\Long Short-Term Memory".

3The more a man knows about himselfin relation to every kind of experience,the greater his chance of suddenly,one �ne morning, realizing who in fact he isor rather Who in Fact "he" Is Aldous Huxley in Island

*** For You ***

4

Contents
1 Introduction 11.1 Reinforcement Learning . 41.2 Reinforcement Learning with Incomplete Information 71.3 Current Problems of RL . 91.4 Goals of the Thesis . 101.5 Outline and Principal Contributions . 112 Markov Decision Processes 132.1 Markov Decision Processes . 132.1.1 Value Functions . 142.1.2 Finite Horizon Problems . 142.1.3 In�nite Horizon Problems . 152.1.4 Action Evaluation Functions . 172.1.5 Contraction . 172.2 Dynamic Programming . 182.2.1 Policy Iteration . 182.2.2 Value Iteration . 192.2.3 Linear Programming . 202.3 Experiments . 202.3.1 Description of the Maze Task . 212.3.2 Scaling up Dynamic Programming . 222.4 More Di�cult Problems . 252.4.1 Continuous State Spaces . 252.4.2 Curse of Dimensionality . 262.5 Conclusion . 263 Reinforcement Learning 273.1 Principles of Algorithms . 283.1.1 Delayed Reward and Credit Assignment Problem 293.1.2 Markov Property . 293.2 TD(�) Learning . 303.2.1 Temporal Di�erence Learning . 313.2.2 Replacing Traces . 343.3 Q-Learning . 363.4 Q(�)-learning . 363.5 Fast Q(�)-learning . 385

6 CONTENTS3.6 Team Q(�) . 433.6.1 Extending the Eligibility Trace Framework 433.6.2 Combining Eligibility Traces . 443.7 Experiments . 473.7.1 Evaluating Fast Online Q(�) . 483.7.2 Experiments with Accumulating and Replacing Traces 503.7.3 Multi-agent Experiments . 523.8 Conclusion . 534 Learning World Models 554.1 Extracting a Model . 564.2 Model-Based Q-learning . 574.3 Prioritized Sweeping . 594.4 Experiments . 614.4.1 Comparison between Model-based and Model-free RL 624.4.2 Prioritized Sweeping: Sensitivity Analysis 664.4.3 Comparison between PS Methods . 674.5 Discussion . 684.6 Conclusion . 695 Exploration 715.1 Undirected Exploration . 725.1.1 Max-random Exploration Rule . 725.1.2 Boltzmann Exploration Rule . 735.1.3 Max-Boltzmann Exploration Rule . 735.1.4 Initialize High Exploration . 745.2 Directed Exploration . 745.2.1 Reward Function 1: Frequency Based 755.2.2 Reward Function 2: Recency Based 755.2.3 Reward Function 3: Error Based . 765.2.4 False Exploration Reward Rules . 765.3 Learning Exploration Models . 775.4 Model-Based Interval Estimation . 785.5 Experiments . 795.5.1 Exploration with Prioritized Sweeping 795.5.2 Exploitation/Exploration . 815.5.3 Experiments with Suboptimal Goals 835.6 Discussion . 856 Partially Observable MDPs 876.1 Optimal Algorithms . 896.1.1 POMDP Speci�cation . 896.1.2 Belief States . 896.1.3 Computing an Optimal Policy . 906.2 HQ-learning . 946.2.1 Memory in HQ . 946.2.2 Learning Rules . 95

CONTENTS 76.2.3 Experiments . 996.2.4 Discussion . 1076.3 Related Work . 1086.4 Conclusion . 1137 Function Approximation for RL 1157.1 Function Approximation . 1157.1.1 Linear Networks . 1167.1.2 Local Function Approximators . 1187.1.3 CMACs . 1227.2 Function Approximation for Direct RL . 1247.2.1 Extending Q(�) to function approximators 1267.2.2 Notes on combining RL with FAs . 1287.3 World Modeling with Function Approximators 1297.3.1 Linear Models . 1307.3.2 Neural Gas Models . 1327.3.3 CMAC Models . 1337.4 A Soccer Case Study . 1357.4.1 Soccer . 1357.4.2 The Soccer Simulator . 1367.4.3 Comparison 1: Q-lin, Q-gas and PIPE 1387.4.4 Comparison 2: CMACs vs PIPE . 1427.4.5 Discussion . 1477.5 Previous Work . 1497.6 Conclusion . 1518 Conclusion 1538.1 Contributions . 1538.1.1 Exact Algorithms for Markov Decision Problems 1538.1.2 Reinforcement Learning . 1538.1.3 Model-based RL . 1558.1.4 Exploration . 1568.1.5 POMDPs . 1578.1.6 Function Approximation . 1588.2 Final Remarks . 158A Markov Processes 161A.1 Markov Property . 162A.2 Generating a State Sequence . 162A.3 State Occupancy Probabilities . 162A.4 Stationary Distribution . 164A.5 Properties of Markov Chains . 164A.6 Counting Visits . 165A.7 Examples . 165A.8 Markov Order . 166A.9 Higher Order Transition Functions . 167A.10 Examples . 168

8 CONTENTSB Learning rate Annealing 171C Team Q(�) Algorithm 173D PS for Function Approximators 177D.1 PS for Neural Gas . 177D.2 PS for CMACs . 178D.3 Non-Pessimistic Value Functions . 178Bibliography 181Index 196Summary 199Samenvatting 203Acknowledgments 208

CONTENTS 9This thesis is based on the following publications:Chapter 3� M. A. Wiering and J. H. Schmidhuber, Fast Online Q(�), Machine Learning, ??, 1998.� M. A. Wiering and J. H. Schmidhuber, Speeding up Q(�)-learning, Proceedings of theTenth European Conference on Machine Learning (ECML'98), 1998.Chapter 5� M. A. Wiering and J. H. Schmidhuber, E�cient Model-Based Exploration, Proceedingsof the Fifth International Conference on Simulation of Adaptive Behavior (SAB'98):From Animals to Animats, 223-228, J. A. Meyer and S. W. Wilson (eds.), MIT Press/Bradford Books, 1998.Chapter 6� M. A. Wiering and J. H. Schmidhuber, HQ-learning, Adaptive Behavior 6(2), 219-246,1997.Chapter 7� R. P. Sa lustowicz, M. A. Wiering and J. H. Schmidhuber, Learning Team Strategies:Soccer Case Studies, Machine Learning, 33, (2/3), ???, M. Huhns and G. Weiss (eds.),1998.� R. P. Sa lustowicz, M. A. Wiering, and J. H. Schmidhuber, Evolving soccer strategies, InProceedings of the Fourth International Conference on Neural Information Processing(ICONIP'97), pages 502{506. Springer-Verlag Singapore, 1997.� M. A. Wiering, R. P. Sa lustowicz, and J. H. Schmidhuber, CMAC Models Learn to PlaySoccer, In Proceedings of the 8th International Conference on Arti�cial Neural Networks(ICANN'98), L. Niklasson, M. Bod�en and T. Ziemke (eds.), 443-448, 1998.Other publications:� M. A. Wiering and J. H. Schmidhuber, Solving POMDPs with Levin search and EIRA,Machine Learning: Proceedings of the Thirteenth International Conference, L. Saitta(ed.), pages 534-542. Morgan Kaufmann Publishers, San Francisco, CA, 1996.� J. H. Schmidhuber, J. Zhao and M. A. Wiering, Shifting inductive bias with success-storyalgorithm, adaptive Levin search, and incremental self-improvement, Machine Learning,28, 105-130, 1997.� M. A. Wiering and J. H. Schmidhuber, Learning exploration policies with models, InConference on automated learning and discovery (CONALD'98): Robot Explorationand Learning, Carnegie Mellon University, Pittsburgh, 1998.

Chapter 1IntroductionSuppose we want to use an intelligent agent (computer program or robot) for performing tasksfor us, but we cannot or do not want to specify the precise task-operations. E.g. we maywant to use a team of intelligent agents which can play soccer together. It is very complex towrite a program which outputs the best movement for each agent in each situation. Rather,we want to let the agents play together and create the possibility for them to learn to improvetheir playing abilities. Learning could be done by trying out di�erent soccer strategies andobserving which strategy leads to the best game results.Most real world problems require sequential decision making: the agent selects and exe-cutes an action and this causes some change in the state of the world. Given the new worldstate the agent selects a new action and so on. Examples of such problems are driving a car,cleaning an o�ce, and playing soccer. In this thesis we are interested in developing intelligentagents which can learn to solve such tasks. There are two optimization methods which enablean agent to learn from the results of its interaction with the world in order to maximizeits performance over time: the one we will use and describe in this thesis is reinforcementlearning (RL), another possibility is to use evolutionary methods such as genetic algorithms(Holland, 1975).An agent uses a policy for selecting actions. RL methods improve their policy by apply-ing it in their environment and by monitoring and learning from the resulting experiences(experimental data). To learn as much as possible, it is important that the agent exploresits environment. An exploring agent tries di�erent actions even when it believes that oneparticular action is best. Without such exploration, the agent may always see the same worldstates and thus it cannot learn about new, possibly highly rewarding, situations.Perception of the environment. An intelligent agent is situated in a particular envi-ronment and is equipped with sensors through which it receives inputs to describe the state ofthe environment. The world (environmental) state at a given moment is an exact descriptionof the environment, including all objects present in the environment and their parameterssuch as position, rotation etc. The agent's inputs do not always describe the complete stateof the environment, but may give a partial and noisy description. Figure 1.1 shows the Chi-nese wall with three doors in it. The agent sees a particular door, but since all doors lookalike it cannot use its input to know exactly where it is.Using these inputs, the agent selects and executes an action which a�ects the environmentin some way. Take as an example the agent before the chinese wall. It can stand still, goforward, rotate, and open the door. If the agent opens the door, there is a clear impact on1

2 CHAPTER 1. INTRODUCTION

 INPUT

AGENT

Figure 1.1: An agent who is unable to distinct multiple doors in front of the chinese wall usingits current sensory input only.the environment. But also when the agent goes forward or rotates, the environment changessince it includes the agent. The agent's action selection policy is determined by a functionwhich maps sensory inputs to actions. This function forms the core of the agent's behaviorand therefore is our main interest.Modeling and control. Autonomous agents can be used for di�erent goals. The goalon which we will focus in this thesis, is to learn to control an agent. Here we are interestedin learning an action selection policy which solves a speci�c problem, where we use theterm learning for adapting what has been experienced. For many real world problems itis necessary that we have an adaptive autonomous agent | it is a very costly and timeconsuming procedure to have a human programmer program a particular policy for an agent,and the resulting behavior often fails completely if the environment changes.Another goal is to study an animal's or animat's (some arti�cial creature or system)behavior in order to better understand its behavior or reaction in particular situations. Thiscan be done by designing a model of the creature and by simulating its behavior with acomputer under a wide variety of circumstances. By carefully analyzing the observed behavior,the model may show discrepancies with the real or desired behavior and can be changedaccordingly. Examples of interesting behaviors or phenomena to model are: the foragingbehavior of a bee, �re spreading in forests or buildings, chewing lobsters, and the reaction ofthe human immune system to treatment with particular drugs.Reward functions. When we want to use intelligent agents for solving a particulartask, we must use evaluation methods which judge how well the agent performed. Analo-gous to research in animal biology (where people experiment with living animals to teachsome behavior by giving rewards or punishments), our evaluation method will be a reward

3function assigning rewards and punishments to particular actions in particular environmentalsituations. These rewards serve to reinforce a particular behavior and hence comes the namereinforcement learning, the main topic of this thesis.Reinforcement learning. In this thesis we consider reinforcement learning (RL) meth-ods which optimize the policy of an agent by learning from trial and error. The goal is toselect for all environmental (or world) states the action which leads to the maximal sum offuture rewards. At each time step the agent receives input by observing the world state withits sensors, selects and executes an action based on this input, and receives a reward signal(see Figure 1.2). In order to learn a rewarding policy, the agent uses its experiences (exper-imental data) to learn a value function which estimates the expected future sum of rewardsgiven that the agent is in a particular world state and selects a particular action. When wehave an optimal value function, no planning is needed for selecting an action, and thereforewe say that the agent follows a reactive strategy. Another advantage of learning is thus thatno time-consuming planning is needed, although the accuracy of the value function should beextremely high for optimal decision making.
ENVIRONMENT

INPUT ACTION

AGENT

REWARD

Figure 1.2: The feedback loop of a RL agent. The agent receives environmental inputs throughits sensors, selects an action which changes the state of the environment and receives a rewardsignal. Based on the rewards it receives, it adapts its policy.Applications of RL. The earliest success in RL is Samuel's checkers playing program(1959). His program uses a linear polynomial to evaluate a set of selected features. To makethe evaluation of the current board position more precise, the program uses lookahead search.Then he trained the value function by letting the program play against itself, which resultedin the �rst program which was able to beat its programmer.Probably the biggest success in RL is Tesauro's TD-Gammon (1992), a backgammonplaying program consisting of a feedforward neural network trained by a variant of RL (Sutton,1988) and self-play. TD-Gammon achieved world class level play and won some matchesagainst some human world class players (Tesauro, 1995).

4 CHAPTER 1. INTRODUCTIONOther successful applications of RL to complex problems were reported by Zhang and Liuwho used RL with time-delay neural networks (LeCun et al., 1989) for iteratively repairingjob-shop schedules (Zhang and Liu, 1996), and by Crites who used a team of reinforcementlearning agents to train a neural network for controlling multiple elevators in a simulatedenvironment (Crites and Barto, 1996).The potential of the practical applicability of RL approaches is huge, since it is often easyto set up a system which interacts with an environment and monitors its experiences. Usingthose generated experiences, the learning method can improve the policy. In backgammonfor example, we only need to have a program which allows to play games and a learningarchitecture which can be used for improving the policy by using newly generated learningexamples. Then we can let the computer play and learn for some time until it has succeededin learning what we wanted it to learn. This is much simpler than designing a positionevaluator by hand. E.g., Berliner's BKG backgammon program (1977) took many man yearsto construct, but its level of backgammon play was already much lower than that of TD-Gammon learning for 3 months on a RS6000 computer.Complete vs incomplete information. In the following, we will make a distinctionbetween decision making based on complete state information and decision making basedon incomplete state information which causes uncertainty about the true state (rememberthe chinese wall where we cannot exactly infer where we are | the input allows for manydi�erent positions). An incomplete description of the world state is caused by sensory inputswhich only partially re
ect the true state. In the real world, such partially observable worldstates are very common, since sensors are imperfect or the exact state is not measurable withpractical sensors because states may look exactly the same. Finally, it may be impossible togive a full description of the world state, since too many dynamic objects would need to bedescribed.The reason of making the distinction is that uncertainty in the state makes the task muchmore complex.1 We �rst describe RL in fully observable environments and then describe RLin partially observable environments.1.1 Reinforcement LearningComplete state information. When the agent's sensors can be used to obtain a completedescription of the world state, its decision making process is facilitated considerably. However,what does complete state information mean? Does it mean that the agent needs to describeall positions of objects and the values of all their attributes in the environment? The answeris no. There are two ways for obtaining a complete state description:(1) If the agent has a local view of its environment, e.g. it is equipped with a camera,it would still receive a complete description if its sensory input provides it always with aunique view of the environment. Although most realistic agent's are equipped with such localsensors, they are in general unable to know the values of dynamic attributes. Therefore theycan only obtain a complete description for static (unchanging) environments for which onlytheir own position matters.(2) The agent has a global view of the environment (e.g. by using multiple camera's onthe ceilings of all di�erent rooms) containing the values of all dynamic attributes, and its own1Whereas there are e�cient algorithms for �nding solutions to problems with complete state information,no such algorithms exist for incomplete state information problems.

1.1. REINFORCEMENT LEARNING 5position in the environment. Values of static attributes are unimportant. E.g., suppose thatthe agent can go to a cupboard and open its drawer. Since the drawer can be open or closed,this fact may in
uence the e�ect of the action and hence the agent's decision making. If theposition of the cupboard is constant, there is no need to use it as input information next tothe position of the agent, since the e�ect of executing the open drawer action will just dependon the agent's position and the state of the drawer.Markov decision processes. Many problems consist of making a sequence of decisions,where some decision in a speci�c world state causes some change of this state. Such problemscan be modeled as Markov decision processes/problems (MDPs) and most work in RL hasbeen done in �nding solutions to such problems. Making decisions is done by using a policywhich selects actions based on the world state. The goal is to �nd the policy which maximizesthe expected cumulative future reward.Markov property. A Markov decision process is a process where the transition proba-bilities to the possible next states only depend on the current state and the selected action ofthe agent. This means that all relevant historical information for determining the next stateis present in the current state. Although physicists assume that this so-called Markov prop-erty holds in the universe, for decision making it is also important that the Markov propertyis satis�ed from the agent's perspective (who may not always be able to perceive the exactstate of the universe). This means that all information which may in
uence the future of theagent is at all times present in the agent's description of the state. Therefore, for MDPs,the agent is in principle able to exactly learn how the world evolves (although this may beindeterministically). This is of course impossible for many real world problems.MDP characterization. A Markov decision problem is characterized by a model whichconsists of a complete transition model containing the transition-probabilities to all statesgiven all state/action pairs, a reward model containing all rewards for all possible transitionsand a discount factor which makes rewards received in the future less important than im-mediate rewards. The reward model is given by the designer and determines which agent'sbehavior is preferred. The discount factor has the e�ect that collecting immediate rewards ispreferred to postponing collecting them for a while.Dynamic programming. Algorithms based on dynamic programming (DP) (Bellman,1961; Bertsekas and Tsitsiklis, 1996) may be used to compute optimal policies for MDPswhen a complete model of the MDP is available. DP algorithms use this model for iterativelycomputing the value function. Unfortunately, a complete model is in general not available,so that DP on the a priori model often cannot be used. Furthermore, the number of statesis sometimes so large that it becomes infeasible to store the whole model.Heuristic DP. There exist a variety of RL methods which can be used to learn thepolicy without the need for an a priori model. Instead of creating a precise model (withall states, transition probabilities etc.), constructing a simulator or putting an agent in areal environment for generating experiences is much easier. Heuristic DP (RL) methods canbe used as stochastic iterative approximation algorithms and learn from trials in which theagent's policy is used in the simulated or real environment to generate novel experiences.Then RL methods learn from these experiences to improve the approximation of the valuefunction.TD(�)-learning. Temporal di�erence (TD) methods (Sutton, 1988) are a particularkind of RL method which can be used to learn to predict the outcome of a stochastic processgiven a set of state sequences generated by the process. TD methods are driven by thedi�erence or TD-error between two successive state values and adapt the former state's value

6 CHAPTER 1. INTRODUCTIONto decrease this di�erence. Sutton (1988) introduced the TD(�) framework by creating a setof TD methods parameterized by a variable � which weighs the degree of in
uence of statevalues in the distant future relative to the values of immediately successive states. This makesit possible to learn from e�ects of actions which show up after a long time. Although TDmethods are essentially prediction methods, they can also be used for learning to control byextending the system with a model for simulating actions. Then actions can be tried one forone and the predictions of the resulting states can be used for selecting the action.Q-learning. A well known RL algorithm is Q-learning (Watkins, 1989), which uses itspolicy to try out sequences of actions through state/action space and uses the rewards re-ceived from the environment to learn (estimate) the expected long-term reward for executinga speci�c state/action pair. Q-learning repeatedly performs a one-step lookahead backup,meaning that the Q-value 2 of the current state/action pair is adapted towards the immedi-ately received reward plus the value of the next state. Thus, Q-learning is essentially a TDmethod. Q-learning works well for particular problems. It uses the feedback in a rather inef-�cient way as the feedback is only used for updating a single Q-value at a time. This makesit very slow for solving large problems with long delays until a reward signal is returned.Q-learning has been proven to converge to the optimal value function for MDPs (Watkinsand Dayan, 1992), however, if all state/action pairs are tried in�nitely many times.Q(�)-learning. Q(�)-learning (Watkins, 1989; Peng and Williams, 1996) combinesTD(�) methods with Q-learning to propagate state/action updates back in time so that mul-tiple state/action pairs (SAPs) which have occurred in the past can be updated. Sequences ofSAPs often lead to the same future state/action trajectories and therefore multiple previousQ-values of executed SAPs depend on the current experience. That is probably why Q(�)-learning has outperformed Q-learning in a number of experiments (Lin, 1993; Rummery andNiranjan, 1994). Q(�) especially outperforms Q-learning for problems where (1) intermediaterewards are missing or not very informative, (2) the environment is not very stochastic, and(3) many actions have to be selected before a speci�c goal state has been reached. Largervalues for � increase the variance in the updates, however, since the range of the Q-valuesof possible state/action pairs far away in the future is usually much larger than Q-values ofSAPs which occur immediately. Therefore, when the problem contains a lot of noise or whenthe variance in emitted rewards of state/action pairs is large, the advantages in using largevalues for � is much smaller since the larger variance in the updates slows down converging.Indirect RL. Q-learning and alternatives are direct RL learning methods which meansthat they directly estimate the Q-values from the results of the interaction with the world.This is in contrast with indirect or model-based RL methods which �rst estimate a modelof the transitions and rewards and then apply dynamic programming techniques to computepolicies. World models (WMs) integrate all observed experiences in a model so that the lossof useful information is minimal. Modeling approaches have several advantages besides theire�cient usage of experiences. E.g. they are useful for e�ciently exploring the environment,since they allow the agent to know what has not yet been learned. Since the quality of acomputed policy depends on how well the WM �ts the real unknown underlying Markovdecision process, we can increase its accuracy in the interesting (e.g. unexplored or highlyrewarding) areas until near optimal policies have been computed.The combination of world modeling and dynamic programming tends to be time consum-ing due to the dynamic WMs which require that the slow DP algorithms compute a new2Q-value stands for Quality value.

1.2. REINFORCEMENT LEARNING WITH INCOMPLETE INFORMATION 7policy after each experience (when used in an online manner). More e�cient methods par-tially recompute policies after new information comes along. A simple method, which isvery fast, uses model-based Q-learning or Real-Time Dynamic Programming (RTDP) (Bartoet al., 1995), which outperforms standard Q-learning due to the higher informed update steps.Even more e�cient algorithms manage the cascade of updates which are computed by DP,by assigning priorities to the updates. A well known method for doing this is PrioritizedSweeping (PS) (Moore and Atkeson, 1993), which enables us to (partially) recompute thevalue function and policy at all times with few informative updates.Exploration. RL uses multiple trials for resampling the utility of selecting particularSAPs for learning (near) optimal strategies. A policy needs to map all states to actions,and therefore �nding the optimal policy needs all state/action pairs being tried out. Initiallylarge parts of the state space are unknown and estimates of actions may be erroneous. Toexamine the e�ects of alternative (non-greedy) actions, actions are selected by an explorationrule. Good exploration rules use the policy and possibly additional information to select apromising alternative action about which the agent has gathered insu�cient information (intheory each action could be the best possible action, but some are more likely to be optimalthan others). Exploration rules \buy" information | the agent would probably obtain moreimmediate reward by selecting the action that currently looks most promising | in the hopethat this information can be used to increase the reward intake in later life. Explorationrules can be split into (1) undirected exploration which uses pseudo-random generators to trytheir luck on generating novel interesting experiences, and (2) directed exploration which usesadditional information for learning utilities for trying out exploration actions (Schmidhuber,1991c; Thrun, 1992; Wiering and Schmidhuber, 1998a).Function approximators. Most real world problems consist of a large or in�nite amountof states due to continuous valued variables or a large number of state-variables.3 To be ableto store and learn value functions for such state spaces, we need to approximate the valuefunction by function approximators. Function approximators consist of many adjustable pa-rameters which map an inputvector to an output vector. The parameters of the functionapproximator are trained on learning examples so that the di�erence between the desiredoutput and the output of the function approximator on the examples is minimized. Wellknown examples are feedforward neural networks (Rumelhart et al., 1986; Van de Smagt,1995), linear or cubic spline interpolation (Press et al., 1988), and Kohonen networks (Koho-nen, 1988).1.2 Reinforcement Learning with Incomplete InformationWhen states are partially observable (due to e.g. imperfect sensors) the agent cannot alwaysmap its inputs to unique environmental states. This uncertainty about the real state makeschoosing an optimal action very di�cult. Problems with insu�cient input information todistinguish between two di�erent states are called partially observable Markov decision prob-lems (POMDPs) (Sondik, 1971), and they are the hardest problems for RL | even solvingdeterministic POMDPs is a NP-complete problem (Littman, 1996).Algorithms for solving POMDPs are based on using some kind of internal state whichsummarizes previous events. The state produced by combining the internal state and thecurrent input can then be used by the agent's policy for selecting an action. Operations3If we have 20 binary valued variables, our whole state space consists of 220 (> 1,000,000) states.

8 CHAPTER 1. INTRODUCTIONresearch has developed several algorithms for �nding optimal solutions to POMDPs. Most ofthese select an action on the basis of so-called belief states. Belief states describe the agent'sknowledge about the world as a probability distribution over all possible states (Lovejoy,1991). Since the number of belief states and candidate policies increase exponentially as weperform more planning steps, exact algorithms are computationally too expensive for problemscontaining more than 100 states (Littman et al., 1995a). Therefore, heuristic methods areneeded to solve them in reasonable time. There are many possible heuristic algorithms, e.g.,function approximators may be useful or we may keep the input representation small by onlyusing short term memory of interesting events. Most real world problems are POMDPs,since it is usually not feasible to have perfect state information. Therefore the number ofapplications is huge. An example of a POMDP is the task of determining optimal dates forappointments and (often expensive) check-ups for patients with a serious disease (Peek, 1997).Changing environments. Solving a task in a changing (non-stationary) environmentis another complex problem. Changing environments could be: (1) environments where theoutcome of executing an action changes over time, e.g. when an e�ector is damaged, or (2)environments where attributes of objects in the environment change over time, or (3) wherethe goal changes.Although the agent could have complete state information, it cannot compute an optimalpolicy if it does not know the transition function or reward function in future time-steps.Therefore it has to �nd out what changes and this is very hard. Consider a vacuum-cleaningrobot in a speci�c environment where chairs and tables move around and where referencepoints such as doors and windows may be opened and closed. If we need to know the exactstate of the environment for computing the best vacuum cleaning trajectory, we would need to�nd out how the chairs and tables are moved around. Dealing with many dynamic variablesis a challenging issue, since they cause an explosion of the state space. Fortunately, decisionmaking in most situations only needs to use few variables and therefore huge reductions ofthe state space can be made by making the variables context dependent. E.g., an agent onlyneeds to know whether a drawer is open or closed when it sees a cupboard and wants to takesomething out of it.Multiple agents in RL. Recent research in RL focuses more on problems featuringmultiple autonomous agents, e.g, (Mataric, 1994). When agents adapt their behavior, theenvironment of an agent (which contains the other agents) will change. Thus, multi-agentproblems are changing environments from the perspective of each agent. To make suchproblems fully observable the planned actions or policy of other agents need to be given aspart of the input, which again blows up the state space when there are many agents.There are two kinds of multi-agent problems: (1) agents take part of a cooperative commu-nity and try to achieve the maximal reward for the entire group, and (2) agents try to optimizetheir own rewards and may compete (but also cooperate) with other agents to achieve theirgoals. Using RL for the �rst problem, i.e. for learning community policies, poses many, stillunresolved, problems. These include among others: agent-organization (which subgroups areformed and which interactions will take place), task specialization (what is the function of eachsubgroup/individual), and communication languages to make interaction possible (Lindgrenand Nordahl, 1994; Steels, 1997).The second problem, i.e. of maximizing the reward intake of an individualistic rationalagent in an environment with other agents, has been studied for the largest part by gametheory (Myerson, 1991). A well known problem where agents have to choose between cooper-ation and competition is the prisoner's dilemma (Axelrod, 1984; Sandholm and Crites, 1995).

1.3. CURRENT PROBLEMS OF RL 9It is interesting to note that researchers from experimental economics have found their wayto reinforcement learning algorithms for explaining rational human behavior (Roth and Erev,1995).An illustration of the increase of RL work in multi-agent problems is the major interestin learning robotic soccer teams, for which already world-championships are held (Kitanoet al., 1997). A successful example in multi-agent RL in which agents have to cooperate is aproblem studied by Crites and Barto (1996). They used RL to learn elevator controllers fora (simulated) building containing four elevators and were able to outperform even the bestconventional elevator dispatchers.1.3 Current Problems of RLAlthough promising, the current state of the art of RL is not very well developed and muchexciting work still remains to be done. TD-Gammon is a major success for reinforcementlearning and in this section we will review the major challenges to obtain the same kind ofsuccess for other problems.RL as a tool for building intelligent systems. RL provides us with useful toolswhich need to be combined with particular intelligent design methods to make it really work.One important factor which contributes to the success of a RL application is the utility of thechosen function approximator for representing the value function for the problem at hand.The feedforward neural network used in TD-Gammon was very well chosen since it allowedto generalize over the state space, thereby making it possible to select among possible movesin situations which had never occurred during training. The smoothness of the value functionin a stochastic game like backgammon makes generalization much easier.Although RL is a promising method, using it for attacking a complex problem is notstraightforward. In this thesis, we describe the current state of the art in the research for RLmethods and face the current problems associated with learning value functions:� Exploration. Experimental data makes it possible to predict the consequences of par-ticular behaviors. However, data can be costly to obtain. Then, how can we e�cientlygather data to train the system?� Uncertainty. In real world problems, information about the state of the environmentis often incomplete. This makes the process of decision making under uncertainty animportant issue. The problem is NP-complete (Littman, 1996), however, thus we wouldlike to �nd heuristic algorithms which are useful for solving problems containing manystates.� Generalization. Function approximators can be used to generalize from the expe-riences with one situation to similar situations so that it is not necessary to store orencounter each possible situation.4 Although function approximators are in theory apowerful method for storing input-output mappings and can be used potentially incombination with RL, there still needs to be done a lot of research before we can reallyexploit this combination. Often, function approximators are chosen on an ad hoc basis4Even when it is possible to store all states, experiencing all of them would clearly be ine�cient in termsof time and other costs.

10 CHAPTER 1. INTRODUCTIONresulting in unexpected successes or catastrophes. Furthermore, when applied to a par-ticular task, some function approximators result in much faster training times or �nalperformance levels than others. We would like to know which function approximatorsare most useful in combination with RL and on which task features this depends.� Model-based learning. Model-based learning can signi�cantly speed up reinforce-ment learning. We can use statistical world models to estimate the probability ofmaking a transition to each possible successive state, given that some action has beenexecuted in some state. These world models can be used to store experimental datamuch more e�ciently, to detect what the agent does not know, i.e. has not experienced,to incorporate a priori knowledge about the problem, to explain what the agent hasbeen doing all the time, to compute a new policy if the goal changes, and to overcomeproblems due to forgetting or interference of multiple problems. A lot of research has tobe done, however, before we can e�ciently combine model-based learning with functionapproximators.� Multi-agent RL. Current RL methods have been designed for single agents. Whenmultiple agents are used, many new challenging issues arise: e.g. if a group of agents isacting together, which agents were responsible for the given outcome? How can we letthe agents cooperate in speci�c plans? How can we organize the agents? We also needto transform single agent RL methods so that they can be applied to multiple agentsand that may not always be straightforward. Given their
exibility and power, oneof the ultimate goals of RL would surely be to solve complex problems with multipleagents.1.4 Goals of the ThesisThis thesis aims at describing all topics of interest in RL and proposing solutions to thecurrent topics of interest. First of all, we aim to giving a clear description of the principlesof reinforcement learning. Then, our goal is to develop new methods to (1) handle theexploration problem, (2) deal with uncertainty in the state description, (3) combine model-based RL with function approximators, and (4) apply RL to multi-agent problems. We hopethat we have succeeded in explaining these topics in an understandable way to those readerswho are not familiar with reinforcement learning, while still keeping the more professionalreinforcement learning researcher interested by presenting many di�erent and novel insightswhich found their way through this thesis.All issues will be considered from a computer scientist's point of view: throughout thethesis, we will consider the algorithmic and computational issues for �nding good solutionsand use experiments to compare di�erent methods.Finally, we hope that with this thesis, current understanding of issues which are neededto be resolved to make RL useful for solving complex real world problems has increasedsigni�cantly. Examples of problems which we would think could be solved with RL in thefuture include: controlling forest �res (Wiering and Dorigo, 1998), directing tra�c
ow,debugging computer programs, routing messages on the internet (Di Caro and Dorigo, 1998),and regulating combustion engines to reduce CO2 emission.

1.5. OUTLINE AND PRINCIPAL CONTRIBUTIONS 111.5 Outline and Principal ContributionsFirst partThe �rst part of the dissertation describes the Markov decision process framework, dynamicprogramming, and reinforcement learning. The presented algorithms are described in thecontext of problems involving full state information.Chapter 2 describes MDPs and dynamic programming. This will serve as a generalframework and to introduce the notation used throughout this thesis.Chapter 3 describes reinforcement learning together with the newly developed fast onlineQ(�) approach and a novel team Q(�)-learning algorithm.Fast online Q(�)-learning. Typical online Q(�) implementations (Peng and Williams,1996) based on lookup-tables are unnecessarily time-consuming. Their update complexity isbounded by the size of state/action space. We describe a novel online Q(�) variant which ismore e�cient than others | it has average update complexity which is linear in the numberof actions.Team Q(�)-learning. When dealing with multiple agents, it may happen that agent tra-jectories meet. Rather than only letting agents learn from their own experiences, we can makeuse of such crossing points so that agents can learn from the experiences of other agents. Ournovel Team Q(�) method is a new algorithm for linking agent trajectories.Finally, at the end of Chapter 3 we describe the results of experiments with maze-tasksto evaluate existing algorithms and our novel RL algorithms.Chapter 4 describes model-based learning. It shows how world models can be estimatedand describes a model-based version for Q-learning (RTDP) (Barto et al., 1995). Then wereview prioritized sweeping (PS) and introduce an alternative PS variant which managesupdates in a more exact way. We also present an experimental comparison between thedi�erent model-based reinforcement learning approaches.Chapter 5 describes exploration in reinforcement learning. Active data gathering orexploration (Fedorov, 1972; Schmidhuber, 1991a; Thrun and M�oller, 1992; Cohn, 1994) isimportant for e�cient learning, because otherwise lots of time is wasted on improving theapproximation on what is already known, whereas large parts of the state space are badly�tted by the model. We have constructed a novel exploration approach which is based onmodel-based RL (MBRL).Learning exploration models. We study the problem of collecting useful experiences forMBRL through exploration in stochastic environments. The novel method is based on learn-ing an exploration value function and relies on maximizing exploration rewards for visits ofstates that promise information gain. We also combine MBRL and the Interval Estimationalgorithm (Kaelbling, 1993). Results with maze experiments demonstrate the advantages ofour approaches.Second partThe second part of the dissertation describes generalizations of the MDP framework describedabove: partially observable MDPs, continuous MDPs and function approximation, and multi-agent learning.Chapter 6 describes POMDPs in more detail, reviews approaches to solve them andpresents our novel approach: HQ-learning.

12 CHAPTER 1. INTRODUCTIONHQ-learning attempts to exploit regularities in state space. Its divide-and-conquer strat-egy discovers a subgoal sequence decomposing a given POMDP into a sequence of reactivepolicy problems (RPPs). RPPs are problems for which each state which is mapped to anidentical input by the sensors require the same optimal action. This makes it possible tostore their solution in one representation. The only \critical" inputs are those correspondingto transitions from one RPP to the next. HQ is based on two cooperative temporal di�erencelearning rules: the �rst learning rule learns a decomposition of the task into a temporal se-quence of subtasks and the second rule learns policies to solve the subtasks. HQ does not needan a priori model of a POMDP and experiments show that it is able to �nd good solutionsfor large deterministic partially observable maze-tasks.Chapter 7 describes function approximation methods which can be used in combinationwith Q(�)-learning for learning the value function for large or continuous input spaces. Wedescribe linear networks, a new variant of neural gas (Fritzke, 1994), and CMACs (Albus,1975a). Then we will also show how these methods can be combined with world models.CMAC models. We will in particular focus on CMAC models consisting of a set of inde-pendent �lters which produce evaluations which are combined for selecting an action. Themodels are used to estimate the dynamics of each independent �lter.Multi-agent soccer. As a test environment for the function approximators we use simulatedsoccer. The task is to learn policies which outperform a �xed opponent. Results are shownfor varying team sizes and di�erent strengths of opponent teams.Chapter 8 concludes this thesis, reviews what has been done, and outlines interestingdirections for future work.

Chapter 2Markov Decision ProcessesThis chapter describes dynamic programming (DP) in the context of Markov decision pro-cesses (MDPs). The reader who is not familiar with Markov processes (MPs) is adviced toread Appendix A �rst. MPs can be used to formalize stochastic dynamic processes. Section2.1 formally describes Markov decision processes (MDPs). MDPs are controllable Markovprocesses and solving a MDP means �nding the policy which maximizes some speci�c rewardcriterion. Section 2.2 describes DP algorithms which are able to compute the optimal policyfor MDPs. Problems of DP are that they need a tabular representation for the state/inputspace and that they are computationally expensive for large numbers of states. In Section2.3 we show results of DP algorithms on maze problems and evaluate their computationaldemands as maze sizes increase. In Section 2.4 we describe some of the di�culties of usingthe MDP framework directly for real world problem solving and describe some extensions fordealing with more general decision problems. Finally, in Section 2.5 the conclusions of thischapter are given.2.1 Markov Decision ProcessesA Markov decision process (MDP) is a controllable dynamic system whose state transitionsdepend on the previous state and the action selected by a policy. The policy is based on areward function which assigns a scalar reward signal to each transition. The goal is to computea policy for mapping states to actions which maximizes the expected long-term cumulative(discounted) reward, given an arbitrary initial state.Basic set-up. We consider discrete Markov decision processes consisting of:� A time counter t = 0; 1; 2; 3; : : :� A �nite set of states S = fS1; S2; S3; : : : ; SNg. We denote the state at time t as st. Tosimplify notation, we will also use the variables i and j 2 S to refer to states.� A �nite set of actions A = fA1; A2; A3; : : : ; AMg. We denote the action at time t as at.� A probabilistic transition function P . We use Pij(a) := P (st+1 = jjst = i; at = a) fori; j 2 S and a 2 A to de�ne the transition probability to the next state st+1 given stand at. 13

14 CHAPTER 2. MARKOV DECISION PROCESSES� A reward function R maps a transition from state/action pair (SAP) (i; a) to statej to scalar reward signals R(i; a; j) 2 IR. We assume that the reward function isdeterministic, although it could in principle also be stochastic. We denote the rewardat time t as rt.� The discount factor
 2 [0; 1] is used to discount rewards received in the future. Anagent is interested in accumulating as much future reward as possible. By exponentiallydecaying rewards with the number of time steps until the reward is received, immediaterewards are made more important than rewards received after a long time.� Pinit de�nes the initial probability distribution over all states. Pinit(s) is the probabilitythe agent starts in state s.2.1.1 Value FunctionsGiven the transition and reward functions, the goal is to �nd the policy �� which mapsstates to actions (a� = ��(s)) with maximal expected discounted future reward. For de�ninghow good a policy � is, a value function V � is used.1 The value V �(s) is a prediction ofthe expected cumulative rewards received in the future given that the process is currently instate s and the policy � is used throughout the future. Value functions are used to enablethe evaluation of the available policies.There are two common ways for dealing with the future: one method constraints thefuture until some �nite horizon, whereas the other method allows the process to go on foreverby using an in�nite horizon.2.1.2 Finite Horizon ProblemsFor many problems there is a bound on time (often called deadline). This means that thepolicy has to stop at some point and has to accumulate as much reward as possible duringits limited \life-time". In this case the value function V is time dependent and therefore wehave to write Vt to account for the number of steps left in the future (t). Furthermore wehave a non-stationary (time dependent) policy � = f�1;�2; : : : ;�T g, with horizon limit T .The horizon-bounded value function V �T is allowed to make T decisions with policy � andequals: V �T (i) = E(T�1Xt=0 R(st;�(st); st+1)js0 = i)Here we start with state s0, and add all transition rewards, where a transition to state st+1is caused by selecting action at = �(st) in state st. The expectation operator E is used toaccount for the probability distribution over the state-trajectories.Computing the optimal policy. Computing optimal solutions for deterministic short-est path problems can be e�ciently done with Dijkstra's shortest path algorithm (Dijkstra,1959). For general problems consisting of non-deterministic transition functions and arbi-trary reward functions we need to use a more advanced and generalized algorithm. To �ndthe optimal policy ��, we can proceed as follows: �rst we �nd the optimal action when only1When it is clear which policy we are using, we may drop the policy-index and simply write V)

2.1. MARKOV DECISION PROCESSES 151 step can be made from each state, and compute the optimal value function V �1 . Thus, �rstwe compute for all states i 2 S:V �1 (i) = maxa fXj Pij(a)R(i; a; j)gand set the 1-step policy action in each state i 2 S to:��1(i) = arg maxa fXj Pij(a)R(i; a; j)gOnce we have calculated the optimal value function V �1 we use it to compute V �2 and soon for steps 1; : : : ; T . The idea is that within t steps, the maximal reward we can obtainwith the best action is equal to the immediate reward plus the cumulative reward obtainedfrom making the optimal t� 1 steps from the next state. Thus, we use the value function toaccumulate the maximal attainable reward over more and more steps. Finally, the expectedfuture cumulative reward over T steps is re
ected in the value function V �T . Given V �t , wecompute V �t+1 as follows:V �t+1(i) = maxa fXj Pij(a)(R(i; a; j) + V �t (j))gand we set the t + 1-step policy actions to the action a which maximizes the value function:��t+1(i) = arg maxa fXj Pij(a)(R(i; a; j) + V �t (j))g2.1.3 In�nite Horizon ProblemsSometimes we do not want to pose a bound on the time counter t, since we would like theagent to continue \forever" or we do not have any a priori information about the durationof the problem we wish to solve. For such MDPs, we can use the in�nite horizon case. Fordealing with unlimited time-bounds, we cannot simply sum all future rewards: we must makesure that the summary operator over the future rewards returns a bounded (�nite) value.This is usually done by using a discount factor
 which weighs future rewards in a way whichassigns high weights to immediate rewards and weights which go to 0 for rewards which willbe received far away in the future (Lin, 1993) 2Since we are dealing with an in�nite horizon, we want to compute a stationary policy.Fortunately, the optimal policy for in�nite horizon problems are always stationary since thespeci�c time step becomes meaningless due to the in�nite future. The value function V � forpolicy � starting at state i is given by:V �(i) = E(1Xt=0
tR(st;�(st); st+1)js0 = i)Given a �xed policy �, the actions in all states are �xed and the transition probabilityonly depends on the current state. For a deterministic policy, the transition matrix P with2Instead of using discounting, we may also use the average reward over all future steps (Van der Wal, 1981;Schwartz, 1993; Mahadevan, 1996).

16 CHAPTER 2. MARKOV DECISION PROCESSEStransition probabilities Pij is given by:3Pij = Pij(�(i))Furthermore, we de�ne the reward matrix R with rewards Rij as follows:Rij = R(i;�(i); j)Now we can calculate the value function for policy � as follows:V � = 1Xt=0
tP tDiag0(PRT) (2.1)Diag0(PRT) returns the main diagonal of the matrix PRT . This is a vector which contains theaverage single step reward for the di�erent states. When we multiply this with the discountedaverage number of times that the states are visited in the future, we get the value function.By making use of the fact that a state value equals the immediate reward plus the expectedvalue of the subsequent state, Equation 2.1 can be rewritten as:V � =
PV � + Diag0(PRT) (2.2)and we can solve this by computing:V � = (I �
P)�1Diag0(PRT)Note that for ergodic Markov chains it holds that when 0 �
 < 1, the inverse (I�
P)�1 canbe computed, since (I �
P) is non-singular. However, there are better ways to calculate V �than by inverting a matrix, which may introduce rounding-errors due to an ill-conditionedmatrix. We can compute the value function by iteration (Van der Wal, 1981; Bertsekas andTsitsiklis, 1996). Each step improves the value function so we are sure that the computationwill converge to the optimal value function. Thus, we iteratively compute for a certain policy�, and for all states i: V �(i) = Xj Pij(Rij +
V �(j))By updating the value function in this way, we essentially execute an additional lookaheadstep. The iteration will converge to the expected cumulative reward obtained by the policy.For the optimal policy, we always select that action in a state which maximizes the valueof that state. Thus, for the optimal value function V � the following holds:V �(i) = maxa Xj Pij(a)(R(i; a; j) +
V �(j))This equation is known as the Bellman equation (Bellman, 1961) and is the basis for dynamicprogramming. Every optimal policy satis�es the Bellman equation and every policy whichsatis�es the Bellman equation is optimal.3In case of stochastic policies we can compute the transition and reward functions by taking the actionprobabilities into account.

2.1. MARKOV DECISION PROCESSES 172.1.4 Action Evaluation FunctionsQ-functions evaluate actions given a speci�c state. They are functions of the form Q�(i; a),and they return the expected future discounted reward when the agent is in state i, action awill be executed, and policy � will be followed afterwards. For each policy �, we can calculatethe action evaluation function Q�(i; a), 8a 2 A and 8i 2 S:Q�(i; a) = Xj Pij(a)(R(i; a; j) +
V �(j)) (2.3)A policy can exploit a given Q-function by selecting in each state the action which maxi-mizes that Q-function. Thus, we have:�(i) = arg maxa fQ�(i; a)g (2.4)In general applying Equation 2.4 creates a new policy which will not be equal to the onebefore, and thus after computing a new policy we compute a new Q-function for it accordingto 2.3. By repeatedly alternating these computations, the Q-function converges to the optimalQ-function Q�. The optimal policy �� selects the action which maximizes the optimal actionvalue function Q�(i; a) for each state i 2 S:��(i) = arg maxa fQ�(i; a)gSometimes Q-values of di�erent actions are equal. In such cases the agent is allowed torandomly select between the optimal actions.2.1.5 ContractionAlthough there may exist multiple optimal (deterministic) policies which di�er in selectingan action for a state from actions with equal Q-values, there is only one optimal value orV-function: V �, what we will show now. A V-function is a function of a state i and theactions of the policy. The optimal V-function is the one where the policy receives most futurerewards for all states i: V �(i) = max� fV �(i)gDynamic programming computes V � by iteratively using a backup operator B. The operatorB performs a one-step lookahead by evaluating all possible actions and selecting the optimalaction: B(V (i)) = maxa XPij(a)(R(i; a; j) +
V (j))Thus, B may change actions in order to improve the value function or it may just compute abetter estimate of the value function (without changing actions).We will denote the use of the operator B on V as simply : BV . For the optimal valuefunction V �, the following must hold: BV � = V �This means that V � is a �xed point in the value function space. B is a contraction operator,which means that each time we apply B on an arbitrary value function V , we get closer to the

18 CHAPTER 2. MARKOV DECISION PROCESSES�xed point V �.4 This is a necessary condition for contraction and means that convergencewill take place as we apply B in�nitely many times (Bellman, 1961). To de�ne a distancemeasure, we use the largest absolute di�erence between two values V1(i) and V �(i) for somespeci�c state i (i.e. the max norm is used). This distance gets smaller when B is applied.First we de�ne the max norm distance function:jjV � � V1jj1 = maxs jV �(s)� V1(s)j;where jaj denotes the absolute value of a. Then we show:jjBV � �BV1jj1 =maxi jBV �(i)�BV1(i)j =maxi j(maxaPPij(a)(R(i; a; j) +
V �(j))) � (maxbPPij(b)(R(i; b; j) +
V1(j)))j �maxi maxc j(PPij(c)(R(i; c; j) +
V �(j))) � (PPij(c)(R(i; c; j) +
V1(j)))j =maxi maxc j(PPij(c)(
V �(j) �
V1(j)))j �
 maxj jV �(j) � V1(j)j =
jjV � � V1jj1 2Since this holds for all starting value functions V1, and V � is a �xed point, there cannotbe any local minima. Thus, we have shown that operator B applied on the value functionsstrictly brings the value functions closer when
 < 1.2.2 Dynamic ProgrammingDynamic programming (DP) can be used to compute optimal policies for (in�nite horizon)MDPs (Bellman, 1961). There are three well known algorithms for computing the policy andvalue function: policy iteration, value (greedy) iteration, and linear programming. Policyiteration completely evaluates a policy by computing the value function after which the policyis changed so that always the actions are chosen with maximal Q-values. Value iterationchanges �(s) whenever Q(s; a), for all a 2 A have been computed. Linear programming (LP)maximizes the value function subject to a set of constraints (D'Epenoux, 1963; Littman,1996). We will show the policy and value iteration algorithms, and solving a MDP as a linearprogramming problem.2.2.1 Policy IterationPolicy iteration computes optimal policies and always terminates in �nite time (Littman,1996; Bertsekas and Tsitsiklis, 1996). This can be easily seen, since there are jAjjSj policies,and policy iteration makes an improvement step at each iteration.5 The algorithm consistsof an iteration over two subroutines: policy evaluation and policy improvement.The algorithm starts with an arbitrary policy and value function. The policy � is evaluatedby using the transition matrix P and the reward function R:V � = (I �
P)�1Diag0(PRT)4Strictly speaking, the distance never increases, i.e. B is a non-expanding operator. However, we will seethat if the discount factor is smaller than 1, the distance decreases.5Policy iteration does not solve a MDP in polynomial time in the number of states and actions, however(Littman et al., 1995b).

2.2. DYNAMIC PROGRAMMING 19Note, that instead of fully evaluating the policy, we may also repeatedly use the followingequation for all states i to synchronously update V �:V �(i) = Xj Pij(�)(R(i;�(i); j) +
V �(j))and stop when the largest di�erence between both sides of the equation is smaller than somespeci�c threshold �. This may speed up policy evaluation signi�cantly, although when � is toolarge the resulting policy may not be optimal. In general � is called the Bellman residual (theerror which remains after iterating), and the resulting imperfect value function is bounded asfollows (Williams and Baird, 1993; McDonald and Hingston, 1994; Singh and Yee, 1994):V �(x) � V �(x)� 2
�1�
After evaluation we make a policy improvement step. First we compute the action evalu-ation function with elements Q(i; a) which assigns the long term expected discounted rewardwhen action a is selected in state i:Q�(i; a) = Xj Pij(a)(R(i; a; j) +
V �(j))Then, we improve policy � by taking the action in each state which maximizes the actionvalue function Q�(s; a): �(s) = arg maxa fQ�(s; a)gThe policy evaluation and improvement steps should be repeated for a speci�c number oftimes until the policy is not changed anymore. Then the algorithm stops with the optimalvalue function V � and an optimal policy ��.The complexity of the algorithm mainly lies in the evaluation part. Inverting an n � nmatrix costs O(n3) when no clever methods are used. We can speed this up to about O(n2:807)(Press et al., 1988). This can be sped up further by using a stopping condition (minimal errorrequirement). The number of evaluate-improve repetitions is usually quite small, but dependson the problem complexity. In the worst case it may be O(jAjjSj), the total number of policies,which may happen in case policy iteration always makes a single improvement step of thepolicy. For simple problems, e.g., when a goal state is accessible from all states and when allrewards are negative, the number of repetitions will be very small.2.2.2 Value IterationValue iteration, also called greedy iteration, does not fully evaluate a policy before makingpolicy improvements. The algorithm starts with an arbitrary policy � and an arbitrary valuefunction V and repeats the following steps for all i 2 S. First, the Q-function for all actionsin state i are computed: Q(i; a) = Xj Pij(a)(R(i; a; j) +
V (j)) (2.5)Then, we calculate the new value function:V (i) = maxa fQ(i; a)g

20 CHAPTER 2. MARKOV DECISION PROCESSESThen, we change �(i) so that the action a which maximizes the value function in a state iwill be chosen: �(i) = arg maxa fQ(i; a)gThe algorithm halts when the largest di�erence between two successive value functions issmaller than �. Synchronous value iteration updates the values in step (2.5) by using the valuefunction from the previous time step, whereas asynchronous value iteration immediately usesthe already recomputed state values for calculating other state values.Value iteration repeatedly performs a one-step lookahead. This is a big di�erence withpolicy iteration which evaluates the policy completely by looking ahead until no more changescan be seen. In contrast to policy iteration, value iteration is not guaranteed to �nd theoptimal policy in a �nite number of iterations (Littman, 1996).When M = maxi maxa jPj Pij(a)R(i; a; j)j and we start with a value function V 0 whichis initialized with su�ciently small values, then the number of iterations t� needed to executethe (synchronous) value iteration algorithm until jjV � V �jj � �, is (Littman, 1996):t� = d log(M) + log(1�) + log(11�
)log(1
) e (2.6)For particular MDPs di�erences in value functions for di�erent policies may only be seenwhen �! 0. This means that value iteration may need many iterations; it will certainly needmore iterations than policy iteration. However, value iteration does not need to evaluate thepolicy completely, and this may signi�cantly speed up computation.2.2.3 Linear ProgrammingWe can also de�ne a MDP as a linear programming problem. A linear program consists of aset of variables, a set of linear inequalities (constraints), and a linear objective function. In(D'Epenoux, 1963; Littman, 1996) a linear program is described with variables V (i), for alli 2 S. The goal is to minimize: Xi V (i)Under the following constraint for all a 2 A and all i 2 S:V (i) �Xj P aij(R(i; a; j) +
V (j))The intuitive meaning is that we are searching for a value function for which all constraintshold. The one for which the values are minimized is the least upper bound of these valuefunctions and therefore the true maximum. The linear programming problem consists of Nvariables and N �M constraints. For large N and M , the linear programming approach canbe practical by using special large-scale LP methods (Bertsekas and Tsitsiklis, 1996).2.3 ExperimentsTo compare the dynamic programming methods policy iteration and value iteration we havecreated a set of mazes. We do not use linear programming here since the problem contains

2.3. EXPERIMENTS 21(too) many states. The reasons for using mazes as case study are: optimal policies can easilybe calculated, their complexities can easily be adapted, and many other researchers have usedthem so that they can be seen as a general testbed for algorithms solving (discrete) MDPs.2.3.1 Description of the Maze TaskThe story. Someone is living in a city which su�ers from disasters. Therefore he has decidedthat he needs to look for a better place to stay. From inherited stories, he has found an oldmap of the environment which shows a place which is very rich, safe and contains lots offood. Using the map, he wants to �nd out what the best way is for going to the land. Theenvironment consists of impassable mountains, open �elds and dense forests. To cross open�elds and dense forests costs a day, but it costs more e�ort to cross open �elds than denseforests. The man also knows that there will be a speci�c probability that his actions are notexecuted as he wanted. Which method should the pilgrim use in order to plan his way to thepromised land by the least e�ort?More formally. We use a quantized map consisting of a number of states (25 � 25, 50� 50, or 100 � 100). In each state the agent (pilgrim) can select one of the four actions: gonorth, go east, go south, go west. Sometimes an action gets replaced by another action dueto the weather conditions which make it impossible to know in which direction the agent isheading. It is important to note that each area looks di�erent to the agent since the agentmay look at the
ora and fauna and discovers that no area looks the same. This importantproperty of the environment allows the agent to uniquely identify the state in which he iswalking.Figure 2.1 shows an example maze, where blocked (mountain) states are represented byblack �elds, and penalty (forest) states are represented by grey �elds. Open �elds are white.The starting state, indicated by the letter S, is located 1 �eld north/east of the south-westcorner. The goal state (G) is located 1 �eld south/west of the north-east corner.Reward functions. Actions leading to a mountain area (blocked �eld) are not executedand are punished by a reward of �2. Normal steps through open �elds are punished by areward of �1. Dense forests areas are di�cult to cross, since they may harm the agent orinvolve some risk. Therefore by executing an action which leads to a forest �eld the agentreceives a penalty of 10 points (R = �10). For �nding the goal state, a reward of 1000 isreturned. The discount factor
 is set to :99.6Comments about the complexity. The mazes we use are somewhat more complicatedthan commonly used mazes, since the agents do not only have to �nd the shortest path to thegoal, but also try to circumvent crossing punishing states. Furthermore, since we use noisein the execution of actions (we replace selected actions by random actions without informingthe agent about which action was really executed), the agent wants to �nd the policy whichcollects most reward on average. This means the agent has to use the local rewards to �ndthe globally most rewarding policy.For each di�erent maze-size we have generated 20 di�erent randomly initialized mazes,all with a maximum of 20% blocked �elds and 20% punishment �elds (these are insertedrandomly). We discarded mazes that could not be solved by Dijkstra's shortest path algorithm6The discount factor can be seen as the probability that the process continues | instead of using a discountfactor we can multiply all transition probabilities by
 and add transitions with probability (1-
) from eachstate to an absorbing zero-value state. Thus by using a discount factor, we implicitly model the fact that anagent may halt before �nding the goal.

22 CHAPTER 2. MARKOV DECISION PROCESSES(Dijkstra, 1959). One of the randomly generated mazes is shown in Figure 2.1. Selectedactions are replaced by random actions with 10% probability (the noise in the execution ofactions is 10%).

S

G

Figure 2.1: A 50� 50 maze used in the experiments. Black �elds denote mountains (blocked�elds), grey �elds denote passable dense forests (penalty �elds). The agent starts at S andhas to search for the way of the least e�ort to the goal G.Traditional methods. We can solve planning problems by specifying them within theMDP framework. An advantage compared to more traditional planning problems is thatMDPs allow stochasticity in the state transition function. E.g., for the problems consideredabove, A* planning (Nilsson, 1971; Trovato, 1996) would not work. It would select an actionin a state and always expect to see the same successor state, which will often not be thecase. Therefore it will not compute the optimal way. The same holds for Dijkstra's algorithm(1959) which is a method for computing the shortest path for deterministic problems only.2.3.2 Scaling up Dynamic ProgrammingTo examine how DP algorithms scale up, we executed policy iteration, synchronous valueiteration and asynchronous value iteration on the a priori models of the 20 mazes of thedi�erent sizes. We used � = 0:001. For value iteration, we tried the following stoppingconditions for the iteration:(A) maxsfjVt+1(s)� Vt(s)jg < �, which is the commonly used stopping condition, and(B) maxsfVt+1(s) � Vt(s)g < �. This stopping conditions makes sense if we know thatvalue iteration approximates the optimal value function from below, i.e. if the initial valuefunction is de�nitively smaller than the optimal value function, then value iteration willinitially increase all values until the goal relevant information (i.e. the shortest path to thegoal) has been backpropagated to all states. Since condition (B) is less strict than (A), thevalue iteration algorithm will stop earlier.Results. The results of policy iteration (which uses the �rst stopping condition) on thedi�erent maze sizes are given in Table 2.1, and Tables 2.2 and 2.3 show the results withasynchronous and synchronous value iteration using the two di�erent stopping conditions.

2.3. EXPERIMENTS 23We can see a huge di�erence between policy evaluation and value iteration if we comparethe number of times the Bellman backup operator was called for each state. Policy evaluationis an order of magnitude slower than value iteration (both using condition A). This di�erencecan be explained by the fact that initial full policy evaluations are expensive since the policyimplements many cycles with high probability through the state space. Therefore, there aremany recurrences which need to be solved. Value iteration quickly learns policies which aremore directed towards the goal state, and therefore only low probability cycles remain whichdo not cause large problems due to the fact that we cuto� low update steps. Asynchronousvalue iteration (B) performs the best, and uses the update information earliest | in a way itis more \online" than the other approaches.Stopping condition (B) performs much better than (A). Using condition (B), asynchronousvalue iteration needs to iterate as many times as the length of the solution path. After this,stopping condition (A) will continue updating, since the value function does not yet re
ect allcycles between states emitting negative rewards. Although this changes the value function,it hardly a�ects the policy. Value iteration with stopping condition (A) can cost the samenumber of iterations for di�erent maze sizes. Note that the number of iterations is determinedby the discount factor, transition function, and the reward function and not by the maze size.Compare this also with Littman's upperbound in equation 2.6 which computes t� = 1822. Inpractice the algorithm takes less than 762 iterations.Maze Size Policy Iterations no. Backups Cum. Reward25 � 25 11 � 1 3040 � 380 942 � 1250 � 50 19 � 2 6450 � 480 844 � 24100 � 100 34 � 3 12650 � 680 691 � 28Table 2.1: Computational costs for policy iteration to compute 0:001-optimal policies for thedi�erent maze sizes. The number of policy iterations tracks the number of policy improvementsteps, whereas the number of backups tracks how often the Bellman backup operator (to lookone step more ahead) was called for each state. The last column indicates the cumulativerewards obtained by the computed policy during a single trial starting in S.Maze Size no. Backups (A) Cum. Reward (A) no. Backups (B) Cum. Reward (B)25 � 25 669 � 221 939 � 14 43 � 3 939 � 1350 � 50 758 � 0 841 � 27 77 � 3 841 � 27100 � 100 758 � 0 705 � 31 142 � 3 705 � 31Table 2.2: Computational costs for asynchronous value iteration using two di�erent stoppingconditions to compute 0:001-optimal policies for the di�erent maze sizes. Note that for valueiteration, the number of iterations equals the number of evaluations.A typical solution path is shown in Figure 2.2. The path crosses a small number (6) ofpenalty states. Note that due to the discounting, and the large goal reward, ways roundpenalty states are often not preferred (this would decrease the discounted bonus of the �nalgoal reward). Thus, we have to be careful of using discounting. The task has become morelike �nding the shortest path, which also crosses the least number of penalty states, insteadof �nding the least punishing path to the goal. Note that when the goal reward would havebeen 0, no penalty states would be crossed by an optimal policy.

24 CHAPTER 2. MARKOV DECISION PROCESSESMaze Size Iterations (A) Cum. Reward (A) Iterations (B) Cum. Reward (B)25 � 25 668 � 205 939 � 14 75 � 1 939 � 1450 � 50 759 � 2 841 � 27 138 � 3 841 � 27100 � 100 762 � 4 705 � 31 264 � 6 705 � 31Table 2.3: Computational costs for synchronous value iteration to compute 0:001-optimalpolicies for the di�erent maze sizes.
����

��
��
��
��

����

����

����

����
��
��
��
��

����

������

���
���
���
���

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

������

������

������

������

���
���
���
���

������

������

������

������

������

���
���
���
���

������

������

������

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

������

���
���
���
���

������

������
���
���
���
���

���
���
���
���

������

������

������

������

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

����

����

����

����

����
��
��
��
��

������

������

���
���
���
���

������

������

������

���
���
���
���

����

����

����

��
��
��
��

����
��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

����

������

������

������

������

���
���
���
���

������

���
���
���
���

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

������

������

���
���
���
���

���
���
���
���

������
���
���
���
���

������

������

���
���
���
���

����

��
��
��
��

����

����

����

����

����

����

����
����

���
���
���
���

������

���
���
���
���

���
���
���
���

������
���
���
���
���

������

��
��
��
��

��
��
��
��

����
��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

������

������

������

������

������

������

������

���
���
���
���

���
���
���
���

����
����

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

����

��
��
��
��

����
����

��
��
��
��

����

����

��
��
��
��

����
��
��
��
��

����

����

����

��
��
��
��

����

����

����

����
����

����

��
��
��
��

����

��
��
��
��

����
��
��
��
��

��
��
��
��

����

����

��
��
��
��

����
��
��
��
��

����

����

����
��
��
��
��

����

����

��
��
��
��

������

���
���
���
���

������

������
���
���
���
���

������

������

���
���
���
���

����

����

����

����

��
��
��
��

����

����
��
��
��
��

����

��
��
��
��

����

����
��
��
��
��

������

���
���
���
���

������

���
���
���
���

���
���
���
���

������

������

����
����

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

������

���
���
���
���

������

���
���
���
���

������

������

������

���
���
���
���

���
���
���
���

������

������

������
������

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

����

������

���
���
���
���

���
���
���
���

������

������
���
���
���
���

������

������
���
���
���
���

������
������
������
���
���
���
���

����

����

����

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

������

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

����

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

������

������

������

������

������

������
���
���
���
���

������
���
���
���
���

���
���
���
���

������

������

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

����
��
��
��
��

��
��
��
��

���
���
���
���

������

������

������

������
���
���
���
���

����
����

����

��
��
��
��

����

����
����
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������

���
���
���
���

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

������

���
���
���
���

���
���
���
���

������

������

���
���
���
���

������

������

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

����

��
��
��
��

����
��
��
��
��

����

��
��
��
��

����

����
��
��
��
��

����

����

����
����

������

������

���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

���
���
���
���

����

����
��
��
��
��

��
��
��
��

����

����

��
��
��
��

����
����

������

���
���
���
���

������

������

���
���
���
���

���
���
���
���

������

������

���
���
���
���

������

���
���
���
���

������
���
���
���
���

����

��
��
��
��

����

��
��
��
��

����

����

����
��
��
��
��

����

����
��
��
��
��

����

��
��
��
��

���
���
���
���

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
���
���
���
���

������

���
���
���
���

���
���
���
���

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

����

����

����

����

������

������

������
���
���
���
���

���
���
���
���

���
���
���
���

������

������

���
���
���
���

����
��
��
��
��

����

����

����

��
��
��
��

����

����

��
��
��
��

����

��
��
��
��

���
���
���
���

������

������

���
���
���
���

������

���
���
���
���

���
���
���
���

������

���
���
���
���

������

������

����

��
��
��
��

��
��
��
��

����

����

����

������

Figure 2.2: A found solution in a 50�50 maze by asynchronous value iteration. The solutionpath is highlighted, penalty states which occurred on the path are made slightly darker. Notethat the agent sometimes leaves the optimal path due to the stochasticity.We note that DP algorithms do not scale up badly, although found solutions are not alwaysoptimal (caused by early-stopping of the iteration). The number of iterations for computinga policy with value iteration using a cuto� for evaluating the policy does not depend on thesize of the state space. Since iterations take more time for larger state spaces (we update eachstate value), the time needed to compute a policy scales up linearly with the size of the statespace since for maze-worlds the number of transitions is linearly dependent on the number ofstates (although for fully connected state-spaces this would be quadratic).The number of iterations for policy iteration using the same stopping condition (A) seemsto depend on the size of the state-space, though. The computational time for policy iterationin our example is about 64 times longer for the 100 � 100 maze compared to the 25 � 25maze. This implies that for this particular problem, the algorithms have complexity O(n3=2)in which n is the number of states.Comment. We also used 200 � 200 mazes, with discount factor
 = :99. However,the computed policies did not achieve to �nd a direct way to the goal. It seems that evenalthough action punishment was used, the goal was so far away that its reward was "discountedaway" and thus the policy was indi�erent to di�erent pathways. Using
 = 0:999 solvedthe problem, however. Thus, we have to analyse the problem before setting the discountfactor | if pathways to the goal are very long,
 should be large or alternatively we could

2.4. MORE DIFFICULT PROBLEMS 25use the average reward criterion (Van der Wal, 1981; Schwartz, 1993; Mahadevan, 1996).7Asynchronous value iteration with
 = 0:999 and stopping condition (B) needed 290 � 7iterations and achieved a trial reward of 409 � 30.Conclusion. The experimental comparison shows evidence that value iteration outper-forms policy iteration. This is to our knowledge an unknown result and is due to the fact thatvalue iteration uses information earlier. Early policy updates cause less initial cyclic behaviorof the policy, which makes the policy evaluation process hard. We also saw that we can stopthe evaluation once the value function improvement is small, which makes DP much moree�cient. Finally, we observed that DP does not scale up badly.2.4 More Di�cult ProblemsIn this chapter, Markov decision processes and dynamic programming were described. Inthis section, we describe some di�culties for the practical utility of MDPs and give a shortdescription of some possible methods which allow to (at least partially) deal with these di�-culties.2.4.1 Continuous State SpacesWhen the state space is continuous, we have to use a function approximator for representingthe value function, since there is not a �nite number of states which we can represent in alookup table. A function approximator maps an input vector (which describes a state) to itsvalue. Combining DP with function approximators was already discussed by Bellman (1961)who proposed using quantization and low-order polynomial interpolation for approximatelyrepresenting a solution (Gordon, 1995a). There are two methods for combining functionapproximators with DP algorithms:(1) We can just approximate the value function by the function approximator. Then wecan use a �nite set of sampling states for which we perform value iteration (Gordon, 1995b).After computing B(V (i)) with the Bellman backup operator for all sampling states i, welearn a new function approximation by �tting these new sample points. Gordon (1995) showsconditions under which the (approximate) value iteration algorithm converges when combinedwith function approximators.(2) We can approximate the value function and the reward and transition functions byusing state quantization and resampling. Given the probability density function of the statespace and the positions of the quantized cells, we can use sampling techniques to estimate thetransition function and the reward function. We may use Monte Carlo simulations to samplestates from within each cell, select an action, use the MDP-model to �nd the successor stateand map this back to the next active cell. By counting how often transitions occur, we canestimate the transition probabilities and likewise we can estimate the reward function. Thenwe can use DP on the approximate model.7The average reward criterion (ARC) has other problems, however. E.g., consider an environment withmany positive rewards. Using ARC, an agent may quickly go to a terminal state, neglecting larger rewardsums obtainable in a trial.

26 CHAPTER 2. MARKOV DECISION PROCESSES2.4.2 Curse of DimensionalityCompletely evaluating a policy scales up with O(n3) when n is the number of states. Thereforewhen the number of states is very large, DP techniques become computationally infeasible.The number of states scales with the number of dimensions d as O(nd), where n is thenumber of values a variable can have in each dimension. When the number of dimensionsbecomes large the state space will explode, and DP cannot be used anymore with tabularrepresentations. This is known as Bellman's curse of dimensionality. One method to copewith this large number of states is to use function approximators as described above. Otherways to reduce the number of states are:(1) Only store important states. When the state space is large, most states have probabil-ity zero of being visited, and therefore they do not need to be stored. Since the policy movesaround on a lower dimensional manifold than the dimension of the state space would suggest(Landelius, 1997), we can just compute a policy for the states which are likely to be visited.(2) Another way to deal with multiple variables, is to reduce the exponential number ofstates which result from combining all variables. This can be done in the following two ways:(a) A state is usually described by all components, but often some components are notvery useful. Instead we can decrease the number of variables by using principal componentanalysis, see e.g. (Jollife, 1986).(b) We can break states into parts by making independency assumptions between vari-ables and compute separate value functions for the di�erent parts (blocks). For evaluating acomplete state, we add the evaluations of the parts. This can be done by models based onBayesian networks or probabilistic independence networks (Lauritzen and Wermuth, 1989).A similar approach based on CMACs (Albus, 1975a) will be used in Chapter 7.2.5 ConclusionIn this chapter, we have described dynamic programming methods for computing optimalpolicies for MDPs. We also evaluated them on a set of maze tasks of di�erent sizes. The ex-perimental results showed the, to our knowledge, novel result that value iteration outperformspolicy iteration. The reason for this is that policy iteration wastes a lot of time evaluatingcyclic policies. Value iteration updates the policy while evaluating it and in this way usesthe information earlier and more e�ciently. We also saw that DP can quickly solve problemscontaining thousands of states and that we have to be careful to discount the future too much,especially in case of large goal rewards. Finally, we discussed some problems which limit theapplicability of the MDP framework for real world problems: continuous state spaces and thecurse of dimensionality. A �nal severe limitation of DP is that it needs a model of the MDP.In the next chapter we describe reinforcement learning methods which learn policies and donot need a model.

Chapter 3Reinforcement LearningIn the previous chapter we showed how dynamic programming can be used to compute optimalpolicies for Markov decision problems. Although dynamic programming techniques are usefulfor solving a wide range of problems, they need a world model consisting of the reward andtransition functions of the Markov decision problem as input. Since for real world tasks, worldmodels are not a priori available, they have to be developed �rst. Engineering a model is notan easy task however: many interesting problems are very messy (complex and unspeci�ed)(Vennix, 1996), and modeling them is a very complex and time consuming process. For mostcomplex problems a complete model is not even needed, since it is unlikely that the agent(policy) will traverse all states | the agent's subjective world is only an approximation ofthe objective world.Reinforcement Learning. Reinforcement learning (RL) provides us with a frameworkfor training an agent by exploring an environment and learning from the outcomes of suchtrials (Samuel, 1959; Sutton, 1988). In reinforcement learning problems, an agent receivesinput from the environment, selects and executes an action, and receives reward which tellshow good its last action was. The goal of the agent is to select in each state the actionwhich leads to the largest future discounted cumulative rewards. To solve this, RL methods(Watkins, 1989; Bertsekas and Tsitsiklis, 1996; Kaelbling et al., 1996) try out di�erent actionsequences and learn how much long term reinforcement the agent receives on average byselecting a particular action in a particular state. These estimated values are stored in theQ-function which is used by the policy to select an action.Direct vs. Indirect RL. This chapter describes direct RL methods which learn the Q-function directly from experienced interactions with the world. Direct methods are opposedto indirect RL approaches, which �rst estimate a world model from the experiences and thenuse DP-like methods to compute the Q-function using the imperfectly estimated model. Thistype of model-based approaches will be discussed in the following chapter.TD(�) and Q-learning. In the next sections, we will describe the most important RLmethods: TD(�) methods (Sutton, 1988) and Q-learning (Watkins, 1989). These methods aredriven by the error or di�erence between temporally successive predictions or Q-values. Therehave been some successful applications of these methods: Tesauro showed impressive resultswith TD-methods by designing TD-Gammon, a program which learned to play backgammonby self-play (Tesauro, 1992). For the knowledge representation he used a feedforward neuralnetwork, which was able to generalize well, given the facts that there are about 1020 di�erentbackgammon positions and that the program reached human expert level after about 300,00027

28 CHAPTER 3. REINFORCEMENT LEARNINGtraining games. Other successful applications of RL to complex problems were done by Zhangwho used TD(�) with time-delay neural networks (LeCun et al., 1989) for iteratively repairingjob-shop schedules (Zhang and Liu, 1996), and by Crites who used a team of Q-learning agentsto train a neural network for controlling multiple elevators in a simulated environment (Critesand Barto, 1996).Outline. Section 3.1 describes the principles of RL. Section 3.2 describes TD(�) methods(Sutton, 1988). It describes the distinctions between two existing algorithms for dealing witheligibility traces; replacing and accumulating traces (Singh and Sutton, 1996). Section 3.3describes Q-Learning (Watkins, 1989), and Section 3.4 describes Q(�)-learning (Peng andWilliams, 1996) which combines Q-learning and TD-learning. In Section 3.5, we introduce amore e�cient online Q(�) algorithm (Wiering and Schmidhuber, 1998b), which improves theworst case update complexity for online Q(�)-learning from O(jSjjAj) to O(jAj) where jSj isthe number of states, and jAj the number of actions.1 In Section 3.6, we present Team TD(�),a novel idea for combining trajectories generated by multiple agents, and we will also presentthe Team Q(�) algorithm which combines this idea with our Q(�) algorithm. In Section 3.7,we demonstrate the practical speed up of the novel online Q(�) algorithm by comparing it tothe previous one discussed in (Peng and Williams, 1996) on experiments with 100�100 mazes.Then we also show experimental results with the replace and accumulate traces algorithms,and with our Team Q(�) algorithm. In Section 3.8, we �nish with a short conclusion.3.1 Principles of AlgorithmsIn reinforcement learning we have an agent and an environment, and we want to iterativelyimprove the agent's policy by letting it learn from its own experiences. This is done bytesting the policy in the environment, i.e. we let the agent execute its behavior and observewhich actions it executes in which states and where it obtains rewards or punishments. Usingsuch experiences consisting of input, action and received reward, we adjust the agent's policy.Testing the policy has to be done with care. If we would simply test policies by always(greedily) selecting the action with the largest value, the agent might repeat the same behaviortrial after trial. Although we would perfectly learn the Q-function for this behavior, the agentwould not be able to learn from (completely) distinct experiences which may change thevalue function and the policy.2 The reason why the agent might repeatedly select suboptimalactions is that alternative optimal actions may be underestimated due to the small number ofexperiences and unlucky results (biased in a negative way) when they were executed. Thus,we need a certain amount of exploration.Exploration/Exploitation. For reinforcement learning we must use exploration whichexploits the policy but selects non-policy actions as well. If we repeatedly test all actionsin all states, we get su�cient experiences to estimate the real evaluation of each action.Exploration actions aim at trying out new experiences which can be used to improve thepolicy and is opposed to exploiting actions which bring the agent more immediate reward.The exploration/exploitation dilemma (Thrun, 1992) is to �nd a strategy for choosing betweenexploration and greedy actions in order to achieve most reward in the long run and will be1This algorithm can also be applied to implement an O(1) algorithm for online TD(�) learning with atabular representation of the value function.2For stochastic environments the agent may learn from novel experiences, although for small noise valuesthe probability distribution over trajectories is still very peaked towards the greedy trajectory.

3.1. PRINCIPLES OF ALGORITHMS 29the topic of Chapter 5. In this chapter we assume that there is a given exploration rule Xwhich relies on the policy for choosing the action. The simplest rule, which we use in thischapter is the Max-random exploration rule which selects the greedy action with probabilityPmax and selects a random action (all with equal probability) otherwise.Online vs. o�ine RL. We distinguish online RL and o�ine RL. Online RL updatesmodi�able parameters after each visit of a state. O�ine RL delays updates until a trial is �n-ished, that is, until a goal has been reached or a time limit has expired. Without explicit trialboundaries o�ine RL does not make sense at all, because it would not be able to learn fromthe whole sequence. But even where applicable, o�ine RL tends to get outperformed by on-line RL which uses experience earlier and therefore more e�ciently (Rummery and Niranjan,1994). Online RL's advantage can be huge. For instance, online methods that punish actions(to prevent repetitive selection of identical actions) can discover certain environments' goalstates in polynomial time (Koenig and Simmons, 1996), while o�ine RL requires exponentialsearch time for them (Whitehead, 1992).Now we will focus on di�erent methods for learning from experiences. A reinforcementlearning agent starts in a speci�c starting state (s1) and repeats the following cycle throughouta trial:at = Choose an action with policy � and exploration rule X given strt = Execute the selected action, and receive a scalar rewardst+1 = Observe the new state� = Use the experience to update the policyThe last step updates the policy after a new experience (a quadruple < st; at; rt; st+1 >) isknown.3.1.1 Delayed Reward and Credit Assignment ProblemReinforcement learning algorithms have to be able to deal with delayed reward and the creditassignment problem. The problem of delayed reward is that the results of actions are oftennot immediately known, e.g. in some problems reward is only given after some goal has beenreached. From this the problem of credit assignment follows: since we do not have a uniquemeasure of goodness for each independent action, we have to split the �nal reward signalobtained by a whole sequence of actions in the contributions of single actions, and not all ofthem are likely to be equally responsible for the �nal outcome. For example if an agent followsa particular path and �nally reaches a goal, it is not immediately clear which actions did andwhich actions did not bring the agent closer to the goal | see Figure 3.1. Even if there aremany trajectories connecting a state and the goal, we cannot be sure which action is optimalin that state as long as the state is not connected to the goal by the optimal trajectory (whichpossibly consists of parts of all generated trajectories).3.1.2 Markov PropertyIn this chapter we will assume that the environment is stationary, which means that the transi-tion and reward functions do not change with time. Furthermore, we assume that the Markovproperty holds. The Markov property requires that the rewards and probabilities of makingtransitions to next states after executing an action in a state are fully determined by the

30 CHAPTER 3. REINFORCEMENT LEARNING

START

GOAL

Figure 3.1: A trajectory going from the start to the goal state. Which actions brought theagent closer to the goal?current state/action pair (SAP). More formally, this means that for all possible state/actionsequences the following equation holds:P (st+1 = ijst; at) = P (st+1 = ijs1; a1; : : : ; st; at);where P (st+1 = ij:) is the conditional probability of being in state i at time t + 1.3.2 TD(�) LearningTemporal di�erence (TD) learning (Sutton, 1988) can be applied for learning to predict theoutcome/results of a stochastic process.Prediction problems. Suppose we observe a Markov chain (see Appendix A) whichemits a reward on each transition and always reaches a terminal (e.g. goal) state. Thegoal of a prediction problem is to learn the expected total future cumulative reward fromeach state. More precisely, in prediction problems we receive training data in the form ofhistories (trajectories) of M trials H1; : : : ;HM consisting of sequences of state-reward pairs:Hi = f(s1; r1); (s2; r2); : : : ; (sNi ; rTi)g where st is the state at time t, rt is the emitted rewardat time t and Ti is the length of the ith trial. The goal is to learn the expected cumulativefuture rewards (value) V (s) for each state s 2 S:V (s) = E(TXi=t rijst = s)where T is a random variable denoting the trial length, and the expectation operator Eaccounts for the stochasticity of the process including di�erent times of occurrence of thestate. Note that a state can be visited zero, one or multiple times during a single trial.Monte Carlo sampling. We can learn about the outcomes of a Markov chain by usingMonte Carlo (MC) sampling which uses multiple simulations of a random process to collectexperimental data. Then we can compute the expected outcome by averaging the outcomesof the di�erent independent trials. In what follows, �ti(s) will denote the indicator functionwhich returns 1 if s occurred at time t in the ith trial, and 0 otherwise. We simply write

3.2. TD(�) LEARNING 31�t(s) if the trial number does not matter. In o�ine or batch-mode, MC sampling with theWidrow/Ho� algorithm (Widrow and Ho�, 1960) estimates the prediction V (s) of the futureemitted rewards given that the process is currently in state s as follows:V (s) = PMi=1PTit=1 �ti(s)PTij=t rijPMi=1PTit=1 �ti(s)where we wrote rij to take the trial number (i) into account. We can also learn more incre-mentally (online) by updating the predictions after each trial. The online method learns tominimize the di�erence between the observed cumulative future reward in the current trialsince state s was visited and the current prediction V (s).3 We minimize this di�erence byperforming gradient descent on the squared error function E. We de�ne the error of the visitof s at time step t, Et(s) as: Et(s) = 12(V (s)� TXi=t ri)2j�t(s)=1To minimize this error, we �rst di�erentiate Et(s) with respect to V (s):@Et(s)@V (s) = (V (s)� TXi=t ri)j�t(s)=1From this we construct the update rule which decreases this error using iterative steps withlearning rate �s. The learning rate in
uences the size of update steps and can be used toguarantee convergence. We will use �s = 1=k where k is the number of occurrences of states: �V (s) = ��s(V (s)� TXi=t ri)j�t(s)=1The problem of learning on the MC (Widrow/Ho�) estimates is that the variance in theupdates can be large if the process is noisy, and therefore many trials are needed before thecon�dence intervals of the estimates become small (the variance goes down with the square-root of the number of state occurrences). The variance can be reduced by using informationcontained in the structure of the generated state sequence. E.g. suppose a visit of some stateis always followed by a visit of one particular state (which can also follow other states). Whenthe �rst state is visited 10 times and the second 100 times, we could compute the �rst state'svalue by using the value of the second state since our experiences tell us with certainty thatwe will make a transition to this state. .The second state's estimate is computed over 100trials and thus a more reliable estimate than the MC estimate of the �rst state which is anaverage of the results of 10 trials.3.2.1 Temporal Di�erence LearningWe can reduce the variance in the updates by using temporal di�erence (TD) learning. TDmethods do not only use future rewards, but also the current predictions of successive states3For online learning the values V (s) are initialized before learning to some value such as 0.

32 CHAPTER 3. REINFORCEMENT LEARNINGfor updating state predictions. Temporal di�erence methods such as Q-learning and TD(�)methods enforce a time continuity assumption (Pineda, 1997): states which are visited in thesame time interval should predict about the same outcomes.4 In essence, TD methods try tominimize the di�erence between predictions of successive time steps.TD(0) updating. Instead of adjusting a state's prediction on the cumulative rewardreceived during the entire future, we can also just learn to minimize the di�erence betweenthe current state's prediction and the reward which immediately follows the visit of the stateplus the next state's prediction. The TD(0) algorithm, which is by the way very similar to Q-learning is exactly doing this. The learning algorithm uses temporal di�erences of successivestate values to adapt the predictions. Let's de�ne V (st)'s TD(0)-error et as:et = (rt + V (st+1)� V (st)) (3.1)This can be simply used to adjust V (st):�V (st) = �stetTD(0) has the largest bias inside the TD-family, since the learning signal is very much cor-related with the current state. Its variance is small however, since in general we may expectto have only small TD(0) errors. Sutton showed (1988) that by repeatedly learning fromsequences with TD(0), the estimates asymptotically converge to the true expected outcome.TD(�) methods. TD(�) methods are parameterized by a value � and although they usethe entire future trajectory for updating state predictions, rewards and predictions furtheraway in the future are weighted exponentially less according to their temporal distance bythe parameter �. TD(�) methods have been proved to converge with probability 1 to thetrue prediction for all � (Dayan, 1992; Dayan and Sejnowski, 1994; Jaakkola et al., 1994;Tsitsiklis, 1994; Pineda, 1997) provided each state is visited by in�nitely many trajectoriesand the learning rates diminish to zero at a suitable rate (see Appendix B). TD(�) uses� 2 [0; 1] to discount TD-errors of future time steps. The TD(�)-error e�t is de�ned as:e�t = T�tXi=0 �iet+i; and �V (st) = �ste�t (3.2)where we use et+i as de�ned in equation 3.1. It is important to set the � parameter correctlyfor e�cient learning, since it determines the tradeo� between the bias and the variance. If �is larger, the variance of update steps is larger since the cumulative rewards computed overmany steps will generally occupy a much larger range of outcomes than single-step rewardsand the values of successive states.The TD(�) errors above cannot be computed as long as TD(0) errors of future time stepsare not known. We can compute them incrementally, however, by using eligibility traces(Barto et al., 1983; Sutton 1984; Sutton 1988).Eligibility traces. Given a new observation, we can immediately update all predictionsof states visited previously in the same trial. In Figure 3.2 we show an example of a simulatedMarkov chain. After each new visit of a state, a new TD(0)-error becomes known. The �gureshows how these TD-errors are backpropagated to previous states. To memorize which states4This time continuity assumption holds for Markov processes and follows from the rules of causality andthe direction of time. For non-Markov processes, the assumption does not hold and thus we should be carefulusing TD-learning for them.

3.2. TD(�) LEARNING 33
1 2 3 4

e ee1 3 2

Figure 3.2: A simulated Markov chain going through states 1,2,3,4,: : :. The �gure shows howTD-errors are backpropagated to all previous states once new states are encountered.occurred and how long ago they occurred, eligibility traces are used (Barto et al., 1983). Theeligibility of a state tells us how much a state is eligible to learn from current TD-errors.This value depends on �, the recency of its occurrence and the frequency of its occurrence.Omitting the learning rate �s for simplicity, V (s)'s increment for the complete trial is:�V (s) = TXt=1 e�t �t(s)= TXt=1 TXi=t �i�tei�t(s)= TXt=1 tXi=1 �t�iet�i(s)= TXt=1 et tXi=1 �t�i�i(s)= TXt=1 etlt(s) (3.3)Where at the last step we simpli�ed the expression by introducing the symbol lt(s); theaccumulating eligibility trace for state s:lt(s) = tXi=1 �t�i�i(s)Computing this trace can be implemented using the following recursive form:lt+1(s) �lt(s) if st 6= slt+1(s) �lt(s) + 1 if st = sThus, at each time step eligibility traces of all states decay, whereas the currently visited statehas its trace increased. This has the e�ect that only states which have been visited recentlyare made eligible to learn on future examples.

34 CHAPTER 3. REINFORCEMENT LEARNINGNow the online update at time t becomes (with learning rate �s):8(s; a) 2 S �A do : V (s) V (s) + �setlt(s)The eligibility trace can be thought of as an attentional trace. As long as the eligibility traceof some state is \on" (larger than 0), this state will have its value adapted on TD errors ofnew experiences. The above method uses an accumulating eligibility trace: after each visit ofa state its eligibility trace gets strengthened by adding 1 to it.3.2.2 Replacing TracesA di�erent method is to replace traces when a state is revisited. Replacing traces (Singh andSutton, 1996) resets the trace if a state is revisited:lt+1(s) �lt(s) if st 6= slt+1(s) 1 if st = sThe e�ect is that only recency determines the eligibility trace and that frequency does notmatter. To show the di�erence between the accumulate and replace traces algorithms, wewill look at the case � = 1 and will analyze the bias of the estimators using a simple examplefollowing (Singh and Sutton, 1996).
A B

RA AP

RB

;

P; B

Figure 3.3: A Markov chain consisting of two states (starting state A and terminal state B).Transition probabilities are denoted as PA and PB, transition rewards are denoted as RA andRB.Consider the Markov chain of Figure 3.3. It consists of two states; the starting state Aand the terminal state B. In A, the transition to the next state is stochastic: a step is madeto A and B with probability PA and PB , respectively. The chain starts at A, we assumeV (B) = 0 and we are interested in computing the value V (A).Optimal value. The optimal value V (A) can easily be computed according to:V (A) = PA(RA + V (A)) + PB(RB + V (B))which has the following solution: V (A) = PAPBRA + RB (3.4)

3.2. TD(�) LEARNING 35Replacing traces/First visit MC. Singh and Sutton used � = 1 for the analysis(which is the worst-case for accumulating traces | for � = 0 both methods perform thesame updates). For this value, it can be shown (Singh and Sutton, 1996) that replacingtraces implements a �rst-visit Monte Carlo method given batch updates (o�ine) learning,and proper learning rate annealing. This method estimates the value of a state by simplysumming the rewards received during a trial after the �rst time the state was visited. Thismeans that in case of multiple occurrences of the state during a trial only the �rst one matters.For the Markov chain in Figure 3.3, the �rst visit MC algorithm (note that for this Markovchain, the replace traces algorithm would make the same updates for all values of �) wouldcompute Vf (A) as follows given a single trial:Vf (A) = R(A) + R(A) + � � �+ R(A) + R(B)for which the expectancy over all possible trajectories is (Singh and Sutton, 1996):EfVf (A)g = RB + PBRA PA(1� PA)2 = RB + PAPBRA (3.5)When we compare equations 3.4 and 3.5, we can see that the �rst visit MC algorithm computesa correct (unbiased) estimate. The estimate over multiple trials is simply computed as theaverage of the estimates for the single trials and thus it is also an unbiased estimate.Accumulating traces/Every visit MC. The every visit MC method computes thesame updates as the accumulating trace algorithms for � = 1 and proper learning rate an-nealing. It computes the value V (a) for the Markov chain in Figure 3.3 as follows given asingle (ith) trial:Ve(A) = R(A) + 2R(A) + � � �+ kR(A) + (k + 1)R(B)k + 1 = wiki + 1 (3.6)Considering all possible trials and weighting them according to their probability of occurring,the estimate after one trial is: EfVe(A)g = RB + RA P (A)2P (B)Thus, the estimate for a single trial is biased, with BIAS = EfVe(A)g � V (A) = �RA P (A)2P (B) .The estimate over multiple trials is computed as:Ve(A) = PMi=1wiPMi=1(ki + 1) (3.7)its bias after M trials is (Singh and Sutton, 1996):� 2M + 1 PA2PBRA (3.8)and thus the bias goes to 0 when the number of trials M goes to1. At the �rst glance it mayseem strange that the bias goes to 0. However, if we have multiple trials we will get manydi�erent outcomes, and due to reasons of combinatorics (e.g. there are 2 possibilities to havein one trial 2 and in another trial 3 revisits of state A, whereas there is only one possibilityto have two times zero revisits) our estimate is less determined by a single outcome with anoverestimated probability (immediately going to state B).The analysis of Singh and Sutton furthermore shows that initially the mean squared error(Bias + Variance) is larger for the �rst visit MC algorithm, but that it will catch up in thelong run. This implies that for di�cult problems replacing traces is the better candidate.

36 CHAPTER 3. REINFORCEMENT LEARNING3.3 Q-LearningOne of the simplest reinforcement learning algorithms for learning to control is Q-learning(Watkins, 1989; Watkins and Dayan, 1992). Q-learning enables an agent to learn a policyby repeatedly executing actions given the current state as input. At each time step thealgorithm uses 1-step lookahead to update the currently selected state/action pair (SAP). Q-learning updates all SAPs along a solution-path a single time, thus moving the �nal rewardfor a trial one step back in the chain. Therefore it takes a lot of time before the goal-reward will be propagated back to the �rst SAP. E.g., for learning a solution-path costing100 steps, naive Q-learning needs to traverse the path for at least 100 trials involving 10,000SAP-updates. Although slow, Q-learning has been proven to converge to the optimal policyprovided all state/action pairs are tried out in�nitely many times and the learning rate isproperly annealed (Watkins and Dayan, 1992). The Q-learning update-rule is as follows:Conventional Q-learning(st, at, rt, st+1):1) e0t (rt +
V (st+1)�Q(st; at))2) Q(st; at) Q(st; at) + �(s; a)e0tHere V (i) = maxaQ(i; a),
 is the discount factor which assigns preference to immediatelyobtaining reward instead of postponing it for a while, �(s; a) is the learning rate for the kthupdate of SAP (s; a), and e0t is the temporal di�erence or TD(0)-error, which tends to decreaseover time.Learning rate adaption. The learning rate is determined by �k(s; a) which should bedecreased on-line, so that it ful�lls two speci�c conditions for stochastic iterative algorithms(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996). The conditions on the learningrate �(s; a) are:(1) P1k=1 �k(s; a) =1, and(2) P1k=1 �2k(s; a) <1.Learning rate adaptions for which the conditions are satis�ed may be of the form : �k = 1k� ,where k is a variable that counts the number of times a state/action pair has been updated. InAppendix B, we present a (to our knowledge novel) proof that for 12 < � � 1, both conditionshold.3.4 Q(�)-learningQ(�)-learning (Watkins, 1989; Peng and Williams, 1996) is an important reinforcement learn-ing (RL) method. It combines Q-learning and TD(�). Q(�) is widely used | it is generallybelieved to outperform simple one-step Q-learning, since it uses single experiences to updateevaluations of multiple state/action pairs (SAPs) that have occurred in the past.Q's TD(�) error. First note that Q-learning's update at time t+ 1 may change V (st+1)in the de�nition of e0t = (rt +
V (st+1)�Q(st; at)). Following Peng and Williams (1996),5 wede�ne the TD(0)-error of V (st+1) as:et+1 = (rt+1 +
V (st+2)� V (st+1))5The di�erence with Watkins' Q(�) (1989) is that he proposed et+1 = (rt+1 +
V (st+2)�Q(st+1; at+1)).

3.4. Q(�)-LEARNING 37Q(�) uses a factor � 2 [0; 1] to discount TD-errors of future time steps:Q(st; at) Q(st; at) + �(st; at)e�t ;where the TD(�)-error e�t is de�ned as:e�t = e0t + 1Xi=1(
�)iet+iHere we add e0t | the di�erence between the Q-value of the current state/action and immedi-ate reward plus next V-value | to the TD(�) error of subsequent steps (computed from thedi�erences between a V-value and the immediate reward plus the V-value of the next state).Eligibility traces. Again we make use of eligibility traces (Barto et al., 1983; Sutton1988). In what follows, �t(s; a) will denote the indicator function which returns 1 if (s; a)occurred at time t, and 0 otherwise. Omitting the learning rate � for simplicity, Q(s; a)'sincrement for the complete trial is:�Q(s; a) = limk!1 kXt=1 e�t �t(s; a)= limk!1 kXt=1[e0t�t(s; a) + kXi=t+1(
�)i�tei�t(s; a)]= limk!1 kXt=1[e0t�t(s; a) + t�1Xi=1(
�)t�iet�i(s; a)]= limk!1 kXt=1[e0t�t(s; a) + et t�1Xi=1(
�)t�i�i(s; a)] (3.9)To simplify this we use the symbol lt(s; a), the eligibility trace for SAP (s; a):lt(s; a) = t�1Xi=1(
�)t�i�i(s; a);and the online update at time t becomes:8(s; a) 2 S �A do : Q(s; a) Q(s; a) + �[e0t�t(s; a) + etlt(s; a)]We can see that this update is done for all SAPs. This makes online updating very slow.Fortunately, there are methods to circumvent having to update all SAPs. One of them onlyneeds O(jAj) updates and will be presented in the next section.Online Q(�). We will focus on Peng and Williams' algorithm (PW) (1996), althoughthere are other possible variants, e.g, (Rummery and Niranjan, 1994). PW uses a list H ofSAPs that have occurred at least once. SAPs with eligibility traces below � � 0 are removedfrom H. Boolean variables visited(s; a) are used to make sure no two SAPs in H are identical.

38 CHAPTER 3. REINFORCEMENT LEARNINGPW's Q(�)-update(st; at; rt; st+1) :1) e0t (rt +
V (st+1)�Q(st; at))2) et (rt +
V (st+1)� V (st))3) For each SAP (s; a) 2 H Do :3a) lt(s; a)
�lt�1(s; a)3b) Q(s; a) Q(s; a) + �etlt(s; a)3c) If (lt(s; a) < �)3c-1) H H n (s; a)3c-2) visited(s; a) 04) Q(st; at) Q(st; at) + �e0t5) lt(st; at) lt(st; at) + 16) If (visited(st; at) = 0)6a) visited(st; at) 16b) H H [(st; at)Comments. 1. The sarsa algorithm (Rummery and Niranjan, 1994) replaces the righthand side in lines (1) and (2) by (rt +
Q(st+1; at+1)�Q(st; at)).2. For \replacing eligibility traces" (Singh and Sutton, 1996), step 5 should be:8a : lt(st; a) 0; lt(st; at) 1.3. Representing H by a doubly linked list and using direct pointers from each SAP to itsposition in H, the functions operating on H (deleting and adding elements | see lines (3c-1)and (6b)) cost O(1).Complexity. Deleting SAPs from H (step 3c-1) once their traces fall below a certainthreshold may signi�cantly speed up the algorithm. If
� is su�ciently small, then this willkeep the number of updates per time step manageable. For large
� PW does not workas well: it needs a sweep (sequence of SAP updates) after each time step, and the updatecost for such sweeps grows with
�. Let us consider worst-case behavior, which means thateach SAP occurs just once. Near trial begin the number of updates increases linearly untilat some time step t some SAPs get deleted from H. This happens as soon as t � log �log(
�) .Since the number of updates is bounded from above by the number of SAPs, the total updatecomplexity increases towards O(jSjjAj) per update for
�! 1.3.5 Fast Q(�)-learningThere have been several ways to speed up Q(�). Lin's o�ine Q(�) (1993) creates an action-replay set of experiences after each trial. Computing the TD(�)-returns can be done linearlyin the length of the history. However, o�ine Q(�)-learning is in general much less e�cientthan online Q(�). Cichosz' semi-online method (1995) combines Lin's o�ine method andonline learning. It needs fewer updates than Peng and Williams' online Q(�), but postponesQ-updates until several subsequent experiences are available. Hence actions executed beforethe next Q-update are less informed than they could be. This may result in performanceloss. For instance, suppose that the same state is visited twice in a row. If some hazardousaction's Q-value does not re
ect negative experience collected after the �rst visit then it mayget selected again with higher probability than wanted.Our proposed method. Previous methods are either not truly online and thus arelikely to require more experiences, or their updates are less e�cient than they could be and

3.5. FAST Q(�)-LEARNING 39thus require more computation time. We will present a Q(�) variant which is truly onlineand e�cient: its update complexity does not depend on the number of states (Wiering andSchmidhuber, 1998b). The method can also be used for speeding up tabular TD(�) to achieveO(1) update complexity. It uses \lazy learning" (introduced in memory-based learning, e.g.,Atkeson, Moore and Schaal 1997) to postpone updates until they are needed. The algorithmis designed for �
 > 0 | otherwise we can use simple Q-learning.Main principle. The algorithm is based on the observation that the only Q-values neededat any given time are those for the possible actions given the current state. Hence, using \lazylearning", we can postpone updating Q-values until they are needed. Suppose some SAP (s; a)occurs at (not necessarily successive) time steps t1; t2; t3; : : :. Let us abbreviate �t = �t(s; a),� =
�. First we unfold terms of expression (3.9):kXt=1[e0t�t + et t�1Xi=1 �t�i�i] =t1Xt=1[e0t�t + et t�1Xi=1 �t�i�i] + t2Xt=t1+1[e0t�t + et t�1Xi=1 �t�i�i] + t3Xt=t2+1[e0t�t + et t�1Xi=1 �t�i�i] + : : :Since �t is 1 only for t = t1; t2; t3; : : : and 0 otherwise, we can rewrite this ase0t1 + e0t2 + t2Xt=t1+1 et�t�t1 + e0t3 + t3Xt=t2+1 et(�t�t1 + �t�t2) + : : : =e0t1 + e0t2 + 1�t1 t2Xt=t1+1 et�t + e0t3 + (1�t1 + 1�t2) t3Xt=t2+1 et�t + : : : =e0t1 + e0t2 + 1�t1 (t2Xt=1 et�t � t1Xt=1 et�t) + e0t3 + (1�t1 + 1�t2)(t3Xt=1 et�t � t2Xt=1 et�t) + : : :De�ning �t = Pti=1 ei�i, this becomes:e0t1 + e0t2 + 1�t1 (�t2 ��t1) + e0t3 + (1�t1 + 1�t2)(�t3 ��t2) + : : : (3.10)This will allow for constructing an e�cient online Q(�) algorithm. We de�ne a local tracel0t(s; a) = Pti=1 �i(s;a)�i , and use (3.10) to write the total update of Q(s; a) during a trial as:�Q(s; a) = limk!1 kXt=1 e0t�t(s; a) + l0t(s; a)(�t+1 ��t) (3.11)To exploit this we introduce a global variable � which keeps track of the cumulative TD(�)error since the start of the trial. As long as SAP (s; a) does not occur we postpone updatingQ(s; a). In the update below we need to subtract that part of � which has already been used(see equations 3.10 and 3.11). We use for each SAP (s; a) a local variable �(s; a) which recordsthe value of � at the moment of the last update, and a local trace variable l0(s; a). Then,once Q(s; a) needs to be known, we update Q(s; a) by adding l0(s; a)(�� �(s; a)). Figure 3.4illustrates that the algorithm substitutes the varying eligibility trace l(s; a) by multiplying aglobal trace �t by the local trace l0(s; a). The value of �t changes all the time, but l0(s; a)does not in intervals during which (s; a) does not occur.

40 CHAPTER 3. REINFORCEMENT LEARNING

l’(s,a)t

l (s,a)t

t ->
t1

φt

t2 t 3

1

Figure 3.4: SAP (s; a) occurs at times t1; t2; t3; : : :. The standard eligibility trace l(s; a) equalsthe product of �t and l0(s; a).Algorithm overview. The algorithm relies on two procedures: the Local Update proce-dure calculates exact Q-values once they are required; the Global Update procedure updatesthe global variables and the current Q-value. Initially we set the global variables �0 1:0and � 0. We also initialize the local variables �(s; a) 0 and l0(s; a) 0 for all SAPs.Local updates. Q-values for all actions possible in a given state are updated before anaction is selected and before a particular V-value is calculated. For each SAP (s; a) a variable�(s; a) tracks changes since the last update:
Local Update(st; at) :1) Q(st; at) Q(st; at) + �(st; at)(�� �(st; at))l0(st; at)2) �(st; at) �

The global update procedure. After each executed action we invoke the procedureGlobal Update, which consists of three basic steps: (1) To calculate V (st+1) (which may havechanged due to the most recent experience), it calls Local Update for the possible next SAPs.(2) It updates the global variables �t and �. (3) It updates (st; at)'s Q-value and tracevariable and stores the current � value (in Local Update).

3.5. FAST Q(�)-LEARNING 41Global Update(st; at; rt; st+1) :1) 8a 2 A Do1a) Local Update(st+1; a)2) e0t (rt +
V (st+1)�Q(st; at))3) et (rt +
V (st+1)� V (st))4) �t
��t�15) � � + et�t6) Local Update(st; at)7) Q(st; at) Q(st; at) + �(st; at)e0t8) l0(st; at) l0(st; at) + 1�tFor \replacing eligibility traces" (Singh and Sutton, 1996), step 8 should be changed as follows:8a : l0(st; a) 0; l0(st; at) 1�t .Machine precision problem and solution. Adding et�t to � in line 5 may createa problem due to limited machine precision: for large absolute values of � and small �tthere may be signi�cant rounding errors. More importantly, line 8 will quickly over
ow anymachine for
� < 1. The following addendum to the procedure Global Update detects when�t falls below machine precision �m, updates all SAPs which have occurred (again we makeuse of a list H), and removes SAPs with l0(s; a) < �m from H. Finally, � and �t are reset totheir initial values. Global Update : addendum9) If (visited(st; at) = 0)9a) H H [(st; at)9b) visited(st; at) 110) If (�t < �m)10a) Do 8(s; a) 2 H10a-1) Local Update(s; a)10a-2) l0(s; a) l0(s; a)�t10a-3) If (l0(s; a) < �m)10a-3-1) H H n (s; a)10a-3-2) visited(s; a) 010a-4) �(s; a) 010b) � 010c) �t 1:0Comments. Recall that Local Update sets �(s; a) �, and update steps depend on� � �(s; a). Thus, after having updated all SAPs in H, we can set � 0 and �(s; a) 0.Furthermore, we can simply set l0(s; a) l0(s; a)�t and �t 1:0 without a�ecting theexpression l0(s; a)�t used in future updates | this just rescales the variables. Note that if
� = 1 no sweeps through the history list will be necessary.Complexity. The algorithm's most expensive part are the calls of Local Update, whosetotal cost is O(jAj). This is not bad: even simple Q-learning's action selection procedurecosts O(jAj) if, say, the Boltzmann rule (Thrun, 1992; Caironi and Dorigo, 1994) is used.Concerning the occasional complete sweep through SAPs still in history list H: during eachsweep the traces of SAPs in H are multiplied by l < em. SAPs are deleted from H once theirtrace falls below em. In the worst case one sweep per n time steps updates 2n SAPs and costs

42 CHAPTER 3. REINFORCEMENT LEARNINGO(1) on average. This means that there is an additional computational burden at certaintime steps, but since this happens infrequently our method's total average update complexitystays O(jAj).The space complexity of the algorithm remains O(jSjjAj). We need to store the followingvariables for all SAPs: Q-values, eligibility traces, previous delta values, the \visited" bit,and three pointers to manage the history list (one from each SAP to its place in the historylist, and two for the doubly linked list). Finally we need to store the two global variables.Comparison to PW. Figure 3.5 illustrates the di�erence between theoretical worst-casebehaviors of both methods for jAj = 5, jSj = 1000, and
 = 1. We plot updates per time stepfor � 2 f0:7; 0:9:0:99g. The accuracy parameter � (used in PW) is set to 10�6 (in practice lessprecise values may be used, but this will not change matters much). The machine precisionparameter �m is set to 10�16. The spikes in the plot for fast Q(�) re
ect occasional full sweepsthrough the history list due to limited machine precision (the corresponding average numberof updates, however, is very close to the value indicated by the horizontal solid line | asexplained above, the spikes hardly e�ect the average). No sweep is necessary in fast Q(0.99)'splot during the shown interval. Fast Q needs on average a total of 13 update steps: 5 inchoose-action, 5 for calculating V (st+1), 1 for updating the chosen action, and 2 for takinginto account the full sweeps.

0

50

100

150

200

250

300

350

400

0 80 160 240 320 400

N
r

U
pd

at
es

Time

Fast Q lambda = .7
Fast Q lambda = .9

PW lambda = .7
PW lambda = .9

PW lambda = .99

0

10000

20000

30000

40000

50000

60000

70000

80000

0 80 160 240 320 400

N
r

U
pd

at
es

Time

PW lambda = .7
PW lambda = .9

PW lambda = .99
Fast Q lambda = .7
Fast Q lambda = .9

Figure 3.5: Number of updates plotted against time: a worst case analysis for our method andPeng and Williams' (PW) for di�erent values of �. (A) Number of updates per time step.(B) Cumulative number of updates.Multiple Trials. We described a single-trial version of our algorithm. One might betempted to think that in case of multiple trials all SAPs in the history list need to be updatedand all eligibility traces reset after each trial. This is not necessary | we may use cross-triallearning as follows:We introduce �M variables, where index M stands for the M th trial. Let N denote the

3.6. TEAM Q(�) 43current trial number, and let variable visited(s; a) represent the trial number of the mostrecent occurrence of SAP (s; a). Now we slightly change Local Update:Local Update(st; at) :1) M visited(st; at)2) Q(st; at) Q(st; at) + �(st; at)(�M � �(st; at))l0(st; at)3) �(st; at) �N4) If (M < N)4a) l0(st; at) 04b) visited(st; at) NThus we update Q(s; a) using the value �M of the most recent trial M during whichSAP (s; a) occurred and the corresponding values of �(st; at) and l0(st; at) (computed duringthe same trial). In case SAP (s; a) has not occurred during the current trial we reset theeligibility trace and set visited(s; a) to the current trial number. In Global Update we needto change lines 5 and 10b by adding trial subscripts to �, and we need to change line 9b inwhich we have to set visited(st; at) N . At trial end we reset �t to �0 = 1:0, increment thetrial counter N , and set �N 0. This allows for postponing certain updates until after thecurrent trial's end.3.6 Team Q(�)This section contains a novel idea for using multiple agents with eligibility traces. Considerthat the value function is shared by a number of agents and that we generate multiple trajec-tories in parallel to learn the value function. Note that the shared value function does notmake it possible for agents to specialize, since the team consists of homogeneous agents. Whenwe immediately use TD(�) for multiple agents, we will let the agents only learn from theirown experiences. However, sometimes it would be a good thing to let agents learn from eachother if they interact at some point. For example, in a soccer simulation we could reward anagent for passing the ball to another agent who makes a goal shortly afterwards. In principle,we could design value functions where the value for passing the ball would be determined bywhat happens with the ball afterwards. This makes a new kind of parallel learning possible inwhich simultaneously generated trajectories are combined to create new trajectories. In thefollowing, we will not consider such general cases where agents can interact through passingobjects or through communication, but will consider the case where two agents are said to in-teract if their trajectories cross each other. In the framework presented in this section, calledTeam TD(�), we extend single agent TD(�) by linking trajectories generated by multipleagents. Then, if an agent's trajectory traverses another agent's trajectory, previous steps ofone agent will be updated on the future of the other agent.3.6.1 Extending the Eligibility Trace FrameworkThe accumulate traces algorithm computes large eligibility traces for trials in which a stateis visited multiple times. Suppose that some state is visited by two di�erent trajectories. Forone trajectory, the state may be visited a single time and for another the state may be visitedmany times. The accumulating traces algorithm will cause much larger state value adaptions

44 CHAPTER 3. REINFORCEMENT LEARNINGfor the second trajectory, even though both trajectories may be equiprobable. Therefore weshould sometimes be careful in updating a state value.6.Another view on eligibility traces. In principle there are many ways for manipulatingthe traces and we have already seen a couple of them. In the following we want to extendour reasoning about eligibility traces. An eligibility trace is directly related to the temporaldistance between the time step the state was visited and the time step another state is visited.
A 1

B
C

2

Figure 3.6: An example trajectory through state space. The Markov chain consists of three(abstracted) states A, B and C. At B, the chain can return to B or go to C.Have a look at Figure 3.6. We are interested in the eligibility traces. As we have seen,these in
uence the amount with which a previous state learns on the current transition inthe trajectory. Thus, let's just consider the sequence of states or temporally directed pathsthrough state space. E.g., there can be sequences:A - B - B - CA - B - B - B - CA - B - CFor these di�erent sequences, replacing traces only e�ects the estimate of B and not of Acompared to the accumulating traces. We could also reset the trace from A (to a larger value,e.g. in this case to �) whenever B is revisited. We could also split a sequence ABBBC into atree combining the sequences: ABC + BBB or ABC + BB + BB. In these ways we wouldstill learn from the transitions numbered 1,2,2, and 3 shown in Figure 3.6. We should notethat by transforming a sequence into a tree and then using TD(�), the updates will in generalnot be the same for � > 0. The second tree, however, is just a projection of the sequence untoa Markov chain, assigning a probability of 23 to transition BB and 13 to transition BC. Suchdi�erent ways of dealing with eligibility traces could help to strengthen the relationship tofull DP techniques (or full-
edged lookahead searches). The updates become more complex,however. Therefore although some improvement of the learning speed may be obtained, thisadvantage may become a disadvantage due to the larger computational requirements.3.6.2 Combining Eligibility TracesA way of extending the eligibility trace framework is to allow for multiple traces. ConsiderFigure 3.7. There are two trajectories which have been generated by the same underlying6Optimally we use the probabilities of generating a trajectory. Storing probabilities explicitly is done inworld models. Similar e�ects can be obtained by storing and learning from traces in di�erent ways, however

3.6. TEAM Q(�) 45
A B

C D

E F

G H

2

1

Figure 3.7: Multiple trajectories through state space. Trajectory one visits states A, B, E, Fin that order and trajectory two visits states G, B, C, D, E, and H.Markov chain and we want to update all state estimates based on both trajectories. Thesimplest is to let states visited by one trajectory only learn on future dynamics of thattrajectory. In this way, we do not use all possible information, however. If two trajectoriesmeet, there are multiple possible future paths and these can be used to adapt state values.E.g. in �gure 3.7, there is a path between state A visited by trajectory 1 and transition C�Dvisited by trajectory 2, and thus we can adapt state A's value on C �D.The algorithm. The algorithm uses di�erent eligibility traces and history lists for di�er-ent trajectories and keeps track of the order in which states are visited (i.e. the most recentlyvisited states are the �rst in the list | if a state is revisited its position in the list advances).We will �rst introduce some notation:Hi = fsi1; : : : ; sing is the history list of trajectory i and is an ordered list of all itsvisited states.U(si) lists all history lists of trajectories which have visited state si.pred(si;Hi) lists all states which precede si in the history list Hi.The general way of connecting traces is as follows. Once two trajectories have visited thesame state sm (i.e. they meet in sm), we traverse the whole list of states which were visitedby the trajectories before the meeting state to connect them. Thus, after trajectory i hasmade a step we perform the following operations:We insert the new state sm at the end of trajectory i's history list:(1) If sm =2 Hi, then Hi = insert(sm;Hi).We check which trajectories have also visited state sm. The history lists of thesetrajectories are inserted in the lists U(si) of all states si previously visited bytrajectory i:(2) 8H 6= Hi 2 U(sm) ; 8si 2 pred(sm;Hi) ; if H =2 U(si) thenU(si) = U(si) [fHg.Finally, we check which other trajectories have visited state sm. Then we puttrajectory i in the lists U(s) of all states s previously visited by one of the othertrajectories:(3) 8H 6= Hi 2 U(sm) ; 8s 2 pred(sm;H) ; U(s) = U(s) [fHig.

46 CHAPTER 3. REINFORCEMENT LEARNINGComputing eligibility traces. Above we only described which states learn on whichtrajectories. We will now describe how their eligibility traces are computed. Each state s hasan eligibility l0i(s) to learn on each trajectory i's future steps. In the beginning, we initializeall eligibility traces for all K trajectories and for all states:8i;8s : l0i(s) = 0If a trajectory visits a particular state, this state's eligibility for that trajectory is updatedas in the fast online Q(�) algorithm. For connecting traces, we also compute new eligibilitytraces if we insert a trajectory in the list of visited trajectories of some state. Thus, after weperform the operation U(s) = U(s) [fHjg, where s 2 pred(sm;Hi), we also compute:l0j(s) = l0j(sm) l0i(s)l0i(sm)Thus, all states visited by one trajectory Hi for which the eligibility trace is 0 for theother trajectory Hj, are assigned an eligibility trace to the trajectory Hj which is calculatedby multiplying the eligibility trace of point sm on the trajectory Hj by (�
)d where d is thetemporal distance along trajectory Hi between state s and state sm. In this way, they willstart learning on the future dynamics from the other trajectory.To make things more e�cient, we traverse the lists backwards and stop once some statealready has non zero eligibility trace on the other trajectory. If such a state is only visitedonce, we can be sure that all previous states also have a non-zero eligibility trace. If a statehas been visited multiple times, however, it can be the case that it already has an eligibilityon the other trajectory whereas the preceding states have not (see Figure 3.8). Thereforewe only stop traversing the list backwards, if we �nd a state with non-zero eligibility whichhas not been revisited (see Appendix C for the complete algorithm). If states are revisitedoften, the procedure can still be quite expensive, since it is possible that we would traversethe whole list. The probability that one agent has revisited a large number of consecutivestates is fortunately very low.
A

2

B1

X

Figure 3.8: An example of two trajectories crossing each other where we cannot stop tracingtrajectory 1 back after noticing that state X already has a non zero eligibility trace on trajectory2. At the moment that trajectory 1 has hit trajectory 2 in X for the �rst time, X and A gota non zero eligibility trace on trajectory 2, and therefore B would stay without eligibility if wewould stop in X.Connecting multiple trajectories. If there are multiple trajectories, things get alittle bit more complicated. Now, if trajectory 2 meets trajectory 3, and trajectory 2 has

3.7. EXPERIMENTS 47hit trajectory 1 before, we have to follow trajectory 2 and let trajectory 1 states also geteligibility on trajectory 3.Again, we �rst insert the new state in the history list of trajectory i: Hi = insert(sm;Hi).We will now describe the recursive procedure Connect(Hi; sm;Hj) which connects all statesvisited by trajectory i before state sm to trajectory j. Furthermore it also connects all statesvisited by another trajectory which traverses one of these states to trajectory j.Connect(Hi; sm;Hj):(A) 8si 2 pred(sm;Hi) ; U(si) = U(si) [fHjg(B) 8si 2 pred(sm;Hi) ; 8Hk 6= Hi 6= Hj 2 U(si) Connect(Hk; si;Hj)Then we call this procedure for all pairs which include the new trajectory Hi :8H 6= Hi 2 U(sm) Connect(Hi; sm;H) and Connect(H; sm;Hi).Some limitations and their implications. There are two problems with the approach.(1) The Markov property is essential for the possibility to do multiple trace learning, sinceotherwise it may not be possible to \jump" from one trajectory to another. (2) The eligibilitytrace from a state visited by one trajectory on another trajectory is determined by the orderin which the trajectories meet. However, the usual eligibility traces have the same problem| we cannot (e�ciently) make eligibility traces invariant to the order in which experiencesoccur.Comment. The approach resembles the replacing traces in the manner that it dealswith multiple crossings of trajectories. For computing eligibility traces for single trajectorieswe can use the replacing traces algorithm or the accumulating traces. We have used this inan algorithm based on Team Q(�)-learning which enables us to train a policy with multipleagents (see Appendix C).Complexity of the algorithm. Note that the new complexity of the local update ruledepends on the number of agents (trajectories), i.e. it becomes O(K) for a single update step,where K is the number of agents.Stopping connecting the lists in the way described above may help to keep the averagecomputational requirements low. When states are not revisited by the same trajectory, wecould at most connect each state visited by 1 of the trajectories to all other trajectories. Thus,we could have made TK links after T steps, which makes an average update complexity ofO(K). In the worst case states are often revisited so that we need to traverse the wholelist backwards. Then the worst case complexity would become O(jHjK), where jHj is thelength of the history list. For most problems, agents will not revisit long sequences of statesand therefore it may be expected that the update complexity scales up linearly with thenumber of trajectories. Computationally, we do therefore not expect a large di�erence in theupdate complexity by learning from many independent trials or by learning from combiningthe traces. However, if we plan to use multiple agents and generating trajectories is expensive,there may be a big gain in using the new algorithm, since we learn more on each experience.3.7 ExperimentsIn this section, we will describe the following three experimental comparison studies: (1) Wecompare our novel fast Q(�) to PW's Q(�), (2) We compare replacing traces to accumulatingtraces, and (3) We compare Team Q(�) to Independent Q(�).

48 CHAPTER 3. REINFORCEMENT LEARNING3.7.1 Evaluating Fast Online Q(�)To evaluate the practical performance improvement of the fast Q(�) method over Peng andWilliam's Q(�) we use di�erent mazes than in Chapter 2. We created a set of 20 di�erentrandomly initialized 100 � 100 mazes, each with about 20% blocked �elds. All mazes sharea �xed start state (S) and a �xed goal state (G) | we discarded mazes that could not besolved by Dijkstra's shortest path algorithm (1959). See �gure 3.9 for an example maze.In each �eld the agent can select one of the four actions: go north, go east, go south, gowest. Actions that would lead into a blocked �eld are not executed. Once the agent �nds thegoal state it receives a reward of 1000 and is reset to the start state. The action executionis without noise, thus the transition function is deterministic (this makes it possible to uselarger values for �). All other steps are punished by a reward of �1. The discount factor
is set to 0:99.
��

�
�
�
�

�
�
�
�

��
����
����
��

�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

��
��

��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
����
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

�
�
�
�

��

��

����
����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

����
���
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

����

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��

�
�
�
�

��

���
�
�
�

��������

��
��

��
��
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��
�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�����
�
�
�

��

��

�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

���
�
�
�

�
�
�
�

��

��
��

��

��
��

��
��
��

�
�
�
�

�
�
�
�

������
��

�
�
�
�

��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

��
��

�
�
�
�

��
����

�
�
�
�

����

�
�
�
�

����
��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

��

�
�
�
�

�
�
�
�

��

��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��
�
�
�
�

�
�
�
�

��

��
������
�
�
�
�

�
�
�
�

��

��

�
�
�
�

��
��

��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

����

��
����

�
�
�
�

�
�
�
�

��
������
��

��

�
�
�
�

����
��
��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��
��
�������
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

����
��
��

�
�
�
�

�
�
�
�

����
��

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

��
����

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
������
��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��������
�
�
�
�

�
�
�
�

�
�
�
�

��

����

�
�
�
�

��

�
�
�
�

��
��

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
����
�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��
��
��
�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

����
����

�
�
�
�

��

��
����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����
��
�
�
�
�

�
�
�
�

����
��
��

�
�
�
�

��

��
����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������

��
��

��
��
�
�
�
�

�
�
�
�

��
��

��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

����
��

��
�
�
�
�

�
�
�
�

��

��
����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

�
�
�
�

����

��
��

��
��

����
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
�
�
�
�

�
�
�
�

��

����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

��

��
�
�
�
�

�
�
�
�

�
�
�
�

��������

��

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

�
�
�
�

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

��

��

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

�
�
�
�

�
�
�
�

��

��

������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

��
��
������
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��
��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
����
��

�
�
�
�

�
�
�
�

�
�
�
�

����

���
�
�
�

�
�
�
�

�
�
�
�

����
��
�
�
�
�

����

��

�
�
�
�

����

��

��

��
��
��
��
��

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

��
��
����
��
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��

�
�
�
�

�
�
�
�

����

��

�
�
�
�

�
�
�
�

��
��
��
����

�
�
�
�

�
�
�
�

��

������

�
�
�
�

�
�
�
�

����
����
����

����

��
��
��
��

��
��
��
��

��������
����

����
��
��
��
��

��������

����

��
��
��
��

��
��
��
��

��
��
��
��

������������
����

��
��
��
��

��
��
��
��

����
����
������
��
��
��

��
��
��
��

��
��
��
��

����

������������
����

��
��
��
��

��
��
��
��

��
��
��
��

����
������������
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

��
��
��
��

����
����

��
��
��
��

����
����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

����
��
��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

����
����

����
����

��
��
��
��

��
��
��
��

����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

����
��������

��
��
��
��

��
��
��
��

����

����
����
����

����

����

����

��
��
��
��

��
��
��
��

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

����
����

��
��
��
��

��
��
��
��

����
����
����

����

��
��
��
��

��
��
��
��

����

����
����

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��������

����

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����
������
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

������
��
��
��

��
��
��
��

����
����
��������
����
��
��
��
��

��
��
��
��

��������
����
����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����
��������
����
����

��
��
��
��

����
����
����

��
��
��
��

����
����

��
��
��
��

����
����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

��
��
��
��

��
��
��
��

����

��������
����

��
��
��
��

����

������
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

����
��������

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������������
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��������
����
����

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��������

����

��
��
��
��

����

����
����
��
��
��
��

����
����
��������
��������

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

����

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

��
��
��
��

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

����
����

��������

��
��
��
��

��������

������
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

����
����
����
��������

��������

��
��
��
��

��
��
��
��

����
����
����
��
��
��
��

��
��
��
��

��
��
��
��

��������
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����
����
��������

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����
��������

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

������������

����
����
��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

����

������������

��
��
��
��

����
����

��������

��
��
��
��

��
��
��
��

����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��������

��
��
��
��

��
��
��
��

����
����

��
��
��
��

��
��
��
��

����

����
����

��
��
��
��

��
��
��
��

����

��
��
��
��

����
��
��
��
��

����
����
��������

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��������
����
����

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������
����

������
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����
����
����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

��
��
��
��

��������
����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������
����

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��������
����

��
��
��
��

��
��
��
��

����
����

����
��
��
��
��

��������

������
��
��
��

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

����
��������

����

��
��
��
��

��
��
��
��

��
��
��
��

��������
����
����

��
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

����
������������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��������

��
��
��
��

��
��
��
��

��
��
��
��

��������
����
��������

��
��
��
��

����
����
����
��
��
��
��

��
��
��
��

����
����

����
����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������
����

����
����
��
��
��
��

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����������������

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����

����
����
����

����
����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����
��������
����
����

��
��
��
��

��
��
��
��

������������
����
��
��
��
��

��
��
��
��

����
����
����

����

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��������
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

����

�
�
�
�

�
�
�
�

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
����

�
�
�
�

�
�
�
�

������
��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
����
��

�
�
�
�

�
�
�
�

�
�
�
�

��

��
����

�
�
�
�

�
�
�
�

��

�
�
�
�

��

��
��

�
�
�
�

�
�
�
�

����
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��

�
�
�
�

��

��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��
��
�
�
�
�

�
�
�
�

��

��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��

���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

����

�
�
�
�

�
�
�
�

��

��

��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

��
��
��

��

�
�
�
�

��
����
���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

��

�
�
�
�

��
��

��������
�
�
�
�

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

��
�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

����

�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

����

��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����
��

��
�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
����
��
���
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

��
����
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��

�
�
�
�

��
������
��
��
�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��

��
�
�
�
�

�
�
�
�

 S

G

Figure 3.9: A 100 � 100 maze used in the experiments. Black states denote blocked �elds.White squares are accessible states. There are about 8000 accessible states. The agent's aimis to �nd the shortest path from starting state S to goal state G.Experimental set-up. A single run on one of the twenty mazes consisted of 5,000,000steps. Every 10,000 steps the learner's performance was monitored by computing its cumu-lative reward so far. We must note that we measure performance as the cumulative rewardsum, while the agent learns to maximize a discounted sum. Since all emitted rewards areequal, however, the evaluation criteria measure the same increase/decrease in performance.The optimal performance is about 41,500 = 41.5K reward points (this corresponds to 194-step paths). To select actions, we cannot use the Q-function in a deterministic way and byselecting the action with the largest Q-value, since this quickly leads to repetitive suboptimalbehavior. Instead, we used the Max-random exploration rule, which selects an action withmaximal Q-value with probability Pmax and a random action with probability 1�Pmax. Notethat this probability Pmax has nothing to do with the noise in the execution of actions which

3.7. EXPERIMENTS 49stems from the environment. During each run we linearly increased Pmax from 0.5 (start)until 1.0 (end).To show how learning performance depends on � we set up multiple experiments withdi�erent values for � and � (used for annealing the learning rate). As shown in AppendixB, the learning rate annealing parameter � must theoretically lie between 0.5 and 1.0, butmay be lower in practice to increase the learning performance. If � is large and � too small,however, then the Q-function may diverge.7Parameters. We tried to choose the lowest � (and hence the largest learning rate) suchthat the Q-function did not diverge. Final parameter choices were: Q(0) and Q(0.5) with� = 0, Q(0.7) with � = 0:01, Q(0.9) with � = 0:2, Q(0.95) with � = 0:3, Q(0.99) with� = 0:4. PW's trace � was set to 0.001. Larger values scored considerably less well; lowerones costed more time. Machine precision �m was set to 10�16. Time costs were computedby measuring CPU time (including action selection and simulator time) on a 50 MHz SunSPARC station.Results. Learning performance for fast Q(�) is plotted in Figure 1(A) (results with PW'sQ(�) are very similar). We observe that larger values of � increase performance much fasterthan smaller values, although the �nal performances are best for standard Q-learning andQ(0.95). Figure 1(B), however, shows that fast Q(�) is not much more time-consuming thanstandard Q-learning, whereas PW's Q(�) consumes a lot of CPU time for large �.
-10000

0

10000

20000

30000

40000

0 1e+06 2e+06 3e+06 4e+06 5e+06

A
ve

ra
ge

 R
ei

nf
or

ce
m

en
t

Nr steps

Q-learning
Fast Q(0.5)
Fast Q(0.7)

Fast Q(0.95)

0

500

1000

1500

2000

2500

3000

3500

0 1e+06 2e+06 3e+06 4e+06 5e+06

T
im

e
in

 s
ec

on
ds

Nr steps

Q-learning
Fast Q(0.7)
Fast Q(0.9)

Fast Q(0.99)
PW Q(0.7)
PW Q(0.9)

PW Q(0.99)

Figure 3.10: (A) Learning performance of Q(�)-learning with di�erent values for �. (B) CPUtime plotted against the number of learning steps.Table 1 shows more detailed results. It shows that Q(0.95) led to the largest cumulativereward which indicates that its learning speed is fastest. Note that for this best value � = 0:95,fast Q(�) was more than four times faster than PW's Q(�).In the table we can also see that Q-learning achieved lowest cumulative reward, although itachieved (almost) optimal �nal performance. Most Q(�) methods also achieved near optimalperformance. An exception is fast Q(0.7) which performed slightly worse. After an analysiswe found that the learning rate decay was not su�cient to keep the Q-function always fromdiverging. With a larger learning rate decay (0.05), Q(0.7) performed as well as most otherQ(�) methods.7Note that we use a constant learning rate � = 1 if we set � = 0. We can use such a learning rate if theenvironment is deterministic.

50 CHAPTER 3. REINFORCEMENT LEARNINGAlthough fast Q(�) was 2 to 6 times faster than PW's Q(�) for the tested values of �, thedi�erence could be much larger. PW's cut-o� method works only when traces decay, whichthey did due to the chosen � and
 parameters. For �
 = 1 (worst case), however, PW wouldconsume about 100 hours(!) whereas our method needs around 11 minutes.Finally, we should remark that for stochastic environments, the best value for � = 0:5.For this value, our algorithm was about 2 times faster than PW's.3.7.2 Experiments with Accumulating and Replacing TracesThe accumulate traces algorithm is still used most often, although the replace traces algorithm(Singh and Sutton, 1996) may work better for di�cult problems. Since Q(�) is not exactwhen combined with exploration (Watkins, 1989; Lin, 1993; Peng and Williams, 1996), wealso tested resetting � (to 0:001) if an exploration action was selected which did not lead toan increase of the Q-value after a single step (i.e. if Q-learning would increase the Q-value ofthe SAP, we do not reset the trace). Thus, we have four methods for using eligibility traces:accumulate/replace with/without resetting traces for exploration actions.Task set-up. We use the same 50�50 mazes as in the previous chapter. Again we use 20di�erent generated mazes. We also use noise in the execution of actions: we replace actionsby random actions with 10% probability without informing the agent. We can view thisnoise as a change of the transition function: instead of having deterministic transitions, thetransition function becomes stochastic. The new transition function consists of probabilitiesf0.925,0.025,0.025,0.025g of making a step towards the intended direction and each of theother directions. We have used policy iteration (PI) using the a priori model (the exactstate-transition probabilities and reward function of the maze) to compute a solution. Westopped the policy evaluation once the maximum di�erence between state values betweentwo subsequent evaluation steps was smaller than � = 0:001. The policy iteration endedonce the policy remained unchanged after a policy improvement step. Computed over the 20di�erent mazes, the optimal policy receives a cumulative reinforcement of 78.6K � 2.0K (1KSystem Final performance Total performance TimeQ-learning 41.5K � 0.5K 4.5M � 0.3M 390 � 20Fast Q(0.5) 41.2K � 0.7K 8.9M � 0.2M 660 � 33Fast Q(0.7) 39.6K � 1.4K 7.9M � 0.3M 660 � 29Fast Q(0.9) 40.9K � 1.0K 9.2M � 0.3M 640 � 32Fast Q(0.95) 41.5K � 0.5K 9.8M � 0.2M 610 � 32Fast Q(0.99) 40.0K � 1.1K 8.3M � 0.4M 630 � 39PW Q(0.5) 41.3K � 0.8K 8.9M � 0.3M 1300 � 57PW Q(0.7) 40.0K � 0.7K 7.9M � 0.3M 1330 � 38PW Q(0.9) 41.2K � 0.7K 9.4M � 0.3M 2030 � 130PW Q(0.95) 41.2K � 0.9K 9.7M � 0.3M 2700 � 94PW Q(0.99) 39.8K � 1.4K 8.2M � 0.4M 3810 � 140Table 3.1: Average results for di�erent online Q(�) methods on twenty 100 � 100 mazes (�1 standard deviation). Final performance is the cumulative reward during the �nal 20,000steps. Total performance is the cumulative reward during a simulation. Time is measured inCPU seconds.

3.7. EXPERIMENTS 51means 1000) within 10,000 steps. The standard deviation is caused by the stochasticity ofthe environment.We tested the methods each 10,000 steps for 100,000 steps. Then we recorded the time stepof the �rst testing trial in which the methods were able to collect 90% of what the PI-optimalpolicy collected in that particular maze. A total of 1,000,000 steps were allowed during arun. Parameters were as follows: We compare �-values 2 f0:1; 0:3; 0:5; 0:7; 0:9g, � (learningrate) = 1.0, � (the learning rate decay) = 0.2. For accumulate traces with � = 0:9, we used� (the learning rate decay) = 0.3, which gave the best results (we also tested other learningrates and decay rates, but these did not work better). We use Max-random exploration forall methods where the probability of selecting the greedy action was set to Pmax = 0:7 duringthe entire run.
0

200000

400000

600000

800000

0.1 0.3 0.5 0.7 0.9

N
r

st
ep

s

lambda

Accumulate Traces

20 20 20 17 1
0

200000

400000

600000

800000

0.1 0.3 0.5 0.7 0.9

N
r

st
ep

s

lambda

Replace Traces

20 18 20 19 10

0

200000

400000

600000

800000

0.1 0.3 0.5 0.7 0.9

N
r

st
ep

s

lambda

Accumulate Traces Reset Explore

19 19 19 19 17
0

200000

400000

600000

800000

0.1 0.3 0.5 0.7 0.9

N
r

st
ep

s

lambda

Replace Traces Reset Explore

19 19 19 19 17

Figure 3.11: A comparison between di�erent Q(�)-learning methods. Plots show the numberof steps before the policy collected 90% of what the PI-optimal policy collected. Values in theboxes denote the number of successful simulations (out of 20).Results. Figure 3.11 shows the results. We observe that resetting traces when selectingexploration actions is useful for making large � values perform better. Replace traces withresetting exploration traces achieves the most robust performance for the di�erent � values.� = 0:5 gives the best overall performance. Due to the penalty states and noise we cannotuse a large constant value for �.Conclusion. Managing the traces in di�erent ways e�ects learning performance. By

52 CHAPTER 3. REINFORCEMENT LEARNINGresetting traces once exploration actions have been executed we can use larger � values whichhelps to make more e�ective use of the eligibility traces. The speed up gained by replac-ing/resetting traces are not so large, however. Eligibility traces are most useful for largeenvironments in which the policy makes the same steps (or receives more or less the samerewards) over time so that � can be large. For complex environments, some more e�cienteligibility trace management seems necessary. We want to keep � large, but this is onlypossible if experiences are not noisy, since otherwise the variance of updates gets very large,which causes large changes of the policy and that makes policy evaluation hard. More e�-cient managing would therefore try to reduce the noise in the TD-errors. This can be doneby using sampling techniques from a single state (e.g. partial roll outs). In this way, we canreturn more valuable TD-updates, which allows us to send information back to many morestates/action pairs. Another possibility is to use variable � and to detect special landmarkstates which can be used to return reliable estimates of future rewards.3.7.3 Multi-agent ExperimentsThe last experiments in this chapter validate the usefulness of the novel Team Q(�) algorithm.We use one of the 50�50 mazes from the previous experiment and put multiple agents in thisenvironment which share the same Q-function and policy. The agents select actions one afterthe other and after each action the global Q-function is updated. If an agent hits the goal,it is reset to the starting position whereas the other agents keep their position. We use 2, 4,8 and 16 agents and compare the Team Q(�) algorithm to using multiple agents which onlylearn from their own experiences (Independent Q(�)). The Q(�) method we use is replacetraces with � = 0:9 combined with resetting traces for exploration actions.We perform 100 experiments for which we always use the same maze (to keep the variancein our results small). Again we use Max-random exploration and keep Pmax = 0:7. Ourobjective is again to attain 90% of what the PI-policy attains.Results. Table 3.2 shows the results of the experiments. We also performed experimentswith a single agent.System/Agents 1 2 4 8 16Independent 98 (0.44M) 98 (0.42M) 99 (0.43M) 98 (0.46M) 99 (0.48M)Team Q(�) 100 (0.43M) 100 (0.43M) 99 (0.45M) 99 (0.50M)Table 3.2: (A) A comparison between Team Q(�) and Independent multi-agent Q(�). Resultsshow for di�erent numbers of agents (1, 2, 4, 8, and 16) how often a policy was learned whichobtained 90% of the optimal policy (and the total number of actions after which it was found.M stands for Million). A total of 100 simulations were performed on the same maze.System 1 2 4 8 16Independent 58 / 2.1M 60 / 2.1M 61 / 2.0M 65 / 1.7M 69 / 1.3MTeam Q(�) 66 / 2.1M 70 / 2.0M 83 / 1.7M 106 / 1.2MTable 3.3: (A) A comparison between Team Q(�) and Independent multi-agent Q(�). Resultsshow time requirements in CPU seconds / the cumulative rewards for an entire simulation.We note that there are no signi�cant di�erences between the algorithms. The Team

3.8. CONCLUSION 53Q(�) algorithm attains the 90% level slightly more often, but needs on average more steps.Although Team Q(�) learns more from agent experiences | for the two agent case it makes73K additional connections with an average trace of 0.25, and for the 8 player case it makes570K connections (which equals 57% of all experiences) with average trace 0.24 | this doesnot mean that these experiences are always used to improve the policy. A reason why thedi�erences are so small is that we reset traces which means that only short parts of thetrajectories will be connected.Table 3.3 shows the time requirements of the multi-agent methods in CPU seconds on aUltrasparc 170 MHz workstation. Both algorithms require additional time for multiple agents.The reason why Independent Q(�) needs more time for more agents is due to the more timedemanding local update rule. The computational cost of the Team Q(�) algorithm scales upworse. The reason for this is that connecting traces consumes some time due to the loop inthe procedure connect.We can see, however, that using multiple agents with or without connecting traces workswell if the number of agents is not too large, since the cumulative rewards obtained by thegroup of agents stays above 2.0M rewardpoints. The speed up of having multiple agentsoperating in parallel is linear in the number of experiences for small number of agents, butthe gain becomes smaller if the number of agents is larger than 4 or 5, which is caused by thefact that goal-directed information is used later.We also used the Team Q(�) algorithm in the deterministic 100 � 100 maze with � setto 0.95 and without resetting traces. Here it turned out that Team Q(�) did perform slightlyworse than the independent version. A reason could be that initial exploration was too large(0.5). Another problem with connecting traces is that later trajectories are connected totrajectories which were generated early in the simulation. This causes updates of the valuefunction using old information (bad trajectories) and may therefore harm the policy.Discussion. For the maze environment Team Q(�) does not lead to improvements. Oneof its problems is that new trajectories can be connected to trajectories which were generatedlong ago by a completely di�erent and possibly bad policy. Therefore some updates may beharmful. To update a speci�c state many di�erent future trajectories are used. Some of whichare created by better policies than others. It is hard to select on which trajectories we want tolearn, since the in
uence of noise makes it impossible to learn only on the best possible futuretrajectories. This is di�erent in model-based RL, which will be discussed in the next chapter,since in model-based RL we compute a new function based on single transitions which arealways sampled from the underlying MDP. In the case of connecting traces, we use a completetrajectory which is not just sampled from the MDP, but uses the policy as well. Althoughthere are ways to improve the algorithm, such as decaying the importance of learning fromtrajectories generated a longer time ago, the algorithm may in principle be better suited fortasks where the agents cooperatively have to solve a task and where one agent is helped byother agents in its way to reach a speci�c goal. For such tasks, Team Q(�) may backpropagatereward to other agents which interacted with the agent in its way reaching the goal.3.8 ConclusionWe have described the well known reinforcement learning methods temporal di�erence learn-ing and Q-learning. These RL methods learn from generating trajectories through state/actionspace. For complex tasks in which many steps should be performed, TD(�) methods are ef-

54 CHAPTER 3. REINFORCEMENT LEARNING�ciently combined with Q-learning by our novel fast online Q(�) algorithm. This methodimplements exact updates and in contrast to previous online methods, its update complex-ity is independent of the number of states. Experimental results indicate that single steplookahead methods like Q-learning learn slower than Q(�) methods. This is especially thecase in deterministic, large environments for which often the same large subtrajectories aregenerated. Therefore the fast online Q(�) algorithm is very useful for such problems and theexperimental results showed that it can signi�cantly speed up learning.The success of TD(�) approaches relies heavily on the utility of the eligibility traces.For deterministic environments we can use large values of � so that eligibility traces remainactivated for a long time so that state values are updated using the whole future path. Thus,the estimates may more quickly converge to the true expected results of the Markov chain.For noisy environments or environments where a lot of exploration is needed, the traces areless e�ective, however. We have seen that in particular noisy maze environments, it is usefulto reset traces whenever exploration steps are made. This makes it possible to use largervalues of �. We have also compared replacing traces to accumulating traces and found asmall advantage in using replacing traces. This is mainly the case for large values of � whichcan cause very large (undesirable) updates in the case of accumulating traces.We have also developed a new framework for combining eligibility traces in the case ofmulti-agent Q(�)-learning. The method makes it possible to adjust Q-values of state/actionpairs which occurred in the trajectory of one agent on the future trajectory of another agentif there exists an interaction point between the trajectories. Experimental results on mazesdid not show advantages of the Team Q(�) algorithm compared to using multiple agentswhich all learn from their own trajectories. Although Team Q(�) can use experiences moree�ciently, it has the di�culty that it should �nd out which previously generated trajectoriesare worth to learn from. Some may be generated by bad policies and can only damage thecurrent Q-function.Another method of using eligibility traces was proposed by Sutton (1995). He introducedTD-methods for dealing with traces on di�erent time scales, which is a step to approacheswhich learn by dealing with the future in di�erent ways. The decaying �-trace is also notnecessary, we could use a variable � as well. Thus, we could try to �nd landmark stateswhich have small variance and let trajectories backpropagate the values of such landmarkstates. However it is considered to be quite di�cult to measure variance of changing functionswithout a statistical model. Therefore we will forget about eligibility traces for the momentand turn our heads in the next chapter to indirect reinforcement learning methods which useexperiences very e�ciently by estimating a world model.

Chapter 4Learning World ModelsAlthough world models are usually not known a priori, it is possible to learn the world modelfrom experiences. Learning world models by RL has wide applicability. If we �rst learn amodel and then compute a Q-function, we can signi�cantly improve the learning speed forparticular environments. Furthermore, models are useful to improve exploration behavior, toexplain causal relationships, to explain why the agent prefers some choice over another,1 andto report what the agent has been doing most of its time.This chapter describes how causal models can be learned by monitoring the agent in theenvironment and how they can be used to speed up learning. These causal models can berepresented in di�erent ways. We will concentrate on statistical maximum likelihood modelswhich return a probability distribution over successor states given the current state andselected action. These models are approximations of the underlying transition and rewardfunctions of the MDP and can be used by DP-like methods to compute Q-functions. Themodel-based RL agent has two goals: (1) to minimize the prediction error of the model sothat optimal or near optimal policies may be computed, and (2) to spend most computationalresources on the most promising parts of the state/action space to obtain high cumulativerewards with little computational e�ort.Outline. We will assume �nite MDPs. First we will explain how gathered experiencesare integrated into a model. Dynamic programming (DP) techniques could immediately beapplied to the estimated model, but online DP tends to be computationally very expensive.The estimated world model is updated after each experience and fully recomputing the policyis not practical for large state/action spaces. Hence, we will use methods which can change thepolicy much faster. These methods direct state value updates towards the most interestingparts of the space. The �rst method we will propose uses 1-step lookahead Q-learning (amember of the family of Real Time Dynamic Programming (Barto et al., 1995) algorithms).By using the model Q-learning is signi�cantly improved, but the method does not e�ectivelyuse the complete model. A second, very e�cient algorithm is prioritized sweeping (PS)(Moore and Atkeson, 1993) which only updates SAPs for which there will be large updateerrors. Finally, we present an alternative prioritized sweeping algorithm, which is quite similarto Moore and Atkeson's PS, but manages the updates in a di�erent, more exact, way.Other methods, which we will shortly describe in the discussion are Dyna (Sutton, 1990)1If an agent is acting in the real world and uses a world model, it can simulate possible scenario's resultingfrom a particular action, and use desired or undesired happenings inside these scenario's to explain why itprefers some action. 55

56 CHAPTER 4. LEARNING WORLD MODELSand Queue-Dyna (Peng and Williams, 1993). These methods learn action models by recording(frequently) observed experiences and replay these experiences to speed up directed reinforce-ment learning. These methods work well for deterministic environments, but for stochasticenvironments they have no principled way to deal with multiple successor states. E.g. if onlyone successor state is replayed, the Q-function will become biased towards it.4.1 Extracting a ModelIn the previous chapter, we updated the Q-function using generated trajectories and madeuse of traces to track state dependencies for weighing update steps. Now we want to use con-nections in the state/action model for updating the Q-function. When we store the completemodel and we are given a new experience, we can propagate a change of a state value to allother state values using the directed probabilistic graph.Given a set of examples, we have to choose a model and compute its parameters. Tode�ne which model � and parameters � re
ect the experimental data d best, we can use alikelihood function. This likelihood function gives us the probability P (�; �jd) that our modeland parameters are the right one given the data. We can rewrite this with Bayes' rule as:P (�; �jd) = P (dj�; �)P (�j�)P (�)P (d)Where P (d) is a normalizing constant and denotes the probability of generating the data(the complete set of generated experiences). One reason why the likelihood function is ofimportance is given by the likelihood principle. This tells us that assuming the model iscorrect, all the data has to tell us about the goodness of parameters is contained in thelikelihood function (Box et al., 1994).In our case, we know which model is the right one, namely a connected state/actiontransition graph consisting of transition probabilities and rewards. One simple way of induc-ing these parameters from a set of experiences is to count the frequency of the occurrenceof experimental data, which are quadruples of the form (st; at; rt; st+1) received during theinteraction with the environment. For this, the agent uses the following variables:Caij = number of transitions from state i to state j after executing action a.Cai = number of times the agent has executed action a in state i.Raij = sum of the rewards received by the agent by executing action a in state iafter which a transition was made to state j.The maximum likelihood model (MLM) consists of maximum likelihood estimates which max-imize the likelihood function. We represent the MLM by matrices of transition probabilitiesand matrices of rewards and estimate the parameters of these matrices by computing theaverage probabilities over possible transitions and the average reward:P̂ij(a) CaijCai (4.1)R̂(i; a; j) RaijCaij (4.2)

4.2. MODEL-BASED Q-LEARNING 57After each experience, the variables are adjusted and then the MLM model is updated. Itis easy to see that these parameters maximize the probability of generating the data (singleexperiences).2 If observations are without noise (the agent always perceives the real worldstate), we have a deterministic reward function and the estimated reward for a particulartransition R̂(i; a; j) is known (and equal to R(i; a; j)) after a single experience. For estimatingthe transition probabilities, we need to have multiple occurrences of the transition in ourexperimental data, since there are multiple outcomes (in this case next states) given theoccurrence of each state/action pair and we want to have a good estimate of the probabilityof each possible outcome. To see how many experiences we need to compute fairly precisemodels, we show the bias and variance of the estimates as a function of the number of timesa state/action pair has occurred.Bias. There is no bias. This is clear, since experiences are directly sampled from theunderlying probability distribution and we use the correct model consisting of transitionprobability and reward matrices and so the estimator is unbiased. Note also that it is amaximum likelihood model. We do not use a prior on the model, but initialize all countersto 0 (this has the e�ect that initial policy changes can be very large though).Variance. While updating, each transition probability changes in a stochastic manner.As a measure of the size of update steps, we can use the variance. The variance of P̂ij(a)after n occurrences of the SAP (i; a) is:V ar(P̂ij(a)jn) = nXk=0(kn � Pij(a))2 nk!(1� Pij(a))n�k(Pij(a))k = Pij(a)(1 � Pij(a))nThe variance goes to 0 as n ! 1 and so in the limit we have the exact estimate. To givean indication of the number of needed occurrences, assume that Pij(a) = 0.5. Then we haveto try out the SAP (i; a) 100 times before the standard deviation Stdev(P̂ij(a)) = 0:05. Forgeneral problems, however, we do not need to know all transition probabilities as accurately,but use exploration to focus on some parts of the state space. Note also that since the policyis computed from the model, learning from new experiences may decrease the performance ofthe policy as long as the variance is signi�cant. Therefore model-based learning is in principlea stochastic approximation algorithm.4.2 Model-Based Q-learningThe MLM can be combined with the DP-algorithms from Section 2 to compute a policy.Although the resulting policy may make optimal use of the experiences generated so far, itusually costs a lot of computational time to use DP-algorithms in an online setting, especiallywhen the state-space is quite large. A more e�cient way to recompute the policy introducessome bias to choose which computations really need to be performed. One simple, but quitee�ective method is using one-step Q-learning on the model | which is the simplest version inthe family of adaptive Real Time Dynamic Programming methods (Barto et al., 1995). Thismethod updates the Q-value for the current state/action pair after it has been executed andthe model has been updated by:2Note that they do not maximize the probability of generating the complete state-trajectories, since manynew (spurious) trajectories become possible.

58 CHAPTER 4. LEARNING WORLD MODELSQ(i; a) Xj P̂ij(a)(R̂(i; a; j) +
V (j)) (4.3)This update rule makes more e�cient use of the experiences than standard Q-learning. Wecan see this as follows. For Q-learning, a particular update, let's say of Q(i; a) (which in ourcase equals V (i)) will only be used to adapt other Q-values if afterwards there occurs anotherstate/action pair (j; b) leading to state i. For model-based learning updates are already usedif the model contains a transition from a state/action pair (j; b) to state i. This transitiondoes not have to reoccur. A new occurrence of (j; b) will automatically take V (i)'s updateinto account. Therefore it may need signi�cant fewer experiences, although single updatesteps are computationally more expensive (the update complexity depends on the numberof possible outgoing transitions). Note, however, that for deterministic environments bothmethods are identical.Variance of Model-based Q vs Q. We will now verify whether model-based Q-learningalso reduces the variance in the updates. The expected size of the update of Q(i; a) after its(n + 1)th occurrence with model-based Q-learning is:Xj Pij(a)(Cij(a) + 1n + 1 (R(i; a; j) +
V (j)) + Xk 6=j Cik(a)n+ 1 (R(i; a; k) +
V (k)) �Q(i; a))2If all the neighbors have not been updated in the meanwhile, this can be simpli�ed accordingto: Xj Pij(a)(Cij(a) + 1n + 1 (R(i; a; j) +
V (j)) + Xk 6=j Cik(a)n + 1 (R(i; a; k) +
V (k))�(Cij(a)n (R(i; a; j) +
V (j)) + Xk 6=j Cik(a)n (R(i; a; k) +
V (k))))2= Xj Pij(a)(n� Cij(a)n(n+ 1) (R(i; a; j) +
V (j)) � Xk 6=j Cik(a)n(n + 1)(R(i; a; k) +
V (k)))2= Xj Pij(a)(1 � P̂ij(a)n + 1 (R(i; a; j) +
V (j)) � Xk 6=j P̂ik(a)n + 1 (R(i; a; k) +
V (k)))2= Xj Pij(a)(1n + 1(R(i; a; j) +
V (j) � Q(i; a)))2For Q-learning where the learning rate anneals as 1n the variance is:Xj Pij(a)((1n + 1(R(i; a; j) +
V (j)�Q(i; a)))2Thus, in case of no updates of any neighbor's state value, the variances are equal. If someneighbors have had their values updated, it depends whether their values moved closer to theprevious value of Q(i; a) or not. Usually, in the initial phase all values in the same regionof state space are increasing or decreasing together. For such environments, model-basedlearning is expected to make larger update steps, and thus will have larger variance. Note,however, that Q-learning usually does not anneal the learning rate with 1n and thus may havea (much) larger variance.

4.3. PRIORITIZED SWEEPING 594.3 Prioritized SweepingWe want to use the directed probabilistic graph to e�ciently propagate current state-valueupdates to other state-values. Although model-based Q-learning is a fast way for usingthe model, it only performs a one-step lookahead which makes information passing betweendistant states slow. When distant states are connected by high probability trajectories ina state space, a change in the value of the state at the end of the trajectory will cause acorresponding change in the other state. Since model-based Q-learning is not able to do suchdeep information passing quickly, it may need much more experiences than DP algorithmswhich will execute su�cient updates to propagate the change of a state's value to all otherstates. Although this always keeps the value function up-to-date, DP performs so manyupdates for each experience, that it becomes very slow. To speed up dynamic programmingalgorithms, some management of update-steps should be performed so that only the mostuseful updates are made. To �nd out which updates are important, we consider an experienceas a news
ash: it brings information to a speci�c region which is in some way connected toit, but it does not need to be known everywhere (unless it is really big news).An e�cient management method which determines which updates have to be performed isprioritized sweeping (Moore and Atkeson, 1993). This method assigns priorities to updatingthe Q-values of di�erent states according to a heuristic estimate of the size of the Q-values'updates. The algorithm keeps track of a backward model, which relates states to predecessorstate/action pairs. After some update of a state value, the predecessors of this state areinserted in a priority queue. Then the priority queue is used for updating the Q-values forthe actions of those states which have the highest priority. For the experiments, we will usea priority queue for which a promote/remove operation 3 takes O(log n) with n the numberof states in the priority queue. Van Emde Boas, Kaas and Zijlstra (1977) describe a moree�cient priority queue which only needs O(log log n) for a promote/remove operation, butwhich only handles integer valued priorities in the interval 1; : : : ; n.Moore and Atkeson's PS uses a set of lists Preds(j), where the list Preds(i) contains allpredecessor state/action pairs (j; a) of a state i. The priority of state i is stored in �(i).When state i has its value updated, the transition from (j; a) to i contributes to the updateof Q(j; a). The priority of a state j is the maximal value of such contributions. The algorithmis shown on the next page. The parameter Umax denotes the maximal number of updateswhich is allowed to be performed per update-sweep. The parameter � controls the updateaccuracy. The algorithm pushes the current state/action pair on the top of the queue (1),then it repeats for all queue items: Remove the top state (step 2.1), update it (steps 2.2, 2.3and 2.6), store the size of the update in the variable D (step 2.4), reset its priority (step 2.5),assign new priorities to all predecessors of the state (steps 2.7 and substeps), and insert themif their new priority is larger than the threshold � (step 2.7.2.2.1).
3The operations are also called insert, delete (usually the top element), and heapify which means reinsertan element once it has been assigned a new priority.

60 CHAPTER 4. LEARNING WORLD MODELSMoore and Atkeson's Prioritized Sweeping:1) Promote the most recent state to the top of the priority queue2) While n < Umax AND the priority queue is not empty2.1 Remove the top state i from the priority queue2.2 8 a do:2.2.1 Q(i; a) Pj Pij(a)(R(i; a; j) +
V (j))2.3 V 0(i) maxaQ(i; a)2.4 D jV (i)� V 0(i)j2.5 �(i) 02.6 V (i) V 0(i)2.7 8 (j; a) 2 Preds(i) do:2.7.1 P Pji(a)D2.7.2 If P > �(j)2.7.2.1 �(j) P2.7.2.2 If P > �2.7.2.2.1 Promote j to new priority �(j)2.8 n n + 1Our Prioritized Sweeping. Our implementation of the algorithm uses a set of prede-cessor lists containing all predecessor states of a state. j�(i)j denotes the priority of statei. This priority is at all times equal to the true size of the update of value V (i) since thelast time it was processed by the priority queue. To calculate this, we constantly update allQ-values of predecessor states of currently processed states, and track changes of V (i). OurPS looks as follows:Our Prioritized Sweeping:1) Update the most recent state s: 8 a do:1.1 Q(s; a) Pj Psj(a)(R(s; a; j) +
V (j))2) Promote the most recent state to the top of the priority queue3) While n < Umax AND the priority queue is not empty3.1 Remove the top state s from the priority queue3.2 �(s) 03.3 8 Predecessor states i of s do:3.3.1 V 0(i) V (i)3.3.2 8 a do:3.3.2.1 Q(i; a) Pj Pij(a)(R(i; a; j) +
V (j))3.3.3 V (i) maxaQ(i; a)3.3.4 �(i) �(i) + V (i) � V 0(i)3.3.5 If j�(i)j > �3.3.5.1 Promote i to priority j�(i)j3.4 n n + 14) Make priority queue empty, but keep the �(i) valuesIn Moore and Atkeson's PS (M+A's PS), states are inserted in the priority queue beforetheir Q-values are updated. In our method Q-values of states are updated before the statesare inserted. We do this to have an exact estimate of the update of the state value since it

4.4. EXPERIMENTS 61has been used for updating the priority of its predecessors. This makes the priorities exact,whereas M+A's PS calculates priorities based upon the largest single update of a successorstate. This means that states are only inserted if at some speci�c time step their successorstate makes a large update step (larger than �). If the update-steps of successor states aresmaller but more frequent it may happen that the states are never inserted in the priorityqueue, although the update could be quite large.4Our version uses priority values of states which are calculated by summing the new changeof the state value with the old change (�(i) in step 3.3.4). This has the advantage of beingexact, but the disadvantage is that in our method Q-values of all actions for a particularpredecessor state have to be updated which is more time consuming.Clearing the priority queue. Another choice is whether the priority queue should beemptied or not after the update sweep (PS-call). In the algorithm shown above, our methodempties the queue after the PS-call (step 4) while keeping the �-values of all states. Mooreand Atkeson's PS does not empty the queue. The decision whether to empty the queue or notis independent of the selected method. Keeping the queue results in a quite di�erent updatesweep, if, for example, at some time step the size of the update of the current state valueis small. The states still on the queue are then processed. These states have probably beeninserted few time steps ago, but it is also possible that they were inserted while the agentvisited di�erent parts of the state space. Updating them costs time and since the updatesdid not belong to the most important Umax updates at the moment they were inserted in thequeue, we can argue that we do not want to update them at all. Note that our method keepsthe priority values, even when items are not in the priority queue. Then, if their priority islarge enough, they will be inserted in the future anyway | being predecessor of some othervisited state.4.4 ExperimentsWe have evaluated the model-based RL methods described in this chapter by performing aseries of maze experiments. The �rst experiments involve again the same 50 � 50 mazesused in Chapters 2 and 3. In all experiments selected actions are replaced by random actionswith 10% probability. We have used policy iteration using the a priori model to compute asolution. We stopped the policy evaluation once the maximum di�erence between state valuesbetween two subsequent evaluation steps was smaller than � = 0:001. Policy iteration neededa total of 6450 (� 480) sweeps for computing the policies. This means that about 13 millionvalue update steps were performed. We will call this policy the optimal policy, although it isnot guaranteed to be the optimal policy due to the use of the cuto� parameter � (see Chapter2). Stopping the evaluation prematurely speeds up the process signi�cantly, however.The optimal solution-paths cost on average a bit more than 100 steps. The optimal policyreceives a cumulative reinforcement of 78.6K � 2.0K (1K means 1000) within 10,000 steps.Within 2,000 steps, the cumulative reward is 15.7K � 0.6K.4This could be overcome by making � small enough, although this would result in inserting many more(unimportant) states as well.

62 CHAPTER 4. LEARNING WORLD MODELS4.4.1 Comparison between Model-based and Model-free RLWe compare Q-learning, Q(�)-learning, model-based Q-learning and (our) prioritized sweep-ing. For all Q(�) experiments, we have used the fast online Q(�) algorithm presented inSection 3.4.Experimental setup. To compare the di�erent RL methods, we executed them on 100di�erent mazes. For all methods we used the Max-random exploration rule, where we linearlyincreased Pmax from 0.7 to 1.0 (Pmax = 0:7! 1:0). Thus, in the beginning the agent selectsthe action with maximum Q-value with probability 70% and at the end of the simulation italways greedily selects the action with largest Q-value. We ran 1,000,000 actions during atrial and recorded the cumulative rewards during intervals of 10,000 (training) actions. Aftereach 100 trials, we also performed test trials to compute the number of steps to reach thegoal. Finally, we recorded the approximation of the learned value function by calculating theaverage distance of state values to the optimal V �-function computed with policy iteration.Parameters. For Q-learning, we used � = 1:0 and � = 0:1. For Q(�)-learning, we usethe same learning rate parameters and set � = 0:5. For model-based Q-learning there are noadditional parameters to set. We have used our version of the prioritized sweeping methodwith clearing the queue. For PS the maximum number of updates Umax = 100, and � = 1:0.Results. Figure 4.1(A) plots the learning performance of the di�erent methods. It clearlyshows the advantage of using model-based RL. Both model-based approaches converge muchfaster (the linear increase of cumulative reward is only due to the decreasing amount of ex-ploration (stochasticity) of the tested policy) and reach much better �nal performance. Theprioritized sweeping method needs the fewest experiences and reaches near-optimal perfor-mance levels (record that the optimal policy collects 78.6K � 2.0K) points. Q(�) improvesits performance faster than Q-learning although the �nal performances are equal.System Q-learning Q(�) model-based Q PSPerformance 68K � 10K 68K � 15K 76K � 4.4K 78.7K � 2.0KTime 78 � 3 149 � 14 277 � 17 308 � 8Time for Solution 70 80 40 30Table 4.1: Final performance levels, average time needed by the di�erent methods for a sin-gle simulation (1,000,000 steps), and the time needed to reach the interval of the highestperformance.Table 4.1 shows the �nal performances and time costs of the methods. Time costs werecomputed by measuring CPU time for the entire simulation (including almost neglectablesimulator time) on a 50 MHz Sun SPARC station. Note that the model-based approachesspend more time: their update-rules loop over all outgoing transitions. They could alreadybe stopped much earlier, however, and the last row of the table indicates how much time itcosts until the performance reaches the interval of the linear increase in the graphs (which isdue to decaying exploration). Thus, we can see that our prioritized sweeping �nds the bestsolution and �nds this fastest. Prioritized sweeping only consumes more time during the �rsttrials. When the goal state has been found for the �rst time, many updates are made. Afterthe goal has been found a couple of times and most states have been visited, only few updatesare made after each experience (most updates would be smaller than �).Approximation error. Figure 4.1(B) shows the approximation errors of the di�erentlearning algorithms. It is clear that there is not su�cient exploration to learn good value

4.4. EXPERIMENTS 63

-40000

-20000

0

20000

40000

60000

80000

100000

0 250000 500000 750000 1e+06

C
um

ul
at

iv
e

re
w

ar
d

pe
r

10
00

0
st

ep
s

#steps

Q-learning
Q(0.5)-learning
Model-based Q

Prioritized Sweeping

0

100

200

300

400

500

600

700

800

0 250000 500000 750000 1e+06

A
pp

ro
xi

m
at

io
n

er
ro

r
#steps

Q-learning
Q(0.5)-learning
Model-based Q

Prioritized Sweeping

10

100

1000

10000

100000

1e+06

0 2000 4000 6000 8000

nu
m

be
r

of
 s

te
ps

 in
 tr

ia
l

trial number

Q-learning
Q(0.5)-learning
Model-based Q

Prioritized Sweeping

Figure 4.1: (A) A comparison between the learning performance of the RL methods. Theplot shows averages over 100 simulations. (B) The approximation error of the RL methods.The �gure plots the average distance of state values to their optimal values against number ofagent steps. (C) Average number of steps per test-trial. Note the logarithmic scaling of they-axis. The peaks in the model-free approaches indicate unsuccessful and long trials.function approximations. Only PS learns a reasonable value function approximation. Thedirect (model-free) RL methods initially increase the approximation error, since they learnnegative state values. After this they hardly improve the value function approximation. Itmay seem surprising that the methods were able to learn reasonable policies at all withsuch bad value function approximations. This is exactly why (real time) RL methods work:policies only learn to approximate values of states which they frequently visit. Thus, weconclude that approximating the performance of the optimal policy tends to be much easierthan approximating the optimal value function.Test trial results. We have performed test trials after each 100 learning trials. We usedthe greedy policy and measured the number of steps needed to reach the goal. The trials

64 CHAPTER 4. LEARNING WORLD MODELSwere stopped if the agent could not �nd the goal within 1,000,000 steps. In Figure 4.1(C) theaverage number of steps per test trial is displayed. The peaks in the model-free approachesindicate unsuccessful or long trials. The Q(�) agent did not �nd the goal in 2 mazes. In 1of these unsuccessful simulations, the goal had been found a couple of times, but the agentmade some update step which ruined its policy. Hence, it could not reach the goal anymorefrom trial 1900 onwards | the policy must have been caught in cycles through a numberof states from which it could not escape even though actions were selected/executed non-deterministically. The Q-learning agent failed for only 1 maze, although its average solutionsfor the other mazes were worse than for Q(�) | which we can verify by considering that theaverage results are the same.Comment. We also used value iteration to compute the value function while estimatinga maximum likelihood model. As expected online VI is computationally very demanding: forsimulations consisting of 100,000 steps it required 24,000 CPU seconds (using � = 1:0). Itsperformance was also not better than that of PS.More noise. We also tested the e�ect of more noise in the execution of actions in thesame mazes. For this we performed 20 simulations using 20 di�erent mazes and 25% noise inthe execution of actions. For Q(�), the best exploration rate for the Max-random explorationrule is as follows: Pmax = 0:7 ! 1:0. Figure 4.2(A) shows the results. For Q(�), accumulatetraces with the value 0.1 for � worked best. Whereas the performance on the same 20 mazeswith 10% noise was 7% o� from maximum performance, with 25% noise the best method is21% o�. Thus the performance of Q(�)-learning is quite sensitive to noise!Figure 4.2(B) shows the results of model-based Q-learning with Max-random explorationwith di�erent exploration rates (indicated as (Pexp-0.0, where Pexp equals 1�Pmax), and withan exploration method which initializes the Q-values to 1000). Model-based Q-learning doesnot seem to have any problems with the increased amount of noise. It reached stable perfor-mance after 140K steps and the �nal performance is close to optimal. The best performanceof 59K is only 2% o� optimal!To study how well prioritized sweeping deals with more noise, we set up experiments withour PS method. We use 20 simulations during which 100K steps can be made. We used � = 1:0and max-updates = 100. Figure 4.2(C) show the results, exploration rates are indicated as(1 � Pmax) and are annealed to 0. It indicates that PS works very well, although the initialvalue of Pexp = 1 � Pmax should not be too small (0.1). The best result is attained withPmax = 0:5 which achieves a �nal result of 11.5K, which is 4% o� the optimal performance(12.0K). We expect slightly worse, but in overall similar results for M+A's PS.When we compare the three plots, we clearly see that model-based approaches work muchbetter. This is due to the fact that they are much less sensitive to noise than direct RLapproaches. Finally, we note that PS reaches its near-optimal performance levels much faster(about 5 times) than model-based Q-learning.Discussion. Model-free approaches work worse for stochastic environments, since trajec-tories generated in di�erent trials are not combined in an e�cient way. Have a look at Figure4.3, where we have designed two paths from the start (S) to goal (G). The solid line is thebest known path and the dashed line is the current path. We want to combine the two pathsto learn to go from S to A using the dashed line, and from A to G using the solid line. Givenboth lines, model-based RL would easily learn this. Q(�)-methods, however, cannot learnthis in a single pass.5 The problem is that for the states just before state A, Q(�)-learning5Although learning from many trials solves the problem | single trials should make much larger improve-

4.4. EXPERIMENTS 65

-40000

-20000

0

20000

40000

60000

80000

100000

0 250000 500000 750000 1e+06

re
in

fo
rc

em
en

t p
er

 1
00

00
 s

te
ps

#steps

Replace traces/ Accumulate Traces 25% noise

lambda = 0.1
lambda = 0.4
lambda = 0.7

Replace lambda = 0.1
Replace lambda = 0.4
Replace lambda = 0.7

-40000

-20000

0

20000

40000

60000

80000

100000

0 250000 500000 750000 1e+06

C
um

ul
at

iv
e

re
w

ar
d

pe
r

10
00

0
st

ep
s

#steps

Model based Q-learning 25% Noise

Max-random 0.1 - 0.0
Max-random 0.3 - 0.0
Max-random 0.5 - 0.0
Max-random 0.7 - 0.0

Start 10000

-10000

-5000

0

5000

10000

15000

20000

0 25000 50000 75000 100000

C
um

ul
at

iv
e

re
w

ar
d

pe
r

20
00

 s
te

ps

#steps

Prioritized sweeping 25% noise

Max-random p: 0.1
Max-random p: 0.3
Max-random p: 0.5
Max-random p: 0.7
Max-random p: 1.0

Figure 4.2: (A) A comparison between di�erent values for � and the accumulate and replacetraces algorithms for Q(�)-learning on twenty 50�50 mazes with 25% noise in the executionof actions. (B) A comparison between di�erent amounts of exploration for model-based Q-learning. (C) Di�erent amounts of exploration with prioritized sweeping (note the di�erentscalings of the X- and Y-axis).partially learns from A's state value, and partially from the trajectory shown by the dashedline after A. When � is large, the TD(�)-return from A will reach point S with a lower valuethan the Q-value of the action leading to the solid path (since the complete dashed path isworse than the solid path). E.g. for � = 1:0, we would compare at each state the entire futuresolid path to the dashed path and no changes would be made at all. If � is small, the valuefrom A would not be returned to S.6 Prioritized sweeping does not su�er from this problem.ment steps.6Resetting � at A would solve the problem, but this is di�cult for online approaches, since we cannot becertain before the goal is reached whether we should learn from the current trial or not. If we choose to learn,the update steps cannot simply be undone.

66 CHAPTER 4. LEARNING WORLD MODELS
A

S

G

Figure 4.3: The di�culty for Q(�)-learning to improve. The solid line is the current bestknown path and the dashed line is the current path consisting of a good part from start S topoint A and a bad part from A to goal G.The model-based approaches �nd near optimal performance levels and are able to learn fromless experiences. Prioritized sweeping achieves excellent performance and is able to quicklysolve large mazes.4.4.2 Prioritized Sweeping: Sensitivity AnalysisIn this sub-section, we shortly describe parameter setting for prioritized sweeping (PS). Twoparameters have to be set, and we have analyzed the sensitivity of the learning behavior forthese parameters.Setting the accuracy parameterThe parameter � controls the level of update accuracy. By setting � to larger values, less up-dates have to be performed each time step so that the update speed is higher. Of course when �is set to very large values, the value function will be badly �tted to the experiences and this willresult in performance loss. We tried out values for � out of the set f0:001; 0:01; 0:1; 1; 10; 100g.We found that the time requirements depends a lot on the values of �, where values of 1.0or larger result in very fast performance (below 40 seconds per simulation of 100,000 actionswith Max-random exploration). Surprisingly, it is not true that a higher accuracy (lower �)always results in better performance | this may result in \over�tting the value function".This over�tting happens when the model is not very accurate, but is used to compute anaccurate value function. If we only have partial data, it can happen that some distant statesare connected through high-probability paths, which do not re
ect the real MDP very well.Therefore if we have partial data and make too many update steps, the value function canbecome very biased. Therefore we should use more exploration. The values 0.1 and 1.0 for �

4.4. EXPERIMENTS 67worked best in both performance and time requirements.Tuning the maximal number of updatesEach update sweep makes a number of updates. In order to increase the update-speed, wehave limited the maximal number Umax of updates which are allowed to be made per updatesweep. Computational costs are less sensitive to the maximal number of updates than tothe accuracy parameter, however. We may again "over�t the policy to a wrong model" |when we increase the number of updates the performance does not always improve, but maybecome worse. If we update less, we will update relatively more on nearby located states,and thus we will less likely update on a speci�c erroneously estimated trajectory which mayintroduce a large bias in the Q-estimates.We found that using 100 updates resulted in the best performance for � = 1:0. For largerproblems, having more updates may be necessary to keep the states connected | we maywant to assure that each update could result in an update of any other state lying on thecurrent shortest path.4.4.3 Comparison between PS MethodsOur PS method is more selective in calculating the priorities, since it performs a full parallelbackup for determining priorities. Moore and Atkeson's PS considers only one single outputtransition at a speci�c time-step for computing the priority. We have set up experimentsto compare our PS method to Moore and Atkeson's PS. We test the policies each 1000steps for 200,000 steps and record when they collect 90% and 95% of what the optimal PI-policy collects. One simulation ends when 100,000 actions have been executed. We combineall methods with Max-random exploration where Pmax stays 0.7 during the run. We alsomeasure the required CPU time in seconds on a Ultrasparc 170MHz Sun station. For theseexperiments � = 0:1, and Umax = 1000.PS Clear Q? steps to 90% steps to 95% Final Reward timeOur Yes 19K � 15K (20) 23K � 16K (20) 157K � 2K 80 � 12Our No 15K � 3K (19) 17K � 3K (17) 155K � 5K 82 � 12M+A Yes 19K � 13K (19) 21K � 16K (17) 155K � 5K 79 � 13M+A No 16K � 5K (19) 22K � 9K (14) 153K � 6K 98 � 16Table 4.2: Required number of actions for PS methods to �nd policies for the 50 � 50 mazeswhich are 90% and 95% o� the maximal obtainable cumulative reward. Between brackets weshow the number of simulations in which they succeeded.Results. The results are shown in Table 4.2. For �nding 90% optimal policies, thedi�erences are not very large. However, unlike M+A's PS, our PS with clearing the queuefound 95% optimal policies in all 20 mazes. Furthermore, this method also reaches the best�nal performance. We do not show here that the cumulative rewards for all methods aremore or less the same, although there is a small advantage for not clearing the queue. Thiscontradicts the �nal results (the cumulative reward over the �nal 20K steps), which showsbetter results for clearing the queue. The di�erence can be explained by the fact that notclearing the queue may speed up initial learning since more updates are performed, but asseen before many early updates may be harmful since it may lead to more initial bias in thevalue function.

68 CHAPTER 4. LEARNING WORLD MODELSConclusion. Our PS method pro�ts from exactness and therefore it will always workwell. We expect that our PS method is currently the best model-based RL method for smallto medium-sized discrete MDPs.4.5 DiscussionProblems of model-based RL. One problem of the methods is that computational memoryrequirements can be huge: in the worst case we have to store a full model using O(jSj2jAj)space. On current machines, this becomes infeasible for jSj larger than 5,000. However, forlarge problems not all transitions are experienced in the limited lifetime of the agent, so thatonly partial models need to be stored. However, sometimes it is a big problem. Take forexample the game of backgammon. For some states, there may be many (>> 1000) successorstates, because there are many possible actions. For such problems we should only store statetransitions of actions which are frequently chosen by the policy or group transitions togetherif they lead to states with similar values. Of course this results in some loss of accuracy.Statistical world models. In this chapter we used statistical world models. The useof statistical methods makes it possible to estimate models which can be used with dynamicprogramming like algorithms. Using statistical learning theory, Kearns and Singh (1998)proved that a variant of a model-based reinforcement learning method converges in theprobably approximately correct (PAC) framework. That means that we probably succeed inlearning an approximately correct value function after learning on a number of experienceswhich is bounded by the logarithm of the probability of success, a polynomial of the size ofthe state/action space, and the inverse of the approximation error.Other world models include functional models consisting of a set of di�erential equationswhich are used in many sciences, e.g., in system dynamics (Vennix, 1996). Such models makecost assessment much harder, however, since we need to employ simulation techniques forpredicting the results of actions. The advantage of such models is that they can be quitecompact and based on physical properties of the problem. However, there is no systematicway of learning such models | although evolutionary methods (Holland, 1975; Rechenberg,1971) could be used, there is no guarantee that these methods will �nd a correct model.Other world models. Sutton's Dyna systems and relatives (Sutton, 1990; Peng andWilliams, 1993) do not estimate a probabilistic transition function, but store trajectoriesconsisting of sequences of experiences. During the course of learning the system may choose tolearn from previously stored experiences instead of making real world steps. This is useful forlearning in real worlds for which generating new experiences is often much more expensive than"replaying" old experiences. For deterministic environments, these systems work very well.They may be less suited for stochastic environments, however, since updates are less informedand biased to the experiences which are replayed. Instead the PS methods manage the update-sequences, updates are unbiased, and updates are more informed. An advantage of the Dynaapproach is that it is easy to replay experiences for all kinds of function approximators.Jordan and Jacobs (1990) and similarly (Nguyen and Widrow, 1989) describe an approachbased on two models: one neural network (the world model) tries to predict the successorstate, and another (the action model) is used for selecting actions. Given some discrepancybetween the desired state and a predicted state, errors are backpropagated from the worldmodel to the action model so that an action is selected which minimizes that discrepancy.Since it is a global model, however, only single successor states can be learned, but it can

4.6. CONCLUSION 69generalize well. Schmidhuber (1991) does the same kind of forward modeling with recurrentmodels and controllers.Lin (1993) describes experience replay and action models for TD-learning with feedforwardnetworks. For experience replay he records experiences and replays them in backward order.He only records policy actions and not exploration actions, since experiences generated byexploration actions do not re
ect the true dynamics generated by the policy. Experiencereplay was compared to learning action models. For learning action models, he learned topredict the most likely reward and successor state with a feedforward neural network. Hefound that using experience replay led to larger speedups than learning an action model. Hedid not estimate a probability distribution over successor states in his action model, however.This would also be very di�cult, because he used a partially observable changing environmentfor which there were hundreds of possible successor states for each state. Feedforward neuralnetworks are not well suited for learning such models due to their static architecture, whichmakes it di�cult to store transition probabilities of a variable number of transitions.Planning. Planning methods build explicit search trees starting at the goal state as rootnote (backward planning) or at the start state (forward planning) in order to connect thegoal and start states. Most planning mechanisms use heuristic functions and build searchtrees of a limited length after which they select the step leading to the leave node with thelargest value. Davies, Ng and Moore (1998) discuss online search methods for improvinga suboptimal value function and showed some improvements in performance at the cost ofconsuming more time. After the planning phase, they did not adapt the value function,however. It is also possible to use the planning phase for updating the values of states whichwere traversed during the planning process. This can be simply done by adapting state valuesto match the results of the planning process (a similar thing is done in (Baxter et al., 1997)which combine planning with TD(�)). The problem of planning is that it is computationallyexpensive, especially for non-deterministic environments. We also tried (forward) planningtogether with adjusting the value function for the planning steps, but found that PS makesit easier to backpropagate goal-related information. Once the goal is found, PS makes manyupdates so that the agent immediately stores trajectories to the goal state from many otherstates. For planning, updates are only made if the planning process was successful, and thusif the goal is found by accident, the planning method will not learn how it got there. Wemay use backward planning instead, but then we already need to know where the goal is, andsince the environment is stochastic, it is not clear how we should compute trajectories linkingthe goal state to the current state.4.6 ConclusionThis chapter described RL methods which estimate a maximum likelihood model and computethe Q-function using the model. We used experiments to compare di�erent RL methodsdescribed so far. We have seen that model-based approaches outperform the model-free RLapproaches in �nite stochastic mazes. They make more e�cient use of experiences. Model-based approaches can pro�t from management techniques to keep computational requirementsfor making policy changes small. Prioritized sweeping's management rule: Focus on the largesterrors (problems) is very e�ective.We also showed that the model-based approaches were very resistant against noise. Usinga lot of noise in executing actions hardly in
uenced the �nal results, whereas this was not true

70 CHAPTER 4. LEARNING WORLD MODELSat all for direct RL methods, which su�ered a lot from more noise. We consider our mazesto be a prototype of goal-directed stochastic �nite MDPs, where the number of paths leadingto the goal state, the number of possible choices at each step, the amount of noise in thetransition function and the length of the path to the goal are the most important parameterswhich determine the problem's complexity. We think that for such problems, model-basedRL methods will always outperform direct approaches. The di�erence will be larger if thenoise in the transition function is larger and the length of the path to the goal is larger.Model-based techniques rely more on the Markov property than Q(�) methods, however,which can learn policies using Monte Carlo estimates for which the Markov property is notrequired.

Chapter 5ExplorationA reinforcement learning agent only learns from what it experiences and therefore if it alwayssees the same world states since it always makes the same decisions, it will not increase itsknowledge or performance. Only when an agent would be following an optimal policy, theagent does not need to explore. Otherwise there is always some need to select actions whichlook suboptimal to the agent. Such actions which deviate from what the agent believes isbest (the agent's greedy actions) are called exploration actions. Even though it is true thatmost exploring actions are indeed not optimal, especially not if the agent already has acquireda lot of knowledge, exploring is always helpful if the agent has still a long future; changingsomething now may be costly, but will be bene�cial for a much longer time and thus it willslowly pay back its costs.Optimal experimental design (Fedorov, 1972; Dodge et al., 1988) and active learning(Cohn, 1994) try to gather those experiences (data) which are most useful for computinggood approximative solutions. In reinforcement learning, the problem of selecting explorationactions is called exploration or dual control (Dayan and Hinton, 1993). Deviating from thecurrent greedy policy (which always selects the action with the highest Q-value), however,usually causes some loss of immediate reinforcement intake. This is usually referred to as theexploration/exploitation dilemma. Therefore, in limited life scenario's the agent usually triesto maximize its cumulative reward over time, and it faces the problem of trying to spend aslittle time as possible on exploration while still being able to �nd a highly rewarding policy(Schmidhuber, 1991a; Schmidhuber, 1996). Another goal, however, could be to �nd the bestpossible policy in a �xed time or to �nd a near optimal policy in least time. For such problems,we only care about exploration and thus exploitation can be discarded completely.Previous work. Thrun (1992) presents comparisons between di�erent directed andundirected exploration methods. Directed exploration methods use special exploration speci�cknowledge to guide the search through alternative policies. Undirected exploration methodsuse randomized action selection methods to try their luck in generating useful novel experi-ences. Previous research has shown signi�cant bene�ts for using directed exploration (see,e.g., Schmidhuber 1991, Thrun 1992, and Storck, Hochreiter and Schmidhuber 1995). Koenigand Simmons (1996) show how undirected exploration techniques can be improved by usingthe so called action-penalty rule. This rule penalizes actions which have been selected inparticular states so that the unexplored actions for some state look more promising | thisdecreases the advantage of directed exploration.When we want to solve the exploration/exploitation dilemma, it is also necessary to71

72 CHAPTER 5. EXPLORATIONswitch between exploration and exploitation. Thrun and M�oller (1992) use a competencemap which predicts the controller's accuracy, and their bistable system switches attentionbetween exploration and exploitation depending on expected cost and knowledge gain.Exploration is also very important for dealing with non-stationary (dynamic) environ-ments. E.g. suppose that we have learned a policy for going from one room to another. Then,if a door between these rooms had always been closed, the policy could not have learned topass through this door. If the door is opened afterwards, the agent should �nd this out inorder to relearn a better policy for reaching the other room. Dayan and Sejnowski's dualcontrol algorithm (1996) is designed for such environments. They slowly increase Q-values,so that actions which have not been tried out for some time will be selected again.A completely di�erent exploration approach is described in (Schmidhuber, 1997), whereone agent gets reward if she is able to bring the other agent to regions which he does notknow. Thus, a co-evolutive exploration behavior takes places, where the agent is presentedwith a continuous stream of unknown situations until it �nally learned a policy for all ofthem.The Interval Estimation (IE) algorithm (Kaelbling, 1993) uses second order statistics todetect whether certain actions have a potential of belonging to the optimal policy. IE com-putes con�dence intervals of Q-values and always selects the action with largest upper intervalboundary. Previous results (Kaelbling, 1993) show that IE works well for action selection inbandit problems (Berry and Fristedt, 1985). N -armed bandit problems are problems in whichwe can select between n arms, each one with di�erent payo� probabilities and payo�s. Thus,we have to collect statistics in order to infer which arm to pull. Since pulling arms costsmoney as well, and we only have limited time, we want to gain information about the payo�ratio's of the arms and infer when we can best focus on the most promising one. Since we aredealing with stochastic problems, IE is interesting for us, and we will describe how we cancombine IE with model-based RL.Outline of this chapter. We �rst describe undirected exploration methods in Section5.1. In Section 5.2, we describe directed exploration methods which are based on the design ofan exploration reward function. In Section 5.3, we describe model-based exploration and a newexploration method which extends interval estimation (IE) to model-based RL. In Section 5.4,we present experimental comparisons between indirect/direct exploration methods. Section5.5 concludes this chapter with a discussion.5.1 Undirected ExplorationIn this section we will summarize undirected exploration techniques. These methods usuallyrely on pseudo-random generators.5.1.1 Max-random Exploration RuleThe Max-random, also known as pseudo-stochastic (Caironi and Dorigo, 1994) and �-greedy(Sutton, 1996), exploration rule is the simplest exploration rule. The rule uses a singleparameter Pmax which denotes the probability of selecting the action with highest Q-value:1) generate a number r from the uniform distribution [0,1]2) If r � Pmax

5.1. UNDIRECTED EXPLORATION 732.1) select the action with highest Q-value.2.2) Else select a random action a 2 fA1; A2; : : : ; AMg.For step 2.1, it can happen that there are multiple actions which have the highest Q-value. In this case, we select one of them stochastically. The Max-random rule has the niceproperty that the time overhead for selecting an action can be small | in the optimal casewhere the max-action stays the same, it is O(1).1 A good method for learning policies isto linearly increase Pmax after each step during the trial: in the beginning of a simulation alot of exploration makes it possible to compare many alternative policies, and at the end theprobability of selecting greedy actions becomes 100%. Thus, exploration becomes more andmore focused around the best found policy.5.1.2 Boltzmann Exploration RuleThe Boltzmann-Gibbs rule is one of the most widely used exploration rules. The Boltzmannrule assigns probabilities to actions according to their Q-values. It uses a temperature variableT , which is used for annealing the amount of exploration. The Boltzmann exploration rulecomputes the probability P (ajs) for selecting an action a given state s and Q-values Q(s; i)for all i 2 A as follows: P (ajs) = eQ(s;a)=TPi eQ(s;i)=T (5.1)The Boltzmann rule causes a lot of exploration in states where Q-values for di�erentactions are almost equal, and little exploration in states where Q-values are very di�erent.This is helpful for risk minimization purposes (Heger, 1994), for which we may prefer notto explore actions which look signi�cantly worse than others. However, initially learned Q-estimates can be incorrect due to noise, so some exploration is still needed in case of largedi�erences in Q-values. Using an annealing schedule for the temperature should get aroundthis problem, but �nding a good annealing schedule can be quite di�cult and is rewardfunction dependent.2 Furthermore, since the temperature is a global variable, it may happenthat some state is not visited for a long time, after which the amount of exploration inthis state is very small. Although this last problem could be solved using local temperaturevariables, it is still a problem that the agent may concentrate on di�erent trajectories whichit already knows well.5.1.3 Max-Boltzmann Exploration RuleMax-random exploration may lead to bad results when particular actions lead to large negativerewards. It assigns equal probabilities to all non-optimal actions and therefore assigns toolarge probabilities to explore really bad actions. Boltzmann exploration has large problemsfocusing on the best actions while still being able to sometimes deviate from them. We mayalso combine the Max-random and Boltzmann exploration rules. The max-Boltzmann rulecombines taking the \Max" action with the Boltzmann distribution:1The action with maximal Q-value can be stored when learning the Q-values.2If we change the reward function by e.g. scaling all rewards, we would interfere with the explorationbehavior. This would not be the case for Max-random exploration.

74 CHAPTER 5. EXPLORATION1) generate a number r from the uniform distribution [0,1]2) If r � Pmax2.1) select the action with highest Q-value.2.2) Else select an action according to the probabilities computed by Eq.5.1.Although the rule requires more parameters to set (the temperature T and Pmax), there willin general be more good combinations. We will use this rule for exploration with ambiguousinputs (in Chapter 6), since there it is important to be almost deterministic for inputs whichare not ambiguous, and to focus on a particular action for an ambiguous input while stillsometimes exploring good alternative actions.5.1.4 Initialize High ExplorationAnother possible exploration rule is to start with high initial Q-values (the Q-function isinitialized to the upperbound of the optimal Q-function) and to use the normal RL update-rule. Given the fact that action values will drop when they have been explored, taking theaction with maximal Q-value will initially return that action which has been selected leasttimes. The method is quite similar to counting the number of times particular state/actionpairs have occurred, although it may happen that some actions which have occurred moreoften are still preferred above other actions since they are more rewarding.Di�erent kinds of exploration techniques based on this idea have been used used in e.g.(Koenig and Simmons, 1992; Prescott, 1994; Koenig and Simmons, 1996). Koenig (1996)presents a proof that �nding a goal at all in particular environments by initializing high andpenalizing actions will only take polynomial time, whereas (Whitehead, 1992) had shownthat zero-rewarding actions may take exponential time for such worst-case environments. Anexample of such an environment consists of a simple sequence of states and two actions goleft and go right, and where the action go right brings the agent to the successor state andthe action go left brings the agent all the way back to the initial left-most state. To �nd thegoal the agent has to select only go right actions. However, if we do not penalize actions,the probability of selecting a long sequence with only go right actions decreases exponentiallywith the length of the path. Thus, we have to record which actions have occurred to �nd thegoal in polynomial time in the number of states.5.2 Directed ExplorationFor directed exploration, all we need to do is to create an exploration reward function whichassigns rewards to trying out particular experiences. In this way, it determines which ex-perience is interesting for gaining information (Storck et al., 1995). Directed explorationmethods learn an exploration value function in the same way standard RL methods learna problem-oriented value function. Therefore we may simply de�ne an exploration rewardfunction determining immediate exploration rewards and let the selected RL method learn ex-ploration Q-values. We can use the same RL method for learning the exploration Q-functionand the exploitation Q-function.If we want to solve the exploration/exploitation problem, we have to �nd a method tochoose which of the two Q-functions to use for action selection. There are di�erent heuristicsfor switching from exploration to exploitation. We note that an optimal switching strategy

5.2. DIRECTED EXPLORATION 75is in general hard to compute, except for the most simple problems such as 2-armed banditproblems (Gittins, 1989; Kaelbling et al., 1996).5.2.1 Reward Function 1: Frequency BasedExplore actions which have been executed least frequently. The (local) reward function issimply: RE(s; a; �) := �Cs(a)KC (5.2)Here RE(s; a; �) is the exploration reward assigned to selecting action a in state s. It isdetermined by dividing the local counter Cs(a) by a scaling constant KC . The asterisk standsfor the don't-care symbol. In general the resulting policy will try to explore all state/actionpairs uniformly, although the resulting policy still depends on the discount factor. If thediscount factor is 1, the policy will try to follow paths leading to transitions with the minimalnumber of occurrences. Still, the resulting exploration behavior can be quite complex. Let'shave a look at Figure 5.1. After a while, the exploration behavior will much more oftenexecute the action go-right than go-up since the go-up action leads immediately to transitionswhich are well explored. Note that although this environment is deterministic, the same holdsfor stochastic environments. Thus, the exploration behavior depends strongly on the topologyof the state space. Furthermore, the exploration behavior depends also on the discount factor.
1

2Figure 5.1: A deterministic environment where the frequency based rule cannot explore allstate/action pairs uniformly. The environment consists of a number of states and 2 actions.Actions lead up or right for most states with the exception of the top state for which bothactions lead to the same successor. After trying out all up-actions a single time, the explorerbecomes aware of the bottleneck transitions (1) and (2) which are crossed so often that up-actions immediately leading to them will get low exploration values and not be considered fora long time.5.2.2 Reward Function 2: Recency BasedSelect the actions which have been selected least recently. The reward for exploring SAP(s; a) is: RE(s; a; �) = �tKT ; (5.3)

76 CHAPTER 5. EXPLORATIONwhere KT is a scaling constant and t the current time step. Note that the exploration rewardis not entirely local, since it depends on the global time counter. This exploration rewardrule makes a lot of sense for dealing with changing environments.5.2.3 Reward Function 3: Error BasedThe third reward rule is as follows:RE(st; at; st+1) = Qt+1(st; at)�Qt(st; at)�KP (5.4)Here Qt(st; at) is the Q-value of the state/action pair (SAP) before the update, and Qt+1(st; at)is the Q-value of the SAP after the last update, which has been made before computing theexploration reward. The constant KP ensures that all rewards are negative.3 This rewardrule prefers to keep on selecting state/action pairs which have strongly increasing Q-values.Initially it makes unexplored SAPs prime experiences, due to the negative rewards assignedto all explored steps.Comments. (1) Schmidhuber (1991) used the absolute di�erence jVt+1 � Vtj instead ofthe directional change. (2) Thrun (1992) combined the error based learning rule with thefrequency based learning rule. He did not �nd any improvements over just using the frequencybased rule, however.5.2.4 False Exploration Reward RulesWe can of course construct all kinds of local exploration reward rules. However, we have tobe careful: some rules may look quite good, but may lead to unwanted exploration behavior.To examine whether an exploration reward rule will work, we should analyze the followingcondition: if we continuously select exploration actions, we should never be absorbed in asubspace of the state space, unless we have gathered so much information that we can be surethat exploring di�erent subspaces will not change our learned policy.An example of a wrong exploration reward rule is the following: prefer state/action pairsfor which the successor states are least predictable, i.e. the transition probabilities have highentropy: RE(s; a; �) = �Xk Psk(a) log Psk(a)� c (5.5)Here c is a positive constant ensuring that exploration rewards are negative. That no pref-erence should be given to exploring high entropy SAPs can be shown by considering thefollowing counter example.We have an environment which consists of a number of states connected to each other bya line. The starting state is in the middle of the line. The agent can select the action go-leftor go-right. In 99% of the cases actions are executed properly and in 1% of the cases they arereplaced by the opposite action. There is a special state located one step before the extremeright of the line. In this state the action go-left results in a completely random transitionto the state left or right of it. If exploring with the high-entropy exploration rule, the agentmay initially try all actions a couple of times. After a while, it would favor the state at theright, since the exploration reward is highest there. Therefore it will not sample correctly,3We use negative rewards so that we can zero-initialize the exploration Q-function and guarantee thatuntried SAPs look more promising.

5.3. LEARNING EXPLORATION MODELS 77but continuously go to this state and learn its transition probabilities perfectly whereas othertransition probabilities are approximated much worse. The exploration reward rule considersthe complete randomness as being information carrying, but in this example it is not.
5.3 Learning Exploration ModelsWe can use all RL methods to learn exploration Q-values. Previous methods used Q-learningfor learning where to explore (Schmidhuber, 1991a; Thrun, 1992; Storck et al., 1995). Wepropose to use prioritized sweeping instead. PS allows for quickly learning exploration modelswhich may be useful for learning Q-values estimating global information gain, taking intoaccount yet unexplored regions of the state-space.Replacing reward. A nice option in using separate transition reward values for learningexploration functions is that all explorative transition rewards can be based entirely on thecurrent reward. Suppose that an agent selects an action which has already been executedseveral times. Computing the exploration reward by averaging over all previous transitionrewards would not result in the desired reward measure. For instance, with frequency basedexploration we would receive rewards: 1; 2; : : : ; Ci(a) for the �rst, second, etc. occurrence ofthe state/action pair. Our estimated transition reward R̂E(i; a; �) would be the average overthese rewards instead of just equal to Ci(a), the current reward value and therefore someundesired rescaling takes place. Using MBRL, we just replace the estimated reward R̂(i; a; j)by RE(i; a; j) for all j with P̂ij(a) > 0, that is, we update all rewards for outgoing transitionsfrom the current state/action pair to take the latest available information into account.Never-ending exploration. The exploration utilities continually change | there isnot a stable, optimal exploration function. This is not a problem at all, since the goal ofexploration is to search for alternative paths in order to �nd better and better policies, andtherefore the exploration policy should never converge. Continuous exploration is useful whenone wants to obtain a good �nal policy without caring for intermediate rewards. For particularproblems, we may want to increase or switch to exploitation after some time, however. E.g. inlimited lifetime scenarios (Schmidhuber et al., 1996) or bandit problems (Berry and Fristedt,1985) we want to optimize the accumulative reward over the entire life time. There are acouple of simple ways to get around purely explorative behavior:(1) Switch to the greedy policy once the value function (of the real task policy) is hardlychanged. We could implement this as follows: during TS steps, compute the change of V . Ifthis average change per step is smaller than �, this means that we hardly learn anymore sothat we can switch to the greedy policy.(2) Anneal the exploration rate Pexp from 1.0 in the beginning, (always select accordingto the exploration model) to 0.0 at the end. If the lifetime is unknown, we can try to predictit or repeatedly extend the horizon. The latter is sometimes done in game-playing programswhich have �xed \thinking" time for playing an entire game, for which it is never sure howmany moves will be played in total.(3) Start with exploration and switch after a �xed amount of time to exploitation. Thisis useful for huge state spaces for which we can never visit all states.

78 CHAPTER 5. EXPLORATION5.4 Model-Based Interval EstimationTo explore e�ciently, an agent should not repeatedly try out actions that certainly do notbelong to the optimal policy. To reduce the set of optimal action candidates we extend theinterval estimation (IE) algorithm (Kaelbling, 1993) to combine it with model-based RL.Standard IE selects the action with the largest upper bound for its Q-value. To computeupper bounds it keeps track of the means and standard deviations of all Q-values. Thestandard deviation is caused by the stochastic transition function (although it could as wellbe caused by a stochastic reward function). Although IE seems promising it does not alwaysoutperform Q-learning with Boltzmann exploration due to problems of estimating the varianceof a changing Q-function in the beginning of the learning phase (Kaelbling, 1993).Model-Based Interval Estimation. MBIE uses the model to compute the upperbound of Q-values. Given a set of outgoing transitions from SAP (i; a), MBIE increases theprobability of the best transition (the one which maximizes
V (j) + R(i; a; j)), dependingon its standard deviation. Then MBIE renormalizes the transition probabilities and uses theresult for computing the Q-values. See Figure 5.2. The left-most transition is the best giventhe current state. For this transition we have computed the con�dence interval, and set itsprobability to its upperbound (0.6) after which we renormalize the other probabilities.
[0.3,0.6]

0.45
0.1

0.6

0.33

0.07Figure 5.2: Model-Based Interval Estimation changes the transition probability of the besttransition from a state/action pair to its upper probability bound. After this, the other tran-sition probabilities are renormalized.The following algorithm can be substituted for lines 1.1 and 3.3.2.1 in our PS algorithm(Section 4.3): Model-Based Interval Estimation(i; a):a m Argmaxj:P̂ij(a)>0fR(i; a; j) +
V (j)gb n Ci(a)c P P̂im(a)d P+im(a) (P + z2�2n + z�pnqP (1� P) + z2�4n)=(1 + z2�n)e �P P+im(a)� P̂im(a)f 8j 6= mg P+ij (a) P̂ij(a)� �PCij(a)Ci(a)�Cim(a)h Q(i; a) Pj P+ij (a)(R̂(i; a; j) +
V (j))Here z� is a variable which determines the size of the con�dence bounds. Step d elaborateson the commonly used z�pP (1� P)=n, and is designed to give better results for small valuesof n | see (Kaelbling, 1993) for details.

5.5. EXPERIMENTS 79MBIE hybrids. Since MBIE also relies on initial statistics we propose to circumventproblems in estimating the variance by starting out with some other exploration method andswitching to IE once some appropriate condition holds.This is done as follows: we start with frequency based exploration and keep tracking thecumulative change of the problem-oriented value function. Once the average update of theV � function (computed over the most recent TS time-steps) falls below � 2 IR+, we (I) copythe rewards and Q-values from the problem-oriented model to the exploration model, and(II) switch to IE: we apply asynchronous value iteration to the model; the iteration procedurecalls MBIE for computing Q-values and ends once the maximal change of some state value isless than � 2 IR+.Simultaneous policy learning. The model-based learner simultaneously learns bothexploration policy and problem-oriented policy. After each experience we update the modeland use PS to recompute the value functions. If actions are only selected according to onepolicy, we can postpone recomputing the other value function and policy and use PS or valueiteration once it is required. Note that we can use value iteration here, since we may expectmany changes of the model and only need to recompute the value function once in a longwhile.Comments. Note that we approximate the upper bound of the probability of makingthe best transition by assuming the normal distribution. We basically make the distinctionbetween the best transition and any other transition. We could also compute the optimisticvalue function in a di�erent way: �rst set all transition probabilities to their lower boundsand then iteratively set the best transitions to their upper bound as long as the probabilitiesdo not sum to 1. See also (Givan et al., 1998) for a description of con�dence bounded Markovdecision problems or see (Campos et al., 1994) for mathematical methods for computingprobability intervals.5.5 ExperimentsIn the previous chapter we have used prioritized sweeping with Max-random exploration andsaw that it reaches almost optimal performance levels. Still, the attained value functionapproximations were quite bad which indicates that the state space was badly explored. Inthis section we perform experiments to �nd out whether learning exploration models canspeed up �nding optimal or almost optimal policies. We will �rst describe experiments inwhich we compare using exploration models to undirected exploration. Here, the goal is toquickly �nd good policies. Then we will examine how well the di�erent exploration methodshandle the exploration/exploitation dilemma. Finally, in subsection 5.4.3 we will use theexploration models and MBIE for �nding very close to optimal policies for a maze consistingof multiple goal states.5.5.1 Exploration with Prioritized SweepingIn order to study performance of the directed exploration methods, we combined them withPS and tested them on 20 di�erent mazes of size 25� 25, 50 �50, and 100� 100. The mazesare the same as in previous chapters and contain 10% noise in the action-execution. The 20randomly generated mazes consist of about 20% blocked states and 20% penalty states.Parameters and experimental setup. The accuracy parameter � = 1:0 and Umax =100. The discount factor
 was set to 0.99 for learning the exploration reward function. We

80 CHAPTER 5. EXPLORATIONcompare the following methods:(1) Max-random with Pmax = 0:5.(2) Frequency based. The constant KC is set to 50.(3) Recency based. KT is set to 1000.(4) Error based. KP is set to 1000. To get better results with the error based rule, wechose in 50% of the cases the Max-action.We record how fast the methods are able to learn policies which collect 90% and 95% ofwhat the optimal PI-policy collects. For this, we have tested the optimal policy for 100 times20,000 steps, and computed the average over 20,000 steps. The learning methods are allowed100,000 steps for the 25� 25 mazes and 500,000 steps for the other mazes. The agent is testedafter each 1,000 steps for 10 times 20,000 steps.Exploration Rule 25 � 25 50 � 50 100 �100Max random 4.6K � 0.8K 26.2K � 3.4K 221K � 80KFrequency based 3.9K � 1.1K 17.7K � 3.5K 88K � 22KRecency based 4.6K � 1.8K 18.2K � 2.1K 105K � 12K*Error based 3.6K � 0.8K* 23K � 23K 118K � 40KTable 5.1: Learning exploration models with PS for the di�erent maze sizes. The table showsthe number of steps which were needed by the exploration rules to �nd policies which collect90% of what the PI-policy collects. Explanation: * = 1 simulation did not meet the require-ments. Exploration Rule 25 � 25 50 � 50 100 �100Max random 11K � 26K 31K � 12K 254K � 108K*Frequency based 4.7K � 2.1K 21.0K � 4.4K 99K � 29KRecency based 5.3K � 1.6K 31K � 21K 135K � 48K*Error based 4.8K � 1.6K** 44K � 69K** 161K � 83K�5Table 5.2: Learning exploration models for the di�erent maze sizes. The table shows thenumber of steps which were needed by the exploration rules to �nd policies which collects 95%of what the PI-policy collects. Explanation: *, **, and �5 = in 1, 2, and 5 simulation(s),respectively, the requirements were not met.Results. Tables 5.1 and 5.2 show the results. We can see that learning an explorationmodel with the frequency based reward rule works best. When state spaces become larger,the costs of undirected exploration methods such as Max-random exploration increases sig-ni�cantly. The costs of frequency based exploration seems to scale up almost linearly withthe size of the state space, however.Comments. (1). We used
 = 0:99 for learning the exploration model. This results invery global exploration behavior. We also tried out using lower values for
. Those workedsigni�cantly worse. The entirely local policy with
 = 0 was only able to �nd 90%-optimalpolicies in 17 out of 20 simulations and took 60,000 steps for the 50 � 50 maze. Higher valuesworked better, although
 in the interval [0:98; 0:99] gave the best results.(2) Q-learning needed 69K steps to learn 90% optimal policies with Max-random explo-ration for the 25 � 25 maze. We also tried Q(�) on 100 �100 mazes. We found that � = 0:0performed best, although we have not tried replacing and resetting traces. Q-learning needed

5.5. EXPERIMENTS 8114.4M steps before �nding reasonable policies (compared to 360K for 50 �50 mazes). There-fore as expected, we can say that Q-learning scales up much more poorly than model-basedapproaches.(3) In our experimental results, Q(�)-approaches did not bene�t from learning explorationvalue functions. The results were more or less the same as using Max-random. It seems verydi�cult for Q-learning to learn useful exploration values. Since we penalize actions, the majorgain in using exploration reward rules (to select alternative actions for a state) is lost.Conclusion. Using exploration models can signi�cantly speed up �nding good poli-cies. Using the frequency based reward rule we can compute 95%-policies by sampling allstate/action pairs about 2.5 times. Although the variance in the estimated transition proba-bilities of the maximum likelihood model is still quite large, this does not seem to matter for�nding good policies. Due to the randomly generated environment, there seem to be manypolicies which are quite good and it is not very di�cult to learn one of them.The other exploration techniques do not distribute the number of experiences fairly overthe state/action space, and they have more di�culties �nding good policies. The recencybased reward rule might outperform frequency based exploration in changing environments.Finally, undirected exploration works well for the smallest problems, but consumes a lot oftime for the more di�cult problems. Thus, we need to make use of exploration models forsolving large tasks.5.5.2 Exploitation/ExplorationThe previous subsection showed that we are able to quickly learn good policies by using ex-ploration models. For limited lifetime problems involving expensive robots or experiments,we want to maximize the cumulative performance over time. This creates the exploita-tion/exploration problem. In this section we show how well the exploration methods maximizecumulative rewards.We set up experiments with 50 � 50 mazes and use prioritized sweeping (� = 1:0 andUmax = 100) and let the agent learn for 100,000 steps during which we computed the cumu-lative and �nal rewards over intervals of 2,000 steps.For the methods which learn exploration models, we increase Pmax from 0.0 to 1.0 inorder to exploit more and more. We also included a method which uses the frequency basedrule to learn exploration models, but this system shifts to exploitation if the value functionfor the task is hardly changed. Each time the goal is found, the system checks whether aminimal of 2000 steps have been executed for which the average update of the V-function islower than 1.0. We will call this system frequency based + stop explore. This system alsouses Pmax = 0:0! 1:0 (keeping the system fully explorative before switching to exploitationdoes not change things much). For Boltzmann exploration, we linearly anneal T from 10 to0.1.Results. Table 5.3 shows that although the value functions of the directed explorationmethods are much better, the �nal performance for most exploration methods (except Boltz-mann exploration) is more or less equal. The cumulative reward of using most explorationmodels is worse than using Max-random. Remember, however, that good policies are foundearlier using directed exploration and that the di�erence in cumulative reinforcement is mainlybecause exploration policies lead the agent away from the greedy policies, thereby causingsome loss in reward. The table shows that frequency based exploration and stop explore isable to accumulate a lot of reward. Figure 5.3(A) shows the learning curves for the di�erent

82 CHAPTER 5. EXPLORATIONSystem End Rewards Total Rewards V-approx TimeMax random (0.1 ! 0.0) 15.0K � 0.7K 560K � 37K 310 � 40 31 � 3Max random (0.3 ! 0.0) 15.4K � 0.6K 470K � 37K 320 � 39 32 � 3Max random (0.5 ! 0.0) 15.3K � 0.6K 390K � 17K 280 � 29 35 � 2Boltzmann 14K � 4.0K 250K � 120K 340 � 72 41 � 11Error based 15.1K � 0.7K 500K � 120K 67 � 61 260 � 32Recency based 15.2K � 0.5K 250K � 21K 30 � 16 230 � 16Frequency based 15.2K � 0.7K 130K � 18K 21 � 8 128 � 3Frequency based + Stop explore 15.4K � 0.6K 560K � 25K 65 � 76 89 � 9Table 5.3: Results for di�erent exploration rules with prioritized sweeping.exploration methods. Positive Q-updates refers to the error based exploration rule. Figure5.3(B) shows that the exploration models are very useful for learning good value functionapproximations. The recency and frequency based reward rules work best. They are able tolearn quite good value function approximations. The fact that such good approximations areattained by sampling all state/actions only 2.5 times (2:5�4�50�50 = 25; 000 experiences)shows that the value function is not very sensitive to noise. The reason is that noisy actionstake the agent to a �eld closeby so that even in case of strong bias due to noise in the 2.5experiences for some state, the value function will not di�er too much.

-10000

-5000

0

5000

10000

15000

20000

0 25000 50000 75000 100000

re
in

fo
rc

em
en

t p
er

 2
00

0
st

ep
s

#steps

Max random (0.3-0)
Positive Q-updates

Time recency
Counter based

Counter based + Stop explore

0

100

200

300

400

500

600

700

0 25000 50000 75000 100000

A
ve

ra
ge

 E
uc

lid
ea

n
D

is
ta

nc
e

#steps

Max random (0.3-0.0)
Positive Q-updates

Time recency
Counter based

Counter based + Stop explore

Figure 5.3: (A) A comparison between di�erent (learning) exploration rules with prioritizedsweeping. The �gure plots the cumulative rewards achieved over intervals of 2,000 steps. (B)The approximation error of the value function, using di�erent exploration methods.The frequency based + stop explore system scores very high on all objective criteria: the�nal performance is very good, the cumulative performance is the best and the obtained valuefunction is much better than that of indirect exploration methods.Comments. (1) Initialize high exploration performed very poorly with PS. The reasonfor this is that exploration values can keep their large initial values for a long time. (2)

5.5. EXPERIMENTS 83Error and recency based exploration cost more computational time than frequency basedexploration. The reason is that reward values are bigger in size.Conclusion. The exploration/exploitation dilemma is not handled very well by the fullyexplorative model-based exploration techniques. However, we can augment them simply bya heuristic switching rule which makes the agent switch from exploration to full exploitation.Our rule which switched once the value function did not change very much anymore madeit possible to �rst quickly learn a quite good value function approximation which could af-terwards be exploited for a long time. Although for the current problem simple undirectedexploration methods also worked quite well, they were unable to learn a good value function.We expect that for more general MDPs, Max-random exploration will perform worse,since for the current problems they did not have any problems �nding the global terminalgoal state. If there are multiple rewarding states, they may have larger problems and theadvantage of using the directed exploration methods could be larger.5.5.3 Experiments with Suboptimal GoalsThe �nal experimental comparison shows results with directed exploration methods and MBIEon a maze with suboptimal goal-states. The maze is shown in Figure 5.4. The starting state(S) is located 1 �eld north/east of the south-west corner. There are three absorbing goalstates, two of them are suboptimal. The optimal goal state (G) is located 1 �eld south/westof the north-east corner, the suboptimal goal states (F) are located in the north-west andsouth-east corners. Selected actions are replaced by random actions with 10% probability.Reward function. Rewards and the discount factor are the same as before. For �ndinga suboptimal goal state the agent gets a reward of 500.
������

������

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������

������

������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������
������

����
����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����

����

����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

����

����

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

������
���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������

������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������
������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������

������

����

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����
����

����

����
����
����

����

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����
����

����

��
��
��
��

����

����
����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����

����
����
����

����
����

����

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����

������
������

���
���
���
���

���
���
���
���

������
������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������
������

������

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������
������
������
������

������

������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

����
����

����

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����
����
����
����
����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����

����

����

��
��
��
��

��
��
��
��

����

����
����

����
����

��
��
��
��

��
��
��
��

����

����
����

����

����
����
����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����
����
����

��
��
��
��

��
��
��
��

����
����

����

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����
����

������

������

������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������

������

������

������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������

������

������

������

������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������
������

������
������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������
������
������
������

������
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

������

������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����

����

����

����

����

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����

����

����

����

��
��
��
��

��
��
��
��

����

����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����
����

����

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

������

������
���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������

������
������
������

������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������

������

������
������

������

������

������

������
������

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������

������

������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

������

������

S F

GF

Figure 5.4: The 50 � 50 maze used in the experiments. Black squares denote blocked �elds,grey squares penalty �elds. The agent starts at S and searches for a minimally punishing pathto the optimal goal G. Good exploration is required to avoid focusing on suboptimal goal states(F).

84 CHAPTER 5. EXPLORATIONComparison. We compare the following exploration methods: Max-random, directedmodel-based exploration techniques using frequency based and recency based reward rules,and MBIE. The latter starts out with model-based exploration using the frequency basedreward rule, and switches to IE once the value function hardly changes any more.The goal is to learn good policies as quickly as possible. We computed an optimal policyusing value iteration (Bellman, 1961) and tested this optimal policy by executing it for 1,000steps. We computed its average reinforcement intake by testing it 10,000 times, which resultedin 7590 � 2 rewardpoints. For each method we conduct 20 runs of 100,000 learning steps.During each run we measure how quickly and how often the agent's policy collects 95%, 99%and 99.8% of what the optimal policy collects. This is done by averaging the results of 1000test runs conducted every 2000 learning steps | each test run consists of executing the greedypolicies (always selecting actions with maximal Q-value) for 1000 steps.Parameters. We set the accuracy parameter � = 0:1, and Umax = 100 for both learningthe problem-oriented and exploration value functions. The exploration reward's discountfactor
 is set to 0.99 for frequency based and to 0.95 for recency based exploration. Theconstant KC (used by the frequency based reward rules) is set to 50; KT (used by the recencybased reward rule) is set to 1000. We used two values for Pmax (for Max-random exploration):0.2 and 0.4. The value of z� (for MBIE) is set to 1.96 (which corresponds to a con�denceinterval of 95%). The combination of MBIE and model-based exploration switches to MBIEonce the value function has not changed by more than 0.1 (�) on average within the 1000(TS) most recent steps.Exploration Rule 95% (freq) 99% (freq) 99.8% (freq)MBIE 20 (25K) 19 (42K) 18 (66K)Frequency based 20 (24K) 16 (50K) 10 (66K)Recency based 19 (27K) 18 (55K) 9 (69K)Max-random 0.2 4 (43K) 4 (52K) 4 (68K)Max-random 0.4 0 (|) 0 (|) 0 (|)Table 5.4: The number of runs of several exploration methods which found p-optimal policies(and how many steps were required for obtaining it).Exploration Rule Best run result Training PerformanceMBIE 7.57K � 0.05K 350K � 40KFrequency based 7.55K � 0.06K -45K � 9KRecency based 7.54K � 0.11K -120K � 10KMax-random 0.2 4.8K � 1.4K -190K � 16KMax-random 0.4 4.1K � 0.3K -62K � 19KTable 5.5: Average and standard deviation of the best test result during a run and the totalcumulative reward during training.Results. Table 5.4 shows signi�cant improvements achieved by learning an explorationmodel. The undirected exploration methods focus too much on suboptimal goals (which arecloser and therefore easier to �nd). This often prevents them from discovering near-optimalpolicies. On the other hand, model-based learning with directed exploration does favor paths

5.6. DISCUSSION 85

-2000

0

2000

4000

6000

8000

0 20000 40000 60000 80000 100000

re
in

fo
rc

em
en

t p
er

 1
00

0
st

ep
s

#steps

MBIE
Frequency-based

Recency-based
Max-random 0.2
Max-random 0.4

Figure 5.5: Cumulative reward during test runs, averaged over 20 simulations.leading to the optimal goal. Using the frequency based reward rule by itself, the agent always�nds the optimal goal although it fails to always �nd 99.8% optimal policies.Figure 5.5 shows a large di�erence between learning performances of exploration modelsand Max-random exploration. It does not clearly show the distinction between frequencybased or recency based exploration and the extension with MBIE. Switching to MBIE aftersome time (which happens between 35,000 and 55,000 steps), however, signi�cantly improvesmatters. First of all, Table 5.4 shows that this strategy �nds optimal or near-optimal policiesin 90% of the cases, whereas the others fail in at least 50% of the cases. The second improve-ment with MBIE is shown in Table 5.5. MBIE collects much more reward during training thanall other exploration methods, thereby e�ectively addressing the exploration/exploitationdilemma. In fact it is the only exploration rule leading to a positive cumulative reward score.Conclusion. The results with multiple goals showed a large advantage of using directedexploration methods. Undirected methods are attracted to those rewarding states whichcome �rst on the path and therefore we cannot trust them for �nding good policies. The bestmethod, MBIE, combined directed exploration with con�dence levels in order to prune awayactions which almost certainly do not belong to the optimal policy. This results in the bestperformance, since it takes care that only actions which can belong to the optimal policy areselected. Finally, this also results in the highest cumulative performance. We expect that thismethod will perform best for most stochastic discrete MDPs, although a disadvantage of themethod is that we need to set the right switching time.5.6 DiscussionIf we use undirected exploration methods, we rely on our random generator for selecting ac-tions. However, if we learn where to explore, we can direct our exploration behavior so thatmore information is gained. We formulated a number of exploration reward rules which de-termine which information is interesting and which can be used for learning exploration valuefunctions. Our experimental results with stochastic mazes showed that learning explorationpolicies can speed up �nding good policies. Especially, when there are particular complexpaths leading to much more rewards then other easier paths, good exploration is essential.

86 CHAPTER 5. EXPLORATIONThe frequency based reward rule performed best for the environments we have considered.We expect this to hold as well for other MDPs. For non-stationary problems, an explorationpolicy based upon the recency based reward rule may work best, since it is able to discovermuch earlier which fragments of the state space have changed.Optimal exploration. When it comes to �nding optimal policies, methods using exter-nal MDP rewards for focusing on actions with large probability of being optimal will oftensave some SAP visits over methods based solely on exploration reward rules. Furthermore,cumulative external MDP rewards obtained during training should be taken into account inattempts at approaching the exploit/explore dilemma. That is why we introduced MBIE,a method combining Kaelbling's interval estimation (IE) algorithm (Kaelbling, 1993) andmodel-based reinforcement learning. Since MBIE heavily relies on initial statistics, we switchit on only after an initial phase during which an exploration model is learned (according to,say, the frequency based exploration reward rule). In our experiments this approach almostalways led to 99.8%-optimal policies. We expect MBIE to be advantageous for all kinds ofMDPs, especially when the reward function is far from uniform. Other exploration methodsdo not work well for such problems since their exploration policies do not make distinctionsbetween di�erent actions leading to di�erent payo�s.Di�erent topologies. For particular environments it may be a good idea to exploreentire subregions before exploring other subregions. E.g., when there is a bottleneck con-necting two subregions, both subregions may alternatingly become interesting to explore, butthe bottleneck will become uninteresting after some time. Our exploration rules could detectsuch bottlenecks and would spend a lot of time exploring one subspace before going to theother, since going through the bottleneck brings a lot of negative exploration reward.Function approximators. The ideas are presented for tabular representations, but caneasily be extended to function approximators. For this we can use the same representationfor the exploration value function as for the original value function. Exploration methodsfor large or continuous spaces are more complex, however, since it is infeasible to exploreall states. Therefore we rely on the generalization abilities of the function approximator todetermine the interestingness of experiences. Furthermore, the reward function gets a littlebit more complicated since states may never be visited twice. Therefore the reward functionshould be based upon the distribution of previous experiences around a point for which wecompute an exploration value. E.g. a Gaussian function can be used to weigh neighboringexperiences according to their distance.

Chapter 6Partially Observable MDPsWe have seen how we can e�ciently compute policies for Markov decision processes (MDPs)consisting of a �nite number of states and actions. MDPs require that all states are fullyobservable, which means that the agent is able to use perfect sensors to always know the exactstate of the world. For real world problems this requirement is usually violated. Agents receivetheir information about the state of the world through imperfect sensors, which sometimescause world states to be mapped to the same observations. This problem is called perceptualaliasing (Whitehead, 1992) and is the reason for the uncertainty of the agent about the stateof the world.As example, have a look at the environment depicted in Figure 6.1. There are a total of6 states, but the agent can only see 2 di�erent observations: a circle or a rectangle. Thus,solely based on the current observation the agent can never be certain in which state it is.
1 2 3 4 5 6Figure 6.1: An environment consisting of 6 states. Whenever the agent is in the �rst twostates or in states 4 or 5, it always sees a circle as observation. In the third state it observesa circle or rectangle, both with probability 50%, and in the sixth state it always observes arectangle.Markov decision problems for which the agent is uncertain about the true state of theworld are called partially observable Markov decision processes (POMDPs, e.g., Littman,1996). The simplest algorithms for solving them would directly map observations to actions,but since observations are received in di�erent states which require di�erent actions, suchalgorithms will not be able to �nd solutions. Better algorithms need to use previous observa-tions and actions which were encountered on the current trajectory through the state spaceto disambiguate possible current states. This is not an easy task | even deterministic �nitehorizon POMDPs are NP-complete (Littman, 1996). Thus, general and exact algorithms arefeasible only for small problems, which explains the interest in heuristic methods for �ndinggood but not necessarily optimal solutions.Hidden state. Since an observation conceals some part of the true underlying state,we say that some part of the state is hidden. The solution to the hidden state problem87

88 CHAPTER 6. PARTIALLY OBSERVABLE MDPS(HSP) is to update an agent's internal state (IS) based on its previous observations andactions. This internal state summarizes the trace of previous events and is used to augmentthe information of the current observation in the hope that the state ambiguities are resolved.Let's have another look at Figure 6.1. Suppose that the agent sees a rectangle, steps left, seesa circle, steps right, and sees a circle. Suppose also that there is no noise in the executionof actions, then in which state is the agent? The answer is in state 3, since only state 3 canemit a rectangle and a circle symbol. Thus, the augmented state is uniquely de�ned andcan be used by the policy for selecting the optimal action. Figure 6.2 shows how previousobservations/actions of the environment are stored and used to create the IS. Then the IS iscombined with the current observation to generate a description of the state which is used bythe policy to select an action.
 Environment

state 3

Left Right

 t-2 t-1

 I S

Recollection

Current
Observation

Action
Right

Figure 6.2: The decision making loop of an agent in a partially observable environment. Theagent receives an observation from the environment de�ned in Figure 6.1. The recollectedobservations and actions are used to create an internal state (IS). This internal state is thenaugmented with the current observation and the resulting state is presented to the policy.The policy then selects an action, which together with the current observation is memorized.Finally the action is executed and changes the environment.Outline of this chapter. In Section 6.1, we describe the POMDP framework andalso optimal algorithms from operations research based on dynamic programming algorithmswhich allow computing optimal policies by explicitly representing the uncertainty of the statein a probabilistic description. In Section 6.2, we will describe our novel algorithm HQ-learning,and show its capability in solving a number of partially observable mazes. In Section 6.3, wesummarize related work. In Section 6.4, we conclude with some �nal statements about theproblems and algorithms.

6.1. OPTIMAL ALGORITHMS 896.1 Optimal AlgorithmsOperations research has investigated optimal algorithms for solving POMDPs for some timealready (see Lovejoy (1991) for an overview). They treat POMDPs as planning problems,which means that the state transition function, reward function, and observation function aregiven, and that the goal is to compute an optimal plan. Note that this plan is not representedby a single sequence of actions, since such a plan would probably not be carried out due tothe stochasticity of the problem (in e.g. the transition function). Instead, the plan is againrepresented by a policy mapping states to actions. This is similar to the MDP frameworkof Chapter 2. The big di�erence with MDPs is that even when we know the model of thePOMDP, computing an optimal policy is extremely hard. An agent may confuse di�erentstates due to the noise in the observation function and may be totally mistaken about thetrue state of the world. So how can it then compute an optimal policy? Well, it can by takingits uncertainty into account in its decision making. We will see that this allows for selectinginformation gathering actions and goal-directed actions based on maximizing its expectedfuture discounted cumulative reward.6.1.1 POMDP Speci�cationA POMDP is a MDP where the agent does not receive the state of the world as input, butan observation of this state. Thus, the agent should use multiple observations in its decisionmaking policy. As for MDPs, the system's goal is to obtain maximal (discounted) cumulativereward. A POMDP is formally speci�ed by:� t = 1; 2; 3; : : : is a discrete time counter.� S is a �nite set of states.� A is a �nite set of actions.� P (st+1jst; at) denotes the probability of transition to state st+1 given state st and actionat.� R maps state/action pairs to scalar reinforcement signals.� O is a �nite set of observations.� P0 is the probability distribution over initial states.� P (ojs) denotes the probability of observing a particular (ambiguous) input o in state s.We write ot = B(st) to denote the observation emitted at time t, while visiting state st.� 0 �
 � 1 is a discount factor which trades o� immediate rewards against futurerewards.6.1.2 Belief StatesTo compute an optimal policy we need to use an optimal description of the world state.Due to the uncertainty in action outcomes (noise in the execution of actions) and the partialobservability of world states, we are usually not certain that the agent is in a particular single

90 CHAPTER 6. PARTIALLY OBSERVABLE MDPSenvironmental state. Taking the most probable state is possible, but this cannot lead tooptimal policies for particular POMDPs, since it does not take into account that the agentcan be in many di�erent states. For computing optimal policies, we compute occupancyprobabilities over all states. Such a probability distribution over possible world states iscalled a belief state. We will denote the belief state at time t as bt, where bt(s) is the beliefthat we are in state s at time t. The belief state gives us all necessary information to decideupon the optimal action (Sondik, 1971) | additional information about previous states andactions is super
uous.Computing belief states. At trial start up, the a priori probability of being in eachstate s is P0(s). Since the agent is \thrown" in the world at time t = 1, it also receives anobservation (o1). Therefore, we can compute the belief state at t = 1 using Bayes' rule:b1(s) = P (sjo1; P0) = P0(s)P (o1js)Pi P0(i)P (o1ji)At time t-1, we know bt�1, the selected action at�1 and after making a new observation ot,we can compute bt as follows:bt(s) = P (sjot; bt�1; at�1) = P (otjs)Pi bt�1(i)P (sji; at�1)Pj P (otjj)Pi bt�1(i)P (jji; at�1) (6.1)In the nominator we sum the probabilities of entering state s over the whole ensemble of states.We can do this, since the state space is �nite. The denominator equals P (otjbt�1; at�1) andcan be seen as a normalizing factor to keep the constraint Pj bt(j) = 1 true.Example of belief state dynamics. Consider again the environment of Figure 6.1.Suppose that the actions go-left and go-right are executed with 100% probability. If theinitial probability distribution over states is f0:2; 0:2; 0:2; 0:2; 0:2; 0g and the agent observesa circle, then b1 = f0:22; 0:22; 0:11; 0:22; 0:22; 0g. Now suppose the agent executes action go-right and observes a circle. Then the belief state b2 = f0; 0:33; 0:17; 0:17; 0:33; 0g. Again theagent goes right and observes a circle, then the belief state b3 = f0; 0; 0:33; 0:33; 0:33; 0g, andagain | b4 = f0; 0; 0; 0:5; 0:5; 0g. Finally after 4 actions and 5 circles, the agent knows withcertainty that it is in state 5 (thus it could also infer that it started in state 1). In this case,the actions were deterministic and the uncertainty decreased after each action. In general,the uncertainty can increase or decrease dependent on the belief state, and the transitionand observation functions.1 In such environments the agent can reduce state uncertainty byvisiting particular states with exceptional observations. Such states are generally referred toas landmark states, which play an important role in designing algorithms for POMDPs.6.1.3 Computing an Optimal PolicyThe policy maps a belief state to an action:at = �(bt)Note that the belief state bt has the dimension of the state space (to be precise its dimensionis jSj � 1) and consists of continuous variables. Computing optimal policies for such spacesis extremely di�cult, especially if there are many states. There are some special propertiesof the space setup by the belief states, however, which makes it possible to compute optimal1Even deterministic actions do not imply that the uncertainty or entropy always decreases.

6.1. OPTIMAL ALGORITHMS 91policies. The important point is that there are �nitely many segments in the belief statespace for which the same optimal action is required, when we consider a �nite horizon of thePOMDPs. This makes it possible for optimal algorithms to store for all crucial belief states(the corners of line segments in belief space), the optimal action and the Q-values.There are two kinds of exact algorithms, one works with vectors in the belief state space,the other works with pre-generated policy trees which are then evaluated on di�erent segmentsof belief space.DP on vectors in belief state space. We can derive a DP algorithm which at eachiteration computes all possible belief states given the previous set of belief states by usingEquation 6.1 and iterating over all possible actions and observations. Then the algorithmcomputes their values | for some belief state b, we can compute its 1-step value as follows:V �1 (b) = maxa Xs b(s)R(s; a) (6.2)Note that this value is a linear product of the belief state and the reward function. Then, thet-step value can be computed using value iteration as follows:V �t (b) = maxa Xs b(s)R(s; a) +
Xs Xo Xi b(s)P (ijs; a)P (oji)V �t�1(b(o; a)) (6.3)where b(o; a) is de�ned as the belief state resulting from observing observation o after selectingaction a in belief state b. Thus, we basically use transition probabilities between belief statesand compute the value of a belief state in a very similar way as for MDPs.One problem is that although the number of belief states is �nite, it grows exponentiallywith the horizon of the planning process. Therefore, some pruning in belief state space isneeded to make the computations feasible. We will not discuss those topics further. Interestedreaders are referred to Cassandra's thesis (1998).Another problem is that we have assumed that we start with an initial belief state which isknown a priori Now assume that we do not yet know the initial belief state when we want tocompute the value function, although this belief state is given later on once we get a probleminstance. It is still possible to store the value function since it is piecewise linear which meansthat there are �nitely many facets (see (Cassandra, 1998) for a formal proof). We know thatone policy is always best for a speci�c region of the belief state. Each policies' value functionis linear in the belief state (see Equation 6.3). Thus, since we always take the maximum ofthe linear functions, the optimal value function is a piecewise linear convex function (Figure6.3). We cannot compute the facets using the simple algorithm described above, however,since we would need to compute belief state intervals which are recursively re�ned. Then foreach belief state interval we have to compute the optimal action. Therefore, we need to usemore di�cult algorithms for solving this more general problem.Policy trees. For computing the optimal policy given an unknown a priori state, wecan make use of policy trees (Littman, 1996; Cassandra et al., 1994; Kaelbling et al., 1995).Policy trees fully describe how the agent should act in the next t steps, and use the sequenceof observations in determining correct action selection (see Figure 6.4).Given each particular belief state, one t-step policy tree is optimal. We want to know,however, for which interval in belief state space some particular policy tree is optimal. Tobe able to compute this, we can generate all possible t-step policy trees and evaluate themon each state. Then we are able to compute the value function of a policy-tree as a linearfunction of the belief state.

92 CHAPTER 6. PARTIALLY OBSERVABLE MDPS
Q(s,p)2

Q(s,p)3

Q 1(s,p)

b(s)0 1

Expected
t-step policy
valueV(s)

Figure 6.3: A two state problem de�ned by the probability we are in state s. We show theoptimal value function for this belief state space, together with 3 Q-functions of di�erentpolicies. Dependent on the belief state, one policy is the best one. Since the Q-functions ofpolicies are a linear function of the belief state, the optimal value function is a piece-wiselinear convex function.

A

O Om2
O1

A A A

A A A

A

O Om2
O1

t-1 steps to go

2 steps to go

1 step to go

t steps to go

Figure 6.4: A t-step policy tree. After each action an observation is made and this observationdetermines which branch in the tree is followed after which the rest of the policy tree isexecuted.Thus, again we start simple. If the agent can only select a single action, we say that theagent executes a 1-step policy tree. We denote the policy tree as p, and p's root action bya(p). We compute the Q-value of executing the 1-step policy tree p in state s as:Q(s; p) = R(s; a(p))Where as usual R(s; a(p)) is the immediate reinforcement for selecting action a(p) in state s.Then, we construct a t-step policy tree p from a set of t�1-step policy trees fp1t�1; : : : ; pjOjt�1g

6.1. OPTIMAL ALGORITHMS 93by de�ning which observations has lead to them (we denote pt�1(o) as the policy-tree pt�1which follows observation o) and by merging these trees by a rootnode with action a(p).We can compute the value function of a t-step policy tree by combining the value functionsof its t-1-step policy subtrees. The value of executing the t-step policy tree pt in state s canbe computed as:Q(s; pt) = R(s; a(pt)) +
Xs0 P (s0js; a)Xo P (ojs0)Q(s0; pt�1(o))Thus, we just add the immediate reward to the expected value of executing a particularselected policy subtree (which one depends on the observation) in the next state. We storeall values Q(s; pt) of executing the policy tree pt in state s.Then, when given a belief state, we can simply weigh the di�erent values according totheir occupancy probabilities to obtain the evaluation of executing a policy tree on a beliefstate b: Q(b; p) = Xs b(s)Q(s; p)Now the t-step value of a particular belief state b is the maximal value over all policy trees:Vt(b) = maxpt Q(b; pt)Complexity. The algorithm is intractable for all but small problems. Especially for longor in�nite planning horizons the costs are infeasible. There are jOtj di�erent t-step observationsequences, and 1 + jOj+ jO2j+ : : : jOtj = (jOjt + 1� 1)=(jOj � 1) nodes in each t-step policytree. Since at each node we can choose between jAj di�erent actions, the total number ofpolicy trees is jAj(jOjt+1�1)=(jOj�1) which grows superexponentially! Finally, we note that thenumber of facets of the optimal value function may be in�nite for in�nite horizon problems.Faster optimal algorithms. In principle it is possible that each one of these policytrees can be optimal for some point in belief space. Fortunately, in practice many policy treesare completely dominated by other policy trees (a policy tree is dominated if for each possiblebelief state there exists another policy tree with larger or equal Q-value), so that they canbe pruned away. This allows for signi�cant reductions in computational time and storagespace. Further reductions are made possible by using particular online generation algorithms,e.g. the Witness algorithm (Cassandra et al., 1994; Littman, 1996) or algorithms proposedby (Cassandra, 1998; Zhang and Liu, 1996) which only generate policy trees which have thepossibility of being optimal for some points in belief space. These methods can signi�cantlyreduce computational requirements for practical problems. Still, computing optimal policiesfor general problems remains extremely expensive.Littman et al. (1995) and Cassandra (1998) compare di�erent POMDP algorithms usingbelief states. They report that \small POMDPs" (with less than 10 states and few actions) donot pose a very big problem for most methods. Larger POMDPs (50 to 100 states), however,can cause major problems. Thus, although the theory allows us to compute optimal solutions,the gap between theory and practice does not allow us to use these algorithms for real worldproblems. Therefore, we will focus on heuristic methods which can be used to �nd suboptimalsolutions to much larger problems.

94 CHAPTER 6. PARTIALLY OBSERVABLE MDPS6.2 HQ-learningWe have seen that general and exact algorithms are feasible only for small problems. Fur-thermore, they require a model of the POMDP. That explains the interest in reinforcementlearning methods for �nding good but not necessarily optimal solutions. Examples are theuse of recurrent networks (Schmidhuber, 1991d; Lin, 1993), hidden Markov models (McCal-lum, 1993), higher order neural networks (Ring, 1994), memory bits (Cli� and Ross, 1994),and stochastic policies (Jaakkola, Singh and Jordan, 1995). Unfortunately, however, mostheuristic methods do not scale up very well (Littman, Cassandra and Kaelbling, 1995) andare only useful for particular POMDPs.We will now describe HQ-learning (Wiering and Schmidhuber, 1997), a novel approachbased on �nite state memory implemented in a sequence of agents. HQ does not need a modeland can solve large deterministic POMDPs.6.2.1 Memory in HQTo select the optimal next action it is often not necessary to memorize the entire past (ingeneral, this would be infeasible since the necessary memory grows exponentially with theorder of the Markov chain, see Appendix A). A few memories corresponding to importantpreviously achieved subgoals can be su�cient. For instance, suppose your instructions for theway to the station are: \Follow this road to the tra�c light, turn left, follow that road to thenext tra�c light, turn right, there you are.". While you are on your way, only a few memoriesare relevant, such as \I already passed the �rst tra�c light". Between two such subgoals amemory-independent, reactive policy (RP) will carry you safely.Overview. HQ-learning uses a divide-and-conquer strategy to decompose a given POMDPinto a sequence of reactive policy problems (RPPs). RPPs can be solved by RPs: all statescausing identical inputs require the same optimal action. The only \critical" points are thosecorresponding to transitions from one RP to the next.To deal with such transitions HQ uses multiple RPP-solving subagents. Each agent's RPis an adaptive mapping from observations to actions. At a given time only one agent can beactive, and the system's only type of short-term memory is embodied by a pointer indicatingwhich one. Thus, the internal state (IS) of the system is just the pointer to the active agent.RPs of di�erent agents are combined in a way learned by the agents themselves. The �rstactive agent uses a subgoal table (its HQ-table) to generate a subgoal for itself (subgoals arerepresented by desired inputs | if these inputs are unique in a speci�c region, we call themlandmark states). Then it follows the policy embodied by its Q-function until it achieves itssubgoal. Then control is passed to the next agent, and the procedure repeats itself. After theoverall goal is achieved or a time limit is exceeded, each agent adjusts both its RP and itssubgoal. This is done by two learning rules that interact without explicit communication: (1)Q-table adaptation is based on slight modi�cations of Q(�)-learning. (2) HQ-table adaptationis based on tracing successful subgoal sequences by Q(�)-learning on the higher (subgoal)level. E�ectively, subgoal/RP combinations leading to higher rewards become more likely tobe chosen.POMDPs as RPP sequences. The optimal policy of any deterministic �nite POMDPwith �xed starting state and �nal goal state is decomposable into a �nite sequence of optimalreactive memoryless policies for appropriate RPPs, along with subgoals determining transi-tions from one RPP to the next. The trivial decomposition consists of single-state RPPs and

6.2. HQ-LEARNING 95the corresponding subgoals. In general, POMDPs whose only decomposition is trivial arehard | there is no e�cient algorithm for solving them. This is simple to see, if we consideran environment where there is only 1 observation (the agent is thus blind). To solve suchproblems, all T -step policies have to be tried out from the initial state, where T denotes thelength of the optimal solution path, which results in jAjT possibilities. HQ, however, is aimedat situations that require few transitions between RPPs which means that each RPP can beused for many states.Architecture. System life is separable into \trials". A trial consists of at most Tmaxdiscrete time steps t = 1; 2; 3; : : : ; T , where T < Tmax if the agent solves the problem in fewerthan Tmax time steps.There is an ordered sequence of M agents C1 , C2 , ... CM , each equipped with a Q-table, an HQ-table, and a control transfer unit, except for CM , which only has a Q-table (seeFigure 6.5). Each agent is responsible for learning part of the system's policy. Its Q-tablerepresents its local policy for executing an action given an input. It is given by a matrix ofsize jOj � jAj, where jOj is the number of di�erent possible observations and jAj the numberof possible actions. Qi(ot; aj) denotes Ci 's Q-value (utility) of action aj given observationot. The agent's current subgoal is generated with the help of its HQ-table, a vector with jOjelements. For each possible observation there is an HQ-table entry representing its estimatedvalue as a subgoal. HQi(oj) denotes Ci 's HQ-value (utility) of selecting oj as its subgoal.The system's current policy is the policy of the currently active agent. If Ci is active attime step t, then we will denote this by Active(t) = i. The variable Active(t) represents theonly kind of short-term memory in the system.Selecting a subgoal. In the beginning C1 is made active. Once Ci is active, its HQ-table is used to select a subgoal for Ci . To explore di�erent subgoal sequences we use theMax-random rule: the subgoal with maximal HQi value is selected with probability Pmax, arandom subgoal is selected with probability 1 � Pmax. Con
icts between multiple subgoalswith maximal HQi-values are solved by randomly selecting one. ôi denotes the subgoalselected by agent Ci . This subgoal is only used in transfer of control as de�ned below andshould not be confused with an observation.Selecting an action. Ci 's action choice depends only on the current observation ot. Dur-ing learning, at time t, the active agent Ci will select actions according to the Max-Boltzmanndistribution (see Chapter 5). The \temperature" Ti adjusts the degree of randomness involvedin agent Ci 's action selection in case the Boltzmann rule is used.Transfer of control. Control is transferred from one active agent to the next as follows.Each time Ci has executed an action, its control transfer unit checks whether Ci has reachedthe goal. If not, it checks whether Ci has solved its subgoal to decide whether control shouldbe passed on to Ci+1 . We let ti denote the time at which agent Ci is made active (at systemstart-up, we set t1 1).IF no goal state reached AND current subgoal = ôiAND Active(t) < M AND B(St) = ôiTHEN Active(t+ 1) Active(t) + 1 AND ti+1 t+ 16.2.2 Learning RulesWe will use o�-line learning for updating the tables | this means storing experiences andpostponing learning until after trial end (no intra-trial parameter adaptation). In principle,

96 CHAPTER 6. PARTIALLY OBSERVABLE MDPS
TRANSFER
 CONTROL

TRANSFER
 CONTROL

Q-TABLE 1

Q-TABLE 2

Q-TABLE 3

AGENT 1

AGENT 2

AGENT 3

HQ-TABLE 1

HQ-TABLE 2

Figure 6.5: Basic HQ-architecture. Three agents are connected in a sequential way. Eachagent has a Q-table, an HQ-table, and a control transfer unit, except for the last agent whichonly has a Q-table. The Q-table stores estimates of actual observation/action values and isused to select the next action. The HQ-table stores estimated subgoal values and is used togenerate a subgoal once the agent is made active. The solid box indicates that the second agentis the currently active agent. Once the agent has achieved its subgoal, the control transfer unitpasses control to its successor.however, online learning is applicable as well (see below). We will describe two HQ variants,one based on Q-learning, the other on Q(�)-learning | Q(�) overcomes Q's inability to solvecertain RPPs. The learning rules appear very similar to those of conventional Q and Q(�).One major di�erence though is that each agent's prospects of achieving its subgoal tend tovary as various agents try various subgoals.Learning the Q-values. We want Qi(ot; at) to approximate the system's expecteddiscounted future reward for executing action at, given ot. In the one-step lookahead case wehave Qi(ot; at) = Xsj2S P (sj jot;�; i)(R(sj ; at) +
 Xsk2S P (skjsj; at)VActive(t+1)(B(sk)));where P (sj jot;�; i) denotes the probability that the system is in state sj at time t givenobservation ot, all architecture parameters denoted �, and the information that i = Active(t).HQ-learning does not depend on estimating this probability, although belief states or a worldmodel might help to speed up learning. Vi(ot) is the utility of observation ot according toagent Ci , which is equal to the Q-value for taking the best action:Vi(ot) = maxaj2AfQi(ot; aj)g:Q-value updates are generated in two di�erent situations (T � Tmax denotes the totalnumber of executed actions during the current trial, and �Q is the learning rate):Q.1 Let Ci and Cj denote the agents active at times t and t + 1 | possibly i = j. If t < T

6.2. HQ-LEARNING 97thenQi(ot; at) (1� �Q)Qi(ot; at) + �Q(R(st; at) +
Vj(ot+1))Q.2 If agent Ci is active at time T , and the �nal action aT has been executed, thenQi(oT ; aT) (1� �Q)Qi(oT ; aT) + �QR(sT ; aT)Note that R(sT ; aT) is the �nal reward for reaching a goal state if T < Tmax. A main di�erencewith standard one-step Q-learning is that agents can be trained on Q-values which are nottheir own (see [Q.1]).Learning the HQ-values: intuition. Recall the introduction's tra�c light task. The�rst tra�c light is a good subgoal. We want our system to discover this by exploring (initiallyrandom) subgoals and learning their HQ-values. The tra�c light's HQ-value, for instance,should converge to the expected (discounted) future cumulative reinforcement to be obtainedafter it has been chosen as a subgoal. How? Once the tra�c light has been reached and the�rst agent passes control to the next, the latter's own expectation of future reward is used toupdate the �rst's HQ-values. Where do the latter's expectations originate? They re
ect itsown experience with �nal reward (to be obtained at the station).More formally. In the optimal case we haveHQi(oj) = E(Ri +
ti+1�tiHVi+1);where E denotes the average over all possible trajectories. Ri = Pti+1�1t=ti
t�tiR(st; at), Ci 'sdiscounted cumulative reinforcement during the time it will be active (note that this timeinterval and the states encountered by Ci depend on Ci 's subtask). HVi = maxol2OfHQi(ol)gis the estimated discounted cumulative reinforcement to be received by Ci and followingagents.We adjust only HQ-values of agents active before trial end (N denotes the number ofagents active during the last trial, �HQ denotes the learning rate, and ôi the chosen subgoalfor agent Ci):HQ.1 If Ci is invoked before agent CN�1 , then we update according toHQi(ôi) (1� �HQ)HQi(ôi) + �HQ(Ri +
ti+1�tiHVi+1)HQ.2 If Ci = CN�1 , then HQi(ôi) (1� �HQ)HQi(ôi) + �HQ(Ri +
tN�tiRN)HQ.3 If Ci = CN , and i < M , then HQi(ôi) (1� �HQ)HQi(ôi) + �HQRiThe �rst and third rules resemble traditional Q-learning rules. The second rule is anadditional improvement for cases in which agent CN has learned a (possibly high) value for asubgoal that is unachievable due to subgoals selected by previous agents.HQ(�)-learning: motivation. Q-learning's lookahead capability is restricted to onestep. It cannot solve all RPPs because it cannot properly assign credit to di�erent actionsleading to identical next states (Whitehead, 1992). For instance, suppose you walk along awall that looks the same everywhere except in the middle where there is a picture. The goalis to reach the left corner where there is reward. This RPP is solvable by a RP. Given the\picture" input, however, Q-learning with one-step lookahead would assign equal values toactions \go left" and \go right" because they both yield identical \wall" observations.Consequently HQ-learning may su�er from Q-learning's inability to solve certain RPPs.To overcome this problem, we augment HQ by TD(�)-methods for evaluating and improving

98 CHAPTER 6. PARTIALLY OBSERVABLE MDPSpolicies in a manner analogous to Lin's o�ine Q(�)-method (1993). TD(�)-methods canlearn from long-term e�ects of actions and thus disambiguate identical short-term e�ects ofdi�erent actions. Our experiments indicate that RPPs are solvable by Q(�)-learning withsu�ciently high �.Q(�).1 For the Q-tables we �rst compute desired Q-values Q0(ot; aj) for t = T; : : : ; 1:Q0(oT ; aT) R(sT ; aT)Q0(ot; at) R(st; at) +
((1 � �)VActive(t+1)(ot+1) + �Q0(ot+1; at+1))Q(�).2 Then we update Q-values, beginning with QN (oT ; aT) and ending with Q1(o1; a1),according toQi(ot; at) (1� �Q)Qi(ot; at) + �QQ0(ot; at)HQ(�).1 For the HQ-tables we also compute desired HQ-values HQ0i(ôi) for i = N; : : : ; 1:HQ0N (ôN) RNHQ0N�1(ôN�1) RN�1 +
tN�tiRNHQ0i(ôi) Ri +
ti+1�ti((1� �)HVi+1 + �HQ0i+1(ôi+1))HQ(�).2 Then we update the HQ-values for agents C1 ; : : : ; CMin(N ;M�1) according toHQi(ôi) (1� �HQ)HQi(ôi) + �HQHQ0i(ôi)In principle, online Q(�) may be used as well. Online Q(�) should not use \action-penalty"(Koenig and Simmons, 1996), however, because punishing varying actions in response toambiguous inputs can trap the agent in cyclic behavior.Combined dynamics. Q-table policies are reactive and learn to solve RPPs. HQ-tablepolicies are metastrategies for composing RPP sequences. Although Q-tables and HQ-tablesdo not explicitly communicate they in
uence each other through simultaneous learning. Theircooperation results in complex dynamics quite di�erent from those of conventional Q-learning.Utilities of subgoals and RPs are estimated by tracking how often they are part of suc-cessful subgoal/RP combinations. Subgoals that never or rarely occur in solutions becomeless likely to be chosen, others become more likely. In a certain sense subtasks compete forbeing assigned to subagents, and the subgoal choices \co-evolve" with the RPs. Maximizingits own expected utility, each agent implicitly takes into account frequent decisions made byother agents. Each agent eventually settles down on a particular RPP solvable by its RP andceases to adapt. This will be illustrated by Experiment 1 in Section 6.3.Estimation of average reward for choosing a particular subgoal ignores dependencies onprevious subgoals. This makes local minima possible. If several rewarding suboptimal subgoalsequences are \close" in subgoal space, then the optimal one may be less probable thansuboptimal ones. We will show in the experiments that this actually happens.Exploration issues. Initial choices of subgoals and RPs may in
uence the �nal result -there may be local minimum traps. Exploration is a partial remedy: it encourages alternativecompetitive strategies similar to the current one. Too little exploration may prevent thesystem from discovering the goal at all. Too much exploration, however, prevents reliableestimates of the current policy's quality and reuse of previous successful RPs. To avoidover-exploration we use the Max-Boltzmann (Max-random) distribution for Q-values (HQ-values). These distributions also make it easy to reduce the relative weight of exploration (asopposed to exploitation): to obtain a deterministic policy at the end of the learning process,we increase Pmax during learning until it �nally achieves a maximum value.

6.2. HQ-LEARNING 99Selecting actions according to the traditional Boltzmann distribution causes the followingproblems: (1) It is hard to �nd good values for the temperature parameter. (2) The degree ofexploration depends on the Q-values: actions with almost identical Q-values (given a certaininput) will be executed equally often. For instance, suppose a sequence of 5 di�erent statesin a maze leads to observation sequence O1�O1�O1�O1�O1, where O1 represents a singleobservation. Now suppose there are almost equal Q-values for going west or east in responseto O1. Then the Q-updates will hardly change the di�erences between these Q-values. Theresulting random walk behavior will cost a lot of simulation time.For RP training we prefer the Max-Boltzmann rule instead. It focuses on the greedypolicy and only explores actions competitive with the optimal actions. Subgoal explorationis less critical though. The Max-random subgoal exploration rule may be replaced by theMax-Boltzmann rule or others.Using gate-values. The shown learning rules are almost the same as for conventionalQ-learning, but since we use a multiple agent system, the task of one particular agent isusually not �xed during the learning process. As long as di�erent subgoals of previous agentsare tried out, the subtask of an agent changes. Since during the learning process subgoals ofagents are generated stochastically, we must take care that an agent focuses on the subtaskwhich it has to carry out most of the times. We can do this by using little exploration, butalso by constructing a learning rule which uses the probabilities of the generated subgoalsof previous agents to determine the magnitude (size) of parameter changes for each learningstep. We can do this by computing gate-values gi which stand for the probability that thecurrent sequence of i� 1 subgoals is selected:g1 1:0;because before agent 1 is made active, no subgoals are selected.gi+1 giPHQi(oj);which means that the gate-value for agent i + 1 is equal to the gate-value for agent i mul-tiplied with the probability that agent i has chosen its particular subgoal. For Max-randomexploration PHQ(oj) = Pmax+ 1�PmaxjOj if subgoal oj has maximal HQ-value (we add the prob-ability of selecting the max-subgoal to the probability of randomly selecting the subgoal) andPHQ(oj) = 1�PmaxjOj otherwise. These gate-values are then multiplied with the learning rateto determine the size of each learning step. Note that we make a independency assumptionamong subgoals to keep the system simpler. It might be true that di�erent sequences ofsubgoals lead to the same system-state, just like in normal Q-learning di�erent sequences ofactions might lead to the same environmental state, but in the general case it is impossi-ble to calculate all the di�erent combinations of the subgoals which result in the obtainedsystemstate. We will call HQ-learning with the gate-values HQG-learning.6.2.3 ExperimentsWe tested our system on three tasks in partially observable environments. The �rst task iscomparatively simple | it will serve to exemplify how HQ discovers and stabilizes appropriatesubgoal combinations. It requires �nding a path from start to goal in a partially observable10 � 10-maze, and can be collectively solved by three or more agents. We study systemperformance as more agents are added. The second, quite complex task involves �nding a

100 CHAPTER 6. PARTIALLY OBSERVABLE MDPS

S

G

*

*

Figure 6.6: A partially observable maze. The task is to �nd a path leading from start S togoal G. The optimal solution requires 28 steps and at least three reactive agents. The �gureshows a possible suboptimal solution that costs 30 steps. Asterisks mark appropriate subgoals.key which opens a door blocking the path to the goal. The optimal solution (which requiresat least 3 agents) costs 83 steps. The third task shows that HQG-learning can be used forinductive transfer | problem solving knowledge acquired in one task can be used to speed-upsolving another, similar, but more complex task.Learning to Solve a Partially Observable MazeTask. The �rst experiment involves the partially observable maze shown in Figure 6.6.The system has to discover a path leading from start position S to goal G. There are fouractions with obvious semantics: go west, go north, go east, go south. 16 possible observationsare computed by adding the \�eld values" of blocked �elds next to the agent's position,where the �eld value of the west, north, east, and south �eld is 1, 2, 4, and 8, respectively |the agent can only \see" which of the 4 adjacent �elds are blocked. Although there are 62possible agent positions, there are only 9 highly ambiguous inputs. (Not all of the 16 possibleobservations can occur in this maze. This means that the system may occasionally generateunsolvable subgoals, such that control will never be transferred to another agent.) There isno deterministic, memory-free policy for solving this task. Stochastic memory-free policies(such as the one described in Jaakkola, Singh and Jordan, 1995) will also perform poorly. Forinstance, input 5 stands for \�elds to the left and to the right of the agent are blocked". Theoptimal action in response to input 5 depends on the subtask: at the beginning of a trial, itis \go north", later \go south", near the end, \go north" again. Hence at least three reactiveagents are necessary to solve this POMDP.Reward function. Once the system hits the goal it receives a reward of 100. Otherwisethe reward is zero. The discount factor
 = 0:9.Parameters and experimental set-up. We compare systems with 3, 4, 6, 8, and 12agents and noise-free actions. We also compare systems with 4, 8, and 12 agents whose actionsselected during learning/testing are replaced by random actions with probability 10%. Oneexperiment consists of 100 simulations of a given system. Each simulation consists of 20,000

6.2. HQ-LEARNING 101

0

200

400

600

800

1000

0 5000 10000 15000 20000

3 agents
4 agents
6 agents
8 agents

12 agents
optimal

0

200

400

600

800

1000

0 5000 10000 15000 20000

4 agents
8 agents

12 agents
optimal

Figure 6.7: left: HQ-learning results for the partially observable maze, for 3, 4, 6, 8, and 12agents. We plot average test run length against trial numbers (means of 100 simulations).The system almost always converges to near-optimal solutions. Using more than the required3 agents tends to improve performance. Right: results for 4, 8, and 12 agents whose actionsare corrupted by 10% noise. In most cases they �nd the goal, although noisy actions decreaseperformance.trials. Tmax is 1000. After every 500th trial there is a test run during which actions andsubgoals with maximal table entries are selected (Pmax is set to 1.0). If the system does not�nd the goal during a test run, then the trial's outcome is counted as 1000 steps.After a coarse search through parameter space, we use the following parameters for allexperiments: �Q = .05, �HQ = .2, 8i : Ti = :1, � = .9 for both HQ-tables and Q-tables.Pmax is set to :9 and linearly increased to 1.0. All table entries are initialized with 0.Results. Figure 6.7A plots average test run length against trial numbers. Within 20,000trials most systems almost always �nd near-optimal deterministic policies. Consider Table6.1. The largest systems are always able to decompose the POMDP into a sequence of RPPs.The average number of steps is close to optimal. In approximately 1 out of 8 cases, theoptimal 28-step path is found. In most cases one of the 30-step solutions is found. Since thenumber of 30-step solutions is much larger than the number of 28-step solutions (there aremany more appropriate subgoal combinations), this result is not surprising.Systems with more than 3 agents are performing better | here the system pro�ts fromhaving more free parameters. More than 6 agents do not help though. All systems performsigni�cantly better than the random system, which �nds the goal in only 19% of all 1000 steptrials.In case of noisy actions (the probability of replacing a selected action by a random actionis 10%), the systems still reach the goal in most of the simulations (see Figure 3B). In the�nal trial of each simulation, systems with 4, 8, and 12 agents �nd the goal with probabilitiesof 86, 87, and 84 percent, respectively. There is no signi�cant di�erence between smaller andlarger systems.

102 CHAPTER 6. PARTIALLY OBSERVABLE MDPSSystem Av. steps (%) Goal Av. sol. (%) Optimal3 agents 263 76 30 34 agents 60 97 31 66 agents 31 100 31 148 agents 31 100 31 1212 agents 32 100 32 64 agents 10% noise 177 86 43 28 agents 10% noise 166 87 41 212 agents 10% noise 196 84 43 0Random 912 19 537 0Table 6.1: HQ-learning results for random actions replacing the selected actions with proba-bility 0% and 10%. All table entries refer to the �nal test trial. The 2nd column lists averagetrial lengths. The 3rd column lists goal hit percentages. The 4th column lists average pathlengths of solutions. The 5th column lists percentages of simulations during which the optimalpath is found.We also studied how the system adds agents during the learning process. The 8-agentsystem found solutions using 3 (4, 5, 6, 7, 8) agents in 8 (19, 16, 17, 21, 19) simulations.Using more agents tends to make things easier. During the �rst few trials 3 agents were usedon average, during the �nal trials 6. Less agents tend to give better results, however. Why?Systems that fail to solve the task with few subgoals start using more subgoals until theybecome successful. But the more subgoals there are, the more possibilities to compose paths,and the lower the probability of �nding a shortest path in this maze.Experimental analysis. How does the (3-agent) system discover and stabilize subgoalcombinations (SCs)? The only optimal 28-step solution uses observation 2 as the �rst subgoal(5th top �eld) and observation 9 as the second (southwest inner corner). There are several30-step solutions, however | e.g., SCs (3, 12), (2, 12), (10, 12).Figure 6.8 shows how SCs evolve by plotting them every 10 trials (observation 16 standsfor an unsolved subgoal). The �rst 10,000 SCs are quite random, and the second agent oftenis not able to achieve its subgoal at all. Later, however, the system gradually focuses onsuccessful SCs. Although useful SCs are occasionally lost due to exploration of alternativeSCs, near simulation end the system converges to SC (3, 12).The goal is hardly ever found prior to trial 5200 (the Figure does not show this). Thenthere is a sudden jump in performance | most later trials cost just 30 steps. From thismoment on observation 12 is used as second subgoal in more than 95% of all cases, and thegoal is found in about 85%. The �rst subgoal tends to vary among observations 2, 3 and10. Finally, around 16,000 trials, the �rst subgoal settles down on observation 3, althoughobservation 2 would work as well.The Key and the DoorTask. The second experiment involves the 26 � 23 maze shown in Figure 6.9. Startingat S, the system has to (1) fetch a key at position K, (2) move towards the \door" (theshaded area) which normally behaves like a wall and will open (disappear) only if the agentis in possession of the key, and (3) proceed to goal G. There are only 11 di�erent, highly

6.2. HQ-LEARNING 103
3-agent system

0 4 8 12 16Subgoal 1
0

4
8

12
16

Subgoal 2

5000

10000

15000

#Trials

Figure 6.8: Subgoal combinations (SCs) generated by a 3-agent system, sampled at intervalsof 10 trials. Initially many di�erent SCs are tried out. After 10,000 trials HQ explores lessand less SCs until it �nally converges to SC (3, 12).ambiguous inputs; the key (door) is observed as a free �eld (wall). The optimal path takes83 steps.Reward function. Once the system hits the goal, it receives a reward of 500. For allother actions there is a reward of -0.1. There is no additional, intermediate reward for takingthe key or going through the door. The discount factor
 = 1:0.Parameters. The experimental set-up is analogous to the one in section 3.1. We usesystems with 3, 4, 6 and 8 agents, and systems with 8 agents whose actions are corrupted bydi�erent amounts of noise (5%, 10%, and 25%). �Q = .05, �HQ = .01 8i : Ti = :2. Pmax islinearly increased from :4 to :8. Again, � = .9 for both HQ-tables and Q-tables, and all tableentries are zero-initialized. One simulation consists of 20,000 trials.Results. We �rst ran 20,000 thousand-step trials of a system executing random actions.It never found the goal. Then we ran the random system for 3000 10,000 step trials. Theshortest path ever found took 1,174 steps. We observe: goal discovery within 1000 steps (andwithout \action penalty" through negative reinforcement signals for each executed action) isvery unlikely to happen.Figure 6.10A and Table 6.2 show HQ-learning results for noise-free actions. Within 20,000

104 CHAPTER 6. PARTIALLY OBSERVABLE MDPS

G

K

SFigure 6.9: A partially observable maze containing a key K and a door (grey area). Startingat S, the system �rst has to �nd the key to open the door, then proceed to the goal G. Theshortest path costs 83 steps. This optimal solution requires at least three reactive agents. Thenumber of possible world states is 960.

0

200

400

600

800

1000

0 5000 10000 15000 20000

3 agents
4 agents
6 agents
8 agents
optimal

0

200

400

600

800

1000

0 5000 10000 15000 20000

5% noise
10% noise
25% noise

optimal

Figure 6.10: left: HQ-learning results for the \key and door" problem. We plot average testrun length against trial number (means of 100 simulations). Within 20,000 trials systemswith 3 (4, 6 and 8) agents �nd good deterministic policies in 85% (96%, 96% and 99%) of thesimulations. Right: HQ-learning results with an 8 agent system whose actions are replaced byrandom actions with probability 5%, 10%, and 25%.trials good, deterministic policies are found in almost all simulations. Optimal 83 step pathsare found with 3 (4, 6, 8) agents in 8% (9%, 8%, 6%) of all simulations. During the few runsthat did not lead to good solutions the goal was rarely found at all. This re
ects a general

6.2. HQ-LEARNING 105System Av. steps (%) Goal Av. sol. (%) Optimal3 agents 224 85 87 84 agents 126 96 90 96 agents 127 96 91 88 agents 101 99 92 68 agents (5% noise) 360 92 304 08 agents (10% noise) 399 90 332 08 agents (25% noise) 442 84 336 0Random *9310 19 6370 0Table 6.2: Results of 100 HQ-learning simulations for the \key and door" task. All tableentries refer to the �nal test trial. The second column lists average trial lengths. The thirdlists goal hit percentages. The fourth lists average path lengths of solutions. The �fth listspercentages of simulations during which the optimal 83 step path was found. HQ-learningcould solve the task with a limit of 1000 steps per trial. Random search needed a 10,000 steplimit.problem: in the POMDP case exploration issues are trickier than in the MDP case | muchremains to be done to better understand them.If random actions are taken in 5% (10%, 25%) of all cases, the 8 agent system still �ndsthe goal in 92% (90%, 84%) of the �nal trials (see table 6.2). In many cases long paths (300| 700 steps) are found. The best solutions use only 84 (91, 118) steps, though. Interestingly,a little noise (e.g. 5%) decreases performance a lot, but much more noise does not lead tomuch worse results.Inductive transferPartial observability is not always a big problem. For example, it may facilitate generalizationand knowledge transfer, if di�erent world states leading to similar inputs require similartreatment. In the next experiment, we exploit this potential for incremental learning: thesystem learns to transfer knowledge from a relatively simple maze's solution to a more complexone's.Task. First the system is trained to solve the maze from the �rst experiment (see Figure6.6). After 20,000 trials, the system is placed in the more complex maze shown in Figure6.11(A), without resetting its Q- and HQ-tables. Then we spend an additional 20,000 trials onsolving the second maze. We compare the results to those obtained by learning from scratch(using only the more di�cult maze for training).Reward function. Once the system hits the goal, it receives a reward of 200. Once itbumps against a wall, the reward is -2.0. All other actions are penalized by negative reward-0.1. The discount factor
 is 1.0.Parameters and experimental set-up. We test systems with 6 and 8 agents for bothtransfer learning and learning from scratch. We use HQG, the gate-based HQ system whichleads to more stable learning performance which is an advantage for incremental learning,although the learning rate is slightly lower and it �nds optimal policies less often.One experiment consists of 100 simulations of a given system. The maximal number ofsteps per trial is 1000. Every 200 trials there is a test run.After a coarse search through parameter space, we use the following parameters for all

106 CHAPTER 6. PARTIALLY OBSERVABLE MDPScompetitors: �Q = 0.04, �HQ = 0.01, 8i : Ti = 0:5, � = 0.9 for both HQ-tables and Q-tables.Pmax is linearly increased from 0:6 in the beginning to 0:9 at the end of the �rst maze andthen from 0:9 to 1:0 at the end of the simulation (now consisting of 40,000 trials, insteadof 20,000). For systems which learn from scratch, Pmax is linearly increased from 0:6 in thebeginning to 1:0 at the end of a simulation (also consisting of 40,000 trials).

S

G

0

200

400

600

800

1000

0 8000 16000 24000 32000 40000

av
er

ag
e

nr
 s

te
ps

nr epochs

RESULTS WITH KNOWLEDGE TRANSFER

Transfer 6-agents
Transfer 8-agents

optimal
Scratch 6-agents
Scratch 8-agents

Figure 6.11: (A) The system is �rst trained on the maze from Figure 6.6, then moved to thesimilar, but more complex, partially observable maze depicted above. There are 11 possibleambiguous observations. The optimal solution costs 47 steps. (B) HQ-learning results forthe incremental learning task for 6 and 8 agents, with and without knowledge transfer. Thetransfer-based systems are trained for 20,000 trials on the maze from Figure 6.6. Then they aremoved to the maze from Figure 6.11(A), for which they have to learn additional observation-action pairs. We plot average test run length against trial (epoch) numbers. After beingprimed by the �rst task, the system quickly learns good policies for the second maze.Results. Figure 6.11(B) plots average test run length against trial numbers, for systemswith and without knowledge transfer. The plot shows performance on the more complex maze,except for the �rst 20,000 trials of transfer-based systems, which correspond to performanceon the simpler maze. All systems almost always �nd near-optimal deterministic policies.Transfer-based systems with 6 and 8 agents �nd deterministic policies leading to the goalin 99%, and 100% of the simulations, respectively. Both systems that learn from scratch�nd good deterministic policies in 95% of the simulations. Obviously, knowledge transfer isbene�cial: the system quickly re�nes solutions to the �rst partially observable maze to obtaingood solutions for the second maze. For instance, after being moved to the second maze, the8-agent system has found 75 (90, 100) times a good solution after 600 (1,800, 8,800) trials.Average trial length after 20,000 trials in the second maze is 59 steps, whereas the optimalsolution requires 47 steps (the worst solution ever found requires 83 steps). Note that thesystem often does not immediately �nd the solution to the new maze. This is largely due tothe new observation in the left corridor for which a new action (go-north) has to be learned.Why does the system not always �nd optimal solutions, but sometimes gets stuck in\local maxima"? One reason may be that \local maxima" are close to global maxima: the

6.2. HQ-LEARNING 107cumulative discounted reward for a 47-step solution is 195.4 at the starting state, whereasthe cumulative reward for a 83-step solution is only slightly less, namely 191.8.6.2.4 DiscussionHQ's advantages.1. Most POMDP algorithms need a priori information about the POMDP, such as thetotal number of environmental states, the observation function, or the action model.HQ does not. HQ only has to know which actions can be selected.2. Unlike \history windows", HQ-learning can in principle handle arbitrary time lags be-tween events worth memorizing. To focus this power on where it is really needed, shorthistory windows may be included in the agent inputs to take care of the shorter timelags. This, however, is orthogonal to HQ's basic ideas.3. To reduce memory requirements, HQ does not explicitly store all experiences with di�er-ent subgoal combinations. Instead it estimates the average reward for choosing particu-lar subgoal/RP combinations, and stores its experiences in a single sequence of Q- andHQ-tables. These are used to make successful subgoal/RP combinations more likely.HQ's approach is advantageous in case the POMDP exhibits certain regular structure:if one and the same agent tends to receive RPPs achievable by similar RPs then it can\reuse" previous RPP solutions.4. HQ-learning can immediately generalize from solved POMDPs to \similar" POMDPscontaining more states but requiring identical actions in response to inputs observedduring subtasks (see the third experiment).HQ's current limitations.1. Like Q-learning, HQ-learning allows for representing RPs and subgoal evaluations byfunction approximators other than look-up tables. We have not implemented this com-bination, however.2. An agent's current subgoal does not uniquely represent previous subgoal histories. Thismeans that HQ-learning does not really get rid of the \hidden state problem" (HSP).HQ's HSP is not as bad as Q's, though. Q's is that it is impossible to build a Q-policy that reacts di�erently to identical observations, which may occur frequently.Appropriate HQ-policies, however, do exist.To deal with this HSP one might think of using subgoal trees instead of sequences. Allpossible subgoal sequences are representable by a policy tree whose branches are labeledwith subgoals and whose nodes contain RPs for solving RPPs. Each node stands fora particular history of subgoals and previously solved subtasks | there is no HSP anymore. Since the tree grows exponentially with the number of possible subgoals, however,it is practically infeasible in case of large scale POMDPs.3. In case of noisy observations transfer of control may happen at inappropriate times. Aremedy may be to use more reliable inputs combining successive observations.

108 CHAPTER 6. PARTIALLY OBSERVABLE MDPS4. In case of noisy actions, an inappropriate action may be executed right before or afterpassing control. The resulting new subtask may not be solvable by the next agent's RP.A remedy similar to the one mentioned above may be to represent subgoals as pairs ofsuccessive observations. Another possibility is to create an architecture which allowsfor returning control.5. If there are many possible observations then subgoals will be tested infrequently. Thismay delay convergence. To overcome this problem one might either try function approx-imators instead of look-up tables or let each agent generate a set of multiple, alternativesubgoals. In the latter instance, once a subgoal in the set is reached, control is trans-ferred to the next agent.6. HQ has a severe exploration problem. It relies on random walk behavior for �ndingthe goal the �rst time, which can be quite expensive for some problems | in the worstcase the agents needs exponential search time (Whitehead, 1992). Using action-penaltyor counting methods for POMDPs may result in even worse, cyclic, behavior. Thus,better ways should be found for POMDP exploration. Possibilities include selecting aconsistent action for the same observation so that e.g. counting can be used or usingpolicy trees (as mentioned above) so that the HSP completely disappears. It remainsa challenging issue to �nd exploration algorithms which work well for a large variety ofPOMDPs and algorithms solving them, however.6.3 Related WorkOther authors proposed hierarchical reinforcement learning techniques, e.g., Schmidhuber(1991b), Singh (1992), Dayan and Hinton (1993), Tham (1995), Sutton (1995b), and Thrunand Schwartz (1995). Their methods, however, have been designed for MDPs. Since thecurrent focus is on POMDPs, this section is limited to a summary of previous POMDPapproaches and methods related to HQ due to their use of abstract behaviors instead of onlysingle actions.Recurrent neural networks. Schmidhuber (1991c) uses two interacting, gradient-basedrecurrent networks for solving POMDPs. The \model network" serves to model (predict) theenvironment, the other one uses the model net to compute gradients maximizing reinforcementpredicted by the model (this extends ideas by Nguyen and B. Widrow, 1989; and Jordan andRumelhart, 1990). To our knowledge this work presents the �rst successful reinforcementlearning application to simple non-Markovian tasks (e.g., learning to be a
ip
op). Lin(1993) also uses combinations of controllers and recurrent nets. He compares time-delayneural networks (TDNNs) and recurrent neural networks.Despite their theoretical power, standard recurrent nets run into practical problems incase of long time lags between relevant input events. Although there are recent attempts atovercoming this problem for time series prediction (e.g., Schmidhuber 1992; Hihi and Bengio1996; Hochreiter and Schmidhuber 1997; Lin, Horne and Giles 1996). In general, learning tocontrol is also more complex, since the system does not only have to predict, but also makethe right choices. Another important di�erence is that the system itself is responsible forthe generated trajectories. Therefore if some trajectories need little memory, whereas other,better, trajectories need more memory, the latter may have much smaller probability of being

6.3. RELATED WORK 109found. Furthermore, exploration and system adaptions can cause previously acquired memoryto become useless, since trajectories may change signi�cantly.Map learning. An altogether di�erent approach for solving POMDPs is to learn a map ofthe environment. This approach is currently considered very attractive, and especially suitablefor navigating mobile robots, where the agent has a priori information about the result of itsactions (the odometry is known). Thrun (1998) successfully applies a map-learning algorithmto his robot Xavier, which �rst learns a grid-based map of an o�ce building environment andthen compiles this grid-based map into a topological map to speed up goal directed planning.Map learning approaches may su�er when state uncertainty and odometry errors are large,however. Therefore, some mobile robots are equipped with multiple sensors, and inputs fromthese sensors are combined to decrease the uncertainty about the state. Van Dam (1998)describes techniques for fusing the data from di�erent sources in order to learn environmentalmodels.Bayse, Dean and Vitter (1997) discuss the complexity of map learning in uncertain en-vironments. If there is no uncertainty (in observations or actions) in the environment, thenmap learning is simple | we can just try all unexplored edges. In case of uncertainty inboth actions and observations, they prove the existence of PAC algorithms, but restrict theenvironment in two ways: (1) the agent needs to know the direction in which it went afterexecuting an action, although it does not have to know to which (unintended) state it went(this is needed for being able to �nd the way back), and (2) there should exist some set oflandmarks (with unique observations).Hidden Markov Models. McCallum's utile distinction memory (1993) is an extension ofChrisman's perceptual distinctions approach (1992), which combines Hidden Markov Models(HMMs) and Q-learning. The system is able to solve particular small, noisy POMDPs bysplitting \inconsistent" HMM states whenever the agent fails to predict their utilities (butinstead experiences quite di�erent returns from these states). The approach cannot solveproblems in which conjunctions of successive perceptions are useful for predicting rewardwhile independent perceptions are irrelevant. HQ-learning does not have this problem | itdeals with perceptive conjunctions by using multiple agents if necessary.Belief state. Some authors have proposed speeding up computing solutions to POMDPsusing belief states by using function approximators. Boutilier and Poole (1996) use Bayesiannetworks to represent POMDPs, and use these more compact models to accelerate policycomputation. Parr and Russell (1995) use gradient descent methods on a continuous rep-resentation of the value function, although the use of a function approximator makes theirmethod an heuristic algorithm. Their experiments show signi�cant speed-ups on certain smallproblems. D'Ambrosio (1996) uses K-abstraction to discretize belief state space and then usesQ-learning to learn value functions. He shows how his algorithm can �nd solutions to diag-nosis problems containing 256 states. A belief network is used for modeling the problem.The results show that the method can quickly improve its policy, although the success of thealgorithm may heavily depend on the amount of uncertainty the agent has about the truestate.Memory bits. Littman (1994) uses branch-and-bound heuristics to �nd suboptimalmemoryless policies extremely quickly. To handle mazes for which there is no safe, determin-istic, memoryless policy, he replaces each conventional action by two actions, each having theadditional e�ect of switching a \memory bit" on or o�. Good results are obtained with a toyproblem. Thus, the method directly searches in policy space. It may have problems if onlyfew deterministic policies will lead to the goal. Therefore to better evaluate policies, Littman

110 CHAPTER 6. PARTIALLY OBSERVABLE MDPSstarted the agent from each possible initial state.Cli� and Ross (1994) use Wilson's (1994) classi�er system (ZCS) for POMDPs. Thereare memory bits which can be set and reset by actions. ZCS is trained by bucket-brigade andgenetic algorithms. The system is reported to work well on small problems but to becomeunstable in case of more than one memory bit. Also, it is usually not able to �nd optimaldeterministic policies. Wilson (1995) recently described a more sophisticated classi�er systemwhich uses prediction accuracy for calculating �tness, and a genetic algorithm working inenvironmental niches. His study shows that this makes the classi�ers more general and moreaccurate.Martin (1998) also used memory bits in his system Candide, which could be put on or o�independently by di�erent actions. He used Q(1) and Monte Carlo experiments to evaluateactions, and was quite successful in solving large deterministic POMDPs. He used a cleverexploration method which did not allow the agent to choose a di�erent action for a speci�cobservation if that observation is seen multiple times in an experiment.One possible problem with memory bits is that tasks such as those in Section 6.2.3 require(1) switching on/o� memory bits at precisely the right moment, and (2) keeping them switchedon/o� for long times. During learning and exploration, however, each memory bit will be veryunstable and change all the time | algorithms based on incremental solution re�nement willusually have great di�culties in �nding out when to set or reset it. Even if the probability ofchanging a memory bit in response to a particular observation is low it will eventually changeif the observation is made frequently. Like HQ-learning, Candide did not su�er a lot fromsuch problems. These systems take care that the internal memory is not changed too often,which makes them much more stable.Program evolution with memory cells. Certain techniques for automatic programsynthesis based on evolutionary principles can be used to evolve short-term memorizing pro-grams that read and write memory cells during runtime (e.g., Teller, 1994). A recent suchmethod is Probabilistic Incremental Program Evolution (PIPE | Salustowicz and Schmid-huber, 1997). PIPE iteratively generates successive populations of functional programs ac-cording to an adaptive probability distribution over all possible programs. On each iterationit uses the best program to re�ne the distribution. Thus it stochastically generates better andbetter programs. A memory cell-based PIPE variant has been successfully used to �nd wellperforming stochastic policies for partially observable mazes. On serial machines, however,their evaluation tends to be computationally much more expensive than HQ.Learning policy trees. Ring's system (1994) constructs a policy tree implemented inhigher order neural networks. To disambiguate inconsistent states, new higher-level nodes areadded to incorporate information hidden \deeper" in the past. The system is able to quicklysolve certain non-Markovian maze problems but often is not able to generalize from previousexperience without additional learning, even if the optimal policies for old and new task areidentical. HQ-learning, however, can reuse the same policy and generalize well from previousto \similar" problems.McCallum's U-tree (1996) is quite similar to Ring's system. It uses prediction su�x trees(see Ron, Singer and Tishby, 1994) in which the branches re
ect decisions based on current orprevious inputs/actions. Q-values are stored in the leaves. Statistical tests are used to decidewhether groups of instances in a leave correspond to signi�cantly di�erent utility estimates.If so, the cluster is split. McCallum's recent experiments demonstrate the algorithm's abilityto control a simulated car by learning to switch lanes on a highway-task involving a hugenumber of di�erent inputs while still containing hidden state.

6.3. RELATED WORK 111Another problem with Ring's and McCallum's approaches is that they have to store thewhole sequence of observations and actions. Hence for large \time windows" used for samplingobservations, the methods will su�er from space limitations.Consistent Representations. Whitehead (1992) uses the \Consistent Representation(CR) Method" to deal with inconsistent internal states which result from \perceptual alias-ing". CR uses an \identi�cation stage" to execute perceptual actions which collect the infor-mation needed to de�ne a consistent internal state. Once a consistent internal state has beenidenti�ed, actions are generated to maximize future discounted reward. Both identi�er andcontroller are adaptive. One limitation of his method is that the system has no means of re-membering and using any information other than that immediately perceivable. HQ-learning,however, can pro�t from remembering previous events for very long time periods.Levin Search. Wiering and Schmidhuber (1996) use Levin search (LS) through programspace (Levin, 1973) to discover programs computing solutions for large POMDPs. LS is ofinterest because of its amazing theoretical properties: for a broad class of search problems,it has the optimal order of computational complexity. For instance, suppose there is analgorithm that solves a certain type of maze task in O(n3) steps, where n is a positiveinteger representing the problem size. Then LS will solve the same task in at most O(n3)steps. Wiering and Schmidhuber show that LS supplied with a set of conditional plans(abstract behaviors) can solve very large POMDPs for which the algorithmic complexity (Liand Vit�anyi, 1993) of the solutions is low.Success-Story Algorithm. Wiering and Schmidhuber (1996) also extend LS to obtainan incremental method for generalizing from previous experience (\adaptive LS"). To guar-antee that the lifelong history of policy changes corresponds to a lifelong history of reinforce-ment accelerations, they use the success-story algorithm (SSA, e.g., Schmidhuber, Zhao andSchraudolph 1997a; Zhao and Schmidhuber 1996, Schmidhuber, Zhao and Wiering 1997b).This can lead to further signi�cant speed-ups. SSA is actually not LS-speci�c, but a generalapproach that allows for plugging in a great variety of learning algorithms. For instance,in additional experiments with a \self-referential" system that embeds its policy-modifyingmethod within the policy itself, SSA is able to solve huge POMDPs using the proper initialbias (Schmidhuber et al. 1997a).Using multiple abstract behaviorsUsing abstract behaviors instead of single actions makes it possible to plan on a higher leveland compress solutions, thereby facilitating policy construction considerably. Some earlywork in this direction has been performed by Singh (1992) who developed compositional Q-learning. Other early work was done by Thrun (1995) who developed Skills, a system whichwas able to learn and reuse particular reactive policies. HQ-learning went a step beyond theseapproaches, however, since it showed how abstract behaviors could directly learn from theQ-values of subsequent behaviors without taking single action values into account.Like HQ-learning, Humphrys' W-learning (1996) uses multiple agents which use Q-learningto learn their own behaviors. A major di�erence is that his agents' skills are prewired | dif-ferent agents focus on di�erent input features and receive di�erent rewards. \Good" rewardfunctions are found by genetic algorithms. An important goal is to learn which agent to selectfor which part of the input space. Eight di�erent learning methods implementing cooperativeand competitive strategies are tested in a rather complex dynamic environment, and seem tolead to reasonable results.

112 CHAPTER 6. PARTIALLY OBSERVABLE MDPSDigney (1996) describes a nested Q-learning technique based on multiple agents learningindependent, reusable skills. To generate quite arbitrary control hierarchies, simple actionsand skills can be composed to form more complex skills. Learning rules for selecting skillsand for selecting actions are the same, however. This may make it hard to deal with longreinforcement delays. In experiments the system reliably learns to solve a simple maze task.Sutton, Precup and Singh (1998) and also Parr and Russel (1997) discuss approaches basedon using abstract behaviors for speeding up �nding solutions to Markov decision problems.Using Sutton's terminology here, these systems consist of options (abstract/macro actions)instead of single step actions, which are associated with a termination condition. Executingan option can take a variable amount of time, and that is why the problems are modeledas semi-Markov decision processes. Precup, Sutton and Singh (1998) prove that RL withoptions still converges, as long as we can guarantee that options stop. Results with Q-learningand abstract behaviors show that their methods signi�cantly speed up policy construction.Although these approaches have not yet been used for solving POMDPs, the use of optionscould, just like HQ's subgoals, get rid of a lot of hidden state.Martin (1998) developed Candide, a system which �rst uses Q(1)-learning to learn a setof behaviors, after which the system learns to hierarchically compose them to learn to solvemore di�cult problems. By �rst teaching the system a set of basic tasks, it was later able tolearn to combine them in general policies for solving quite di�cult block world problems.Dietterich (1997) developed the MAXQ value function decomposition method for hier-archical reinforcement learning. It also consists of multiple abstract behaviors which arecombined through learning Q-nodes in a policy tree. Each Q-node determines which branchof the tree is selected, and is followed by a primitive action (possibly an abstract behavior)and a descendant if the node is not a leave node. In this way, highly complex behaviors canbe learned by �rst engineering (by hand) useful abstract policy trees and then learning theQ-values.The di�erence of these approaches compared to HQ-learning, is that HQ-learning learns todecompose the task into subtasks and at the same time learns behaviors solving the subtaskswithout a priori knowledge about the tasks. If solutions do not work, HQ-learning willchange subtasks and try to learn new behaviors solving them. Most other systems use eithera prewired hierarchical decompositions or prewired skills which makes learning faster, butrequires human engineering.HQ-learning can also be seen as a system which combines learning a structure and theparameters of the structure. The structure is adapted to make learning the parameters easier.Learned parameters which work well ensure that the structure will remain more stable. In thisway, the coupled system can have advantages compared to other one-sided learning systems.E.g. we also tried using a prewired subtask decomposition so that only policies needed to belearned. For this we used the �rst maze (Figure 6.6) and used the subgoals belonging to thedecomposition of the optimal path (SCs 2 and 8). Surprisingly this resulted in worse trainingperformance than learning the decomposition at the same time. This might be explainedby the fact that the number of goal-�nding solutions had become much smaller than that ofthe coupled system.. Furthermore, the agent was restricted to learning the optimal solution.Therefore its learning dynamics su�ered from the additional constraints.

6.4. CONCLUSION 1136.4 ConclusionPOMDPs are a di�cult class of problems. Exact algorithms for solving them are infeasiblefor large problems, and most heuristic methods do not scale up very well. We developed anew algorithm, HQ-learning, which is based on learning to decompose a problem into a setof smaller problems solvable by di�erent learning agents. This method has been shown tosolve a number of semi-large, deterministic POMDPs. Since HQ scales up with the number ofrequired agents and not with the number of states, it can in theory solve very large POMDPsfor which there exist low complexity solutions. HQ does not solve all problems: in particularit has problems with uncertainty in the actions and observations, although it may still �ndcompetitive solutions for such problems. HQ-learning also supposes a �xed starting statewhich is another limitation.POMDP algorithms are based on the construction of an internal state (IS) based on thesequence of observations. E�cient POMDP algorithms should therefore focus themselveson controlling the dynamics of their internal state. Based on recollected experiences, analgorithm could try to transform its IS using mental actions. If an algorithm could learnto control these mental actions, an agent might be able to learn the skill of re
ection. Theimportance of re
ection for intelligent behavior may be clear, but many problems remain tobe solved until it becomes realistic. One important question is how mental states can beconstructed as long as they are not automatically associated with obtaining reward.Finally, there is a need for algorithms which can explore POMDPs more e�ciently. Evenmap learning algorithms usually rely on random walk behavior for �nding some landmarkstate (Bayse et al., 1997). As long as exploration issues are not resolved, we cannot expectto obtain e�cient heuristic methods for a large number of POMDPs.Reinforcement learning approaches using the construction of a priori policy trees or ab-stract behaviors can play an important role for solving more di�cult RL problems. Currentinvestigations in this direction are already being made on a variety of problems and showpromising results, e.g., (Sutton et al., 1998; Dietterich, 1997). HQ is related to such methodsas well as to exact policy tree construction methods (Kaelbling et al., 1995), since it allowsfor using policy trees where each node is represented as a behavior (reactive policy) and tran-sitions between nodes are stored by subgoals (observations). Thus, HQ-learning can store theoptimal policy for POMDPs given a unique initial belief state. Furthermore, HQ can allowfor compression of policy trees, since often the same action for a particular observation maybe optimal in a large region of the state space. Using policy nodes with M subgoals perpolicy (transitions from one node to the next), we might be able to decrease the complexityof (naive) exact algorithms from O(jAjjOjT) to O(jAjjOjMK), where K is the length of the(longest) subgoal sequence. We can see the large gain in case the horizon (T) is large and thenumber of subgoals (M) and the length of subgoal sequences (K) is small. More investigationis needed to combine policy nodes with such exact algorithms, however.

114 CHAPTER 6. PARTIALLY OBSERVABLE MDPS

Chapter 7Function Approximation for RLIn the �rst part of this thesis we have described RL methods for �nite state spaces for whichit is possible to exactly store the optimal value function with lookup table representations.For high-dimensional or continuous state spaces, however, we need to employ function ap-proximators for compactly representing an approximation of the value functions.Function approximators (FAs) such as neural networks can be used to represent the valueor Q-function by mapping an input vector to a Q-value. FAs consist of many adjustableparameters which are trained on learning examples to minimize the FA's approximation errorof the target function. A very useful property of FAs is that they are able to generalize:if we train a FA on a set of training examples, the FA can interpolate between (or evenextrapolate from) them to create a mapping from inputs to outputs for the complete inputspace. Learning a good approximation is very di�cult (Judd, 1990), however. It can take ahuge amount of time and even be unsuccessful. We call this the learning problem. However,sometimes it is possible to learn very useful value functions for huge state spaces after trainingthe FAs on a relatively small number of training examples. This was demonstrated by thesuccess of learning to play backgammon 1 with neural networks (Tesauro, 1992).Outline of this chapter. In Section 7.1, we will describe three di�erent function ap-proximators: linear networks, neural gas (Martinetz and Schulten, 1991; Fritzke, 1994), andCMACs (Albus, 1975b; Albus, 1975a). Then in Section 7.2, we describe how they can becombined with direct RL methods. In Chapter 4, we have seen that the use of world modelsspeeds up computing good value functions. Therefore, we would like to use world models incombination with function approximators as well. In Section 7.3, we will describe how we cancombine models with the function approximators described in Section 7.1. Then, in Section7.4, we will describe an experimental study on using function approximators in a challengingdomain: learning to play soccer with multiple agents. Here we compare di�erent methods bytheir ability to learn to beat a prewired soccer team. In Section 7.5, we conclude this chapterwith some closing remarks.7.1 Function ApproximationPrinciples of FAs. To use function approximators, we construct a u-dimensional inputvector x based on selecting characteristic features for describing the state of the system or1There are on the order of 1020 positions (states) on the backgammon board, whereas TD-Gammon hadalready learned a good policy after learning on about 107 examples.115

116 CHAPTER 7. FUNCTION APPROXIMATION FOR RLagent. Constructing an input vector is quite important, since it provides the FA with allinformation to make its estimations from and therefore particular input designs can ease theburden of the learning problem. When we are constructing an input vector, it is importantnot to have ambiguities (see Chapter 6). More generally, we should try to circumvent havingto deal with small distances between input vectors which must be mapped to very di�erentoutputs.2 Furthermore, learning speed is largest if all input dimensions contribute somethingto the output (the output should be sensitive to all inputs), otherwise it is better to removethe non-contributing inputs. Usually we do not have a priori knowledge which enables us todecide which inputs are important and thus we should examine the output's sensitivity to aninput's value after some amount of learning time.FAs receive the input vector x, and compute a scalar output y (it is straightforward toextend the following presentation to using an output vector) using the mapping F :y = F (x)The FA F consists of a number of adjustable parameters (e.g. weights) and processingelements (nodes, neurons) structured in a speci�c topology (architecture). The topology canbe static or dynamic. Static topologies are de�ned a priori by the engineer and during thetraining phase only the parameters in the FA are changed. Dynamic topologies develop andadjust themselves during the learning process. Although dynamic structures could makelearning functions much easier with particular FAs (Baum, 1989), �nding correct structuresis generally considered to be a hard problem.Local vs. Global FAs. There are many di�erent function approximators and each kindof FA has its own advantages and disadvantages. One important characteristic for FAs is theirdegree of locality. We will call a FA a local model if the FA only uses a fraction (e.g. less than20%) of all processing elements for computing the output given an input. Completely localmodels (such as lookup tables) only use a single processing element (e.g. a table entry) forcomputing the output. Examples of local models are: Kohonen networks (Kohonen, 1988),neural gas (Martinetz and Schulten, 1991; Fritzke, 1994), bumptrees (Omohundro, 1991;Landelius, 1997), decision trees, and CMACs (Albus, 1975b; Albus, 1975a). The counterpartof local models are global models, which use (almost) the entire representation for deriving theoutput. They usually interpolate more smoothly between training examples than local models,but also tend to overgeneralize more. Examples of global models are linear networks, sigmoidalfeedforward neural networks trained with backpropagation (Werbos, 1974; Rumelhart et al.,1986), Hop�eld Networks (Hop�eld, 1982), and Boltzmann machines (Hinton and Sejnowski,1983).7.1.1 Linear NetworksProbably the simplest function approximator is a network which is linear in the componentsof x. The linear network can be written as:y = wTx + b2If inputs which are located near to each other require very di�erent outputs, we need to train the FA torepresent steep slopes which is di�cult and hinders successful generalization.

7.1. FUNCTION APPROXIMATION 117where w is the u-dimensional weight vector and the parameter b is the bias.3 Figure 7.1(A)shows how a linear networks is used for regression tasks where we want to �t a straight u-dimensional hyperplane through a number of examples. Linear networks can only be usedfor learning linear functions, however, and that is why their expressive power is quite limited:e.g. for the regression problem demonstrated in Figure 7.1(B) linear networks cannot be usedfruitfully.
x

y

x

y

Figure 7.1: (A) A linear network's approximation to a set of training examples (data points).(B) Training examples which cannot be represented well by a single linear hyperplane.Training the network. Given a set of training examples: input-output pairs (xi; di),where i 2 f1; : : : ;Mg (M is the number of training examples), we want to minimize themean squared error between the desired outputs di, and the network's outputs yi. For onlinelearning we derive the learning rule from the squared error function Ei:Ei = 12(di � yi)2 = 12(di � wTxi)2Given a set of example transitions (training patterns) (xi; di), we can compute w in closedform. First we collect all vectors xt in the matrix X by putting all vectors as row vectorsin the matrix. Thus, the vector Xk de�nes the kth row of the m-by-u (m is the number oftraining pairs which should be larger or equal to u) matrix X. Then we compute the weightvector w as: w = (XTX)�1XTdwhere d is the m-dimensional vector storing all desired outputs (d1; : : : ; dm), and (XTX)�1XTis the pseudo-inverse (Moore-Penrose inverse) of the matrix X (we assume that (XTX)�1exists, otherwise we have to use lima!0(XTX + aI)�1 which always has an inverse for a > 0.See (Rao and Mitra, 1971) for details).We can also iteratively �nd a solution: after di�erentiating Ei with respect to w,4 we getthe delta-rule (Widrow and Ho�, 1960) which decreases the error function making updatesof the weight vector with learning rate �l:3To simplify the following discussion, we put the additional parameter b in the weight vector and add aninput to the inputvector which is always set to 1.4We assume that the bias is part of the weight vector.

118 CHAPTER 7. FUNCTION APPROXIMATION FOR RL�w = �l(di � yi)xiInstead of linear networks, usually the much more powerful multi-layer neural networksare used. Such networks consist of (at least) one hidden layer with non-linear activationfunctions and are able to represent any Borel measurable function (Cybenko, 1989). Theycan be trained by using the backpropagation algorithm (Werbos, 1974; Rumelhart et al.,1986) which implements gradient descent on the error function. We refer to Kr�ose and v/dSmagt (1993) for a full description of these more powerful function approximators.7.1.2 Local Function ApproximatorsGlobal function approximators such as linear or multi-layer neural networks compute theoutput using all adjustable parameters. Furthermore, they adapt all parameters on eachexample. This creates interference or forgetting problems: after we have trained the FA tolearn a good approximation in some part of the input space and then train it to approximatedi�erent parts of the input space, the learning algorithm tries to use the same parameters todecrease the error over a new input distribution so that the FA \forgets" what it had learnedbefore.Local function approximators (LFAs) do not have this problem. They consist of manyindependent processing elements, which we will call processing cells or simply cells. Eachcell has a centre in the input space (a vector) and an output value. Given some input, wecompute cell activations based on the distance between cell centres and the input. For this,some weighting rule and a distance function is used which ensures that closeby located cellsare activated most. Then, cell outputs are combined by �rst weighing them by the activitiesof the cells and then summing them. Finally, cell centres and outputs are adapted on thelearning example where learning steps depend on cell activities. If we want to approximatethe function in some unknown parts of the input space, most previously trained cells are notactivated since the distance of their centres to the new inputs is too large. Therefore they arenot adapted for these parts and the previously learned function approximation stays more orless the same.Winner take all. We can look at such learning architectures as a competition betweenthe cells for being active in di�erent parts of the input space. Each cell tries to approximate thetarget function in some region best so that it will become the most activated cell there. LFAscan use hard decision surfaces by implementing a winner take all (WTA) algorithm. UsingWTA, only the closest cell is activated 5 and this cell will determine the output of the FA.Examples of LFAs which employ the WTA strategy are 1-nearest neighbor, learning vectorquantization (LVQ) (Kohonen, 1988), and rasters (grids) with �xed or variable resolution(Moore and Atkeson, 1995). When we use a nearest neighbor scheme with WTA cells todivide the input space into subregions, we say that we make a Voronoi tessellation of theinput space (see Figure 7.2).Once we have partitioned the input space, it becomes easy to learn output values. Theoutput of each cell equals the average desired output of training examples falling inside acell's region. However, learning a good partitioning is a hard problem, and if we changea partitioning (e.g. by adding or removing a cell), multiple output values of cells are notanymore up-to-date and need to be reestimated.5In case of multiple closest neurons, we break ties arbitrarily.

7.1. FUNCTION APPROXIMATION 119

Figure 7.2: (A) A Voronoi tesselation of the input space derived from using WTA and thelocations of a set of cells (shown as circles). In between each two cells, there is a hard decisionboundary. The constructed tesselation determines those regions of the input space for whicha particular cell is used (is activated) for returning its output.Soft cell competition. Instead of WTA cells, we can also use a weighted combination ofthe outputs of particular closeby located cells as the �nal output, which results in a smootherfunction approximation. This is also referred to as soft competitive learning (Nowlan, 1991).Examples of smooth LFAs are k-nearest neighbor with k > 1, Delauney triangulizations withlinear interpolations (Omohundro, 1988; Munos, 1996), locally weighted regression (Gordon,1995; Atkeson, Moore and Schaal 1996), Kohonen networks (Kohonen, 1988), and neural gas(Fritzke, 1994).Neural gasWe will now present a novel implementation of a smooth growing neural gas architecture.We use a set of Z neurons (cells): fn1; : : : ; nZg (initially Z = Zinit). They are placed in theinput space by assigning to each a centre wk 2 IRu (a u-dimensional vector). Apart from thecentre, each neuron nk contains an output yk.We calculate the overall output of the FA by locally weighting the outputs of all neurons(although most will have a neglectable in
uence on the �nal output). We calculate theweighting factor gk (gate) for each neuron nk based on the cell centres and the environmentalinput x using: gk = e�� dist(wk ;x)PZj=1 e�� dist(wj ;x) ; (7.1)where � 2 IR+ is a user-de�ned constant which determines the smoothness of the FA anddist(w; x) is an arbitrary distance function of the family of L�-norms:6L�(w; x) = (uXi=1(w(i) � x(i))�) 1�6Weighing inputs di�erently for computing the distance by e.g. an additional parameter vector allows formore useful decompositions of the input space, although it also requires more parameters to be learned.

120 CHAPTER 7. FUNCTION APPROXIMATION FOR RLwhere w(i) and x(i) refer to the value of the ith feature of the centervector and input, respec-tively. The overall output of the FA given input x is:y = ZXj=1 gjyjLearning Rules. We want to maximize the probability of returning the correct outputvalue. Since the output value depends on the locations of the neurons and on the outputvalues of the neurons, we have to: (1) learn the network structure: move the neurons tolocations where they help to minimize the overall error, and (2) learn correct output values:make individual neurons correctly evaluate the inputs for which they are used.In order to let the FA converge, we will anneal the learning rate of neurons so that theywill stabilize over time. For this, we keep track of the overall usage of a particular neuron ina responsibility variable Ck which is initially set to 0. After each example, each neuron nk'sresponsibility variable Ck is adapted: Ck Ck + gkThen, Ck is used to determine the size of nk's learning rate (and also to determine conditionsfor adding a neuron).(1) Learning Structure. The structure of the neurons is of great importance, sinceit determines which states are aggregated together and thus which family of functions canbe represented. We should keep the following principles in mind: (a) neurons should beplaced where they minimize the overall error, and (b) we want to have most neurons (a �nerresolution) in regions with the largest fractions of the overall error.There are a number of di�erent ways for learning the structure of neural gas architectures,all based on using particular operations on the neurons. The most common operations aremoving, adding and deleting (or merging) neurons.Fritzke (1994) presents a particular method for growing cell structures. His method learnsa topology by creating edges which link two neurons which together have been closest to aparticular example. His learning rule moves the closest neuron and its neighborhood to theinput. Furthermore, his method incrementally adds neurons, for which it keeps track of thetotal error of neurons when they have won the WTA competition. After a �xed number ofexample presentations a neuron is added near the neuron with the largest accumulated error.This neuron is initialized by interpolating from the nearest neurons and is assumed to be ableto learn to decrease the error in that speci�c region of the input space.Instead of using Fritzke's method, we have created a di�erent method which does notaccumulate error over time, but adds neuron's when the error on a single particular exampleis too large. The details are as follows: If the error jd � yj of the system is larger thanan error-threshold TE , the number of neurons is less than Zmax, and the closest neuron'sresponsibility Ck exceeds the responsibility threshold TC (Ck grows with the density of theinput distribution around neuron nk), then we add a new neuron nZ+1. We set its locationwZ+1 to x, and set the output value yZ+1 d. Finally we set Z Z + 1. Thus if the erroron an example is large, we immediately copy the example to a novel neuron. The methodis a good method to immediately decrease the error of di�cult regions in the input space,but it can also su�er from noisy examples, which causes newly added neurons to approximateregions by a wrong output value (although they could still adjust themselves later on).

7.1. FUNCTION APPROXIMATION 121If no neuron is added, we calculate for each neuron nk (8k 2 f1; : : : ; Zg) a gate-value hk,which re
ects the posterior belief that neuron nk evaluates the input best:hk = gke�(d�yk)2PZj=1 gje�(d�yj)2We then move each neuron nk towards the example x according to:wk wk + �kh2k(x�wk);where �k = �g(Ck)�� , �g is the system learning rate and � is the learning rate decay factor.The e�ect of using the square of hk instead of hk is that neurons which are not a clear winnerwill not adapt themselves very fast. Thus, clear separations are made early on in the process,whereas �ner divisions of the input space emerge only gradually.(2) Learning Q-values. We update the output yk of neuron nk (8k 2 f1; : : : ; Zg) by:yk yk + �khk(d� yk)Note the similarities of our neural gas method with the hierarchical mixtures of experts(HME) architectures (Jacobs et al., 1991; Jordan and Jacobs, 1992).Nearest neighbor search. An important issue in local FAs is to search for the set ofneurons which are activated for returning the output. Even LFA's with smooth competitionusually have only a small number of neurons which have non neglectable activations forreturning the output.The same problem, called the data-retrieval problem, is known in database systems. Giventhe input, �nding the closest neuron(s)/data-item is usually implemented by computing thedistance to all neurons and then selecting the closest one(s). The complexity of this is O(Zu),where Z is the number of neurons, and u the dimensionality of the input space. If we havethousands of neurons, the input dimensionality is large, and we have to return outputs for alarge number of queries (inputs), then the system gets very slow. A solution to speed up thesearch is to use preprocessing and to store the neurons in a datastructure which allows forfaster online search.We can use datastructures and methods from computational geometry such as Voronoidiagrams (Okabe et al., 1990). These methods signi�cantly speed up searching for the closestneuron, but the problem is that the size of such structures is exponential in the dimensionalityof the input space.K-d trees (Friedman et al., 1977; Preparate and Shamos, 1985; Moore, 1991) are anotherdatastructure for speeding up nearest-neighbor search. To create a K-d tree, we recursivelypartition the population of neurons by dividing the individuals up along a single input di-mension, which is chosen to keep the tree more or less balanced. The nearest neighbor is thenfound by descending the tree to �nd an initially best candidate, and then backtracking alongthe tree to examine whether all alternative siblings are not closer while discarding siblingswhich are surely not closer to the input than the current best one. K-d trees can be used toperform searches in expected time close to min(aulogZ; uZ), where a is a suitable constant> 1 (Moore, personal communication 1998). This means that searchtime is logarithmic inZ, but exponential in the input dimensionality. In practice the time requirements depends alot on the distribution of the data (Omohundro, 1989; Moore, 1991). Constructing K-d treestakes �(uZlogZ) preprocessing time (Preparate and Shamos, 1985).

122 CHAPTER 7. FUNCTION APPROXIMATION FOR RLA problem of the above methods is that they cannot be easily combined with neural gas;neurons are moved around and added to the system so that the data structures used forsearching should change as well in an incremental way. This makes using these structuresmore expensive. Omohundro (1989) describes and experimentally evaluates some incrementalmethods for constructing balltrees, data structures very similar to K-d trees.A quite similar idea, especially suitable for radial basis functions is to use a hierarchy ofneurons, where the higher level neurons are used for clustering lower level neurons. Thenwe can descend from the top layer to lower layers and use leaf neurons for the �nal output.Although the primitive method is not guaranteed to return the closest neuron, 7 we coulddecide to use this neuron anyway or to use backtracking, e.g., used in bumptrees (Omohundro,1988; Landelius, 1997), afterwards. Such methods can sometimes save a lot of time, seeexperimental results with bumptrees in (Omohundro, 1988; Landelius, 1997).Another possibility which is an O(1) method is to restrict the search among a �xed setof neighbors which are allowed to be activated. E.g. we can construct (a limited number of)edges to link neurons which are activated after each other, or we can constrain the search byusing an a priori temporal structure. Although this method may work well, it may be thecase that many more neurons may be needed since di�erent neurons may be implementingthe same function for the same region (only the sequence of examples arriving at the regionwas di�erent).In our experiments we have used the simplest line search method, although it resultedsometimes in computationally very demanding simulations.7.1.3 CMACsThe third kind of FAs are also local, but are di�erent from the ones described previously,since they do not construct a tesselation based on the positions of a number of cells. Theyuse a �xed a priori decomposition of the input space into subregions. Usually the subregionsare structured in an ordered topology such as hypercubes which makes searching for activecells much faster compared to the methods described earlier, since random access (instantlookup) becomes possible. This increased time e�ciency is (as usual) at the expense of ahuge increase of the storage space, however. A well known FA which uses (for example)hypercubes to divide the input space into subregions is the CMAC (Albus, 1975a). A CMAC(Cerebellar Model Articulation Controller) uses �lters mapping inputs to a set of activatedcells. Each �lter partitions the input space into subsections in a prewired way such thateach (possibly multi-dimensional) subsection is represented by exactly one discrete cell of the�lter. For example, a �lter might consist of a �nite number of cells representing an in�niteset of colors represented by cubes with 3 dimensions red, blue and yellow, and activate thecell which encloses the current color input.CMACs uses multiple �lters consisting of a number of cells with associated output values.Applying the �lters yields a set of activated cells (a discrete distributed representation of theinput), and their output values are averaged to compute the overall output.The di�erence with vector quantization methods is that the partitioning is designed apriori and that multiple cells are activated by using di�erent views on the world.General remarks on �lter design. In principle the �lters may yield arbitrary divisionsof the state-space, such as hypercubes, but also more complex partitionings which make use of7Higher level neurons are centered at the distribution of examples for which they are activated, but nothingis said about the positions of their lower level neurons.

7.1. FUNCTION APPROXIMATION 123preprocessing may be used. To avoid the curse of dimensionality which occurs when one usesall input-dimensions to construct hypercubes, one may use hashing to group a random set ofinputs into an equivalence class, or use hyperslices omitting certain dimensions in particular�lters (Sutton, 1996). Although hashing techniques may help to overcome storage problems,it collapses states together which can be widely apart. We expect that this will often not leadto good generalization performance. Therefore, we prefer hyperslices which group inputs byusing subsets of all input dimensions. E.g. if we say that we see a green object which is largerthan 5 meters, we could already infer that the object might be a tree, although there may beother options as well such as a green house or a mountain. If we add multiple descriptions(�lters) of the object together, and all descriptions agree with the object, we may be certainwhich object we are examining.Computing the output. The �rst step in computing the output is applying all �ltersto the input vector. Each �lter uses particular input dimensions to create its universe, andpartitions that universe using hyperboxes. Given an input, it projects the input vector in itsuniverse and examines which of its cells encloses the input.More formally: a �lter is represented as a multi-dimensional array. Given an input x,the �lter uses the relevant features to search for the cell (out of fc1; : : : ; cncg, where nc isthe number of cells) in which the input can lie. Applying all �lters returns the active cellsff1; : : : ; fzg, where z is the number of �lters.The output value y given input x is calculated by averaging the outputs of all activatedcells yk(fk): y = zXk=1 yk(fk)=z;where yk(fk) is the output of the activated cell fk of �lter k.Learning rule. Training CMACs is an extremely simple procedure: we just adapt theoutput values of all activated cells. Thus, for all activated cells we compute:yk(fk) yk(fk) + �z (d� yk(fk));where � is the learning rate.Filter design. The design of the �lters is very important, since the construction of the�lters determines what can be learned, and how fast that can be learned (more cells needmore examples). There are two important matters in designing �lters: (1) Which features tocombine inside each �lter. This introduces bias on which relationships can be learned. (2)How coarsely to divide each �lter into cells. This determines the generalization behavior andthe attainable accuracy of a �lter. The possible choice of (1) and (2) is restricted by spacelimitations, since combining D input features each divided into nc parts, would mean that ourmulti-dimensional cube consists of nDc cells.8 Note that there is no necessity to have a �xeduniform decomposition. We could also use adaptive variable-resolution �lters to optimize thedecomposition of a �lter into cells, or activate a variable number of �lters for di�erent inputs,which makes richer descriptions possible for objects which require more speci�cation.Example of e�ective �lter design. Sometimes a particular �lter design for CMACscan be very e�ective. E.g. consider Figure 7.3(a) which shows an empty maze with a startingstate and a goal state. We can construct two �lters for this maze, one slicing the maze up8This is the worst case for which all cells can be made active, otherwise if some cells are never activatedan implementation based on hashing tables could signi�cantly decrease space requirements, while keeping thesearch for active cells e�cient.

124 CHAPTER 7. FUNCTION APPROXIMATION FOR RLin vertical slices (Figure 7.3(b)) and one for slicing the maze up into horizontal slices (Figure7.3(c)).
S

G

S G

S

G

Figure 7.3: (A) A maze with starting state S and goal state G. (B) One �lter slices the mazeup into vertical slices (the vertical position does not matter). (C) The second �lter slicesthe maze up into horizontal slices. Together the �lters can be used for e�ciently learning asolution.These �lters do not allow for accurately representing the optimal value function, but theapproximated value function can be used for computing the optimal policy | horizontal�lters (except for the last) will learn that going north is the best action, and vertical �lters(except for the last) learn that going east is the best action. Good �lter design also meansthat we have to learn less: for the maze in Figure 7.3(a) and the usual 4 actions, we wouldonly have to learn 10 � 4 instead of 24 � 4 values.Overgeneralization. If the maze would have blocked states, things get more compli-cated, since the �lters would overgeneralize and �lter away the exceptions. If there are fewblocked states, we can still hope but not guarantee that the dynamics of the learning processwill converge to a path which circumvents the blocked states. A more sophisticated approachto deal with few exceptions is to construct additional �lters which are made active in theneighborhood of these exceptions and which add something to or override the values of thedefault �lters. With many blocked states, we would store almost all exceptions, which wouldmean that we would in principle combine both features in a �lter and this would of course beequivalent to the lookup-table representation.Generalization by sharing features. CMACs also allow for another kind of general-ization by using multiple �lters sharing the same feature space. In Figure 7.4 we show howmultiple �lters on the same input creates a smoother generalization. Using more than theshown 2 �lters would make this even more pronounced. Using many coarse �lters leads toa dynamical re�nement of the function | each �lter adds something while still being verygeneral.7.2 Function Approximation for Direct RLWe have introduced a number of di�erent FAs which can be used for approximating valuefunctions. In this section we describe how they can be combined with direct RL methods andwe analyse possible problems arising from such combinations. Even if we are well acquaintedwith a particular FA, we have to keep in mind that training a FA with RL instead of withsupervised learning puts di�erent demands on the FA. For instance, in RL examples are gen-erated according to the policy and value function, which themselves are changing. Therefore

7.2. FUNCTION APPROXIMATION FOR DIRECT RL 125
+

=

Filters

Training
Examples

xx

Approximation
 Function

y y
DC

 A B

Figure 7.4: (A) A design of two �lters which splice a single input dimension in parts. Whenadded, they allow for a partitioning into 8 di�erent regions. (B) A single �lter which partitionsthe input into 8 regions. (C) We examine what happens if we receive training examples(the circles) | the vertical distance to the line is the desired output. We can see that thecombination of the two �lters from (A) leads to some kind of generalization behavior. (D)With a single �lter, there is no generalization across cells. The �rst �lter design results in asmoother function due to its hierarchical approach | some example's output is dynamicallyre�ned if we add multiple �lters.the function we try to learn is constantly changing, which makes the task very hard. On theother hand, in supervised learning we are usually interested in the most accurate approxi-mation, whereas in RL we are much more concerned with the performance of the resultingpolicy. As we have seen in Chapter 4, we can have good policies with quite poor value functionapproximations. What is important, however, is that the preferential order between di�erentactions is re
ected in the value function.Representational issues. We are interested in storing the Q-function with FAs. Forthis, we need to compute outputs Q(x; a) for all actions a 2 A. We will do this by usingdi�erent functions for di�erent actions Fa(x):Q(x; a) = Fa(x)A di�erent way would be to put the actions in the input, but this makes learning di�erentmappings for di�erent actions more di�cult. For continuous actions, however, we cannot useone FA for one action and thus we would need to use di�erent methods, dependent on theused FA. E.g. for linear networks we could use the action(s) as part of the input and forCMACs we could discretize the action space. We assume in the following that we have a�nite set of actions.Thus, with linear networks we will use jAj networks, one for each action. For a multi-layer

126 CHAPTER 7. FUNCTION APPROXIMATION FOR RLfeedforward neural network, we can have di�erent networks for each action or we can sharethe hidden units of one network to approximate all Q-values. Lin (1993) compared both pos-sibilities and found that one network for one action worked better. For other tasks sharingthe hidden layer may be worthwhile, however, since the hidden units need to settle downto extracting more characteristic features when they are used for describing the completeproblem domain (shared by all actions) and that may improve generalization performance.E.g. Caruana (1996) added outputs for a prediction problem which puts an additional burdenon the learning task, but lead to an improvement of the learned approximation for the re-quested output. Baxter (1995) presents a general theory of bias learning based upon the ideaof learning multiple related tasks with a shared representation. Generally speaking, sharingparameters for learning multiple actions is fruitful if the tasks share mutual information.The neural gas and CMAC architectures use for each neuron and �lter/cell Q-functionsof the form Q(ni; aj) and Qf (ci; aj), respectively.7.2.1 Extending Q(�) to function approximatorsWe can combine TD(�), Q-learning, and all Q(�) methods with function approximators.One should be careful choosing a combination and learning parameters, however, since theresulting learning system may not always be stable. E.g. if we allow a FA to adapt itselfquickly to maximize learning speed, it can happen that a speci�c \lucky" trajectory leads to alarge increase of values of states visited by the current trajectory. This may change the overallvalue function dramatically and can lead to undesirable large changes of the policy. Althougha large change of the approximation of a FA for supervised learning can also happen, we canstill relearn a previous good approximation since the training set is stored. Since in RL thepolicy generates the examples, we may have much larger problems relearning \good" valuefunctions. Furthermore, since in RL the Q-function changes and the learning examples aredrawn from a noisy source with often a sequence of (highly) correlated examples, there canbe many unreliable updates or drift of the value function. Thus, our FAs should be robustenough to handle such problems.O�ine Q(�). To learn Q-values we monitor agent experiences during a trial in a historylist with maximum size Hmax. At trial end, the history list H is:H = ffxt1 ; at1 ; rt1 ; V (xt1)g; : : : ; fxt� ; at� ; rt� ; V (xt�)ggHere xt is the input seen at time t, at is the action selected at time t, rt is the reward receivedat time t, V (xt) = MaxafQ(xt; a)g, t� denotes the end of the trial, and t1 denotes the startof the history list: t1 1, if t� < Hmax, and t1 t� �Hmax + 1 otherwise.After each trial we calculate examples using o�ine Q(�)-learning. For the history listH, we compute desired Q-values Qnew(t) for selecting action at, given xt (t = t1; : : : ; t�) asfollows: Qnew(t�) rt�Qnew(t) rt +
 � [� �Qnew(t + 1) + (1� �) � V (xt+1)]Once the agent has created a set of o�ine Q(�) training examples, we train the FAs tominimize the Q(�)-errors.O�ine multi-agent Q(�). In Chapter 3, we have already discussed using multipleautonomous agents simultaneously and presented two algorithms for using online Q(�) to

7.2. FUNCTION APPROXIMATION FOR DIRECT RL 127learn a shared value function. We can also combine o�ine Q(�) with multiple agents byusing a di�erent history-list for each di�erent agent. In the experiments later in this chapter,we will use these history-lists independently. After having created multiple lists of trainingexamples, we process the history-lists by dovetailing as follows: we train the FAs startingwith the �rst history list entry of agent 1, then we take the �rst entry of agent 2, etc. Onceall �st entries have been processed we start processing the second entries etc.Online Q(�) for function approximators. To combine online Q(�) with FAs, we useeligibility traces. The eligibility trace lt(wk; a) is used for weight (adjustable parameter) wkand action a as follows: lt(wk; a) = t�1Xi=1(
�)t�i�i(wk; a);where �i(wk; a) is the gradient of Q(xi; a) with respect to the weight wk:�i(wk; a) = @Q(xi; a)@wkand the online update at time t becomes:8wk do : wk wk + �[e0t�t(wk; a) + etlt(wk; a)]where as usual e0t = rt +
V (xt+1)�Q(xt; at) and et = rt +
V (xt+1)� V (xt).Fast Q(�) can also improve matters in case of LFAs. Suppose a LFA consists of jSj possiblestate space \elements" (e.g. neurons or total �lter cells). The Q-values of z � jSj elementsare combined to evaluate an input (query). Here the update complexity of fast Q(�) equalsO(zjAj). This results in a speed-up of jSjz in comparison to conventional online Q(�). Forglobal approximators z = jSj, so the method is not helpful. For quantized state spaces with�ne resolution, the gain can be quite large, however.Online Q(�)-learning for CMACs. We will show in detail how we combine fastQ(�) with a LFA, in this case CMACs. Using a �xed partitioning, a continuous input xt istransformed into a set of active features: ff t1; f t2; : : : ; f tzg, where z is the number of activefeatures (tilings).Before using Qk(f tk; a) we call the Local Update procedure for all features (f t1; : : : ; f tz) sothat their Q-values are up-to-date. Local Update stays almost the same (except that we usedi�erent variable names).The Global Update procedure now looks as follows:CMAC Global Update(xt; at; rt; xt+1) :1) For i is 1 to z, 8a 2 A Do1a) Local Update(f t+1i ; a)2) V (xt+1) maxaPzi=1Qi(f t+1i ; a)=z3) e0t (rt +
V (xt+1)�Q(xt; at))4) et (rt +
V (xt+1)� V (xt))5) �t
��t�16) � � + et�t7) For i is 1 to z Do7a) Local Update(f ti ; at)7b) Qi(f ti ; at) Qi(f ti ; at) + �(f ti ; at)e0t7c) l0(f ti ; at) l0(f ti ; at) + 1�tz

128 CHAPTER 7. FUNCTION APPROXIMATION FOR RLRemarks about online multi-agent Q(�). To use online Q(�) with multiple agents,we could use the connecting traces approach from Chapter 3. We have not done so in theexperiments in this chapter, however. We have used di�erent eligibility traces for di�erentagents, however, since that is a necessity for multi-agent learning.7.2.2 Notes on combining RL with FAsIn the following we will shortly describe the representational and convergence issues for usingour di�erent FAs for RL.Linear networks. We know that if the number of input features is small compared tothe total number of (distinct) states, we strongly limit the kind of value functions which canbe represented accurately by linear networks. However, we can use many inputs and higherorder inputs as well, which makes linear networks more powerful. E.g. in the limit we use aweight for each state, and we have a tabular representation with known convergence results.The networks try to learn a linear approximation of the Q-functions over the entire inputspace minimizing the squared error over all training examples. For many problems, there maybe small di�erences between the Q-values of di�erent actions. E.g. postponing the optimalaction for one time step may only cause the expected discounted future reward (Q-value) todecay by the discount factor (if nothing changes, we may still select the optimal action atthe next time step). That's why the learning dynamics may cause large policy changes whichmakes policy evaluation hard. Thus, we should be extremely careful setting the learning ratefor linear nets.Neural gas. The approximation of a neural gas representation may be very accurate,especially with a large number of neurons. Since RL becomes much slower when we use manyneurons (retrieval time increases linearly and learning time even worse with the number ofneurons), there exists a tradeo� between accuracy and learning time. Therefore we have tobe careful choosing the number of neurons or alternatively the growthrate of a neural gasstructure. Note that just a few neurons can already be su�cient for learning a good policyand make the learning problem a lot easier.For the neural gas, we have to be careful changing the structure. If neurons move fastaround, this may cause large policy changes which makes learning a (more or less �xed)value function very hard. If we add a neuron, we initialize the Q-value of the selected actionaccording to the desired Q-value (computed by e.g. o�ine Q(�) shown above). The Q-valuesof the other actions of the new neuron are computed by weighing the Q-values of existingneurons according to their posterior probabilities hk. One di�culty is that the decision toadd neurons is based on TD-errors, which themselves may be very noisy. Since it is di�cultto decide whether the example is noisy or the FA is unable to learn a correct mapping, wejust add neurons and hope they will shape themselves inside the structure by learning fromfuture examples.CMACs. Using CMACs with direct RL may work quite robustly, since it always mapsthe same state to the same set of activated cells. Furthermore, CMACs may approximatethe value function arbitrarily well given a large number of �lters and cells and is shown toconverge to the least squared error approximation on a set of training data given properlearning rate annealing (Lin and Chiang, 1997). In practice a lot of CMAC's functionalitydepends on the grouping of states. If a set of states with highly di�erent values is groupedtogether by a cell, then the learned mean value of these states may not be very useful andthe cell's updates will have large variance. If each cell groups states together with similar

7.3. WORLD MODELING WITH FUNCTION APPROXIMATORS 129Q-values, then learning may be quite fast.For RL this means that future trajectories of states grouped by a cell should be as similaras possible. In general this will not be the case, however. Furthermore cells may be biasedor repelled from particular actions. This can cause problems for learning the policy. E.g.,some actions which are only good in few states may never get selected. Such problems canbe overcome by making the �lters su�ciently specialized, however.Convergence issues. Tsitsiklis and van Roy (1996) proof convergence of TD(�) methodsfor function approximators using linear combinations of �xed basis functions (note that thelinear networks and CMACs belong to this class, neural gas do not since the neurons arenot �xed). In their proof, they stress the importance of sampling from the steady-statedistribution of the Markov chains. This can be done by generating trajectories using thesimulator/real environment. Learning by making single simulation steps starting in a �xedset of preselected input points may cause divergence (Boyan and Moore, 1995), however.Finally, Tsitsiklis and van Roy (1996) suggest that higher values of � are likely to producemore accurate approximations of the optimal value function. This may imply as well thatTD(�) methods travel along lower mean squared error trajectories in parameter space forlarger values of �. Unfortunately, little understanding of the convergent behavior of changingpolicies as that of using Q(�) with function approximators is available, however.7.3 World Modeling with Function ApproximatorsCombining dynamic programming with function approximators was already discussed byBellman (1961) who proposed using quantization and low-order polynomial interpolation forapproximately representing a solution (Gordon, 1995a).Transition modeling. We can use a function approximator to represent not only thevalue function, but also the world model. For this, it is best to use local function approxima-tors. Global function approximators may be very useful for modeling deterministic processes,but have problems to model a variable number of outgoing transitions due to their rigid struc-ture. Examples of using global FAs for world modeling are Lin's world modeling approaches(1993) for modeling a complex survival environment and explanation based neural networklearning for learning a model of chess (Thrun, 1995). Although using these models helpedspeeding up learning a good policy, they cannot be easily combined with DP algorithms.On the other hand, if we partition the space into a �nite set of regions with local functionapproximators, we allow for a much higher variety of transitions and estimating transitionprobabilities becomes more precise and easier. Furthermore, when we use discrete states, wehave the advantage of being able to apply DP-like algorithms to compute the value function.Estimating transitions. The largest problem which has to solved before DP can beused fruitfully in combination with LFAs is that we need a good partitioning of the inputspace so that estimated transition and reward functions re
ect the underlying model well.Given the positions of the cells (or neurons), we can use sampling techniques to estimatethe transition function. We may use Monte Carlo simulations to sample a state, map thisto an active cell, select an action, use the simulator or environment to make a transition tothe successor state and map this back to the next active cell. By counting how often eachtransition occurs, we can estimate the transition probabilities between cells and similarly wecan compute the reward function (see Chapter 4).When we have a coarse partitioning, there may be many transitions from a cell which stay

130 CHAPTER 7. FUNCTION APPROXIMATION FOR RLinside that cell. Those recurrent transitions make computing a correct value function harder.Only rewarding transitions or transitions going to neighboring cells are useful for computingthe value function and policy, since they show di�erences between di�erent actions. The �nerthe representation, the better we may model the true underlying dynamics, but the larger theproblem of noise. Furthermore, with a �ne representation we need much more experiencesbefore we have learned reliable transition probabilities and rewards, and DP becomes muchslower. Finally, if the partitioning is changing, we have to recompute transition probabilitiesand rewards, which may not always be easy.Note that a model gives us the advantage of di�erent splitting criteria: (1) If a (hypothet-ical) split will change the value function signi�cantly, we keep it, and continue splitting; (2)If a current transition is unexpected according to the model, we can split the cell to be betterable to predict the dynamics. Moore and Atkeson's partigame algorithm (1995) does exactlythe latter: the algorithm greedily executes a goal directed behavior, but whenever executedactions in a cell do not make a transition to the next cell as expected, the algorithm splitsthe cell so that more accurate predictions become possible. A di�culty of this approach isthat stochasticity in the transition function makes it di�cult to know whether splitting thecell will make the ability to predict the successor more accurate or just increase the model'scomplexity. A solution to this may be to use hypothetical splits and collect more experimentaldata. Another problem is that single splits may not always be helpful to see any di�erences,so that multiple splits (e.g. in multiple dimensions) have to be tried out at the same timewhich is computationally quite expensive.Sometimes, learning a model is not very di�cult | if we have a deterministic MDP,discrete actions and discrete time, we could learn a perfect deterministic transition functionbetween cells by making the coarseness of the representation su�ciently small, although forhigh-dimensional spaces the required space complexity may make this approach infeasible.Learning imperfect models. Although learning an accurate model is hard, we canlearn useful, but incomplete models. Such models can be used for more reliable and fasterlearning of good policies. E.g. consider a soccer environment in which we do not try topredict the positions of all players and the ball (which would be infeasible due to the hugeamount of possible game constellations), but only try to estimate the position of the ball ateach following time step. Such a model is much easier to learn and even although it may notbe very accurately, it could be quite useful for planning action sequences.First we will discuss learning linear neural network models and we will see that this leadsto a very simple equation for estimating the value function. Then, we will discuss estimatingmodels for neural gas and CMAC architectures after which DP or PS is used to computevalue functions.7.3.1 Linear ModelsLinear models are the simplest models, but they can only be used to accurately model adeterministic evolution of the process. The goal is to estimate the linear model L 9 (a squarematrix) which maps the input vector at time t, xt to its successor xt+1:xTt+1 = xTt L + �9To simplify the following discussion, we leave action parameters out of the nomenclature.

7.3. WORLD MODELING WITH FUNCTION APPROXIMATORS 131where xT denotes the transpose of x and � is a vector which accounts for white noise. Wealso want to model the reward function. For this, we use a linear model wr to compute theexpected reward rt given that we see xt: rt = xTt wrNote that we use a linear reward function which makes the following short introduction tolinear models somewhat simpler, but for practical use it has some disadvantages. We shouldrealize that for in�nite state spaces, the agent can continuously increase its received rewardsby making actions which follow the direction of the linear reward plane. Therefore optimalperformance can never be reached. We can only use this linear reward function if the statespace is bounded by the transition function. Many other researchers have used a quadraticreward function, written as (rt = xtwrxt), which ensures that all positive rewards are bounded.Computing the models. Given a set of example transitions (training patterns) (xt; xt+1),and emitted rewards (xt; rt), we can compute L and wr. First we collect all vectors xt in thematrix X and the vectors xt+1 in the matrix Y by putting the vectors as row vectors in thematrices. Then, we can compute L as follows:L = (XTX)�1XTY (7.2)Note that if the vectors (X1; : : : ;Xm) are orthonormal,10 then (XTX)�1 is identical to theidentity matrix I, so that we can simplify Equation 7.2 to:L = XTYWe compute the weight vector wr for returning the immediate reward as:wr = (XTX)�1XT rwhere r is the m-dimensional vector which stores all immediately emitted rewards (r1; : : : ; rm).Computing the value function. We approximate the value of a state by using thelinear network (see above): V (x) = xTwwhere the vector w is the weight vector and for simplicity includes the bias parameter (anadditional on-bit is included in the input vector).Now we can rewrite the original DP Equation 2.2 from Chapter 2:V =
PV + Diag0(PRT)as w =
Lw + wrfor which we require that all absolute eigenvalues of L are smaller or equal to 1 (otherwisethe value function is non-existent). This we can rewrite as:w = (I �
L)�1wr10In practice this is not very likely to happen, although it could happen if, for example, we use input vectorswith a single bit on to model di�erent discrete states.

132 CHAPTER 7. FUNCTION APPROXIMATION FOR RLWhich gives us the solution for a linear model.Bradtke and Barto (1996) present an extensive analysis of linear least squared methodsusing a quadratic reward function combined with TD learning. They proof that if the inputvectors are linearly independent and each input vector is of dimension equal to the numberof states, the weights converge with probability 1 to the true value function weights afterobserving in�nitely many transitions (examples).These linear models are also called optimal linear associative memory (OLAM) �lters(Kohonen, 1988). There also exist more complicated linear models such as linear quadraticregulation (LQR) models which extends OLAM by allowing the modeling of interactionsbetween inputs (Landelius, 1997).7.3.2 Neural Gas ModelsIn contrast to global FAs, local models can be simply combined with world models and canin principle model the underlying MDP arbitrary accurately | we can make a (�ne-grained)partitioning of the input space into cells and compute transition probabilities by countinghow often one cell has been activated after another.Distributed/Factorial representation. Counting is easiest if we use WTA to create aset of discrete regions, since after each transition we only have to change three variables: thecounters of the transitions and the variable which sums the transition rewards. If we woulduse smooth LFAs, we need to update all transitions between cells which were activated. Thistakes much longer: in the worst case of a full distributed probabilistic representation thistakes O(Z2), where Z is the number of neurons. In this case we could just connect cells whichare more activated than some threshold to speed things up.Since WTA causes discontinuities at the borders of two subspaces, there may be advan-tages in smoothly combining the values of a set of states (Moore et al., 1997; Munos, 1996).Schneider (1997) uses multiple states to model uncertainty in model-based learning, and showsthat dealing with uncertainty can be improved by interpolating over a larger neighborhood.Gordon (1995) shows conditions under which the (approximate) value iteration algorithmconverges when combined with function approximators which compute weighted averages ofstored target values. An interesting insight which he o�ers is the following: if a sample pointuses a cell with some (normalized) weight, then this weight can be seen as the probabilityof making a step to this cell from the sample point. This may be a good way of initializingtransition probabilities after inserting a new cell.Again we have to learn a neural gas structure and the Q-function. The latter is done byestimating the model and using our prioritized sweeping algorithm to manage the updates.Learning structure. We used the same approach as before to learn the structure.Again, after each game we computed new Q-values according to Q(�), but now we used thesevalues only to split states and not for computing a new Q-function. We also used the sameconditions as before for adding neurons. Furthermore we initialize the transition variables toand from the new neuron to 0. Note that we may improve this initialization procedure byweighing the transitions from neighboring neurons according to their distances. Accuratelyinitializing the transition probabilities and rewards is di�cult, however, since we never knowthe exact dynamics at a new (unmodeled) region. Another way to learn the structure is to usehypothetical splits and model the dynamics at the new hypothetical cells without immediatelyusing them for evaluating actions. Then we can estimate whether using them for real willsigni�cantly change the transition probabilities and the value function. If they would, we

7.3. WORLD MODELING WITH FUNCTION APPROXIMATORS 133keep them, otherwise we try new splits. We have not tried this algorithm, however, althoughit has the advantage that newly introduced cells may be guaranteed to improve the modeland we have good initial transition probabilities for them.Estimating the model/Learning Q. To estimate the transition model for the ith neu-ron, we count the transitions from the active neuron nt = i to the active neuron nt+1 = jat the next time-step, given the selected action a. Thus, after each (i; a; j) transition wecompute: Cij(a) Cij(a) + 1 and Ci(a) Ci(a) + 1We can also take all activated neurons (in the smooth competition case) into account byupdating counters dependent on their gates. We do this by computing 8i;8j:Cij(a) Cij(a) + gtigt+1j and Ci(a) Ci(a) + gtiThese counters are used (see Chapter 4) to estimate the transition probabilities P (jji; a) =P (nt+1 = jjnt = i; a). For each transition we also compute in similar ways the average rewardR(i; a; j) by summing the immediate reinforcements over the transition from the active neuroni to the next active neuron j by selecting action a.Our prioritized sweeping. We apply our prioritized sweeping to update the Q-valuesof the neuron/action pairs. After each time step, updates are made via the usual Bellmanbackup (Bellman, 1961): Q(i; a) Xj P (jji; a)(
V (j) + R(i; a; j))After each action we update the model and use PS to compute the new Q-function. Detailsof the algorithm are given in Appendix D.7.3.3 CMAC ModelsWe now describe a world modeling approach for RL which uses CMACs. We know thatlearning accurate models estimating transitions between complete world states is very hardfor complex tasks. E.g. the same world state may only appears once in an agent's life time.As an example consider a world state consisting of a number of input features for which the�rst feature would oscillate between two values: x1 = 1; 2; 1; 2; 1; : : :. A second feature couldoscillate between 3 values, a third between 5 values and so on. If we would use one �lterfor each feature, we could easily learn the correct predictive model (in e.g. 2 to 13 steps).Estimating the transition function of the complete state vector with a single �lter would takea lot of time (e.g. 2 * 3 * 5 * 7 * 11 * 13 = 30030 steps), however, since a complete periodin input space would cost so many steps.Therefore, instead of estimating full transitions models, we can sometimes pro�t sig-ni�cantly from using a set of independent models and estimating their uncoupled internaldynamics. In this way, we can study the dynamics of an object by separating it from the restof the world. If the separation holds, we can learn perfect models.Our goals are to (1) create a set of �lters which can be used for modeling the world, and(2) estimate parameters given the set of designed �lters.Creating �lters. We have seen that with a completely observable discrete world andlookup tables, we can estimate a model and perfectly store the transition probabilities tosuccessor states. This allows to compute answers to questions such as: \what is the expected

134 CHAPTER 7. FUNCTION APPROXIMATION FOR RLprobability of entering the goal state within N steps?" Furthermore, it is for static goal-directed environments always possible to select an action which is expected to increase thestate value.For CMAC models, we can in general not answer the question above, and it may not alwaysbe possible to select actions which lead to a larger value for each �lter. If �lters contradicteach other, e.g., if one �lter advises a particular action which is expected to decrease the valueof another �lter, learning problems may arise. Usually this happens in the initial phase, butsuch problems may be resolved due to learning, however.Suppose actions are executed which change the world state, but keep the activated cellof a particular �lter the same. Such actions will not be considered by that �lter to improvethe state value. After some time, an action is executed which changes the activated cell ofthe �lter, which is now activated in a much better world state. Therefore, the �lter learns alarge preference to select that action immediately. This may lead to a policy change | in anew trial the new action may be tried out a number of times, but leads to failure. The resultis that other �lters will start penalizing that action in their currently activated cells and thiswill suppress that action from being selected immediately. Finally, the system may convergeto cell/action values which postpone the action for a while after which it will be selected.Di�erence to CMAC-Q. The CMAC Q-learning system uses the overall evaluation ofthe complete set of �lters to update previous �lter/cell/action triples, whereas CMAC modelskeep �lters separated from each other. Thus, for the example above, Q-learning may learn Q-values of the �lter which approve of the �rst action, even although the action does not changethe �lter's cell. However, once the other action needs to be selected, the �lter itself may nothave learned a large preference for that action. Thus, for Q-learning, the �nal Q-functionsof �lters may contain Q-values of di�erent actions which are much closer to each other thanthose learned by the CMAC model (which may use large preferences and disapprovements).Estimating the model. To estimate the transition model for the kth �lter, we countthe transitions from activated cell f tk to activated cell f t+1k at the next time-step, given theselected action a. Thus, for all �lters k = 1; : : : ; Z, we compute after each transition:Cftkft+1k (a) Cftkft+1k (a) + 1These counters are used to estimate the transition probabilities for the kth �lter Pk(cj jci; a) =P (f t+1k = cj jf tk = ci; a), where cj and ci are cells, and a is an action. For each transitionwe also compute the average reward Rk(ci; a; cj) by summing the immediate reinforcements,given that we make a step from active cell ci to cell cj by selecting action a.Prioritized sweeping (PS). Again we apply prioritized sweeping (PS) to compute theQ-function. This time we update the Q-value of the �lter/cell/action triple with the largestsize of the Q-value update before updating others. Each update is made via the usual Bellmanbackup (Bellman, 1961):Qf (ci; a) Xj Pf (cj jci; a)(
Vf (cj) + Rf (ci; a; cj))After each agent action we update all �lter models and use PS to compute the new Q-functions. Note that PS may use di�erent numbers of updates for di�erent �lters, since some�lters tend to make larger updates than others and the total number of updates per time stepis limited. The complete PS algorithm is given in Appendix D.

7.4. A SOCCER CASE STUDY 135Incrementally constructing �lters. If there would be rare interactions between fea-tures, we could model them using �lters based on their combination. This could mean thatwe may start out with a lot of parameters, however. A better way may be to incrementallyconstruct and add �lters. We can construct �lters by making new combinations of inputs.Then we can add them in several ways: (1) we always use them, (2) �lters can be only invokedif some condition holds, e.g. if some other particular �lter/cell is activated, (3) �lters mayreplace other �lters if some condition holds.The good thing of CMACs is that we can easily add �lters without making large changesto the policy. Thus, adding �lters may only improve the policy on the long term, althoughthe improvement is at the expense of larger computational costs (evaluation costs are linearin the number of �lters).CMAC models are related to di�erent kinds of probabilistic graphical models (Lauritzenand Wermuth, 1989). Both can be used to learn to estimate the dynamics of some state-variables. CMACs uses a committee of experts for this, whereas Bayesian networks fuseprobabilistic dependencies according to Bayes' rule. This makes inference in CMAC modelsfaster, although they will in general need more space to store an accurate model.7.4 A Soccer Case StudyWe use simulated soccer to study the performances of the function approximation methods.Soccer provides us with an interesting environment, since it features high-dimensional inputspaces and also allows for studying multi-agent learning.7.4.1 SoccerSoccer has received attention by various researchers (Sahota, 1993; Asada et al., 1994;Littman, 1994a; Stone and Veloso, 1996; Matsubara et al., 1996). Most early research fo-cused on physical coordination of soccer playing robots (Sahota, 1993; Asada et al., 1994).There also have been attempts at learning low-level cooperation tasks such as pass play (Stoneand Veloso, 1996; Matsubara et al., 1996). Littman's (1994) used a 5� 4 grid world with twosingle opponent players to examine the gain of using minimax strategies instead of using bestaverage strategies. Learning complete soccer team strategies in more complex environmentsis described in (Luke et al., 1997; Stone and Veloso, 1998).Our case study will involve simulations with continuous-valued inputs and actions, andup to 11 players (agents) on each team. We let team players (agents) share action set andpolicy, making them behave di�erently due to position-dependent inputs. All agents makingup a team are rewarded or punished collectively in case of goals. We conduct simulationswith varying team sizes and compare several learning algorithms: o�ine Q(�)-learning withlinear neural networks (Q-lin), o�ine Q(�)-learning with neural gas (Q-gas), online Q(�)with CMACs, and model-based CMACs. We want to �nd out how well these methods work| what are their strengths and weaknesses? This gives us the possibility to increase ourunderstanding of why some function approximators work well in combination with RL forsome tasks and why some do not.Evolutionary computation vs RL. Finally, we will compare the performances of theRL methods to an evolutionary computation (EC) approach (Holland, 1975; Rechenberg,1971) called Probabilistic Incremental Program Evolution (PIPE) introduced in (Sa lustowiczand Schmidhuber, 1997). A PIPE alternative for searching program space would be genetic

136 CHAPTER 7. FUNCTION APPROXIMATION FOR RLprogramming (GP) (Cramer, 1985; Koza, 1992), but PIPE compared favorably with Koza'sGP variant in previous experiments (Sa lustowicz and Schmidhuber, 1997). With the compar-ison to an EC method, we want to �nd out in what RL is particularly good or bad. Whenwe look at backgammon, for which both approaches have been used before, the EC methoddescribed in (Pollack and Blair, 1996) was able to learn much faster in the initial phase, butdid not lead to such a good �nal performance as that of TD-Gammon (Tesauro, 1992). Thus,it seems that EC can perform a faster coarse search, whereas getting high performance resultsin the long term is easier done with RL.PIPE. PIPE searches for a program which achieves the performance. Each program isa tree composed of a set of functions such as fsin, log, cos, +, expg, and terminal symbols(input variables and a generic random constant). The system generates programs accordingto probabilistic prototype trees (PPTs). The PPTs contain adaptive probability distributionsover all programs that can be constructed from the prede�ned instruction set. The PPTsare initialized with probabilities for selecting a terminal symbol at a node and probabilitiesfor selecting a function. If the former probabilities are set to high values, the generatedprograms are usually quite small (although learning can cause generated programs to growin size). After generating a population of individuals, each individual is evaluated on theproblem (e.g. by playing it one game against the opponent). Then, the best performingindividual (the one which maximizes the score di�erence) is used for adapting the PPTs: allprobabilities of functions used by the programs of the best individual are increased so thatgenerating the winning individual gets more probable (e.g. after adapting the probabilities,the probability that a newly generated program would be the best program from the previousgeneration is 20%). Thus, the search always focuses around the best performing program. Tolimit the problem of ending up in local minima, a mutation rate is added to the system whichrandomly perturbates probabilities in the PPTs. A large di�erence with GP is that insteadof individuals, a probability distribution over individuals is stored, and that no crossover isused. Therefore PIPE is closer related to Evolutionary Strategies (ES) (Rechenberg, 1989)and PBIL (Baluja, 1994).7.4.2 The Soccer SimulatorWe wrote our own soccer simulator, although there are also other, more sophisticated, sim-ulators available.11 Our discrete-time simulations feature two teams with either 1, 3 or 11players per team. We use a two-dimensional continuous Cartesian coordinate system for the�eld. The �eld's southwest and northeast corners are at positions (0,0) and (4,2) respectively.Goal width is 0.4. As in indoor soccer the �eld is surrounded by impassable walls except forthe two goals centered in the east and west walls. Only the ball or a player with ball canenter the goals. There are �xed initial positions for all players and the ball (see Figure 7.5).Players/Ball. Players and ball are represented by solid circles consisting of a centrecoordinate and a real-valued orientation (direction). Initial orientations are directed to theeast (west) for the west (east) team. A player whose circle intersects the ball picks it up andowns it. The ball can be moved or shot by the player who owns it. When shot, the speed ofthe ball (vb) gains an initial speed (0.12 units/time step) and then decreases over time dueto friction: vb(t + 1) = vb(t) � 0:005 until vb(t) = 0. This makes shots possible of 1.5 units(37.5% of the length of the �eld).11See e.g. RoboCup JavaSoccer from Tucker Balch, which follows Robocup rules, retrievable fromhttp://www.cc.gatech.edu/grads/b/Tucker.Balch/JavaBots/EDU/gatech/cc/is/docs/index.html.

7.4. A SOCCER CASE STUDY 137

Figure 7.5: 22 players and ball (in the centre) in initial positions. Players of a 1 or 3 playerteam are those farthest in the back (defenders and/or goalkeepers).Players collide when their circles intersect. This causes the player who made the respon-sible action to bounce back to his previous positions at the previous time step. If one of thecollision partners owned the ball prior to collision, the ball will change owners. There arefour actions for each player:� go forward: move player 0.025 units in its current direction if without ball and 0:8 �0:025units if he owns the ball.� turn to ball: change the player's orientation so that the player faces the ball.� turn to goal: change the player's orientation so that the player faces the opponent'sgoal.� shoot: If the player does not own the ball then do nothing. Otherwise, to allow forimperfect, noisy shots, turn the agent with an angle picked uniformly random from theinterval [�5�; 5�], and then shoot the ball according to the player's new orientation.The initial ball speed is: vinitb = 0:12.Action framework. A game lasts from time t = 0 to time tend = 5000. The temporalorder in which players execute their moves during each time step is chosen randomly. Onceall players have selected a move, the ball moves according to its speed and direction, and weset t t + 1. If a team scores (or t = tend), then all players and ball will be reset to theirinitial positions.Input. At a given time t, player p's input vector consists of 14 basic features:� Three boolean inputs that tell whether (1) the player has the ball; (2) a team memberhas the ball; (3) the opponent team has the ball.� Polar coordinates (distance, angle) of both goals and the ball with respect to the player'sorientation and position.� Polar coordinates of both goals relative to the ball's orientation and position.

138 CHAPTER 7. FUNCTION APPROXIMATION FOR RL� Ball speed.These 14 basic features do not provide information about the position of the other playersincluding the opponents. Therefore, we designed also a more complex input consisting of 16(1 player) or 24 (3 players) features by adding the following features:� Polar coordinates (distance and angle) of all other players w.r.t. the player ordered by(a) teams and (b) distances to the player.For Q-lin, Q-gas and PIPE, we change the input of distance d and angle � in [��;�], byapplying the following functions to them before giving the input to the learning algorithms:d 5�d5 and � e�20��2 . This was mainly done to simplify Q-lin's function representation,so that it is able to focus its action selection on small distances and angles. For the otheralgorithms it should not matter much.7.4.3 Comparison 1: Q-lin, Q-gas and PIPEWe �rst compare the following methods: linear networks and neural gas trained with o�ineQ(�), and the evolutionary method (Rechenberg, 1971; Holland, 1975; Koza, 1992) PIPE(Sa lustowicz and Schmidhuber, 1997). Results have been previously published in (Sa lustowiczet al., 1998; Sa lustowicz et al., 1997a). .We have used an o�ine Q(�) variant (using accumulating traces) for training the FAs.The reason for using o�ine Q(�)-learning is that reinforcement is only given once a goal isscored, so that the largest reason of using online learning, improving initial exploration, doesnot apply, whereas o�ine learning is computationally cheaper.Experimental set-upOpponent. We train and test all learners against a \biased random opponent" BRO. BROrandomly executes actions, but due to the initial bias in the action set it performs a goal-directed behavior. If we let BRO play against a non-acting opponent NO (all NO can do isblock) for twenty 5000 time step games then BRO always wins against NO with on average72 to 0 goals for team size 1, 45 to 0 goals for team size 3, 109 to 1 goals for team size 11.We also designed a simple but good team GO by hand. GO consists of players which movetowards the ball as long as they do not own it, and shoot it straight at the opponent's goalotherwise. If we let GO play against BRO for twenty 5000 time step games then GO alwayswins with on average 417 to 0 goals for team size 1, 481 to 0 goals for team size 3, and 367 to3 goals for team size 11. For this simulator, GO executes a very good single agent strategy.Note, however, that GO implements a non-cooperative strategy, this makes it suboptimal forlarger team sizes.Game duration and inputs. We play 3300 games of length tend = 5000 for team sizes1 and 11 (we will not show results with 3 players here, since they are very comparable tothose of 1 and 11 players). Every 100 games we test current performance by playing 20 testgames (no learning) against BRO and sum the score results.For all methods we used the 14 basic input features (so without the additional informationabout other players).Linear network set-up. After a coarse search through parameter space we used the fol-lowing parameters for all Q-lin runs: �l=0.0001, �=0.9, Hmax=100 (a small size of the history

7.4. A SOCCER CASE STUDY 139list worked best. Although in this case the FA is not trained on all possible examples, the mostimportant ones leading to goals are learned.) All network weights are randomly initializedin [�0:01; 0:01]. We use Boltzmann exploration where during each run the Boltzmann-Gibbsrule's greediness parameter (the inverse of the temperature) is linearly increased from 0 to 60.The discount factor
=0.99 to encourage quick goals (or a lasting defense against opponentgoals), rt� , the reinforcement at trial end, is -1 if opponent team scores, 1 if own team scores,and 0 otherwise.Neural gas set-up. For Q-gas we used: �g=0.1, � = 0:1, �=0.9, Hmax=100, � = 30 (notethat this large value makes the FAs very local), the initial number of neurons Zinit=10, and weconstrain the maximum of neurons Zmax=100. We use Max-random exploration with Pmax= 0.7. Parameters for adding neurons are: the required error TE=0.5 and TC = 1000. Weused the Manhattan distance or L1 norm, although some trial experiments using Euclideandistance resulted in similar performances. The components of the neuron centers wk arerandomly initialized in [�1:0; 1:0]. Q-values are zero-initialized. The discount factor
=0.98.Again rt� is -1 if opponent team scores, 1 if own team scores, and 0 otherwise.PIPE set-up. We compare our RL methods with the evolutionary search method PIPE(Sa lustowicz and Schmidhuber, 1997). PIPE searches for the individual consisting of �veprograms (one for each action and one for determining the temperature for the used Boltz-mann exploration rule) achieving the best score di�erence when tested against the oppo-nent. The most interesting parameters for PIPE runs are set to: learning rate=0.2, mutationrate=0.2, and population size=10. During performance evaluations, we test the current best-of-generation program (except for the �rst evaluation where we test a random program). Notethat this is an advantage for PIPE, since the program which is tested is known to outperformall other programs of the same generation.Experimental resultsWe compare average score di�erences achieved during all test phases against BRO. Figure7.6 shows results for PIPE, Q-lin and Q-gas. It plots goals scored by learner and opponentagainst number of games used for learning (averaged over 10 simulations). Larger teams scoremore frequently because some of their players start out closer to the ball and the opponent'sgoal.PIPE learns fastest and always quickly �nds an appropriate policy regardless of teamsize. Its score di�erences continually increase. Q-lin and Q-gas also improve, but in a lessspectacular way. They are able to win on average and tend to increase score di�erences untilthey score roughly twice as many goals as in the beginning (when action selection is stillrandom).For the single agent case, Q-gas is able to learn good defensive policies, what can be seenfrom the strongly reduced opponent scores. For the multi-agent case, Q-gas slowly increasesits score di�erences, although its learning performance shows many
uctuations. It seemsthat the system is changing its policy a lot and does not seem able to �x a good policy. Stillit is almost always able to win.For Q-lin the score di�erences start declining after a while | the linear neural networkscannot keep and improve useful value functions but tend to unlearn them instead. We willnow describe a deeper investigation of the catastrophic performance breakdown in the 11player Q-lin run followed by an explanation of neural gas' instability problems.Q-lin's instability problems. Some runs of Q-lin led to good performance, although

140 CHAPTER 7. FUNCTION APPROXIMATION FOR RL
0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

Q-lin 1-player

learner
opponent

0

50

100

150

200

250

300

0 1000 2000 3000

go
al

s

#games

Q-gas 1-player

learner
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

Q-lin 11-players

learner
opponent

0

100

200

300

400

500

0 1000 2000 3000

go
al

s

#games

Q-gas 11-players

learner
opponent

Figure 7.6: Average number of goals scored during all test phases, for team sizes 1 and 11.Averages were computed over 10 simulations.sudden performance breakdowns hint at a lack of stability of good solutions. To understandQ-lin's problems in the 11 player case we saved a \good" network just before breakdown (after2300 games). We performed 10 additional simulations, for which we continued training thesaved network for 25 games, testing it after every training game by playing 20 test games. Toachieve more pronounced score di�erences we set the temperature parameter in the Boltzmannexploration rule to 190 | this leads to more deterministic behavior than the value round 140used by the saved network.Figure 7.7(left) plots the average number of goals scored by Q-lin and BRO during all testgames against the number of games. Although initial performance is very good (the scoredi�erence is 418 goals), the network fails to keep it up. To analyze a particular breakdown wefocus on a single run. Figure 7.7(middle) shows the number of goals scored during the testphases of this run, and Figure 7.7(right) shows the relative frequencies of selected actions.
0

100

200

300

400

500

0 5 10 15 20 25

go
al

s

#games

TD-Q 11-players

learner
opponent

0

100

200

300

400

500

0 5 10 15 20 25

go
al

s

#games

TD-Q 11-players

learner
opponent

0

0.5

1

0 5 10 15 20 25

re
la

tiv
e

ac
tio

n
fr

eq
ue

nc
y

#games

TD-Q 11-players

P(go_forward)
P(shoot)

P(turn_to_ball)
P(turn_to_goal)

Figure 7.7: Performance breakdown study. Left: average numbers (means of 10 runs) of goalsscored against BRO by a team with 11 players starting out with a well-trained linear network.Middle: plot for a single run. Right: relative frequencies of actions selected during the singlerun.Figure 7.7(middle) shows a performance breakdown occurring within just a few games.It is accompanied by dramatic policy changes displayed in Figure 7.7(right). Analyzing the

7.4. A SOCCER CASE STUDY 141learning dynamics we found the following reasons for the instability:(1) Since linear networks learn a global value function approximation, they compute anaverage expected reward for all game constellations. This makes the Q-values of many actionsquite similar: their weight vectors di�er only slightly in size and direction. Hence smallupdates can create large policy changes.(2) Q-lin adapts some weight vectors more than others | the weight vector of the mostfrequent action of some rewarding (unrewarding) trial will grow (shrink) most. For example,according to Figures 7.7(middle) and 7.7(right), the action go forward is selected most fre-quently by the initially good policy. Two games later, however, the behavior of the team is\dominated" by this action. This results in worse performance and provokes a strong \correc-tion" in the third game. This suddenly makes the action unlikely even in game constellationswhere it should be selected, and leads to even worse performance.For 11 player teams the e�ect of update steps on the policy is 11-fold and thereforeinstabilities due to outliers can easily become much more pronounced.The question can be asked whether the RL method is the cause for the learning di�cultiesor whether it is the linear networks. Although the linear networks are not very powerful,they can still be used to reach high performance levels (even although the learned valuefunction approximation may be very bad). Linear models could get rid of at least some ofthe instability problems. We have not tried them, however, since they are computationallymuch more expensive.Neural gas's instability. Just like the linear network, neural gas is not able to constantlyimprove its policy. For the single agent case it quickly diminishes the opponents score to fewgoals and increases its own score, but does not keep good policies producing many goals.We also combined the neural gas with online Q(�)-learning, but this did not improve theresults. Analysing the system, we found one particularly important reason for neural gas'learning problems: adding neurons usually helps to improve the performance, but sometimesadding a neuron can ruin good policies. Noise can be responsible for placing a neuron whichstarts dominating some region, adds errors to its Q-function approximation, and selects awrong action. Ways to solve this problem is to design more clever algorithms for addingneurons. If a neuron is added, the algorithm makes an unrealistically large update step ofthe value function. A way to get around this is to use local greediness values in Equation 7.1for computing the neuron gate-values. Then we can initialize a greediness value of a newlyadded neuron to a very low value and gradually increase it so that it has time to adapt to itsenvironment before being used fully by the system.The lesson we have learned here is that (direct) RL methods require evaluating policieswhich do not change very fast. Each policy needs many experiences to be completely eval-uated, and although we can update the value function before we have collected a very largenumber of experiences (which would make learning very slow), we should be careful not tomake any large changes based on little experience, since that may cause havoc | previous\plans" or strategies suddenly may not work anymore. Thus, using state quantization meth-ods for RL seems a powerful technique, but applying it may be quite di�cult since they needlots of parameter twiddling and lack robust structures. We should try to gradually improvethe structure and make small Q-value updates.Neural gas models. We also tried using neural gas models, but these did not worksuccessfully either. One of the main problems of this approach is that transition probabilitiesare estimated according to a particular positioning of the neurons, which constantly (andprobably too fast) changes. A second problem was that neural gas models result in many

142 CHAPTER 7. FUNCTION APPROXIMATION FOR RLoutgoing transitions from each neuron, so that there is a lot of uncertainty about predictingthe next state and Bellman backups consume a lot of time. Starting with a �xed structure (andconnective neighborhood) may circumvent this problem, but choosing an a priori structureis a di�cult design issue on its own. Finally, instability problems are caused by the usedinsertion procedure and initialization of new neurons.ConclusionWe found that linear networks, despite of their lack of expressive power, can be used for rep-resenting and �nding good policies. Since their function approximation of the true evaluationfunction is unstable, however, they quickly unlearn good policies once they are found.The neural gas method showed faster initial learning behavior than the linear networks,but in our experiments the neural gas systems did not continuously learn to improve policies.A problem of the neural gas method is that although adding neurons is usually useful, some-times it leads to bad interference with the learned approximation. Therefore more carefulalgorithms for growing cell structures should be used.Both algorithms performed worse than the evolutionary method PIPE, which tests mul-tiple di�erent individuals and has a large probability of generating winning programs of theprevious round again, thereby safeguarding the best found policies. Furthermore, PIPE wasable to quickly �nd good policies, since it was biased to start searching for low complexityprograms, and quickly discovered which features were important to use. Surprisingly, somelow complexity programs implemented very good policies against the �xed soccer opponent.Learning soccer strategies with a single player or with multiple players does not seem tobe very di�erent in our soccer environment. The only real di�culty with multiple players isthat particular outliers get heavier weight when we use multiple players, thus leading to morelearning instability and requiring more robustness from the FA.From the current results, we conclude that value function based RL methods should beextended to make them also pro�t from (a) feature selection facilities, (b) existence of low-complexity solutions, (c) incremental search for more complex solutions where simple ones donot work, and (d) keeping and improving the best solution found sofar.7.4.4 Comparison 2: CMACs vs PIPEThe previous function approximators were too unstable for reliably learning good soccerpolicies. CMACs possess di�erent properties: while still being local, all cells have �xedlocations. This could possibly make them more stable and therefore more suitable for RL.We will now compare CMACs trained with online Q(�), model-based CMACs trained withPS, and PIPE. Results have been previously published in (Wiering et al., 1998).Experimental set-upTask. We train and test the learners against handmade programs of di�erent strengths.We use a di�erent set-up from the previous experiments to get some results against betteropponents, since we expect that evolutionary computation may be faster when it comes to�nding solutions to simpler problems. The opponent programs are mixtures of the programBRO which randomly executes actions and the program GO which moves players towards theball as long as they do not own it, and shoots it straight at the opponent's goal otherwise.

7.4. A SOCCER CASE STUDY 143Our �ve mixture programs, called Opponent(Pr), use BRO for selecting an action with prob-ability Pr 2 f0; 14 ; 12 ; 34 ; 1g, and otherwise they use GO. Thus, Opponent(1:0) equals BRO andOpponent(0:0) equals GO.We test team sizes 1, and 3 (team sizes 3 and 11 do not show large di�erences in learningcurves, although team size 11 consumes much more simulation time).For all methods we used the extended input vectors (with the additional player dependentinput features). We have observed that for the neural gas and linear networks there wereminor advantages using extended inputs, although the overall results look more or less thesame. Thus we use 16 inputs for the 1-player case and 24 inputs for the 3-player case.CMAC-Q set-up. We play a total of 200 games. Every 20 games we test currentperformance by playing 20 test games against the opponent and sum the score results. Thereward is +1 if the team scores and -1 if the opponent scores. The discount factor is setto 0.98. We used fast online Q(�) with replacing traces: � = 0:8 for the 1-player case, and� = 0:5 for the 3-player case. Initial learning rate (lr) �c = 1:0, lr decay rate � = 0:3. Weused Max-random exploration with Pmax = 0:7! 1:0. We use 2 �lters per input (total of 32or 48 �lters) and set the number of cells nc = 10. Q-values are initially zero.PIPE set-up. For PIPE we play a total of 1000 games. Every 50 games we test per-formance of the best program found during the most recent generation. Parameters for allPIPE runs are the same as in previous experiments (Sa lustowicz et al., 1998).CMAC model set-upFor the CMAC models, we have some additional special features which improved the learningperformance.Multiple restarts. CMAC models turn out to be very fast learners: often they convergeto a particular policy after a small number of games. The method sometimes gets stuckwith continually losing policies (also observed with our previous simulations based on linearnetworks and neural gas), however. We could not overcome this problem by adding standardexploration techniques. Instead we reset the Q-function and WM once the team has not scoredfor 5 successive games whereas the opponent scored during the most recent game (we checkthese conditions every 5 games). This multiple restarts combined with model-based CMACs(which behaves as a stochastic hillclimber) is a new way for searching policies in RL, but isalso used in operations research (OR) for searching for solutions to combinatorial optimizationproblems. Note that it is no problem whatsoever to use multiple restarts with any learningalgorithm for any problem, e.g., it could also be used for lifelong learning approaches.Non-pessimistic value functions. Since we let multiple players share their policies,we \fuse" experiences of multiple di�erent players inside a single representation. These ex-periences are, however, generated by di�erent player histories (scenario's) and therefore someexperiences of one player would most probably never occur to another player. Thus, there isno straightforward way of combining experiences of di�erent players. For instance, a valuefunction may assign a low value to certain actions for all players due to previous unlucky expe-riences of one player. To overcome this problem we compute non-pessimistic value functions:we decrease the probability of the worst transition from each cell/action and renormalize theother probabilities. Then we use PS with the new probabilities. Thus, basically we do asimilar thing as in Chapter 5 for computing optimistic value functions. The di�erence is thatin Chapter 5, we made good experiences more important. Here we make bad experiences lessimportant. Details are given in Appendix D.

144 CHAPTER 7. FUNCTION APPROXIMATION FOR RLParameters. We play a total of 200 games. Every 10 games we test current performanceby playing 20 test games against the opponent and summing the score results. The reward is+1 if the team scores and -1 if the opponent scores. The discount factor is set to 0.98. Aftera coarse search through parameter space we chose the following parameters. We use 2 �ltersper input (total of 32 or 48 �lters) and set the number of cells nc = 20, Q-values are initiallyzero. PS uses � = 0:01 and a maximum of 1000 updates per time step.Experimental results
0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e
po

in
ts

#games

CMAC Model 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00) 0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e
po

in
ts

#games

CMAC-Q 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.5

1

1.5

2

0 200 400 600 800 1000

ga
m

e
po

in
ts

#games

PIPE 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

Figure 7.8: Number of points (means of 20 simulations) during test phases for teams consistingof 1 player. Note the varying x-axis scalings.Results : 1-Player case. We plot number of points (2 for scoring more goals than theopponent during the 20 test games, 1 for ties, 0 for losses) against number of training gamesin Figure 7.8.We observe that on average our CMAC model wins against almost all training programs.Only against the best 1-player team (Pr = 0) it wins as much as it loses. Against the worsttwo teams, CMAC model always �nds winning strategies.CMAC-Q(�) �nds programs that on average win against the random team, although theydo not always win. It learns to play about as well as the 75% random and 50% random teams.CMAC-Q(�) performs poorly against the best opponent, and although it seems that theperformance jumps up at the end of the trial, longer trials do not lead to better performances.PIPE is able to �nd programs beating the random team and quite often discovers programsthat win against 75% random teams. It encounters great di�culties in learning good strategiesagainst the better teams, though. Although PIPE may execute more games (1000 vs. 200),

7.4. A SOCCER CASE STUDY 145the probability of generating programs that perform well against the good opponents is verysmall. For this reason it tends to learn from the best of the losing programs. This in turndoes not greatly facilitate the discovery of winning programs.Results : 3-Player case. We plot number of points (2 for scoring more goals than theopponent during the 20 testgames) against number of training games in Figure 7.9.Again, CMAC model always learns winning strategies against the worst 2 opponents. Itloses on average against the best 3-player team (with Pr = 0:25) though. Note that thisstrategy mixture works better than always using the deterministic program (Pr = 0) againstwhich CMAC model plays ties or even wins. In fact, the deterministic program tends toclutter agents such that they obstruct each other. The deterministic opponent's behavioralso is easier to model. All of this makes the stochastic version a more di�cult opponent.CMAC-Q is clearly worse than CMAC model | it learns to win only against the worstopponent.PIPE performs well only against random and 75% random opponents. Against the betteropponents, it runs into the same problems as mentioned above.
0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e
po

in
ts

#games

CMAC Model 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e
po

in
ts

#games

CMAC-Q 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.5

1

1.5

2

0 200 400 600 800 1000

ga
m

e
po

in
ts

#games

PIPE 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

Figure 7.9: Number of points (means of 20 simulations) during test phases for teams consistingof 3 players. Note the varying x-axis scalings.Score di�erences. We show the largest obtained score di�erences in Table 7.1 (1 player)and Table 7.2 (3 players). We should keep in mind that these score di�erences can have alarge variance and may thus not convey too much information. E.g. in the case of CMACmodels with 1 player, Opponent(0.0) may sometimes win 760-0 against CMAC models, sincethe CMAC model had not already found a good policy and its policy had just been resettedbefore testing. Although this only happens 2 or 3 times out of 20 simulations, these large

146 CHAPTER 7. FUNCTION APPROXIMATION FOR RLscores have a tremendous impact on the overall averaged score results. PIPE has a smalladvantage there, since PIPE always uses the best found program during the last generationfor testing, and thus e�ectively diminishes the probability to almost 0 of testing a reallybad policy. Still, the tables show that although PIPE is able to score more against thebad opponents than CMAC-models or CMAC-Q, PIPE often cannot score against the goodopponents. CMAC-models do score against the good opponents, and were able to �nd (atleast 1 time) winning policies against all opponents. It is di�cult to say whether winning127-35 is better or worse than winning 68-3, though. We remark that PIPE performs betteragainst the weakest opponent and CMAC models perform best against the best opponents.Learning Algorithm 1.0 0.75 0.5 0.25 0.0CMAC-models 85-2 68-3 27-1 6-15 1-146*CMAC-Q 92-6 52-23 10-7 1-4 0-13PIPE 225-18 127-35 19-13 0-3 0-10Table 7.1: Best average score di�erences for the di�erent learning methods against di�erentstrengths of the 1-player opponent. * = Although CMAC-models were sometimes able to score7 goals, they also sometimes lost 0-760.Learning Algorithm 1.0 0.75 0.5 0.25 0.0CMAC-models 161-31 236-100 84-70 6-20 0.3-0CMAC-Q 111-26 36-73 13-58 3-23 0-24PIPE 297-18 163-64 30-31 0-11 0-21Table 7.2: Best average score di�erences for the di�erent learning methods against di�erentstrengths of the 3-player opponent.Instead of showing score di�erences, we may also plot relative score di�erences. Wecompute relative scores as:relative score = P layer goalsP layer goals + Opponent goalsThis measure has as a drawback that the scores 1-0 and 10-0 are treated equally, althoughthis makes comparing results against the strong opponents with results against the weakopponents easier possible. We plot relative scores against number of games in Figure 7.10.Here we can clearly see that relative scores against the 1-player team are larger than thoseagainst 3-player teams.CommentsFilter design. For CMAC-models we used 20 cells for each single-input �lter, whereas weused 10 cells for CMAC-Q. Changing the number of cells does not a�ect the results very much,although learning can become slower. Using 4 instead of 2 �lters results in good performanceas well, although the computational time is doubled. A single �lter results in less stablelearning and worse performance, however. Finally, di�erent �lter designs combining di�erentinputs works good as well. Thus, it seems that the method is quite robust to the actual designof the �lters.

7.4. A SOCCER CASE STUDY 147
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

R
el

at
iv

e
sc

or
e

#games

CMAC Model 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00) 0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

R
el

at
iv

e
sc

or
e

#games

CMAC-Q 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

R
el

at
iv

e
sc

or
e

#games

PIPE 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

R
el

at
iv

e
sc

or
e

#games

CMAC Model 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00) 0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

R
el

at
iv

e
sc

or
e

#games

CMAC-Q 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

R
el

at
iv

e
sc

or
e

#games

PIPE 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

Figure 7.10: Relative scores (own goals / total goals) for the 3 methods for team sizes 1 and3. Non player-sharing policies. We also tried using di�erent representations for the Q-functions of the 3-player teams. For this, we used CMAC-models and used an independentmodel for all players. We did not use the non-pessimistic value function approach, since the Q-functions were not shared. Against Opponent(1.0), the results were comparable with sharingpolicies, except that the CMAC-models now tended to score slightly more (the best resultwas 173-27), but did not always win (average points was 1.9). Against Opponent(0.25), theresults were much worse: CMAC models lost on average (0-23), and gained 0 average points.Thus, it seems that policy sharing improves learning when tasks get more complicated.Exploration in time critical problems. In certain problems, an agent has to reacha speci�c goal before some time criteria or time-horizon has elapsed. For such time criticalproblems, policies need to be good and almost deterministic (exploiting or greedy) to besuccessful since each bad/non-policy action will waste precious time. This makes explorationvery di�cult. Soccer is an example of such a time critical problem. If we play with a policythat contains too many bad actions against a very good opponent, then the opponent willscore even before one of our own players has approached the ball. Since in each state all actionsare tried about the same number of times, it is very hard to learn which actions are reallybad. This problem is shown by the results of all learners against the 3-player Opponent(0:25)team. There are no good ways to circumvent this problem with RL. If the agent only receivesreward at a speci�c goal state, and that goal state is only reachable in a small percentageof all trials, other ways for initially exploring the policy space are needed such as exhaustivesearch, means-end analysis, or a priori knowledge to be able to test policies which performwell enough so that the goal is found.7.4.5 DiscussionOnline vs O�ine Q(�). We used o�ine Q(�) for the �rst two FAs and online Q(�) forCMACs. We switched to online learning because we thought that it might improve learningperformance. Although online learning improves things a little bit, the di�erent function

148 CHAPTER 7. FUNCTION APPROXIMATION FOR RLapproximators are the main reason for the di�erent learning performances. Although all FAswere often able to learn to beat the simplest �xed opponent, CMACs obtained the fastestlearning performance.RL vs EC. When we compare RL to evolutionary computation for the soccer task, thenwe observe that EC may be better in learning very good performances for the easier problems,whereas RL is better in �nding good policies for more di�cult problems. This con�rms ourexpectations: RL may need more time (e.g. CPU or modeling), but may �nally come up withbetter solutions for di�cult problems.CMAC models no 1. CMAC models are able to learn good, reactive soccer strategiesagainst all opponents despite treating all features independently. They prefer actions thatactivate those cells of a �lter which promise highest average reward. The use of a modelstabilizes good strategies: given su�cient experiences, the policy will hardly change anymore.The curse of �lter dimensionality. First of all, a lot depends on the �lter design. Forparticular problems, we would need to construct �lters combining many context-dependentfeatures. Such problems would need a lot of cells, which is especially a problem if we usemodel-based RL. Still, there may be ways cutting down the number of parameters. E.g. wecould preprocess all \�lter spaces" and transform them into lower-dimensional spaces usingIndependent Component Analysis, e.g., (Oja and Karhunen, 1995; Bell and Sejnowski, 1998).Limitations of CMAC models. Note that if there are a huge number of possibleactions, we cannot store world model transitions conditioned on the selected action. Insteadwe model only the e�ect of the best (selected) action. Then we select an action by simulatingall possible actions with a model and evaluating the resulting states using the CMAC. Forthis we need to have a simulator or model mapping state/actions to subsequent states. Thenwe update the CMAC model according to the selected action.Independent �lter models. In chess there is so much contextual dependent informa-tion, that CMACs would probably not be the best representation for it. However, we cangeneralize our CMAC models to a set of independent �lter models. E.g., we could use de-cision trees (DT) to save a lot of memory, whereas they are only slightly less time-e�cient.DT-models could be used in the same way as CMAC models: we learn Q-values for leavenodes and we learn transition probabilities and rewards between leave nodes. Furthermore toallow for the power of the committee of experts, we can use multiple DT-�lters, where eachDT-model is based on di�erent subsets of all inputs. Of course, instead of DT-�lters, we couldalso use unsupervised learning in a preprocessing phase and use the resulting quantizationsfor constructing di�erent �lters. The thing to remember is that we are interested in usingmultiple �lters based on di�erent views on the universe so that each policy can be quicklylearned and the combined policy works well for the many di�erent (partial) universes.Non-stationary �lters. Finally, there may be problems if �lters are only worthwhileduring a particular stage of a process. After this stage, invoking them would just cost time.However, nothing forbids us to use temporal sequences of �lter-sets or to use a higher-leveldecomposition of the process into subprocesses, all with their own �lter design.Learning �lters. If we have constructed an architecture with a good set of �lters, themethod may be expected to work well. Still, sometimes we would like to learn the �lters.This can be done by di�erent techniques. Since Independent-�lter models are quite robust, ito�ers many possibilities for changing the architecture without causing large policy changes.This may make them suitable for incremental policy re�nement.

7.5. PREVIOUS WORK 1497.5 Previous WorkThere have been quite a few combinations of function approximators and RL. We will give asample of what has been done. Chapman and Kaelbling (1991) implemented the G-algorithm,a method based on incrementally computing decision trees by splitting nodes receiving in-consistent reinforcement signals. The algorithm used Q-learning for learning the Q-values,which were stored in the leave nodes. The system was successfully tested on an amazoneenvironment, where the goal was to learn to shoot arrows at ghosts. One of the drawbacksof their (and similar) systems is that it could not handle multivariate splitting so that it isrestricted to environments where singular inputs can show a di�erence. Another problem isthat it may generate huge trees if all inputs are relevant.Boyan (1992) used hierarchical neural networks to learn the games of Tic Tac Toe andBackgammon and showed performance gains in using hierarchical nets compared to monolithicnetworks. Wiering (1995) extended this work and was able to reach optimal performance levelson Tic Tac Toe using Q(�)-learning. Furthermore, he showed which precision levels can beobtained by neural networks learning the evaluation function of the endgame of backgammon.Santamaria, Sutton and Ram (1996) compare CMACs to memory-based function approx-imation with Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) on the double integratorand pendulum swing up problems. They found that both methods pro�t from a non-uniform,variable resolution allocation of the cells/neurons, and that CMACs pro�tted most from this.They found an elegant way to change the input space by using a skewing function which in-creases the size of important regions such as those around start and goal states. The obtainedresults of both FAs were comparable.Tham (1995) incorporated a set of CMACs in the hierarchical mixtures of experts (HME)architecture (Jacobs et al., 1991; Jordan and Jacobs, 1992). He used Singh's CompositionalQ-learning (CQ-L) architecture (1992) which uses relevant task inputs to gate the di�erentcontrollers. His system quickly learned good performance levels for di�erent sequences ofrobot manipulator tasks.Kr�ose and van Dam (1993) use RL with a neural gas architecture for collision free nav-igation. The system gets 8 distance measures as input and has to learn to steer a vehicleleft or right in a simulated environment. Whenever there is a collision, neurons are addedso that critical regions get high resolution. The system also removes neurons which havesimilar values as their neighbors. The experimental results a virtual environment show thatthe system can quickly �nd collision free paths.Schraudolph, Dayan and Sejnowski (1994) used TD-learning to learn to play Go on a 9�9board and showed that the system achieved signi�cant levels of improvement. The programlearned good opening strategies, but often made tactical mistakes later in the game. In laterphases of the game many complex interactions between stones dominate position evaluation.This was (to our knowledge) the �rst time anybody used a whole grid of local reinforcementsignals to evaluate each possible board position, as opposed to just a single scalar evaluation.This made a big di�erence in performance.Thrun implemented neurochess (1995), a program which uses TD-learning and explanationbased neural network learning for learning to play chess. He learned a model to predict likelysequences of gameplay and used this model for training the position evaluator. The resultingperformance of the neural network was of limited success | a better level of play needs amore accurate value function which takes the precise board constellation into account.Recently, Baxter, Tridgell and Weaver (1998) came up with a promising method for learn-

150 CHAPTER 7. FUNCTION APPROXIMATION FOR RLing to play chess which is very similar to Samuel's approach in the sense that it combineslookahead search with reinforcement learning. Their system used a simple initially hand-crafted position evaluator which was improved by TD-learning by updating the values ofthose leave nodes which result from a lookahead search for the best move. Using lookaheadmakes the accuracy of the position evaluator much less important for good play and thatmakes learning a useful value function much easier. The system played on the internet chessserver and was able to signi�cantly improve its level of play after learning from only 200games.Tadepalli and Ok (1998) describe H-learning, a model-based RL method maximizing aver-age reward per time step. They show that H-learning outperforms discounted model-based RLfor particular tasks. Furthermore, they extend H-learning by introducing dynamic Bayesiannetworks to compactly store the model so that the system can cope with large state-spaces.The DBN for storing the model is then combined with local linear regression (LLR) for ap-proximating the value function. The results of this combination on an automated guidedvehicle domain show promising results.Sampling & approximationThere also exists a di�erent way of using models for computing a value function. We stillrepresent the value function in a function approximator, but now we generate a set of statevectors, use the model (or simulator) to perform a one-step lookahead for all states to obtainmore accurate values (possibly in combination with Monte Carlo simulations for stochasticproblems), and train the function approximator to learn the new state values. The method isin principle a hybrid: we can use one representation for the model (e.g. Bayesian networks),and use another for the value function (e.g. neural networks). Once we have computed a newgeneration of training examples, we use a training method to adapt the function approximator.The simplest methods use gradient descent to minimize the Bellman error of the generatedexamples. This is called the direct method, but is has been shown that it may lead to learninginstability (Boyan and Moore, 1995; Baird, 1995).To overcome the problem of diverging value functions, Boyan and Moore (1995) used amethod based on learning the value function backwards during which complete \roll-outs" areused for computing new value estimates while keeping a large batch set of training examples.This method showed promising results for deterministic problems, but is computationallyexpensive for stochastic problems.Baird (1995) discussed residual gradient algorithms, where steepest descent on the meansquared error Bellman residual is performed. These methods converge to a local minimumon the Bellman error landscape, but tend to be slow. Therefore, Baird introduced residualalgorithms which are a mixture between the direct method and the residual gradient method,combining the property of minimizing the Bellman residual at each step with fast learning.The method can be applied for stochastic problems by combining two independent successorstates in a single learning example. This is called the two sample gradient method (Bertsekasand Tsitsiklis, 1996).We have not used these methods here, because it may be di�cult to select a set of targetpoints. Furthermore the function can change dramatically if the environment is very noisy,since new target values may be quite di�erent, dependent on the successor state we havesampled. Finally, for real world learning, we cannot sample from arbitrary points, so that themethod requires engineering or learning a model �rst.

7.6. CONCLUSION 1517.6 ConclusionIn this chapter we discussed one of the most interesting topics in RL: the application offunction approximators to learn the value function. We described three di�erent types offunction approximators: linear networks, neural gas, and CMACs, as well as ways to combinethem with direct RL and model-based RL. Then we compared them on a soccer learning task.We found that linear networks had severe learning problems for the soccer task. Althoughthe linear networks were sometimes able to learn good policies, small update steps of theweight vectors sometimes cause large policy changes after which good policies are unlearned.A di�culty of reinforcement learning compared to supervised learning is that the outputvalue of examples change and are taken from a non-stationary distribution due to policychanges and exploration behavior. Therefore, in order to receive su�cient data from thesame input/output mapping, the policy should not change too fast, and the used functionapproximator should be robust enough so that noise will not a�ect its approximation verymuch. We should be careful in assessing whether we really make an improvement step of aparticular policy, since it is easy to make changes which decrease the performance level of thepolicy. Especially if we want to obtain high performance levels, we should circumvent thisfrom happening.Approximators which use adaptive state quantization su�er from noise which may causequick policy changes, and therefore they are not always very stable. One function approxima-tor which discretizes the input space using an a priori decomposition, CMACs, turned to bequite stable, especially when combined with world models. CMAC models are able to capturelots of statistics, and makes fast and robust learning possible. One problem of CMACs is that�lters combining di�erent input features need to be designed by hand. Therefore, we wouldlike to use methods which can learn the possible �lters.In this chapter we have not given any special attention to multi-agent RL. Future workon robotic soccer may pro�t by studying team strategies and the integration of perceptionsof di�erent agents. By mapping group states to team strategies, a useful abstraction can bemade. Furthermore it may be easier to assign rewards to team strategies than to single playeractions. Therefore it may be a good idea to de�ne a set of team strategies involving reactivepolicies for each individual agent.

152 CHAPTER 7. FUNCTION APPROXIMATION FOR RL

Chapter 8ConclusionIn this �nal chapter we describe our contributions to di�erent topics of interest in the rein-forcement learning �eld. We also describe the limitations of the proposed methods and whatcan be done to overcome these limitations. Finally, we close with some �nal remarks.8.1 Contributions8.1.1 Exact Algorithms for Markov Decision ProblemsDiscussionFirst of all, we compared two dynamic programming algorithms and found that value iterationis faster than policy iteration for computing policies for goal directed problems. The reasonis that policy iteration completely evaluates policies before making policy updates and thatpolicies in the initial iterations generate many cycles through the state space. Such cyclesare certainly not optimal, but do cost a lot of computation time. On the other hand, valueiteration uses its value function directly for greedily changing the policy whenever it needs tobe changed. In this way it quickly computes goal-directed policies which generate few cyclesand therefore it can stop evaluating policies much earlier. We conclude that methods pro�tfrom immediately using information so that policy changes are made earlier.LimitationsSolving Markov decision problems with dynamic programming requires a model of transitionprobabilities and a reward function for computing policies which is often a priori not available.Furthermore, if there are many state variables, the computational costs become overwhelming.The �rst problem can be solved by using reinforcement learning. For solving the secondproblem we need to use function approximators which aggregate states.8.1.2 Reinforcement LearningDiscussionWe developed a novel online Q(�) algorithm which computes the same updates as previous(exact) online Q(�) methods, but is able to make updates in time proportional to the numberof actions and the number of active elements of the function approximator. In the case of153

154 CHAPTER 8. CONCLUSIONlocal function approximators, e.g. lookup tables which activate a single element at each timestep, the gain of the new method can be very large. The new algorithm is based on lazylearning which postpones computations until they are really needed. The novel algorithmwas used in experiments with lookup tables for maze problems and with CMACs for learningto play soccer. Both applications resulted in a large speed up.We developed an algorithm for online multi-agent Q(�), called Team Q(�), which allowsupdating the Q-value of some state visited by some agent on a change of the Q-value ofanother state visited by another agent. The only thing that is required is that there existsa directed path between the states, which now may go through some crossing point betweenthe trajectories of the agents. With the new method, information is propagated along manymore trajectories than would be the case if we would only update along single agent histories.Furthermore, the Team Q(�) algorithm can be used for assigning credit in case of generalinteractions between agents, such as passing the ball, where we would like to evaluate theaction on the basis of what happens to the ball in the future. Although we expect themethod to be bene�cial for solving real cooperative tasks for which agents work as a group,experimental results in a non-cooperative maze environment did not show that Team Q(�)outperformed letting agents learn from their individual traces only.LimitationsDirect RL methods such as TD(�) and Q-learning have problems to backpropagate infor-mation over many time steps. Q-learning can only backpropagate information one step inthe past, whereas TD(�) can in principle be used to backpropagate information over manytime steps, but this causes a large variance in the updates (especially for stochastic problems)which delays the convergence of value functions.The Team Q(�) is able to combine traces of multiple agents, but does not take into accountwhen these traces have been generated. Therefore, very old traces generated by old policiesare used to change the current value function, which may decrease the policy's performance.The algorithm is also not yet made amenable for di�erent kinds of agent interactions | theonly kind of interaction we have implemented so far is when di�erent agents visit the samestate. For more general applications, the algorithm would need a de�nition of interactionpoints between agents. An example interaction point is a player which decides to pass theball to another player. This action can be evaluated on the trace of the other agent since thedecision of passing the ball has been made, and may be better than to use the trace of theplayer itself, which may just be waiting around in the middle �eld after having passed theball.Open problemsWe would like to have methods which diminish the variance of TD(�)-updates for large valuesof �. One way of doing this is to use variable �. E.g. we can detect stable landmark stateswhich have been visited so often, that their path to the goal has been optimized already andtheir value is quite stable. Then we can use large � values before making a transition to them.We could also let the � value depend on the standard deviation of some state value. It is aquestion whether and how much such methods improve TD(�)'s abilities.It is still unclear how we can extend the Team Q(�) method to allow learning mostly fromtraces which are useful for improving the policy. For this, we would need to discard some

8.1. CONTRIBUTIONS 155traces, while keeping others. One option to do this is to only combine traces which have notbeen generated too long ago. Another possibility is to weigh traces according to their recency.An open question is whether using such more sophisticated methods can really signi�cantlyspeed up multi-agent Q(�) which uses separate traces.A possible large problem of multi-agent RL is when traces connect in a 1-to-many way.E.g. if a mother is cooking for her children, and afterwards the children get a belly-ache,then we should be able to trace that back to an ingredient the mother used and punish usingthat ingredient or even buying it. The problem is that in this way, the action of cooking hasmultiple future paths, since we have to take all her children into account. Therefore the futurebranches and probabilities do not sum to 1, which makes credit assignment and computingvalue functions really hard. Thus, another open problem is to �nd neat methods which cancombine such multiple futures into bounded value functions.8.1.3 Model-based RLDiscussionIn Chapter 4, we described model-based RL approaches and introduced a novel implemen-tation of the prioritized sweeping (PS) algorithm (Moore and Atkeson, 1993) which is moreprecise in calculating priorities for making di�erent updates than the original PS. Experimen-tal results on some maze problems showed that model-based RL signi�cantly outperformeddirect RL. Furthermore the new PS method is more reliable and leads to better �nal perfor-mances than the previous PS.Open questionsThe experimental result may not necessarily hold for other problems containing many possibleoutgoing transitions from each state. The price our PS has to pay for its exactness is thatits computational e�orts depend on the number of successor states, whereas the previous PSmethod is not. Therefore, it is computationally more expensive. Still, for problems withmany successors we expect that the old PS will have much more problems in really makingthe most useful updates, since priorities are only based on a single outgoing transition.Another question is whether even faster management methods can be constructed. Al-though this seems di�cult, di�erent methods could use other criteria or be more careful inupdating states which leave the relative ordering of state values and therefore the policyunchanged.LimitationsOne problem of model-based RL, is that it heavily relies on the Markov assumption. TD(�)approaches can much better evaluate a policy in case the Markov assumption is violated,since in case � = 1, we just test the policy according to Monte Carlo sampling. One wayfor extending world models is to use TD(�) world models which combine TD(�) with model-based learning. Such a model may be useful for learning from learn term consequences ofactions, although there may be many successor states so that it is uncertain whether we cane�ciently use it for problems involving many states.

156 CHAPTER 8. CONCLUSION8.1.4 ExplorationDiscussionWe described novel directed (information based) exploration methods which use a prede�nedexploration reward function for learning where to explore. Exploration reward functions arede�ned by the human engineer and determine how interesting a particular novel experiencefor an agent is. Examples of such reward functions assign penalties to state/actions whichhave occurred frequently or recently. Using such reward functions, the agent learns an explo-ration value function which allows the agent to select actions based on long term informationgain. We used model-based RL for learning the exploration value functions and found largeadvantages compared to undirected, randomized exploration methods. Methods which onlyselect actions according to information gain have as disadvantage that they do not take im-mediate problem speci�c rewards into account for selecting actions. To properly address theexploration/exploitation dilemma, we should only select actions which have some signi�cantprobability of belonging to the optimal policy. Therefore, we constructed model-based inter-val estimation (MBIE) which takes second order statistics into account for selecting actions.Since MBIE relies on initial statistics, we combined it with the directed exploration tech-niques discussed above. Experiments showed that MBIE was able to improve the directedmodel-based exploration methods in �nding near-optimal policies, while collecting a muchhigher reward-sum during the training phase.Open problemsThere are still some unresolved problems in exploration. One problem is how to handle largeor continuous state spaces for which we are never able to visit all states. For such problemswe have to use function approximators and learn exploration functions. MBIE could thenagain be implemented by keeping track of the variance of all adjustable parameters of thechosen function approximator.Another problem is how to explore e�ciently in non-stationary environments. We coulduse the recency reward rule for such environments, but how could we use the model e�ec-tively? Clearly, we should discount early experiences, but it is in general di�cult to set suchdiscounting parameters. Furthermore, if the environment is partly changing, we should beable to �nd out how the environment is changing and thus our exploration policy should betuned towards discovering speci�c changes of the environment.Another problem in exploration is that in some problems it may be very di�cult to achieveany reward at all. E.g. if only very few action sequences lead to the goal state and all otherslead to some other terminal state, then how could we �nd the goal at all? We can useexhaustive search, trying out all action sequences, but there could be exponentially many ofthem! It may be that the only possibility is to use a priori goal-directed knowledge in orderto be able to e�ciently �nd the goal. One possibility is to implement a behavior which isguaranteed to �nd the goal, although it will most probably not �nd a very e�cient solution.Such a behavior could be used to generate interesting initial experiences which can then beused to improve the policy. This process of designing and re�ning is also referred to as shaping(Dorigo and Colombetti, 1997).

8.1. CONTRIBUTIONS 1578.1.5 POMDPsDiscussionWe described POMDPs in Chapter 6 and introduced a new algorithm, HQ-learning, forquickly solving some large deterministic POMDPs. HQ-learning is based on decomposing aproblem into a sequence of reactive policy problems which are solvable by policies mappingobservations to actions. Di�erent policies are represented by di�erent agents. Each agentlearns HQ-values which determine for which observations control will be transferred to thenext agent. HQ's memory is solely embodied in a pointer which determines which agent isactive at the current time step. By using such a minimal representation for the short-termmemory, HQ can quickly learn how to use it.LimitationsHQ learning is designed for deterministic POMDPs featuring �xed start states. However, HQcould also be used in combination with map learning algorithms. E.g. we can learn mapsfor di�erent regions, where transitions between regions are determined by agent transitions.We could even go beyond this and hierarchically learn a map where at the lowest level wehave detailed observation or state transitions and at higher levels we have transitions betweenregions. The advantage of such an approach is that hierarchical planning becomes possiblefor solving large problems.HQ-learning is a kind of hierarchical decomposition method, but does not learn completepolicy-trees. It could be extended to allow for storing a whole tree containing policy nodes(instead of singular actions), and observation sequences as transitions. Then, a policy isfollowed for some time, after which a transition is made to another policy etc. In this way,ordinary policy trees of the kind described in (Kaelbling et al, 1995) may be compressedby allowing for collapsing multiple subsequent branches (or entire subtrees) inside a singlereactive policy.HQ su�ered a lot from the limited exploration capabilities. In many trials, no solutionwas found at all, since the policy was generating cycles in state space. If, however, we allowedour undirected exploration methods to use more randomized actions, we continually executea random walk behavior and do not really test the current policy. Such a random walk isnot a very e�cient exploration technique, and neither does it make learning the policy easier.Therefore we should construct directed exploration methods for POMDPs, which is di�culthowever, since the input used by the policy is usually highly ambiguous. A way to overcomethis is to use more sophisticated representations for the internal state such as belief states,but these make policy construction hard in their own ways.Open questionsA question remains whether we should not use di�erent methods used for combinatorialoptimization for solving POMDPs, since POMDPs are hard problems. E.g. we could usegenetic algorithms (Holland, 1975), tabu search (Glover and Laguna, 1997) or the ant colonysystem (Dorigo, Maniezzo and Colorni, 1996; Dorigo and Gambardella, 1997; Gambardella,Taillard and Dorigo, 1997). Although currently multiple researchers start applying RL forcombinatorial combination problems (e.g. Boyan, 1997), a real comparison between themwould be very interesting. The ant colony system is in e�ect a RL method and is very

158 CHAPTER 8. CONCLUSIONsuccessful solving a wide range of tasks (Dorigo and Gambardella, 1997). Since general RLmethods are very good in dealing with stochasticity, they may �nally outperform methodssuch as tabu search for dealing with complex stochastic problems. RL makes small changeswhich \on average" improve the policy. Local (greedy) search methods try out all changesand keep the best, but for stochastic problems they need many evaluations for testing whichswap-move will result in the largest improvement.8.1.6 Function ApproximationDiscussionWe summarized the basics of a number of function approximators and introduced a newvariant of the neural gas algorithm. We also described a novel combination of CMACs andworld models and showed that CMAC-models were able to outperform a number of othermethods (including the combination of Q(�) with linear networks, neural gas, CMACs, andan evolutionary method called PIPE (Sa lustowicz and Schmidhuber, 1997) at learning to playsoccer. We noted that for e�cient RL, the function approximator should be stable, therebyallowing a consistent policy evaluation. CMAC models are very stable and easily trainedwhich makes them a powerful candidate for continuous state or action RL.LimitationsCMAC models rely on an a priori de�ned structure which determines which relations canbe learned between input features. It would be nice to learn the structure by reinforcementlearning. E.g. HQ-learning could be combined with CMACs models, where HQ-learning triesstructural changes and keeps track of the average performance of the function approximatorgiven that particular input combinations are used. Thus, HQ can learn the structure whichleads to the largest reinforcement intake.We can also incrementally specialize �lters if their predictive ability is small or if thevariance of the Q-values of its cells is large. The advantage of learning a structure of a modelsuch as CMACs is that it is easy to add a �lter without changing the overall policy. Thisis in contrast with local models such as neural gas where adding neurons can result in largepolicy changes.Other algorithms to learn structures are o�ine methods such as GA's and tabu search.Their problem, however, is that they need to test multiple di�erent structures from whichonly few trained structures are used. This results in throwing away a lot of information.HQ-learning or an incremental approach can learn online and improve a single structure.8.2 Final RemarksReinforcement learning can be used as a tool for designing many di�erent intelligent computersystems | it can be used for improving simulation models, for designing autonomous vehicles,for controlling space missions, and for controlling forest �res. Especially for multi-agentenvironments, a lot of research needs to be done to make robust and well organized systems.Such environments often consist of multiple interacting elements which are adapted togetherto optimize a speci�c group criterion determining the desired group's behavior. RL can beused very well for solving such problems and in fact we want to use RL for controlling a team

8.2. FINAL REMARKS 159of forest �re �ghting agents which have the goal to minimize the costs of forest �re �ghtingoperations (Wiering and Dorigo, 1998).The largest problem of applying reinforcement learning may ultimately be that construct-ing a reward function can be very hard. First of all, it may be di�cult to optimize multipleevaluation criteria together, since it is di�cult to weigh them. E.g. consider a driver of aracing-car who has the goal to minimize the risk of endangering his life while still maximizingthe probability of winning the race. Which risk should he take or how much worth is his life?The second problem of reward functions is that in the real world di�erent agents may tryto solve their own task, but doing this, they may interfere with each other. If we considera large arti�cial world with many tasks performed by di�erent RL agents, it is di�cult to apriori construct reward functions which take the interactions into account. If we would justgive each agent their own reward function, they would not care if they would be an obstaclefor other agents performing their tasks and that may ultimately lead to a competition betweenagents. E.g. one agent which is hindered by another one, may learn to make it impossiblefor the other agent to become an obstacle by closing him in �rst. This is clearly not what wewant. One solution is to weigh all tasks and design a group reward criterion, but this makeslearning tasks for each agent much harder due to the agent credit assignment problem | howcan we assign credit to each individual agent based on the group's outcome.Thus, for complex multi-agent environments, there remain two options: organize theagents with clearly de�ned priorities and task-dependencies or let the agent evaluate eachother and pass their evaluations as reward signals to other agents. For the �rst option,priorities could be swapped and the best organization maximizing the overall (colony's) rewardkept. This could result in a set of complete team strategies or a set of interaction protocolswhich in
uence each agent's perception of the world state. Agents would not be able tochange that organization.For the second method, agent take social reward signals into account next to their task-oriented reward function. If we are unable to specify such (social) reward functions, agentsshould be able to learn ethical reward functions which improve the group's behavior. Learningsuch reward functions may be very di�cult, but it opens up a huge variety of possibilities.Furthermore, if the task reward functions are well speci�ed, slowly adapting the social rewardfunctions based on the group's evaluation may only help.Since the real world consists of many agents which adapt themselves according to therewards they get, RL may be an important tool for studying what kind of \intelligent envi-ronments" work best. There are so many ways, so that we conclude by stating that there isno way of knowing which role RL will play in the future. Only time can tell...

160 CHAPTER 8. CONCLUSION

Appendix AMarkov ProcessesA Markov process (MP) is a model for capturing the probabilistic evolution of a system. AMarkov process is used to model time sequences of discrete or continuous random variables(states) which satisfy the Markov property. The Markov property states that the transitionto a new state only depends on the current state. Markov chains are a kind of discrete timeMarkov processes which have a �nite set of states. The whole dynamics of the system isgoverned by the initial state probability distribution and the probabilistic transition function.For simplicity we consider Markov chains which consist of:1. A discrete time counter t = 1; 2; : : : ; T , where T denotes the length of the process andmay be in�nite.2. A set of states S = fS1; S2; : : : ; SNg, where the integer N denotes the number of states.The active state at time t is denoted as st = j, with j 2 S.3. A probabilistic transition matrix P which determines the probability of the active statest+1 at the next time step given st. The conditional probabilistic transition functionPt(st+1 = jjst = i) denotes the probability of making a transition to state j from statei at time t. We consider stationary probabilistic transition functions, which have theproperty that they are time independent. Therefore we will drop the time index fromPt and simply write P .4. A probability distribution over initial states : o1, where o1(j) denotes the probabilitythat the sequence starts in state j.We will use matrix notation for denoting the probabilistic transition function. The stochas-tic transition matrix P consisting of entries Pij denotes the probability of making a transitionfrom state i to state j: Pij = P (st+1 = jjst = i):The stochastic matrices we are interested in, have the following properties:1. All Pij � 02. 8i 2 S, Pj Pij � 1.Note that most authors require the last sum to be equal to 1. However, with our de�nitionwe allow the process to stop at some point with some probability. This will be useful in ourstudy of Markov chains with terminal states.161

162 APPENDIX A. MARKOV PROCESSESA.1 Markov PropertyFor a Markov chain, the transition matrix is independent of previous states and depends onlyon the current state, that is for each t = 1; 2; 3; : : :p(st+1 = jjst = i) = p(st+1 = jjst = i; st�1; : : : ; s1)When this is true, we say that the Markov property holds.A.2 Generating a State SequenceThe Markov chain is now the �nite state process which is described by the tuple (S; P; o1).Simulating Markov chains is fairly simple: �rst we select an initial state s1 according to theprobability distribution over initial states o1, and then we just select a state st+1 given staccording to the probabilities P (st+1jst). The resulting generated sequence of states is oftencalled a state-trajectory. Each state-trajectory H = (s1; s2; : : : ; sn), has a speci�c probabilitywhich can be computed by: P (H) = o1(s1) nYi=2P (sijsi�1)If we could observe a huge amount of su�ciently long 1 state-trajectories like the one above,we would be able to compute an approximation to the initial state probabilities and the statetransition function by counting how often initial states or state transitions have occurred andthen averaging them.A.3 State Occupancy ProbabilitiesWe are interested in predicting the future given a current active state and our model of theMarkov process. However, we cannot just predict a single state-trajectory, since each one ofthem may have a tiny probability of really occurring. Instead of state-trajectories, we predictthe probability distribution that each state is active at a speci�c future time step. Theseprobabilities are also called state occupancy probabilities. We will denote the state occupancyprobabilities at time t by the vector ot = (p(st = S1) : : : p(st = Sn))T . Where oT denotes thetranspose of o.The dynamics of the state occupancy probabilities over the chain are resulting from re-cursively applying the following equation:oTt+1 = oTt PWhen we want to predict the future, we cannot be sure in which state st the process is at anytime t, and therefore the uncertainty may be quite high. However, when it is possible to useintermediate results, e.g. when we can observe the state at a particular time-step t, this isuseful for calculating ot+1. The knowledge of being in a particular state st, helps to diminishthe prediction error over the next state occupancy probabilities ot+1, but does not alwaysdecrease the entropy of ot+1. E.g. look at Figure A.1: we may have a case in which a state j1We consider regular Markov chains, which means that there exists a number L so that all states areconnected by a path of length at most L.

A.3. STATE OCCUPANCY PROBABILITIES 163goes to two successors l and m with probability 0.5 each. If at time t� 1, we know st�1 = i,we may have a transition to st = j or st = k (both probability 0.5) where k goes to state mwith probability 1.0. Then the entropy of the predicted state occupancy probabilities at timet + 1 given that we are in state i at time t � 1 is: �0:75log0:75 � 0:25log0:25 = 0.81 bits.After we know that we have stepped to state j at time t, and we predict again, the entropyis �0:5log(0:5) � 0:5log(0:5) = 1 bit. Thus, additional information may make our predictionabout the future state less certain.
m

kj

 l

i

0.5 0.5
1.0

0.50.5

S

S

S

t

t+1

t-1Figure A.1: A Markov chain where entropy is not monotonically increasing.When we do not know p(st+k = j), but we know st, we can compute the state occupancyprobability vector ot+k which stores the probability that the system is in state i (for i =1; : : : ; N) at time-step t + k as follows:p(st+k = jjst = i) = P kijWhere P k is the k-step transition matrix. We may also calculate this by using:p(st+k = jjst = i) = Xm P limP k�lmjwith 0 � l � k which is the Chapman-Kolmogorov equation. The logic behind this equationis that the probability of going from one state i to another state j in k steps is equal to theprobability of going from i to each possible in-between state m in l steps (probability P lim)and then going from m to j in k� l steps (with probability P k�lmj). Note that the path whichis taken from i to j does not matter due to the Markov property.In particular, when k is a power of 2, we may use the following equation which usesrecursion to e�ciently calculate the probability:p(st+k = jjst = i) = (P k2ij)2Given ot, we can calculate ot+k by: oTt+k = oTt P k

164 APPENDIX A. MARKOV PROCESSESA.4 Stationary DistributionThe stationary (steady-state) distribution x has the following property: xT = xTP . Thismeans that the probabilities will not change anymore by looking one step further in time, i.e.the dynamics of the state occupancy probabilities becomes 0 (a �xed point has been reached).We can �nd x by solving xT = xTP directly (by iteration), or as follows:xT = ~1T (I + ONE � P)�1;where ONE is a matrix containing a 1 on each place, and ~1 is a vector containing only 1's.I is the identity matrix. (Resnick, 1992).A.5 Properties of Markov ChainsThere are some properties of Markov chains which are useful for classifying states, see also(Resnick, 1992; Bertsekas and Tsitsiklis, 1996).� When it is possible to go from state i to state j, i.e. 9k so that P kij > 0, we say that jis accessible from i.� If for two states i and j, it holds that i is accessible from j and j is accessible from i,(that means that there is a path from one to the other and v.v.) then we say that i andj communicate.� A Markov chain is irreducible, if there is a path between each pair of states, that is allstates in S communicate with each other.� When Pii = 1 for some i, we say i is an absorbing state.� When Pij = 0 for all j 2 S, we say that i is a terminal state. Note that this de�nitionis di�erent from that of most other authors who use the same de�nition for terminal asfor absorbing states.� When there exists a set of states C � S, with the property that for each i 2 C, andeach j 2 S � C, P kij = 0, for all k, and all states in C communicate we say that C isa recurrent class. This means that the process will not leave C, once it has entered astate i 2 C.� States that do not belong to any recurrent class are called transient. For transientstates, we have P kii = 0, as k ! 1. That means that the probability of returning to atransient state goes to 0 as the number of steps after the visit goes to in�nity, whichmeans that ot(i)! 0 for t!1.� A chain is called ergodic, if it is irreducible, the complete set of states S is recurrentand a stationary distribution exists.

A.6. COUNTING VISITS 165A.6 Counting VisitsSometimes it is useful to know the average number of times the process will be in a particularstate j starting in the current state i until T steps in the future. The expected number ofvisits Kij of a state j starting in i until T steps in the future can be calculated by:Kij = TXl=0 P lijFor T !1, we can calculate the complete counting matrix K with elements Kij by:K = 1Xl=0 P l = (I � P)�1;where I is the identity matrix, and Q�1 denotes the inverse of Q. Note that in this case theprocess should terminate, since otherwise Kij goes to1 for at least one i; j pair. Terminationmay be assured by including a terminal state which is accessible from all other states.A.7 ExamplesExample 1: Look at the following example. The set of states is S = f1; 2; 3g and theprobabilistic transition matrix P is given by:������� 0:6 0:4 0:00:3 0:2 0:50:0 0:6 0:4 �������
1 2

3

0.6
0.4

0.3

0.2

0.50.6

0.4Figure A.2: The Markov chain of Example 1.This Markov chain in shown in Figure A.2. The chain is irreducible since all statescommunicate. There are no transient states. The stationary distribution x can be calculatedas follows: 0:6x1 + 0:3x2 = x10:4x1 + 0:2x2 + 0:5x3 = x20:5x2 + 0:4x3 = x3

166 APPENDIX A. MARKOV PROCESSESFrom this follows: x1 = 34x2 and x3 = 56x2. Since x1 + x2 + x3 = 1, we get 3112x2 = 1, and itfollows that x1 = 931 , x2 = 1231 and x3 = 1031 . The chain is ergodic. Note that (I - P) is singular,therefore we cannot compute the counting matrix for the in�nite case (in this case all stateswill be visited in�nitely many times).Example 2: Now have a look at the following example. Again S = f1; 2; 3g. Now P is givenby: ������� 0:6 0:4 0:00:0 0:8 0:20:0 0:4 0:6 �������State 1, is a transient state, since once the process has left state 1 it will not go back toit anymore. States 2 and 3 form a recurrent class. The stationary distribution is given by:xT = (0 23 13). Note that a transient state has probability 0 in the stationary distribution.The chain is also not ergodic.Example 3: Now have a look at the following example. S = f1; 2; 3g, and P is given by:������� 0:6 0:4 0:00:2 0:6 0:20:0 0:0 0:0 �������Here, state 3 is a terminal state. Since the terminal state is accessible from all states, thismeans that the process will always stop. This also implies that all non-terminal states aretransient states. The chain is not ergodic. We can calculate the future visits matrix K =(I � P)�1. This gives: ������� 5 5 12:5 5 10 0 1 �������We can see that the terminal state is reached one time from all states, and that the expectednumber of transitions between state 1 and 2 is bounded.A.8 Markov OrderWhen we consider Markov chains, we make the requirement that the previous states are notallowed to have any in
uence on the current transition which is therefore solely based on thecurrent state. When a transition matrix has this property, we call it memoryless. However,sometimes states are not uniquely perceived. Instead we may be in the posession of a partialdescription of a state. This partial state or observation may not always contain all informationneeded to �nd a perfect prediction of the subsequent state. In such cases previous states maybe used to improve the prediction abilities. Therefore, we will shortly describe Markov chainswhere previous visits of states in
uence the current dynamics.The Markov order mo of a process is de�ned as the minimal number of previous stepswhich in
uence the transition function. When 8i 2 Sp(st+1 = i) = p(st+1 = ijst; : : : ; s1);

A.9. HIGHER ORDER TRANSITION FUNCTIONS 167the Markov order is mo = 0 and we see that the current state and the previous states donot in
uence the next transition. This means that there is a �xed probability of visiting eachstate.We will use a recursive de�nition for the Markov order. The Markov order is mo (formo > 0) when it is not mo� 1 and when the following holds 8i 2 S:p(st+1 = ijst; : : : ; st+1�mo) = p(st+1 = ijst; : : : ; s1) (A.1)The equation says that no more than mo previous states can be important for determiningthe transition probabilities. There are two special cases, the �rst is when mo = 1, which wehave already seen, since it is a requirement for Markov chains (the Markov property holds).When mo = t, and goes to 1 as t!1, we say it is a process of inde�nite Markov order.Dealing with processes with de�nite Markov order higher than one, which we will callhigher order Markov processes, can be done as follows: we construct new states which areCartesian products of the last mo steps. The new space of higher order states, contains Nmoelements (although usually only a small fraction of all elements do occur). In this new space,however, we can consider Markov chains of order 1.A.9 Higher Order Transition FunctionsWhen we consider Markov processes of higher order (mo > 1), and we want to predict thedynamics of the states, we have to use higher order states imo and moth order probabilistictransition functions. For this we introduce higher-order states imo which contain all informa-tion about the last mo steps (the history of the state trajectory). The state imo is de�ned asfollows. Given: st = j0; st�1 = j1; st�2 = j2; : : : ; st+1�mo = jmo�1, we compute imo as follows:imo = mo�1Xk=0 st�kNmo�k�1: (A.2)That means that imo assigns a number to uniquely describe each di�erent sequence of states.It is useful to number the (�rst order states) as follows: S = f0; 1; 2; : : : ; N � 1g, which givesthe following numbering for imo : imo 2 HS = f0; 1; 2; : : : ; Nmo � 1g. HS is the resulting setof higher order states. Note that when mo = 1, imo = st and HS =S.For de�ning higher order transitions of order mo, we use:pmo(jmojimo) = p(st+1 = j; st = j0; : : : st+2�mo = jmo�2jst = j0; : : : ; st+1�mo = jmo�1);with imo and jmo de�ned by equation A.2.pmo(jmojimo) denotes the probability of going from imo to jmo in 1 step, based on the lastmo states which are covered in imo. We can again use matrix notations. We construct thehigher order matrix HP with size Nmo �Nmo where we de�neHPimojmo = pmo(jmojimo);Note that each row of HP contains only n nonzero elements, since only the �rst state canbe changed (and thus we could represent the matrix more e�ciently). The Markov order is thelongest sequence of previous states needed for determining the probability of all transitions

168 APPENDIX A. MARKOV PROCESSESfrom each possible history. For most states imo, the Markov order will be lower, which meansthat we do not have to know pmo(jmojimo), but can rely on pl(jljil) with l < mo, and thereforeil < imo. In such cases we can represent the transition function more compactly by a tree.We can calculate pnmo(jmojimo) that is the probability of going from imo to jmo in n stepsusing the previous mo steps as follows:pnmo(jmojimo) = HP nimojmoA.10 Examples
0.4

0.6

0=0.2 | St-1

=t-10.5 | S

0=t-1

=t-1

1

0.8 | S

0.5 | S 1

0 1Figure A.3: Second order Markov chain be-fore introducing higher order states.
(0,0)

(1,1)

0.4 0.4

0.6
0.6

0.2

= 0 (0,1) =1

(1,0) = 2= 3

0.5

0.5
0.8

Figure A.4: The resulting Markov chain of�gure 2 after converting the chain to higherorder states and transitions.Example 4: Given the 2th order (mo = 2) Markov chain in Figure A.3. The states aref0; 1g and in state 1 the next transition depends on the previous state. We construct thehigher order states : HS = f(0; 0); (0; 1); (1; 0); (1; 1)g or equivalently: HS = f0; 1; 2; 3g. HPis given by: ����������� From=To (0; 0) (0; 1) (1; 0) (1; 1)(0; 0) 0:4 0 0:6 0(0; 1) 0:4 0 0:6 0(1; 0) 0 0:2 0 0:8(1; 1) 0 0:5 0 0:5
�����������Figure A.4 shows the resulting Markov chain. The resulting higher order transition matrixis irreducible, does not contain absorbing states or transient states. The stationary occupancyprobabilities are given by xT = (1064 1564 1564 2464). The chain is ergodic. Finally, for the stationarydistribution over the states in Figure A.3, we have probability p(0) = 2564 that we observe a 0,and p(1) = 3964 .Example 5: Given the 2th order Markov chain in Figure A.5, we can of course again de�neHS and HP in the same way, but now HP would be a 9 � 9 matrix. A better way in thiscase is to de�ne HS with four states as follows (not all 9 states are needed) HS = f0; 1; 2; 3g,state 0 is the set of 2th order states : f(0; 0); (0; 1)g, state 1 = f(1; 1); (1; 2)g, state 2 =f(2; 1); (2; 2)g, and �nally state 3 = f(1; 0)g. Note that we split the original state 1, whichneeds the previous state for calculating its transition probabilities, into a set of two statesf1; 3g. The resulting Markov chains is shown in Figure A.6. The transition probability matrixnow looks as follows:

A.10. EXAMPLES 169
0.2 | S <> 0

t-1

t-1

0 1

0.6
0.4

<> 00.3 | S
1.0 | S = 0t-1

t-1 0<> 0.5 S |
0.4 2

0.6

Figure A.5: Example 5. Higher order Markovchain before introducing higher order states.
0 1

23

0.6

0.4

0.3
0.2

0.50.6

0.4

1.0Figure A.6: Markov chain with splittedhigher order states.����������� From=To (0) (1) (2) (3)(0) 0:6 0 0 0:4(1) 0:3 0:2 0:5 0(2) 0 0:6 0:4 0(3) 0 0 1:0 0
�����������Note that this matrix is invertible (just check Pv = 0, which means that all vi = 0).When we would have used the full 9 � 9 higher order matrix, then it would not have beeninvertible. This is because some rows would be the same. Therefore an invertible matrixcontains all necessary information and we should not try to make matrices unnecessarilylarge by introducing redundant information (as was the case in Example 4).Now we can calculate the stationary occupancy probabilities: x = (45203 60203 80203 18203)T .From these we can calculate the probabilities that we will see each of the states 0, 1, and 2when the process has settled down in the steady-state distribution by just summing up thestationary occupancy probabilities of the splitted state 1: (45203 78203 80203).

170 APPENDIX A. MARKOV PROCESSES

Appendix BLearning rate AnnealingConsider the following conditions on the learning rate �t which depends on t. Here we use tto denote the number of visits of a speci�c state/action pair.1. P1t=1 �t =12. P1t=1 �2t <1The reason for the �rst condition is that by updating with learning rate �t, each (�nite)distance between the optimal parameter-setting and the initial parameters can be overcome.The reason for the second condition is that the variance goes to zero, so that convergencein the limit will take place (otherwise our solution will be inside a ball with the size of thevariance containing the optimal parameter-setting, but the true single-point solution will beunknown). We want to choose a function f(t) and set �t = f(t). In (Bertsekas and Tsitsiklis,1996) f(t) = 1t is proposed. Here we propose to use more general functions of type : f(t) = 1t� ,with � > 0, and will proof that for 12 < � � 1, the two conditions on the learning rate aresatis�ed.The function is a step function, since a sum is used. In the following we use a continuousfunction in order to make it easy to compute �. Since there is a mismatch between thecontinuous function and the step function, we use two functions, one which returns a smallervalue than the sum (the lower bound function), and another which returns a larger value (thehigher bound function).For the �rst condition we use a lower bound on the sum:1Xt=1 1t� � Z 1t=1 1t� dt= " t1��1� � #11= 1From this (and from dealing with the special case � = 1 separately) follows : � � 1.For the second condition we use a higher bound on the sum:1Xt=1 1t2� � 1 + Z 1t=2 1(t� 1)2� dt171

172 APPENDIX B. LEARNING RATE ANNEALING= 1 + "(t� 1)1�2�1� 2� #12< 1From this follows : � > 12 .Hence we can use the following family of methods for decreasing the learning rate: f(t) =1t� with 12 < � � 1. Since in general we want to choose the learning rate as high as possible,� should be chosen close to 12 . In practical simulations often constant learning rates are used(i.e. � = 0), but this may prohibit convergence.

Appendix CTeam Q(�) AlgorithmWe have extended the Fast Q(�) algorithm to the multi-agent case. The complete Team Q(�)algorithm will be described here. We will �rst introduce additional indices for the di�erentagents (histories) and use the following variables:K = Number of agents.Hi = History list of agent i.l0i(s; a) = Eligibility trace of agent i.�i = Global delta trace of agent i.�ti = Global eligibility trace of agent i.�i(s; a) = Local delta trace for SAP (s; a) of agent i.self visitedi(s; a) = Boolean which is true if SAP (s; a) occurred in the trajectoryof agent i.visitedi(s; a) = Last trial number in which SAP (s; a) occurred in the trajectoryof agent j, where j may, or may not be equal to i. If it is not, there should be aconnected path between SAP (s; a) to the trajectory of agent i.revisitedi(s; a) = Boolean which indicates whether SAP (s; a) has been visitedmultiple times by agent i.First we adapt the previous procedures Global Update and Local Update to take intoaccount that we have to specify the current agent. These procedures should always be usedfor the multi-agent Q(�) where the value function is shared by the agents, independent of thechoice whether we connect traces or not. The new Local Update simply adds the contributionsfrom all agent trajectories to update a Q-value:173

174 APPENDIX C. TEAM Q(�) ALGORITHMLocal Update(st; at) :1) D 02) For i = 1 to K Do2a) If (visitedi(st; at) > 0)2a.1) M visitedi(st; at)2a.2) D D+(�Mi ��i(st; at))l0i(st; at)2a.3) �i(st; at) �Ni2a.4) If (M < N)2a.4.1) l0i(st; at) 02a.4.2) visitedi(st; at) N3) Q(st; at) Q(st; at) + �k(st; at)DFor Global Update we �rst have to change the variable-indices to take the active agent (theagent which made the last step) into account (this is straightforward to do, so we do not showthe new procedure here). In the procedure Global Update's addendum, we change the �rstlines (line 9, 9a and 9b), to make sure that we insert revisited states in the beginning of thehistory list. Here the union operator [is implemented as an insertion at the head of a list.Global Update(st; at; i) :9) If (visited(st; at) = 0)9a) Hi Hi [(st; at)9b) visitedi(st; at) N9c) self visitedi(st; at) 19d) revisitedi(st; at) 09') Else9e) Hi Hi=(st; at)9f) Hi Hi [(st; at)9g) self visitedi(st; at) 19h) revisitedi(st; at) 1Finally, Global addendum should be updated so that we reset the variables revisitedi(s; a)and self visitedi(s; a) in lines 10a-3.3 and 10a-3.4.Connecting traces algorithm. Now we have adapted the existing procedures for thevalue function sharing multi-agent case. We will call the multi-agent Q(�) method withoutconnecting traces: Independent Q(�). If we want to connect traces, all we have to do is tocheck if an agent executes a SAP which has been executed already by another agent and callthe procedure Connect as shown below. Note that in our algorithm we compare whether thesame SAP has occurred in two agent trajectories, another method would be to check whetheran agent visits the same state as another agent. Although this would cause more links betweentrajectories, the second agent may have chosen a di�erent action, since the action selected bythe �rst agent turned out not to be very good, and therefore learning on that future trajectorymay be more harmful than if we only learn if the same SAP has occurred.In the procedure Connect, we have the meeting point (s; a) and want to let SAPs from thetrajectory of agent i learn on the future dynamics of trajectory GoalA. The variables Deltaand trace2 store local values of (s; a) for trajectory GoalA. Trace1 is the eligibility trace ofthe current SAP Prev which we insert.

175We traverse the trajectory of agent i by going backwards in the chain. The variables SPrevand Aprev denote the state and action of the history element Prev of agent i. Whenever SAPs(Prev) from i have not been visited by the trajectory called GoalA, we insert them in the listand update the trial, eligibility traces, and �-values. After inserting 1 SAP we take its prede-cessor and check in which agent trajectories the preceding SAP occurred, so that they mayalso start learning on the trajectory of GoalA. This is implemented by the lines starting from(3f) below. Essentially it implements a recursive call which stores SAPs from all trajectoriesin the history list of GoalA if there is a directed path to SAP (s; a) to the list of GoalA. If we\hop" over to another trajectory, we recompute the trace variables. Finally line 4 implementsthe case in which the SAP Prev already has a non-zero eligibility trace on the trajectory ofGoalA, but since it has been revisited, its predecessor may still not have eligibility.Connect(s; a; P rev; i;GoalA; delta; trace1; trace2; trial) :1) If (Prev = NULL) return2) lnew trace2(l0i(sPrev; aPrev)=trace1)3) If ((visitedGoalA(sPrev; aPrev) = 0) AND self visitedi(sPrev; aPrev) AND(lnew > �m) AND visitedi(sPrev; aPrev = trial)3a) visitedGoalA(sPrev; aPrev) visitedGoalA(s; a)3b) l0GoalA(sPrev; aPrev) lnew3c) �GoalA(sPrev; aPrev) delta3d) HGoalA insert at end of list(HGoalA ; (sPrev; aPrev))3e) visitedGoalA(sPrev; aPrev) visitedGoalA(s; a)3f) For j = 1 to K3f.1) If ((j <> GoalA) AND (self visitedj(sprev; aprev)))3f.1.a) If (j <> i)3f.1.a.1) new trace1 l0j(sprev; aprev)3f.1.a.2) new trace2 lnew3f.1.a.3) trial visitedj(sprev; aprev)3f.1.b) else3f.1.b.1) new trace1 trace13f.1.b.2) new trace2 trace23f.1.b.3) trial visitedi(sprev; aprev)3f.1.c) Prev Prev history elt(Hj ; (sPrev; aPrev))3f.1.d) If ((trace1 > �m) AND (trace2 > �m))3f.1.d.1) Connect(s; a; P rev; j;GoalA; delta; new trace1; new trace2; trial)4) Else If (revisitedi(sprev; aprev) AND self visitedi(sprev; aprev))4a) Prev Prev history elt(Hi; (sPrev; aPrev))4b) Connect(s; a; P rev; i;GoalA; delta; trace1; trace2; trial)Finally, we have to call the procedure connect. This we do if we observe that the currentSAP (s; a) has also occurred in the trajectory of another agent. There are two ways of con-necting trajectories: (1) SAPs are inserted in the history list of the active agent so that theywill start learning on what the active agent does in the future. This is done in the �rst partof the procedure below (2a). (2) SAPs are inserted in the history list of the other agent sothat SAPs which occurred in the list of the active agent will start learning on the trajectoryof the other agent (3a). Below, we present the complete Team Global Update procedure. It

176 APPENDIX C. TEAM Q(�) ALGORITHM�rst calls Global Update and then tries to connect trajectories. We call the active agent Active.Team Global Update(st; at; Active) :1) Global Update(st; at; Active)2) For i = 1 To K2a) If ((i <> Active) AND (self visitedi(s; a)))2a.1) Prev Prev history elt(Hi(s; a))2a.2) delta �Active(s; a)2a.3) trace1 l0i(s; a)2a.4) trace2 l0Active(s; a)2a.5) trial visitedi(s; a)2a.6) if ((trace1 > �m) AND (trace2 > �m))2a.6.1) Connect(s; a; P rev; i; Active; delta; trace1; trace2; trial)3) For i = 1 To K3a) If ((i <> Active) AND (self visitedi(s; a)))3a.1) Prev Prev history elt(HActive(s; a))3a.2) delta �i(s; a)3a.3) trace1 l0Active(s; a)3a.4) trace2 l0i(s; a)3a.5) trial visitedActive(s; a)3a.6) if ((trace1 > �m) AND (trace2 > �m))3a.6.1) Connect(s; a; P rev;Active; i; delta; trace1; trace2; trial)

Appendix DPS for Function ApproximatorsD.1 PS for Neural GasThe model-based update of the Q-value Q(ni; a), Q-update(ni; a) looks as follows:Q(ni; a) Xj Pnij(a)(R(ni; a; j) +
V (j));where Pnij(a) = P (jjni; a). The details of our PS look as follows:Our-Prioritized-Sweeping-NG(x):1) Compute active neurons: c1; : : : ; cz2) For k = 1 to z do:2a) Update ck --- 8a do:2a.1) Q-update(ck; a)2b) Set j�(ck)j to 12c) Promote ck to top of queue3) While (n < Umax & queue 6= nil)3a) Remove top ck from the queue3b) �(ck) 03c) 8 Predecessor neurons i of ck do:3c.1) V 0(i) V (i)3c.2) 8a do:3c.2.1) Q-update(i; a)3c.3) V (i) maxaQ(i; a)3c.4) �(i) �(i) + V (i)� V 0(i)3c.5) If j�(i)j > �3c.5.1) Insert i at priority j�(i)j3d) n n + 14) Empty queue, but keep �(i) valuesHere Umax is the maximal number of updates to be performed per update-sweep. Theparameter � 2 IR+ controls update accuracy.177

178 APPENDIX D. PS FOR FUNCTION APPROXIMATORSD.2 PS for CMACsThe model-based update of the Q-value Qk(c; a), Q-update(k; c; a) looks as follows:Qk(c; a) Xj P kcj(a)(Rk(c; a; j) +
Vk(j));where P kcj(a) = Pk(jjc; a). The details of our PS look as follows:Our-Prioritized-Sweeping-CMAC(x):1) Compute active cells: f1; : : : ; fz2) For k = 1 to z do:2a) Update fk --- 8a do:2a.1) Q-update(k; fk; a)2b) Set j�k(fk)j to 12c) Promote (k; fk) to top of queue3) While (n < Umax & queue 6= nil)3a) Remove top (k; c) from the queue3b) �k(c) 03c) 8 Predecessor cells k; i of k; c do:3c.1) V 0k(i) Vk(i)3c.2) 8a do:3c.2.1) Q-update(k; i; a)3c.3) Vk(i) maxaQk(i; a)3c.4) �k(i) �k(i) + Vk(i)� V 0k(i)3c.5) If j�k(i)j > �3c.5.1) Insert i at priority j�k(i)j3d) n n + 14) Empty queue, but keep �k(i) values
D.3 Non-Pessimistic Value FunctionsTo compute non-pessimistic value functions for multi-agent CMACs, we decrease the prob-ability of the worst transition from each �lter/cell/action and then renormalize the otherprobabilities. Then we use the adjusted probabilities to compute the Q-functions. In thefollowing Ckij(a) counts the number of transitions of cell i to j in �lter k after selecting actiona and Cki (a) counts the number of times action a was selected and cell i of �lter k was ac-tivated. We obtain P̂ kij(a), the estimated transition probability, by dividing them. Then wesubstitute the following for Q-update(k; c; a):

D.3. NON-PESSIMISTIC VALUE FUNCTIONS 179Compute Non-Pessimistic Q-value(k; i; a):1) m arg minjfRk(i; a; j) +
Vk(j)g2) n Cki (a)3) P P̂ kim(a)4) P kim(a) (P� z2�2n+ z�pnqP (1�P)+ z2�4n)1+ z2�n5) �P P kim(a)� P̂ kim(a)6) 8j 6= m6a) P kij(a) P̂ kij(a)� �PCkij(a)Cki (a)�Ckim(a)7) Q-update(k; i; a)The variable z� which determines the step size for decreasing worst transition proba-bilities. To select the worst transition in step 1, we only compare existing transitions (wecheck whether P̂ij(a) > 0 holds). See Figure D.1 for a plot of the function. Note that ifthere is only one transition for a given �lter/cell/action triplet then there will not be anyrenormalization. Hence the \probabilities" may not sum up to 1. Consequentially , if some�lter/cell/action with deterministic dynamics has not occurred frequently then it will con-tribute just a comparatively small Q-value and thus have less impact on the computation ofthe overall Q-value.
Non-Pessimistic

0
0.2

0.4
0.6

0.8
1

P 10
20

30
40

50
60

70
80

90
100

n

0

0.2

0.4

0.6

0.8

1

New P

Figure D.1: The non-pessimistic function (new P) which decreases the probability of the worsttransition decreased as a function of the (maximum likelihood) probability P and the numberof occurrences n.

180 APPENDIX D. PS FOR FUNCTION APPROXIMATORS

BibliographyAlbus, J. S. (1975a). A new approach to manipulator control: The cerebellar model articula-tion controller (CMAC). Dynamic Systems, Measurement and Control, pages 220{227.Albus, J. S. (1975b). A theory of cerebellar function. Mathematical Biosciences, 10:25{61.Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and Hosoda, K. (1994). A vision-basedreinforcement learning for coordination of soccer playing behaviors. In Proceedings ofAAAI-94 Workshop on AI and A-life and Entertainment, pages 16{21.Atkeson, C. G., Schaal, S. A., and Moore, A. W. (1997). Locally weighted learning. Arti�cialIntelligence Review, 11:11{73.Axelrod, R. (1984). The evolution of cooperation. Basic Books, New York, NY.Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings of the TwelfthInternational Conference, pages 30{37. Morgan Kaufmann Publishers, San Francisco,CA.Baluja, S. (1994). Population-based incremental learning: A method for integrating geneticsearch based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University.Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-time dynamicprogramming. Arti�cial Intelligence, 72:81{138.Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Transactions on Systems, Man, andCybernetics, SMC-13:834{846.Baum, E. (1989). A proposal for more powerful learning algortihms. Neural Computation,1(2):201{207.Baxter, J., Tridgell, A., and Weaver, L. (1997). Knightcap: A chess program that learns bycombining TD(�) with minimax search. Technical report, Australian National University,Canberra.Bayse, K., Dean, T., and Vitter, J. (1997). Coping with uncertainty in map learning. MachineLearning, 29(1):65{88.Bell, A. and Sejnowski, T. (1998). The \independent components" of natural scenes are edge�lters. Vision Research. To appear. 181

182 BIBLIOGRAPHYBellman, R. (1961). Adaptive Control Processes. Princeton University Press.Berliner, H. (1977). Experiences in evaluation with BKG - a program that plays backgammon.In Proceedings of IJCAI, pages 428{433.Berry, D. and Fristedt, B. (1985). Bandit Problems: sequential allocation of experiments.Chapman and Hall, London/New York.Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena Scienti�c,Belmont, MA.Boutilier, C. and Poole, D. (1996). Computing optimal policies for partially observable deci-sion processes using compact representations. In AAAI-1996: Proceedings of the Thir-teenth National Conference on Arti�cial Intelligence, pages 1168{1175, Portland, OR.Box, G., Jenkins, G. M., and Reinsel, H. C. (1994). Time series analysis: forecasting andcontrol. Prentice Hall.Boyan, J. A. (1992). Modular neural networks for learning context-dependent game strategies.Master's thesis, University of Chicago.Boyan, J. A. and Moore, A. W. (1995). Generalization in reinforcement learning: Safelyapproximating the value function. In Tesauro, G., Touretzky, D. S., and Leen, T. K., ed-itors, Advances in Neural Information Processing Systems 7, pages 369{376. MIT Press,Cambridge MA.Boyan, J. A. and Moore, A. W. (1997). Using prediction to improve combinatorial optimiza-tion search. In Proceedings of the Sixth International Workshop on Arti�cial Intelligenceand Statistics (AISTATS), page 14.Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal di�erencelearning. Machine Learning, 22:33{57.Caironi, P. V. C. and Dorigo, M. (1994). Training Q-agents. Technical Report IRIDIA-94-14,Universit�e Libre de Bruxelles.Campos, L. M. D., Huete, J. P., and Moral, S. (1994). Probability intervals: A tool foruncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2 (2):167{196.Cassandra, A. R. (1998). Exact and Approximate Algorithms for Partially Observable MarkovDecision Processes. PhD thesis, Brown University, Providence, RI.Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (April 1994). Acting optimally inpartially observable stochastic domains. Technical Report CS-94-20, Brown University,Providence RI.Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforcement learn-ing. In Proceedings of the 13th International Joint Conference on Arti�cial Intelligence(IJCAI), volume 2, pages 726{731. Morgan Kaufman.

BIBLIOGRAPHY 183Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual dis-tinctions approach. In Proceedings of the Tenth International Conference on Arti�cialIntelligence, pages 183{188. AAAI Press, San Jose, California.Cichosz, P. (1995). Truncating temporal di�erences: On the e�cient implementation of TD(�)for reinforcement learning. Journal on Arti�cial Intelligence, 2:287{318.Cli�, D. and Ross, S. (1994). Adding temporary memory to ZCS. Adaptive Behavior, 3:101{150.Cohn, D. A. (1994). Neural network exploration using optimal experiment design. In Cowan,J., Tesauro, G., and Alspector, J., editors, Advances in Neural Information ProcessingSystems 6, pages 679{686. San Mateo, CA: Morgan Kaufmann.Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential pro-grams. In Grefenstette, J., editor, Proceedings of an International Conference on GeneticAlgorithms and Their Applications, pages 183{187, Hillsdale NJ. Lawrence Erlbaum As-sociates.Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcement learning.In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in Neural InformationProcessing Systems 8, pages 1017{1023, Cambridge MA. MIT Press.Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. ControlSignals Systems, 2:303{314.D'Ambrosio, B. (1989). POMDP learning using qualitative belief spaces. Technical report,Oregon State University, Corvallis.Davies, S., Ng, A. Y., and Moore, A. W. (1998). Applying online search techniques tocontinuous-state reinforcement learning. In Proceedings of the AAAI'98.Dayan, P. (1992). The convergence of TD(�) for general lambda. Machine Learning, 8:341{362.Dayan, P. and Hinton, G. (1993). Feudal reinforcement learning. In Lippman, D. S., Moody,J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems5, pages 271{278. San Mateo, CA: Morgan Kaufmann.Dayan, P. and Sejnowski, T. (1994). TD(�): Convergence with probability 1. MachineLearning, 14:295{301.Dayan, P. and Sejnowski, T. J. (1996). Exploration bonuses and dual control. MachineLearning, 25:5{22.D'Epenoux, F. (1963). A probabilisitc production and inventory problem. ManagementScience, 10:98{108.Di Caro, G. and Dorigo, M. (1998). An adaptive multi-agent routing algorithm inspired byants behavior. In Proceedings of PART98 - Fifth Annual Australasian Conference onParallel and Real-Time Systems.

184 BIBLIOGRAPHYDietterich, T. (1997). Hierarchical reinforcement learning with the MAXQ value functiondecomposition. Technical report, Oregon State University.Digney, B. (1996). Emergent hierarchical control structures: Learning reactive/hierarchicalrelationships in reinforcement environments. In Maes, P., Mataric, M., Meyer, J.-A.,Pollack, J., and Wilson, S. W., editors, From Animals to Animats 4: Proceedings of theFourth International Conference on Simulation of Adaptive Behavior, Cambridge, MA,pages 363{372. MIT Press, Bradford Books.Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathe-matik, 1:269{271.Dodge, Y., Fedorov, V. V., and Wynn, H. P., editors (1988). Optimal Design and Analysisof Experiments: Proceedings of First International Conference on Optimal Design andAnalysis of Experiments. Elsevier Publishers.Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An Experiment in Behavior Engi-neering. MIT Press/Bradford Books. in press.Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learningapproach to the traveling salesman problem. Evolutionary Computation, 1(1):53{66.Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimization by a colonyof cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,26(1):29{41.Fedorov, V. V. (1972). Theory of optimal experiments. Academic Press.Friedman, J., Bentley, J., and Finkel, R. (1977). An algorithm for �nding best matches inlogarithmic expected time. AMC Transactions on Mathematical Software, 3(3):209{226.Fritzke, B. (1994). Supervised learning with growing cell structures. In Cowan, J., Tesauro,G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6,pages 255{262. San Mateo, CA: Morgan Kaufmann.Gambardella, L. M., Taillard, E., and Dorigo, M. (1997). Ant colonies for the QAP. Tech-nical Report IDSIA-4-97, IDSIA, Lugano, Switzerland. Submitted to: Journal of theOperational Research Society.Gittins, J. C. (1989). Multi-armed Bandit Allocation Indices. Wiley, Chichester, NJ.Givan, R., Leach, S., and Dean, T. (1998). Bounded parameter Markov decision processes.Technical report. Retrievable from http://www.cs.brown.edu/people/tld/home.html.Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.Gordon, G. (1995a). Stable function approximation in dynamic programming. Technical Re-port CMU-CS-95-103, School of Computer Science, Carnegie Mellon University, Pitts-burgh.Gordon, G. (1995b). Stable function approximation in dynamic programming. In Prieditis,A. and Russell, S., editors, Machine Learning: Proceedings of the Twelfth InternationalConference, pages 261{268. Morgan Kaufmann Publishers, San Francisco, CA.

BIBLIOGRAPHY 185Heger, M. (1994). Consideration of risk in reinforcement learning. In Machine Learning:Proceedings of the 11th International Conference, pages 105{111. Morgan KaufmannPublishers, San Francisco, CA.Hihi, S. E. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-termdependencies. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advancesin Neural Information Processing Systems 8, pages 493{499. MIT Press, Cambridge MA.Hinton, G. and Sejnowski, T. (1983). Optimal perceptual inference. In Proceedings of the1983 IEEE Conference on Computer Vision and Pattern Recognition, pages 448{453.New york: IEEE.Hochreiter, S. and Schmidhuber, J. H. (1997). Long short-term memory. Neural Computation,9:1681{1726.Holland, J. H. (1975). Adaptation in Natural and Arti�cial Systems. University of MichiganPress, Ann Arbor.Hop�eld, J. J. (1982). Neural networks and physical systems with emergent collective com-putational abilities. Proceedings of the National Academy of Sciences, 79:2554{2558.Humphrys, M. (1996). Action selection methods using reinforcement learning. In Maes,P., Mataric, M., Meyer, J.-A., Pollack, J., and Wilson, S. W., editors, From Animals toAnimats 4: Proceedings of the Fourth International Conference on Simulation of AdaptiveBehavior, Cambridge, MA, pages 135{144. MIT Press, Bradford Books.Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic iterativedynamic programming algorithms. Neural Computation, 6:1185{1201.Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learning algorithm forpartially observable Markov decision problems. In Tesauro, G., Touretzky, D. S., andLeen, T. K., editors, Advances in Neural Information Processing Systems 7, pages 345{352. MIT Press, Cambridge MA.Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures oflocal experts. Neural Computation, 3(1):79{87.Jollife, I. T. (1986). Principal Component Analysis. New York: Springer Verlag.Jordan, M. I. and Jacobs, R. A. (1992). Hierarchies of adaptive experts. In Moody, J. E.,Hanson, S. J., and Lippmann, R. P., editors, Advances in Neural Information ProcessingSystems 4, pages 985{993. Morgan Kau�mann.Jordan, M. I. and Rumelhart, D. E. (1990). Supervised learning with a distal teacher. Techni-cal Report Occasional Paper #40, Center for Cognitive Science, Massachusetts Instituteof Technology.Judd, J. (1990). Neural Network Design and the Complexity of Learning. The MIT press,Cambridge.Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press.

186 BIBLIOGRAPHYKaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1995). Planning and acting inpartially observable stochastic domains. Unpublished report.Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A survey.Journal of Arti�cial Intelligence Research, 4:237{285.Kearns, M. and Singh, S. P. (1998). Near-optimal performance for reinforcement learning inpolynomial time. Retrievable from http://www.research.att.com/�mkearns/.Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1997). Robocup: The robotworld cup initiative. In Proceedings of the First International Conference on AutonomousAgents (Agents-97). The ACM Press.Koenig, S. and Simmons, R. G. (1992). Complexity analysis of real-time exploration learningapplied to �nding shortest paths in deterministic domains. Technical Report CMU-CS-93-106, School of Computer Science, Carnegie Mellon University.Koenig, S. and Simmons, R. G. (1996). The e�ect of representation and knowledge on goal-directed exploration with reinforcement learning algorithms. Machine Learning, 22:228{250.Kohonen, T. (1988). Self-Organization and Associative Memory. Springer, second edition.Koza, J. R. (1992). Genetic evolution and co-evolution of computer programs. In Langton, C.,Taylor, C., Farmer, J. D., and Rasmussen, S., editors, Arti�cial Life II, pages 313{324.Addison Wesley Publishing Company.Kr�ose, B. J. A. and van Dam, J. W. M. (1992). Adaptive state space quantisation : Adding andremoving neurons. In Aleksander, I. and Taylor, J., editors, Arti�cial Neural Networks,2, pages 619{624. North-Holland/Elsevier Science Publishers, Amsterdam.Kr�ose, B. J. A. and Van de Smagt, P. (1993). An introduction to neural networks. AutonomousSystems, University of Amsterdam.Landelius, T. (1997). Reinforcement Learning and distributed Local Model Synthesis. PhDthesis, Link�oping Universtity, Sweden.Lauritzen, S. and Wermuth, N. (1989). Graphical models for associations between variablessome of which are qualitative and some quantitative. Annals of Statistics, 17:31{57.LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,L. D. (1989). Back-propagation applied to handwritten zip code recognition. NeuralComputation, 1(4):541{551.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Trans-mission, 9(3):265{266.Li, M. and Vit�anyi, P. M. B. (1993). An Introduction to Kolmogorov Complexity and itsApplications. Springer.Lin, C.-S. and Chiang, C.-T. (1997). Learning convergence of CMAC technique. IEEETransactions on Neural Networks, 8(6):1281{1292.

BIBLIOGRAPHY 187Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,Carnegie Mellon University, Pittsburgh.Lin, T., Horne, B., and Giles, C. (1996). How embedded memory in recurrent neural networkarchitectures helps learning long-term temporal dependencies. Technical Report CS-TR-3626 and UMIACS-TR-96-28, University of Maryland, College Park MD 20712.Lindgren, K. and Nordahl, M. G. (1994). Cooperation and community structure in arti�cialecosystems. Arti�cial Life, 1(1/2):15{37.Littman, M. L. (1994a). Markov games as a framework for multi-agent reinforcement learning.In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings of the EleventhInternational Conference, pages 157{163. Morgan Kaufmann Publishers, San Francisco,CA.Littman, M. L. (1994b). Memoryless policies: Theoretical limitations and practical results.In Cli�, D., Husbands, P., Meyer, J. A., and Wilson, S. W., editors, Proceedings of theInternational Conference on Simulation of Adaptive Behavior: From Animals to Animats3, pages 297{305. MIT Press/Bradford Books.Littman, M. L. (1996). Algorithms for Sequential Decision Making. PhD thesis, BrownUniversity.Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995a). Learning policies for partiallyobservable environments: Scaling up. In Prieditis, A. and Russell, S., editors, MachineLearning: Proceedings of the Twelfth International Conference, pages 362{370. MorganKaufmann Publishers, San Francisco, CA.Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995b). On the complexity of solvingMarkov decision problems. In Proceedings of the Eleventh Annual Conference on Uncer-tainty in Arti�cial Intelligence (UAI-95).Lovejoy, W. S. (1991). A survey of algorithms methods for partially observable Markovdecision processes. Annals of Operations Research, 28:47{66.Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. (1997). Co-evolving soccer softbotteam coordination with genetic programming. In Proceedings of the First InternationalWorkshop on RoboCup, at the International Joint Conference on Arti�cial Intelligence(IJCAI-97).Mahadevan, S. (1996). Sensitive discount optimality: Unifying discounted and average re-ward reinforcement learning. In Saitta, L., editor, Machine Learning: Proceedings of theThirteenth International Conference, pages 328{336. Morgan Kaufmann Publishers, SanFrancisco, CA.Martin, M. (1998). Reinforcement Learning for Embedded Agents facing Complex tasks. PhDthesis, Universitat Politecnica de Catalunya, Barcelona.Martinetz, T. and Schulten, K. (1991). A "neural-gas" network learns topologies. In Kohonen,T., M�akisara, K., Simula, O., and Kangas, J., editors, Arti�cial Neural Networks, pages397{402. Elsevier Science Publishers B.V., North-Holland.

188 BIBLIOGRAPHYMataric, M. J. (1994). Interaction and Intelligent Behavior. PhD thesis, Massacusetts insti-tute of Technology.Matsubara, H., Noda, I., and Hiraki, K. (1996). Learning of cooperative actions in multi-agentsystems: a case study of pass play in soccer. In Sen, S., editor, Working Notes for theAAAI-96 Spring Symposium on Adaptation, Coevolution and Learning in Multi-agentSystems, pages 63{67.McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction memory.In Machine Learning: Proceedings of the Tenth International Conference, pages 190{196.Morgan Kaufmann, Amherst, MA.McCallum, R. A. (1996). Learning to use selective attention and short-term memory in se-quential tasks. In Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., and Wilson, S. W.,editors, From Animals to Animats 4: Proceedings of the Fourth International Confer-ence on Simulation of Adaptive Behavior, Cambridge, MA, pages 315{324. MIT Press,Bradford Books.McDonald, M. A. F. and Hingston, P. (1994). Approximate discounted dynamic programmingis unreliable. Technical Report 94/6, Department of Computer Science, The Universityof Western Australia, Crawley, WA.Moore, A. W. (1991). E�cient Memory-based Learning for Robot Control. PhD thesis,University of Cambridge.Moore, A. W. (1998). Personal communication.Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning withless data and less time. Machine Learning, 13:103{130.Moore, A. W. and Atkeson, C. G. (1995). The parti-game algorithm for variable resolutionreinforcement learning in multidimensional state-spaces. Machine Learning, 21:3:199{233.Moore, A. W., Atkeson, C. G., and Schaal, S. A. (1997). Locally weighted learning for control.Arti�cial Intelligence Review, 11:75{113.Munos, R. (1996). A convergent reinforcement learning scheme in the continuous case: the�nite element reinforcement learning. In Saitta, L., editor, Machine Learning: Pro-ceedings of the Thirteenth International Conference, pages 337{345. Morgan KaufmannPublishers, San Francisco, CA.Myerson, R. (1991). Game Theory. Harvard University Press.Nguyen and Widrow, B. (1989). The truck backer-upper: An example of self learning inneural networks. In IEEE/INNS International Joint Conference on Neural Networks,Washington, D.C., volume 1, pages 357{364.Nilsson, N. J. (1971). Problem-Solving Methods in Arti�cial Intelligence. McGraw-Hill.Nowlan, S. (1991). Soft Competitive Adaption: Neural Network Learning Algorithms basedon Fitting Statistical Mixtures. PhD thesis, Carnegie Mellon University, Pittsburgh.

BIBLIOGRAPHY 189Oja, E. and Karhunen, J. (1995). Signal separation by nonlinear hebbian learning. InPalaniswami, M., Attikiouzel, Y., Marks II, R., Fogel, D., and Fukuda, T., editors,Computational Intelligence - a Dynamic System Perspective, pages 83{97. IEEE Press,New York.Okabe, A., Boots, B., and Sugihara, K. (1990). Spatial Tesselations - Concepts and applica-tions of Voronoi diagrams. Wiley and Sons, New York.Omohundro, S. M. (1988). Foundations of geometric learning. Technical Report UIUCDCS-R-88-1 408, University of Illinois, Department of Computer Science.Omohundro, S. M. (1989). Five balltree construction algorithms. Technical Report TR-89-063, International Computer Science Institute, Berkeley, CA.Omohundro, S. M. (1991). Bumptrees for e�cient function, constraint, and classi�cationlearning. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advancesin Neural Information Processing Systems 3, pages 693{699. San Mateo, CA: MorganKaufmann.Parr, R. and Russell, S. (1995). Approximating optimal policies for partially observablestochastic domains. In Proceedings of the International Joint Conference on Arti�cialIntelligence (IJCAI-95), pages 1088{1094. Morgan Kaufmann.Parr, R. and Russell, S. (1997). Reinforcement learning with hierarchies of machines. InAdvances in Neural Information Processing Systems 11.Peek, N. B. (1997). Predictive probabilistic models for treatment planning in paediatric cardi-ology. In Proceedings of CESA'98 IMACS Multiconference (Computational Engineeringin Systems Applications), Symposium on Signal Processing and Cybernetics.Peng, J. and Williams, R. (1996). Incremental multi-step Q-learning. Machine Learning,22:283{290.Peng, J. and Williams, R. J. (1993). E�cient learning and planning with the DYNA frame-work. Adaptive Behavior, 1:437{454.Pineda, F. (1997). Mean-�eld theory for batched TD(�). Neural Computation, 9(7):1404{1419.Pollack, J. and Blair, A. (1996). Why did TD-Gammon work. In Touretzky, D., Mozer, M.,and Hasselmo, M., editors, Advances in Neural Information Processing Systems 8, pages10{16, Cambridge MA. MIT Press.Precup, D. and Sutton, R. (1998). Theoretical results on reinforcement learning with tem-porally abstract options. In Proceedings of the Tenth European Conference on MachineLearning (ECML'98).Preparate, F. P. and Shamos, M. I. (1985). Computational Geometry: an Introduction.Springer Verlag, New York.Prescott, T. (1994). Exploration in Reinforcement and Model-based Learning. PhD thesis,University of She�eld.

190 BIBLIOGRAPHYPress, W., Teukolsky, S., Vettering, W., and Flannery, B. (1988). Numerical recipes in C.Cambridge University Press.Rao, C. and Mitra, S. (1971). Generalized Inverse of Matrices and Its Applications. Wiley,New York.Rechenberg, I. (1971). Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipiender biologischen Evolution. Dissertation. Published 1973 by Fromman-Holzboog.Rechenberg, I. (1989). Evolution strategy: Nature's way of optimization. In Bergmann,editor, Methods and Applications, Possibilities and Limitations, pages 106{126. Lecturenotes in Engineering.Resnick, S. (1992). Adventures in stochastic processes. Birkhaeuser Verlag.Ring, M. B. (1994). Continual Learning in Reinforcement Environments. PhD thesis, Uni-versity of Texas, Austin, Texas.Ron, D., Singer, Y., and Tishby, N. (1994). Learning probabilistic automata with variablememory length. In Aleksander, I. and Taylor, J., editors, Proceedings ComputationalLearning Theory. ACM Press.Roth, A. and Erev, I. (1995). Learning in extensive-form games: Experimental data andsimple dynamic models in the intermediate term. Games and Economic Behavior, 8:164{212. Special issue: Nobel Symposium.Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representationsby error propagation. In Parallel Distributed Processing, volume 1, pages 318{362. MITPress.Rummery, G. and Niranjan, M. (1994). On-line Q-learning using connectionist sytems. Tech-nical Report CUED/F-INFENG-TR 166, Cambridge University, UK.Sahota, M. (1993). Real-time intelligent behaviour in dynamic environments: Soccer-playingrobots. Master's thesis, University of British Columbia.Sa lustowicz, R. P. and Schmidhuber, J. H. (1997). Probabilistic incremental program evolu-tion. Evolutionary Computation, 5(2):123{141.Sa lustowicz, R. P., Wiering, M. A., and Schmidhuber, J. H. (1997a). Evolving soccer strate-gies. In Proceedings of the Fourth International Conference on Neural Information Pro-cessing (ICONIP'97), pages 502{506. Springer-Verlag Singapore.Sa lustowicz, R. P., Wiering, M. A., and Schmidhuber, J. H. (1997b). On learning soccer strate-gies. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D., editors, Proceedingsof the Seventh International Conference on Arti�cial Neural Networks (ICANN'97), vol-ume 1327 of Lecture Notes in Computer Science, pages 769{774. Springer-Verlag BerlinHeidelberg.Sa lustowicz, R. P., Wiering, M. A., and Schmidhuber, J. H. (1998). Learning team strategies:Soccer case studies. Machine Learning, 33(2/3).

BIBLIOGRAPHY 191Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBMJournal on Research and Development, 3:210{229.Sandholm, T. W. and Crites, R. H. (1995). On multiagent Q-learning in a semi-competitivedomain. In Weiss, G. and Sen, S., editors, IJCAI'95 Workshop: Adaption and Learningin Multi-Agent Systems, pages 164{176. Springer-Verlag.Santamaria, J. C., Sutton, R. S., and Ram, A. (1996). Experiments with reinforcementlearning in problems with continuous state and action spaces. Technical Report COINS96-088, Georgia Institute of Technology, Atlanta.Schmidhuber, J. H. (1991a). Curious model-building control systems. In Proceedings of theInternational Joint Conference on Neural Networks, Singapore, volume 2, pages 1458{1463. IEEE.Schmidhuber, J. H. (1991b). Learning to generate sub-goals for action sequences. In Kohonen,T., M�akisara, K., Simula, O., and Kangas, J., editors, Arti�cial Neural Networks, pages967{972. Elsevier Science Publishers B.V., North-Holland.Schmidhuber, J. H. (1991c). A possibility for implementing curiosity and boredom in model-building neural controllers. In Meyer, J. A. and Wilson, S. W., editors, Proceedingsof the International Conference on Simulation of Adaptive Behavior: From Animals toAnimats, pages 222{227. MIT Press/Bradford Books.Schmidhuber, J. H. (1991d). Reinforcement learning in Markovian and non-Markovian en-vironments. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advancesin Neural Information Processing Systems 3, pages 500{506. San Mateo, CA: MorganKaufmann.Schmidhuber, J. H. (1992). Learning complex, extended sequences using the principle ofhistory compression. Neural Computation, 4(2):234{242.Schmidhuber, J. H. (1996). A general method for incremental self-improvement and multi-agent learning in unrestricted environments. In Yao, X., editor, Evolutionary Computa-tion: Theory and Applications. Scienti�c Publ. Co., Singapore.Schmidhuber, J. H. (1997). What's interesting? Technical Report IDSIA-35-97, IDSIA.Schmidhuber, J. H., Zhao, J., and Schraudolph, N. N. (1997a). Reinforcement learning withself-modifying policies. In Thrun, S. and Pratt, L., editors, Learning to learn. Kluwer.Schmidhuber, J. H., Zhao, J., and Wiering, M. A. (1996). Simple principles of metalearning.Technical Report IDSIA-69-96, IDSIA.Schmidhuber, J. H., Zhao, J., and Wiering, M. A. (1997b). Shifting inductive bias withsuccess-story algorithm, adaptive Levin search, and incremental self-improvement. Ma-chine Learning, 28:105{130.Schneider, J. G. (1997). Exploiting model uncertainty estimates for safe dynamic controllearning. In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in NeuralInformation Processing Systems 9, pages 1047{1053. MIT Press/Bradford Books, Cam-bridge.

192 BIBLIOGRAPHYSchraudolph, N. N., Dayan, P., and Sejnowski, T. J. (1994). Temporal di�erence learning ofposition evaluation in the game of go. In Cowan, J. D., Tesauro, G., and Alspector, J.,editors, Advances in Neural Information Processing Systems, volume 6, pages 817{824.Morgan Kaufmann, San Francisco.Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards.In Machine Learning: Proceedings of the Tenth International Conference, pages 298{305.Morgan Kaufmann, Amherst, MA.Singh, S. P. (1992). The e�cient learning of multiple task sequences. In Moody, J., Hanson,S., and Lippman, R., editors, Advances in Neural Information Processing Systems 4,pages 251{258, San Mateo, CA. Morgan Kaufmann.Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing elibibility traces.Machine Learning, 22:123{158.Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16.Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Decision Processes.PhD thesis, Standford, California.Steels, L. (1997). Constructing and sharing perceptual distinctions. In van Someren, M. andWidmer, G., editors, Machine Learning: Proceedings of the ninth European Conference,pages 4{13. Springer-Verlag, Berlin Heidelberg.Stone, P. and Veloso, M. (1996). Beating a defender in robotic soccer: Memory-based learn-ing of a continuous function. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors,Advances in Neural Information Processing Systems 8, pages 896{902. MIT Press, Cam-bridge MA.Stone, P. and Veloso, M. (1998). Team-partitioned opaque-transition reinforcement learning.In Proceedings of the Conference on automated learning and discovery (CONALD'98):Robot Exploration and Learning. Carnegie Mellon University, Pittsburgh.Storck, J., Hochreiter, S., and Schmidhuber, J. H. (1995). Reinforcement driven informa-tion acquisition in nondeterministic environments. In Proceedings of the InternationalConference on Arti�cial Neural Networks, volume 2, pages 159{164. EC2 & Cie, Paris.Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis,University of Massachusetts, Dept. of Comp. and Inf. Sci.Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences. MachineLearning, 3:9{44.Sutton, R. S. (1990). Integrated architectures for learning, planning and reacting based ondynamic programming. In Machine Learning: Proceedings of the Seventh InternationalWorkshop.Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In Prieditis,A. and Russell, S., editors, Machine Learning: Proceedings of the Twelfth InternationalConference, pages 531{539. Morgan Kaufmann Publishers, San Francisco, CA.

BIBLIOGRAPHY 193Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples usingsparse coarse coding. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors,Advances in Neural Information Processing Systems 8, pages 1038{1045. MIT Press,Cambridge MA.Sutton, R. S., Precup, D., and Singh, S. P. (1998). Between MDPs and semi-MDPs: Learn-ing, planning, learning and sequential decision making. Technical Report COINS 89-95,University of Massachusetts, Amherst.Teller, A. (1994). The evolution of mental models. In Kinnear, Jr., K. E., editor, Advancesin Genetic Programming, pages 199{219. MIT Press.Tesauro, G. (1992). Practical issues in temporal di�erence learning. In Lippman, D. S.,Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information ProcessingSystems 4, pages 259{266. San Mateo, CA: Morgan Kaufmann.Tesauro, G. (1995). Temporal di�erence learning and TD-Gammon. Communications of theACM, 38:58{68.Tham, C. (1995). Reinforcement learning of multiple tasks using a hierarchical CMAC archi-tecture. Robotics and Autonomous Systems, 15(4):247{274.Thrun, S. (1992). E�cient exploration in reinforcement learning. Technical Report CMU-CS-92-102, Carnegie-Mellon University.Thrun, S. (1995). Learning to play the game of chess. In Tesauro, G., Touretzky, D., and Leen,T., editors, Advances in Neural Information Processing Systems 7, pages 1069{1076. SanFransisco, CA: Morgan Kaufmann.Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation.Arti�cial Intelligence Journal, 99(1):21{71.Thrun, S. and M�oller, K. (1992). Active exploration in dynamic environments. In Lippman,D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural InformationProcessing Systems 4, pages 531{538. San Mateo, CA: Morgan Kaufmann.Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning. In Tesauro,G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information ProcessingSystems 7, pages 385{392. MIT Press, Cambridge MA.Trovato, K. (1996). A* Planning in Discrete Con�guration Spaces of Autonomous Systems.PhD thesis, University of Amsterdam.Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. MachineLearning, 16:185{202.Tsitsiklis, J. N. and Van Roy, B. (1996). An analysis of temporal-di�erence learning withfunction approximation. Technical Report LIDS-P-2322, Cambrdge,MA: MIT Labora-tory for Information and Decision Systems.Van Dam, J. W. M. (1998). Environmental Modelling for Mobile Robots: Neural Learning forSensor Fusion. PhD thesis, University of Amsterdam, The Netherlands.

194 BIBLIOGRAPHYVan de Smagt, P. (1995). Visual robot arm guidance using neural networks. PhD thesis,University of Amsterdam, The Netherlands.Van der Wal, J. (1981). Stochastic Dynamic Programming. Number 139 in MathematicalCentre tracts. Mathematisch Centrum, Amsterdam.Van Emde Boas, P., Kaas, R., and Zijlstra, E. (1977). Design and implementation of ane�cient priority queue. Mathematical Systems Theory, 10:99{127.Vennix, J. A. M. (1996). Systeemdynamica methode for strategie-ontwikkeling. Technicalreport, Faculteit der Beleidswetenschappen, Katholieke Universiteit Nijmegen.Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King's College,Cambridge, England.Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279{292.Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in theBehavioral Sciences. PhD thesis, Harvard University.Whitehead, S. (1992). Reinforcement Learning for the adaptive control of perception andaction. PhD thesis, University of Rochester.Widrow, B. and Ho�, M. E. (1960). Adaptive switching circuits. 1960 IRE WESCONConvention Record, 4:96{104. New York: IRE. Reprinted in Anderson and Rosenfeld[1988].Wiering, M. A. (1995). TD Learning of Game Evaluation Functions with Hierarchical NeuralArchitectures. Master's thesis, Department of Computer Systems, University of Amster-dam.Wiering, M. A. and Dorigo, M. (1998). Learning to control forest �res. In Haasis, H.-D. andRanze, K. C., editors, Proceedings of the 12th international Symposium on \ComputerScience for Environmental Protection", volume 18 of Umweltinformatik Aktuell, pages378{388, Marburg. Metropolis Verlag.Wiering, M. A., Sa lustowicz, R. P., and Schmidhuber, J. H. (1998). CMAC models learn toplay soccer. In Niklasson, L., Bod�en, M., and Ziemke, T., editors, Proceedings of the 8thInternational Conference on Arti�cial Neural Networks (ICANN'98), volume 1, pages443{448. Springer-Verlag, London.Wiering, M. A. and Schmidhuber, J. H. (1996). Solving POMDPs with Levin search andEIRA. In Saitta, L., editor, Machine Learning: Proceedings of the Thirteenth Interna-tional Conference, pages 534{542. Morgan Kaufmann Publishers, San Francisco, CA.Wiering, M. A. and Schmidhuber, J. H. (1997). HQ-learning. Adaptive Behavior, 6(2):219{246.Wiering, M. A. and Schmidhuber, J. H. (1998a). E�cient model-based exploration. In Meyer,J. A. and Wilson, S. W., editors, Proceedings of the Sixth International Conference onSimulation of Adaptive Behavior: From Animals to Animats 6, pages 223{228. MITPress/Bradford Books.

BIBLIOGRAPHY 195Wiering, M. A. and Schmidhuber, J. H. (1998b). Fast online Q(�). Machine Learning Journal.Williams, R. J. and Baird, L. C. (1993). Tight performance bounds on greedy policies based onimperfect value function. Technical Report NU-CCS-93-14, College of Computer Science,Northeastern University, Boston, MA.Wilson, S. (1994). ZCS: A zeroth level classi�er system. Evolutionary Computation, 2:1{18.Wilson, S. (1995). Classi�er �tness based on accuracy. Evolutionary Computation, 3(2):149{175.Zhang, N. L. and Liu, W. (1996). Planning in stochastic domains: Problem characteristicsand approximation. Technical Report HKUST-CS96-31, Hong Kong University of Scienceand Technology.Zhao, J. and Schmidhuber, J. H. (1996). Incremental self-improvement for life-time multi-agent reinforcement learning. In Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., andWilson, S. W., editors, From Animals to Animats 4: Proceedings of the Fourth Interna-tional Conference on Simulation of Adaptive Behavior, Cambridge, MA, pages 516{525.MIT Press, Bradford Books.

IndexBRO, 138DP, 5DT, 148EC, 135FA, 115GO, 138GP, 135HMM, 109IE, 72IS, 88LFA, 118LP, 18 LS, 111MBIE, 78MC. 30MDP, 5MLM, 56MP, 13NO, 138PAC, 68PI, 50PIPE, 135POMDP, 7PPT, 136PS, 7PW, 37RL, 1RP, 94RPP, 12RTDP, 7SAP, 6SC, 102SSA, 111TD, 5WM, 6WTA, 118action evaluation function, 16active learning, 71agent, 1belief state, 8, 89, 109

Chapman-Kolmogorov equation, 163classi�er system, 110CMAC, 122model, 133complete state information, 4consistent representation, 111contraction, 17control, 2credit assignment problem, 29data-retrieval problem, 121decision tree, 148delayed reward, 29discount factor, 14dual control, 71Dyna, 68dynamic programming, 5, 18and function approximation, 25real time, 7eligibility traces, 32, 37accumulating, 34another view, 44connecting, 45multiple, 44replacing, 34environment, 8changing, 8non-stationary, 8evolutionary computation, 135exploitation, 28exploration, 1, 7, 28, 71Boltzmann, 73directed, 7, 71initialize high, 74Max-Boltzmann, 73Max-random, 29, 72reward function, 74error based, 75frequency based, 75recency based, 75196

INDEX 197undirected, 7, 71, 72exploration/exploitation dilemma, 28, 71�xed point, 17function approximator, 7, 115and Q(�), 127and world modelling, 129dynamic topology, 116local, 118static topology, 116genetic programming, 135global model, 116hidden Markov model, 109hidden state, 87problem, 87speci�cation, 89HQ-learning, 93incomplete state information, 4independent �lter model, 148internal state, 7, 88interval estimation, 72, 78model-based, 78landmark state, 90learn, 1, 2Levin search, 111linear models, 130linear network, 116linear programming, 20local model, 116K-d tree, 121map learning, 109Markov chain, 161higher order, 167properties, 164Markov decision process, 5, 13�nite horizon, 14in�nite horizon, 15Markov order, 166Markov process, 13, 161Markov property, 5, 29, 161maximum likelihood model, 56MAXQ, 112memory bits, 109model-based, 6interval estimation, 78Q-learning, 7, 57Monte Carlo sampling, 30every visit, 34

�rst visit, 34multi-agent RL, 8nearest neighbor search, 121neural gas, 119model, 132occupancy probabilities, 162optimal experiment design, 71optimal linear associative memory, 132partially observable MDP, 7, 87speci�cation, 89perceptual aliasing, 87policy, 1optimal, 14reactive, 94shared, 43policy iteration, 18policy tree, 91prediction problems, 30prioritized sweeping, 7, 59probabilistic incremental program evolution,135probabilistic program tree, 136probably approximately correct framework,68program evolution, 110Q-function, 17Q-learning, 6, 35model-based, 7, 57Q(�)-learning, 6, 36Fast Q(�), 38o�ine, 126Semi-online, 38Team, 43with function approximators, 127reactive policy problem, 12, 94reactive strategy, 3recurrent neural network, 108reinforcement learning, 1, 3direct, 6, 27indirect, 6, 27model-based, 6multi-agent, 8o�ine, 29and function approximation, 124online, 29vs. evolutionary computation, 148reward function, 2, 13

198 INDEXfor exploration, 74robotic soccer, 8, 135simulator, 136sampling and approximation, 150Sarsa, 38sequential decision making, 1soft cell competition, 118subgoal combination, 102success-story algorithm, 111TD-learning, 5, 30TD(0), 32TD(�), 32team Q(�)-learning, 43temporal di�erences, 5, 30transition function, 13value function, 3optimal, 15shared, 43value iteration, 19Voronoi diagram, 121winner take all, 118world state, 1

SummaryThis thesis describes reinforcement learning (RL) methods which can solve sequential decisionmaking problems by learning from trial and error. Sequential decision making problems areproblems in which an arti�cial agent interacts with a speci�c environment through its sensors(to get inputs) and e�ectors (to make actions). To measure the goodness of some agent'sbehavior, a reward function is used which determines how much an agent is rewarded orpenalized for performing particular actions in particular environmental states. The goal is to�nd an action selection policy for the agent which maximizes the cumulative reward collectedin the future.In RL, an agent's policy maps sensor-based inputs to actions. To evaluate a policy, a valuefunction is learned which returns for each possible state the future cumulative reward collectedby following the current policy. Given a value function, we can simply select the action withthe largest value. In order to learn a value function for a speci�c problem, reinforcementlearning methods simulate a policy and use the resulting agent's experiences consisting of<state,action,reward,next-state> quadruples.There are di�erent RL problems and di�erent RL methods for solving them. We describedi�erent categories of problems and introduce new methods for solving them.Markov Decision ProblemsIf the agent's inputs allow for determining the state of the environment with certainty andthe environment is stationary, we can model the decision making problem as a Markov De-cision Problem (MDP). In a MDP, the probabilities and expected rewards of transitions topossible next states only depend on the current state and action and not on any previousevents. Given an exact model of a MDP, we can use Dynamic Programming (DP) methodsfor computing optimal policies. Such methods iterate over each state and constantly recom-pute the value function by looking ahead one step at each time. There are two principal DPmethods: value iteration and policy iteration. Value iteration reupdates the policy after eachimprovement of the value function by immediately mapping a state to the action with thelargest value, whereas policy iteration �rst completely evaluates a policy by using su�cientiterations, after which a policy update step is performed. Although in theory policy iterationalways converges in �nitely many iterations whereas value iteration does not, our experimentson a set of maze-tasks indicate that value iteration converges much faster to a solution. Themain reason for this is that policy iteration, postponing policy updates, wastes a lot of timeevaluating policies which generate cycles in the state space.

Reinforcement LearningDynamic programming methods can only be used if we have an a priori model of the MDP.Therefore their practical utility is severely limited. In case we do not possess such a model,we can use reinforcement learning methods which learn policies by interacting with a realor simulated environment. For this we use trials during which agents generate trajectoriesthrough the state space and let agents learn from the resulting experiences.RL methods such as Q-learning learn a value function by minimizing temporal di�erencesbetween the current state's value and the reward which immediately follows plus the nextstate's value. Q-learning updates values of state/action pairs along a solution-path by lookingahead only one single step in a trial, and therefore it takes many trials before a goal-rewardwill be backpropagated to the start. TD(�) methods are parameterized by a variable � enuse the entire future for updating the value of a state, although the degree of in
uence ofstate values in the distant future is less than values of immediately successive states. Thismakes it possible to learn from e�ects of actions which show up after a long time. Q(�)-learning combines Q-learning and TD(�) and uses single experiences to update values ofmultiple state/action pairs that have occurred in the past. Although Q(�) methods cansometimes learn policies from much less experiences than Q-learning, naive implementationsof the online Q(�) method su�er from a large computational overhead. We have introduceda novel implementation of the algorithm which makes it possible to e�ciently perform theupdates.If multiple agents are used simultaneously in an environment, they can share the policyto collect more experiences at each time step which may speed-up learning a policy. Using\policy-sharing", agents select actions according to the same policy, but their actions may dif-fer since they receive di�erent situation speci�c inputs. In such cases we can use each agent'sgenerated trajectory individually to update the shared value function. However, sometimesthere exists an interaction point (IP) between agent's trajectories such as a state visited byboth of them. In such cases we can connect the trajectories and update values of statesvisited by one agent before the IP using values of states visited by the other agent after theIP. In this way we collect much more experiences to learn from, which may increase learningspeed. We describe an implementation of this Team Q(�) algorithm and evaluate it in a non-cooperative maze-task using di�erent numbers of agents. The results do not show that themethod improves learning speed. One reason for this is that our implementation allows forconnecting a state-trajectory of one agent with another state-trajectory which may be gen-erated a long time ago by a possibly much worse policy and learning from such a trajectorymay degenerate the policy. Therefore we need to study the trade-o� between the quantityand quality of learning examples.Model-based Reinforcement LearningQ-learning and Q(�) methods are direct memoryless RL methods which directly estimate thevalue function from generated state-trajectories. Indirect or model-based RL methods �rstlearn a model of the MDP and then apply DP algorithms to compute the value function.When used in an online manner, DP algorithms are very slow since they recompute the valuefunction after each experience by iterating over all states. To speed up dynamic program-ming algorithms, some algorithms manage which update-steps should be performed after eachexperience so that only the most useful updates are made. One of the most e�cient manage-

ment methods is Prioritized Sweeping (PS) which assigns priorities to updating the valuesof di�erent states according to a heuristic estimate of the size of the values' updates. Theoriginal PS algorithm by Moore and Atkeson (1993) calculates state-priorities based upon thelargest single update of one of the successor states. We describe an alternative PS methodwhich uses the exact update sizes of state values to compute priorities. This may overcomePS' problems in case there are many tiny state value updates resulting in a large update,which remains undetected by PS.We compare model-based RL methods to direct RL methods on a set of maze-tasks andobserve that model-based RL results in much faster learning performances and better �nalpolicies. Finally, we observe that our PS algorithm achieves better results than the originalPS algorithm.ExplorationIf we test an agent's policy by always selecting the action with the largest value, we mayend up with a suboptimal policy which has (almost) never visited a large part of the statespace. Therefore it is important that the agent also selects exploration actions and triesto increase its knowledge of the environment. Usually, however, exploration actions causesome loss of immediate reward intake. Therefore, if an agent wants to maximize its cumu-lative reward during its limited life-time, it faces the problem of trying to spend as littletime as possible on exploration while still being able to �nd a highly rewarding policy (theexploration/exploitation dilemma). However, if we are interested in learning a policy achiev-ing some minimal performance level as soon as possible, we do not care about intermediaterewards and thus only exploration is important.Exploration methods can be split into undirected exploration methods which use pseudo-random generators to try their luck on generating novel interesting experiences, and directedexploration methods which use additional information such as the knowledge of what theagent has seen or learned in order to send the agent to interesting unknown regions.Directed exploration methods can be constructed by constructing an exploration rewardrule which makes it possible to learn an exploration value function for estimating global infor-mation gain for selecting particular action-sequences. Although we can use any RL methodfor learning an exploration value function, we propose to use model-based RL for this. Finally,in order to focus only on state/action pairs which can belong to the optimal policy, we intro-duce MBIE, an algorithm which uses the standard deviance for computing optimistic valuefunctions. The results on experiments with maze-tasks featuring multiple goals show thatdirected exploration using model-based RL can signi�cantly outperform indirect exploration.Furthermore, the results show that MBIE can be used to almost always obtain near-optimalperformance levels and that MBIE e�ciently deals with the exploration/exploitation dilemma.Partially Observable ProblemsIn the real world the agent's sensory inputs may not always convey all information neededto infer the current environmental state. Therefore the agent will sometimes be uncertainabout the real state and that makes the decision problem much harder. Such problems areusually called Partially Observable Markov Decision Problems (POMDPs) and even solvingdeterministic POMDPs in NP-hard. To solve such problems, the agent needs to use previousevents or some kind of short-term memory to disambiguate inputs. Exact methods make

use of a belief state, a vector representing the probabilities that the real environmental stateis each of the possible states. Then they use DP algorithms to compute optimal solutionsin the belief state space. Exact methods are computationally infeasible if there are manystates, since they are too slow. Therefore we are interested in heuristic algorithms whichcan be used for larger problems, but do not necessarily �nd optimal solutions. We describea novel algorithm, HQ-learning, which is able to learn good policies for large deterministicPOMDPs. HQ automatically decomposes POMDPs into sequences of simpler subtasks thatcan be solved by memoryless policies learnable by reactive subagents. Decomposing the taskinto subtasks and learning policies for each subtask is done by two cooperating Q(�)-learningrules. Experiments, on (among other) a large maze-task consisting of 960 states and only11 di�erent, highly ambiguous inputs, show that HQ-learning can quickly �nd good or evenoptimal solutions for di�cult problems.Function Approximation in RLAn important topic in RL is the application of function approximation to learn value functionsfor continuous or very large state spaces. We describe three di�erent function approximators:linear networks, neural gas, and CMACs, and describe how they can be combined with directand model-based RL methods. Then we describe a simulated multi-agent soccer environmentwhich we use to test the learning capabilities and problems of the function approximatorsand RL methods. The goal is to learn good soccer strategies against a �xed programmedopponent. The results show that the linear networks and neural gas architecture trained withQ(�) had problems to steadily improve their learned policies. Sometimes, the performancebroke down due to catastrophic learning interference. CMACs was more stable, althoughCMAC-models, the combination of CMACs and model-based RL was the only method whichfound really good performances and was able to beat some good opponents.ConclusionsWe have shown in this thesis that RL can be used to quickly �nd good solutions for di�erentkinds of problems. The methods described in this thesis do not need a model of the world,but learn a policy for an agent by interacting with the (real) environment. Especially model-based RL can be very e�cient since it is able to use all information. Therefore the practicalutility of (model-based) reinforcement learning is very large and we expect the research �eldto grow a lot in importance in the forthcoming years.

SamenvattingDit proefschrift beschrijft reinforcement leermethoden (RL-methoden) welke sequenti�ele be-sluitvormings problemen op kunnen oplossen door het leren van proberen en fouten maken.Sequenti�ele besluitsvormings problemen zijn problemen waarin een kunstmatige agent inter-acteert met een bepaalde omgeving door middel van haar/zijn sensoren (om input te verkrij-gen) en e�ectoren (om acties te verrichten). Voor het meten van de goedheid van het gedragvan een speci�eke agent, maken we gebruik van een beloningsfunctie welke bepaalt in hoev-erre een agent beloond of gestraft moet worden voor het verrichten van bepaalde handelingenin bepaalde situaties. Het doel is om een actie-selecteer handelsprocedure voor de agent tevinden welke de totale som der beloningen verkregen in de toekomst maximaliseert.In een RL-setting worden inputs geprojecteerd op acties door de handelsprocedure vande agent. Voor het evalueren van een handelsprocedure, leren we een waarde-functie welkevoor elke mogelijke toestand van de wereld de som der beloningen teruggeeft welke in detoekomst wordt verkregen door het volgen van de huidige handelsprocedure. Als we eenmaaleen waarde-functie hebben verkregen, kunnen we gewoon de actie selecteren met de hoogstewaarde. Om een waarde-functie te leren voor een bepaald probleem, simuleren reinforce-ment leermethoden een handelsprocedure en gebruiken ze de resulterende ervaringen van deagent welke bestaan uit <toestand, actie, beloning, volgende-toestand> quadruples om detoekomstige beloningssom te schatten beginnende in elke mogelijke toestand.Er zijn verschillende RL-problemen en verschillende RL-methoden om ze op te lossen. Webeschrijven verschillende probleem-categorie�en en introduceren nieuwe methoden om ze op telossen.Markov Besluits ProblemenAls de input van een agent toestaat om de toestand van de omgeving met zekerheid tebepalen en de causale wetten die in de omgeving opgaan zijn onveranderlijk, dan kunnenwe het besluitvorming probleem modelleren als een Markov Besluits Probleem (MBP). Ineen MBP hangen de kansen en beloningen van overgangen naar mogelijke opvolgende toes-tanden enkel af van de huidige toestand en gekozen actie en niet van vorige gebeurtenissen.Gegeven een exact model van een MBP, kunnen we Dynamisch Programmeer (DP) methodengebruiken om optimale handelsprocedures te berekenen. Zulke methoden itereren over elketoestand en verbeteren de waarde-functie voortdurend door steeds een stapje verder vooruitte kijken. Er zijn twee voorname DP methoden: waarde iteratie en handelsprocedure iteratie.Waarde iteratie verbetert de handelsprocedure na elke verbetering van de waarde-functiedoor onmiddellijk elke toestand te projecteren op de actie met de hoogste waarde, terwijl

besluitsprocedure iteratie eerst de handelsprocedure volledig evalueert om zo een exact evalu-atie van de handelsprocedure te verkrijgen, waarna een verbetering van de handelsprocedurewordt gemaakt. Hoewel handelsprocedure iteratie in theorie altijd in eindig veel iteratiesconvergeert en waarde iteratie niet, wijzen onze experimenten erop dat waarde iteratie veelsneller een oplossing kan berekenen. De hoofdreden hiervoor is dat handelsprocedure iteratieverbeteringen in de besluitsprocedure uitstelt en dusdanig veel tijd verliest door het volledigevalueren van handelsprocedures welke wederkerende paden in de toestandruimte genereren.Reinforcement LerenDynamisch programmeer methoden kunnen enkel gebruikt worden als we een a priori modelvan de MBP tot onze beschikking hebben. Daarom is hun praktische bruikbaarheid ergbeperkt. In het geval dat we niet over zo'n model beschikken, kunnen we reinforcementleermethoden gebruiken welke handelsprocedures leren door te interacteren met een werkelijkeof gesimuleerde omgeving. RL-methoden gebruiken experimenten waarin de agent toestands-paden door de toestandsruimte genereert waarvan geleerd kan worden. In het optimale gevalleert de agent dusdanig optimale paden te genereren.RL-methoden zoals Q-leren leren een waarde-functie door tijdelijke verschillen tussen dewaarde van de huidige toestand en de beloning welke onmiddellijk volgt plus de waarde vande volgende toestand te minimaliseren. Q-leren past waarden van toestand/actie paren welkeop een oplossings-pad liggen aan door in elk opvolgend experiment slechts �e�en stap vooruit tekijken en daarom zijn er veel experimenten nodig voordat een beloning welke verkregen wordtbij de doel-toestand teruggepropageerd wordt naar het begin. TD(�) methoden gebruiken dehele toekomst voor het aanpassen van de waarde van een toestand, hoewel waarden van toe-standen welke ver in de toekomst liggen minder zwaar wegen dan waarden van onmiddellijkopvolgende toestanden. Dit maakt het mogelijk om van de gevolgen van acties te leren welkepas na een lange tijd zichtbaar worden. Q(�) combineert Q-leren met TD(�) en gebruiktervaringen om waarden van meerdere toestand/actie paren welke in het verleden zijn opge-treden aan te passen. Hoewel Q(�) methoden soms handelsprocedures kunnen leren van veelminder ervaringen dan Q-leren, lijden na��ve implementaties van online Q(�) methoden ondereen grote computationele overhead. Wij hebben een nieuwe implementatie van het algoritmege��ntroduceerd welke het mogelijk maakt om de aanpassingen e�ci�ent te verrichten.Als meerdere agenten gelijktijdig gebruikt worden in een omgeving, dan kunnen ze de han-delsprocedure delen om zo meer ervaringen in elke tijdstap te verzamelen welke het leren vaneen handelsprocedure kan versnellen. Als we gebruik maken van dit \�e�en handelsprocedurevoor allen", dan selecteren agenten acties volgens dezelfde handelsprocedure, maar hun actieskunnen verschillen omdat ze verschillende situatie-speci�eke inputs verkrijgen. Voor zulkegevallen kunnen we paden gegenereerd door verschillende agenten individueel gebruiken omde gedeelde waarde-functie aan te passen. Soms, echter, bestaat er een interactie-punt (IP)tussen paden van agenten zoals een toestand welke door beiden bezocht is. In zulke gevallenkunnen we paden verbinden en waarden van toestanden welke door �e�en agent voor het IPzijn bezocht, aanpassen door gebruik te maken van waarden van toestanden welke door deandere agent bezocht zijn na het IP. Op deze manier verzamelen we veel meer ervaringen omvan te leren, hetgeen de leersnelheid wellicht groter maakt. We beschrijven een implementatievan dit Team Q(�) algoritme en evalueren het in een niet-co�operatieve doolhof-taak waarinwe gebruik maken van verschillende aantallen agenten. De resultaten konden niet aantonendat de methode de leersnelheid verbetert. Een reden hiervoor is dat onze implementatie

verbindingen toestaat tussen een toestand-pad van �e�en agent met een ander toestand-padwelke al een hele lange tijd geleden gegenereerd is door een mogelijkerwijze veel slechterehandelsprocedure waardoor aanpassingen in de waarde-functie onterecht kunnen zijn. Dus iser een trade-o� tussen de kwantiteit en kwaliteit van leervoorbeelden.Model-gebaseerd Reinforcement LerenQ-leren en Q(�) methoden zijn directe RL methoden welke de waarde-functie direct schattenaan de hand van gegenereerde toestand-paden. Indirecte of model-gebaseerde RL methodenleren eerst een model van het MBP en gebruiken dan DP algoritmes om de waarde-functiete berekenen. Wanneer DP algoritmes op een online manier gebruikt worden, zijn ze erglangzaam omdat ze de waarde-functie na elke ervaring herberekenen en dat doen door overalle toestanden te itereren. Om DP algoritmes te versnellen, zijn er algoritmes die regelenwelke aanpassings-stappen verricht moeten worden na elke ervaring zodat enkel de meestbruikbare aanpassingen gemaakt worden. E�en van de meest e�ci�ente methoden is PrioritizedSweeping (PS) welke prioriteiten aanwijst voor het aanpassen van waarden van verschillendetoestanden. Deze prioriteiten worden bepaald aan de hand van een schatting van de groottevan de aanpassingen. Het oorspronkelijke PS algoritme van Moore en Atkeson (1993) berekenttoestand-prioriteiten gebaseerd op de grootste enkelvoudige aanpassing van �e�en van de opvol-gende toestanden. Wij beschrijven een alternatieve PS methode welke de exacte groottes vanaanpassingen gebruikt om prioriteiten te bereken. Dit kan het probleem van PS verhelpenals er vele kleine aanpassingen verricht worden welke tot een grote aanpassing van de waardevan een toestand leiden, maar welke niet door PS gedetecteerd wordt.We vergelijken model-gebaseerde methoden met directe RL methoden op een verzamelingdoolhof-taken en observeren dat model-gebaseerde RL in veel sneller leergedrag resulteert enveel betere handelsprocedures oplevert. Tenslotte observeren we dat ons PS algoritme betereresultaten behaalt dan het originele PS algoritme.ExploratieAls we de handelsprocedure van een agent testen door altijd de actie met de grootste waardete selecteren, dan kan dat uiteindelijk leiden tot een suboptimale handelsprocedure welkeeen groot deel van de toestandruimte nog nooit of nauwelijks bezocht heeft. Daarom is hetbelangrijk dat de agent ook exploratie acties selecteert en haar/zijn kennis van de omgevingprobeert te verbeteren. Gewoonlijk kosten exploratie acties een bepaalde som aan onmid-dellijke beloningen. Daarom, als een agent haar/zijn som der beloningen welke in haar/zijnbeperkte levensduur verkregen wordt wil maximaliseren, staat het voor het probleem om zoweinig mogelijk tijd aan exploratie te verspillen welke echter wel voldoende is om een goedbelonende handelsprocedure te vinden (het exploratie/exploitatie dilemma). Indien we echtermeer ge��nteresseerd zijn in het zo snel mogelijk leren van een handelsprocedure welke eenbepaald prestatie-nivo levert, dan geven we niks om de beloningen welke in de tussentijdverkregen worden en dus is enkel exploratie belangrijk.Exploratie methoden kunnen ingedeeld worden in niet-gerichte exploratie methoden welkepseudo-random generatoren gebruiken om zo te proberen nieuwe interessante ervaringen tegenereren en gerichte exploratie methoden welke extra informatie gebruiken zoals de kenniswat de agent al gezien of geleerd heeft om zodoende de agent te sturen naar interessanteonbekende gebieden.

Gerichte exploratie methoden kunnen geconstrueerd worden door een exploratie beloningsfunctie te construeren waarmee we een exploratie waarde-functie kunnen leren voor het schat-ten van globale informatie verdiensten voor het verrichten van bepaalde acties. Hoewelwe alle RL-methoden kunnen gebruiken voor het leren van een exploratie waarde-functie,stellen we voor om model-gebaseerd RL hiervoor te gebruiken. Tenslotte, om enkel op toe-stand/actie paren te concentreren welke deel uit kunnen maken van de optimale handelspro-cedure, introduceren we MBIE, een algoritme welke gebruik maakt van de standaard devi-atie voor het berekenen van optimistische waarde-functies. De resultaten van experimentenmet doolhof-taken bestaande uit meerdere doeltoestanden tonen dat gerichte exploratie metmodel-gebaseerd RL ongerichte exploratie duidelijk overtreft. Voorts demonstreren de re-sultaten dat MBIE gebruikt kan worden om bijna altijd haast optimale prestatie nivo's tebehalen en verder e�ci�ent omgaat met het exploratie/exploitatie dilemma.Gedeeltelijk Waarneembare ProblemenIn de wereld dragen de inputs van de sensoren van de agent niet altijd genoeg informatieover om de exacte huidige toestand van de omgeving af te leiden. Daarom zal de agentsoms onzeker zijn over de daadwerkelijke toestand en dat maakt het besluitsprobleem veelmoeilijker. Zulke problemen worden gewoonlijk Gedeeltelijk Waarneembare Markov BesluitsProblemen (GWMBP'en) genoemd en zelfs het oplossen van deterministische GWMBP'en isNP-moeilijk. Voor het oplossen van zulke problemen moet de agent vorige gebeurtenissen eneen bepaalde vorm van korte-termijn geheugen gebruiken om inputs van de ambigu��teiten teontdoen. Exacte methoden gebruiken een geloofs toestand; een vector welke de kansen repre-senteert dat de echte toestand van de omgeving gelijk aan elk van de mogelijke toestanden is.Daarna gebruiken ze DP algoritmes om optimale oplossingen in de geloofs toestandruimte teberekenen. Exacte methoden zijn computationeel onbruikbaar als er teveel toestanden zijn,omdat ze te langzaam zijn. Daarom zijn we ge��nteresseerd in heuristieke algoritmes welkegebruikt kunnen worden om grotere problemen op te lossen, maar welke niet zeker optimaleoplossingen vinden. We beschrijven een nieuw algoritme, HQ-leren, welke goede handelspro-cedures kan leren voor grote deterministische GWMBP'en. HQ deelt GWMBP'en op in eenopeenvolging van makkelijkere deelproblemen welke opgelost kunnen worden door geheugen-loze handelsprocedures welke leerbaar zijn door reactieve subagenten. De decompositie vande taak in subtaken en het leren van handelsprocedures voor elke subtaak wordt gedaan doortwee samenwerkende Q(�)-leerregels. Experimenten op onder andere een grote doolhof-taakbestaande uit 960 toestanden en slechts 11 verschillende ambigue inputs, tonen dat HQ-lerensnel goede of zelfs optimale oplossingen kan vinden voor bepaalde moeilijke problemen.Functie Approximatie in RLEen belangrijk thema in RL is de toepassing van functie approximatie voor het leren vanwaarde-functies voor continue of zeer grote toestandruimtes. We beschrijven drie verschil-lende functie approximatoren: lineaire netwerken, neuraal gas, en CMACs en beschrijvenhoe ze gecombineerd kunnen worden met directe en model-gebaseerde RL-methoden. Danbeschrijven we een gesimuleerde voetbal omgeving welke we gebruiken om de leercapaciteitente testen van de verschillende functie approximatoren en RL methoden. Het doel is om goedevoetbal strategie�en te leren tegen een voorgeprogrammeerde tegenstander. De resultaten to-nen dat de lineaire netwerken en neurale gas architecturen getraind met Q(�) problemen

hadden om voortdurend hun handelsprocedures te verbeteren. Soms stortte de prestatie indoor een catastrofale leerinterferentie. CMACs was meer stabiel, hoewel CMAC-modellen, decombinatie van CMACs en model-gebaseerd RL de enige methode was welke daadwerkelijkgoede prestaties leverde en in staat was enkele goede tegenstanders te kloppen.ConclusiesIn dit proefschrift hebben we aangetoond dat RL gebruikt kan worden om snel goede oplossin-gen voor verschillende soorten problemen te vinden. De beschreven methoden hebben geenmodel van de wereld nodig, maar leren een handelsprocedure door te interacteren met de(echte) omgeving. Model-gebaseerde is de meest e�ci�ente leermethode omdat het de door deexperimenten verkregen data geheel gebruikt. We bevestigen dus dat het praktisch nut vanreinforcement leren erg groot is en verwachten dat het onderzoeksveld aanzienlijk aan belangzal toenemen in de komende jaren.

AcknowledgmentsThis thesis would never have seen the light if my promotor Frans Groen would not have gonethrough so many e�orts to put things in order. I am very thankful for this and have greatlyappreciated watching and listening to his sharp hawk-eye views
ying over the scienti�c �elds.My co-promotor, supervisor and boss J�urgen Schmidhuber has always given me the op-portunity to explore interesting ideas which autonomously created themselves and have beenastonishing my mind and computer. Without J�urgen's careful editing, continuous stimulationand pragmatic reasoning, these ideas would never have crystallized themselves and �nd theirway to our respected scienti�c audience. I'm therefore very grateful to J�urgen. Maybe di�er-ent from many other Ph.D students, I've never felt like a slave. Instead, I am very fortunatethat I could participate in J�urgen's very interesting and enjoyable research group.I have had a great time in Lugano and in IDSIA. I very much enjoyed the parties presentedby my good friend Rafal Salustowicz. There are few friends willing to give away their lastfood, especially if you are very hungry and the next day all shops are closed. I was fortunateto know Rafal and his lovely wife Malgorza who are like that. Furthermore my discussionswith Rafal during co�ee breaks were often so stimulating that my research has highly pro�tedfrom them, since they created new challenging views which I then carefully transmitted tocomputer land, resulting in a positive research feedback loop.I also want to thank Marcuso Ho�man, without whom life in IDSIA would never havebeen so pleasant. Marcuso is one of the few people who are always in a good mood. Heeven stays reasonable when the cappuccino machine blows up! I will certainly miss Marcuso'spresence, Italian pasta, and number one cappuccio.Nic Schraudolph has always been a very interesting and nice guy to talk to. He cantell you everything you always wanted to know about bugs, viruses, internet worms, neuralnetworks, and so much more. He reminds me of a story of a scientist who had a theory whichtold that large brains imply greater intelligence. Once this scientist received �ve brains ofGerman professors (after they had died) and found out that their brains were of moderatesize. His conclusion was that the professors were not so intelligent after all. I have to saythat this will not happen to Nic (since he sure has a large brain).Felix Gers and his girlfriend Mara also helped creating a blissful time in Lugano. I reallyliked Felix' curiosity, way of talking, and great laugh. Hitting the road with Felix and Marahave always lead to a lot of joy!Thanks to Marco Dorigo for his comments on my thesis and for helping me develop newscienti�c interests. I also want to thank the other Idsiani, thousand times thanks for the Cureto Monaldo, grazie mille for all his kindness to Marco Z., thanks to Gianluca and Cristina forinteresting discussions, thanks to Giuseppe for putting robots in space, thanks a lot to Jieyu

for his remarkable presence and sharing many research interests, thanks to Eric for cursinghis computer and not mine, thanks to Andreas for his interesting stories about kangaroosplaying cricket (although I could not always follow them exactly since they were spoken infast Italian), thanks to Fred for the great poker night(s), and thanks to Nicky, Sandro andGiovanni for everything. Finally thanks to Luca for his humor and fruitful e�orts to make agreat lab from IDSIA, thanks to Carlo for his patience, support, and e�orts to keep thingsgoing. Last, but not least thanks to Monica, for her endless help and devotion to settle allimportant issues outside the �eld of research.I want to thank Ben Kr�ose for his everlasting help starting many years back while I washis student. I am indebted to him for putting me on the road of science and happily look backto the pleasant times enjoyed in his company. I'm also grateful to Stephen and Nikos for ourfriendly discussions in the university of A'dam. Thanks also to Maria who helped me to seelife in a very positive way and the happy times we shared together. She helped me becomingless arti�cial and much more artistic. Thanks to Flower for our everlasting friendship andall good times we have shared together. Many thanks go to my parents for their everlastingsupport and love.Finally, I want to express my warm feelings to Ren�e Wiering for his great friendliness andhospitality. I have always enjoyed and pro�ted from our mind breaking discussions pursuingthe goal to better understand ourselves and our life. I really hope these discussions will neverstop, but continuously evolve and become truth.

