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ABSTRACT

In this paper, we proposed a hierarchical clustering frame-
work to classify vehicle motion trajectories in real traffic
video based on their pairwise similarities. First raw trajec-
tories are pre-processed and resampled at equal space inter-
vals. Then spectral clustering is used to group trajectories
with similar spatial patterns. Dominant paths and lanes can
be distinguished as a result of two-layer hierarchical cluster-
ing. Detection of novel trajectories is also possible based on
the clustering results. Experimental results demonstrate the
superior performance of spectral clustering compared with
conventional fuzzy K-means clustering and some results of
anomaly detection are presented.

1. INTRODUCTION

Motion information is useful for analyzing object behav-
iors. In many video surveillance applications, object mo-
tion is often represented by trajectories with similar spatial
and dynamic patterns. To handle different motion patterns
more effectively and efficiently, it is important to first group
motion trajectories by clustering homogeneous trajectories
into same clustersbefore further modeling trajectory distri-
butions and learning motion patterns. In this paper, we will
focus on vehicle motion trajectories and investigate more
robust methods for clustering them in real traffic scene.

Though motion trajectory learning is a relatively new
research topic, a few attempts have been made to study this
problem in recent years. Johnson et al. [1] used two com-
petitive networks to learn the distribution of trajectory data.
The two networks were trained using vector quantization
and connected by a leaky neuron layer which could pre-
serve the sequential information of input samples. Owens et
al. [3] used self-organizing feature maps to classify normal
trajectories and detect novel ones on a point-by-point basis.
While early work on trajectory modeling used indirect ap-
proaches and didn’t cluster trajectories directly, more recent
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work manipulated trajectories in a more direct way by using
whole trajectory data for clustering. In our previous work
[4], fuzzy versions of self-organizing maps were investi-
gated for learning motion patterns from trajectories. The
network accepts whole trajectories as inputs and has a much
simpler structure than previous ones. Makris et al. [2] de-
veloped an online agglomerative method for learning routes
from trajectory samples. Junejo et al. [6] used graph cut
for trajectory clustering, using Hausdorff distance to com-
pare different trajectories and calculate the edge weights of
the similarity matrix. Their work is similar in spirit to ours,
despite the use of graph cut, which is not based on the spec-
tral graph theory and does not handle multiple clusters ef-
ficiently. Spectral clustering can overcome the above limi-
tations, as well as the limitations of conventional clustering
methods like VQ, SOFM, (fuzzy) K-means clustering, ag-
glomerative clustering, etc.

The remainder of this paper is organized as follows.
Section 2 describes our approach to motion trajectory clus-
tering, including trajectory pre-processing, spectral cluster-
ing and hierarchical clustering framework, and then dis-
cusses anomaly detection. Experimental results on com-
parison of clustering performanceand anomaly detection are
presented in Section 3. Section 4 concludes our work.

2. OUR APPROACH

2.1. Trajectory Acquisition and Pre-processing

We used the tracker presented in [5] to track multiple vehi-
cles in the scene and automatically extract their trajectories.
A total number of 467 trajectories is acquired from the video
footage of a cross road scene in the rush hour.

There are mainly two problems with the raw trajectories.
First, many of them contain short zig-zag segments,which is
uncommon for vehicle motion and is mostly likely to be in-
troduced by sampling noise. Second, most trajectories don’t
start at or stop near the boundary of the scene due to imper-
fect tracking result. This will influence the computation of
distances, as it is hard to align trajectories with different ini-



tial or end points, even if they have similar spatial patterns.
Hence a little pre-processing work is necessary.

We perform pre-processing in three steps. First, for each
trajectory, consecutive points are merged and replaced by
the first point if the distances between them are too small.
The last points are all considered as overlapping with the
first point but for sampling noise. The second step is to
enforce boundary constraints on the trajectories by padding
additional points to their heads and tails until they reach the
scene boundary. This step is necessary only if either end of
the trajectory doesn’t locate near the boundary. To extend
the tail, we first fit the coordinates of last K points with a
straight line y = x tan θ+b, where θ determines the moving
direction of the padded points. Then the coordinates of the
ith padded point are given by,



















tn+i = tn + i ∗ (tn − tn−1)

xn+i = xn + (tn+i − tn) ∗ 1
K

∑K
j=1

|vn−j | cos θ

yn+i = yn + (tn+i − tn) ∗ 1
K

∑K
j=1

|vn−j | sin θ

(1)
where vi is the absolute velocity at point i. The above
padding scheme is based on the assumption that vehicles
are supposed to travel in the direction and at the same speed
as the last K points until it reaches the scene boundary. The
same padding scheme is applied to the head of the trajectory
too, if the first point don’t start near boundary. The last step
is to resample the smoothed and the extended trajectory at
equal space intervals so that the distances between any two
consecutive trajectory points are the same. By treating it as
piecewise line segments, we can simply resample the orig-
inal trajectory using linear interpolation. This is essential
for matching trajectories with similar shapes. as raw tra-
jectories vary remarkably in between-point distances due to
different speeds at which vehicles are moving in the scene.
Velocity information can also be recovered from neighbor-
ing points in the original trajectory and will be handled sep-
arately in anomaly detection.

After pre-processing, we can construct the similarity ma-
trix based on the pairwise distance of sample trajectories.
The average distance between corresponding points on two
trajectories is adopted to express their similarity. To accom-
modate trajectories of different length, only first N points
are considered, where N is the number of points in the shorter
trajectory. As all pre-processed trajectories start at bound-
ary, this distance measure is more robust than Hausdorff dis-
tance, which only compares shapes rather than sequences
and hence cannot distinguish vehicles following the same
path but heading opposite directions.

2.2. Spectral Clustering

Spectral clustering is a novel class of clustering algorithms,
which operates on the similarity matrix of pairwise distances

Fig. 1. Hierarchical Clustering Framework.

instead of individual features and seeks for. the optimal par-
tition of the graph represented by the similarity matrix.

Different versions exist for spectral clustering. In this
paper we used the one presented in [7] based on multi-way
normalized cut. Given the data set X = (x1, x2, ...xn),
we can cluster the data into k groups using the following
procedures,

1 Compute the similarity matrix A for the data set X ,
where Aij = exp(−dist(xi, xj)/2σ2)

2 Construct matrix L = D−1/2AD−1/2, where D is a
diagonal matrix whose i-th diagonal element is the sum
of A’s i-th row.

3 Apply eigenvalue decomposition to matrix L to find out
its k largest eigenvectors, namely q1, q2, ..., qk.

4 Form a new matrix Q = [q1, q2, ..., qk] by stacking the
k eigenvectors in columns and normalize each row of Q
to unit length.

5 Cluster the row vectors of Q into K clusters by treating
each row as a new feature vector for the original data.

The scaling parameter σ controls the decay of similarity as
distance increases. We perform a simple correlation test to
select its appropriate value by increasing σ in log scale and
tracking the correlation of similarity matrix between adja-
cent scales. σ is chosen before correlation converges.

2.3. Two-layer Hierarchical Clustering

In our algorithm, the sample trajectories are hierarchically
clustered in two layers based on their spatial coordinates, as
illustrated in Fig. 1.

As trajectory patterns are complex in real traffic video,
it is hard to achieve accurate results by using single layer
clustering only. Hence we adopted a divide and conquer
strategy. A top layer clustering is first applied to get a rough
result, where dominant paths and routes are extracted. Then
a second layer clustering is applied to the result of previous



clustering to achieve a finer classification. Lanes can be
separated in the path after second layer clustering. As not
all paths contain lanes, after first layer clustering, we only
split clusters that still contain too many trajectories.

After two-layer hierarchical clustering, different clus-
ters of trajectories representing different patterns of vehicle
movements have been extracted. To more efficiently repre-
sent trajectory clusters, we define the template trajectory as
the one with minimum sum of distances to all other trajecto-
ries in the same cluster. Template trajectory can be regarded
as the cluster center and is very useful for anomaly detec-
tion and trajectory modeling. By corresponding any trajec-
tory point with the nearest point on the template trajectory
in the current cluster, we can also compute the covariance
at each template trajectory point and obtain the envelope of
the current trajectory cluster.

2.4. Anomaly Detection

In this section, we propose an online anomaly detection
method, which can automatically detect abnormal trajecto-
ries either moving in atypical paths or exceeding the speed
limit.

First it is important to determine which cluster the test
trajectory belongs to. We do not need the whole trajectory
to decide its membership. The current trajectory is dynami-
cally smoothed and resampled at the same space interval as
the training trajectories as new points are added, and its dis-
tance to the template trajectory of each cluster is computed.
To accurately compare the distance, we first establish point
correspondence between the current trajectory and the tem-
plate trajectory simply by aligning the first point on the cur-
rent trajectory to the nearest point on the template trajectory.
The trajectory is assigned to the cluster with maximum pos-
terior probability, which can be easily computed following
the Bayesian decision theory, given the conditional proba-
bility (similarity) and prior probability of each cluster (fre-
quency of occurrence).

After gaining membership information, we can detect
anomalies in two steps. First we check if spatial constraints
are violated. If the membership of current trajectory varies
frequently as new points are added, it is certainly an abnor-
mal trajectory. If the current trajectory remains in the same
cluster, but not within the envelope of the cluster it belongs
to, then the segments outside the envelope are labeled as ab-
normal. Our anomaly detection scheme is segment-based.
We do not label whole trajectories as illegal, but mark the
dubious parts instead.

Next we check if velocity constraints are violated. Ve-
locity information is considered by modeling the velocities
at each template trajectory point with Gaussian distribution
using all corresponding points in the current cluster. Ex-
tremely large or small velocity values are eliminated and
not modeled. For each point on the test trajectory, the cor-
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Fig. 2. Comparison of Fuzzy and Spectral Clustering.

respondence is determined first. If its velocity is larger than
µ + σ, the point is labeled as abnormal, where µ and σ
are mean and standard deviation of the velocity model for
the corresponding point on the template trajectory. As we
model the velocity information point by point, anomaly de-
tection at this level is also segment-based.

3. EXPERIMENTAL RESULTS

In the first experiment, the performances of fuzzy K-means
and spectral clustering on trajectory clustering are compared.
We use the following Tightness & Separation Criterion (TSC)
([8]) to quantitatively evaluate the clustering results,

TSC =

∑k
j=1

∑n
i=1

Rij ∗ dist2(cj , xi)

n ∗ min dist2(cj , ck)
(2)

where cj is the center (fuzzy clustering) or the template
trajectory (spectral clustering) of cluster j, Rij is the fuzzy
membership of xi. TSC measures intra-cluster tightness and
inter-cluster divergence simultaneously. The smaller TSC,
the better performance. For both fuzzy clustering and spec-
tral clustering, we examine TSC in the first layer clustering
as the number of clusters increases from 5 to 20. The test is
repeated ten times and the results are presented in Fig. 2.

From Fig. 2, we can see that spectral clustering not only
outperforms fuzzy K-means clustering by one order of mag-
nitude, but is also much more stable. A single line is shown
in Fig. 2 for spectral clustering, as the results are the same
each time we run the test. However, fuzzy clustering con-
verges to different results each time it is repeated, where
the blue line represents average result and the gray region
around the blue line indicates variance. TSC measure also
tells us how many number of clusters inherently exist in the
data. From Fig. 2, we discover a sharp step in TSC as the
number of clusters increases from 17 to 18. This suggests
that there are 17 distinct trajectory patterns.

The clustering results are shown in Fig. 3. Fig. 3(a)
shows the best result of fuzzy clustering with 15 clusters
during the ten runs, while Fig .3(b) highlights the result of
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Fig. 3. Clustering Results. (a) Fuzzy K-means Clustering.
(b) Hierarchical Spectral Clustering. (c) First Layer Clus-
tering. (d) Second Layer Clustering

hierarchical spectral clustering. Each cluster is represented
by the template trajectory overlapped onto the original tra-
jectories. Dominant patterns of vehicle motion extracted
from the first layer spectral clustering, represented in the
envelope form, are shown in Fig. 3(c). There are more pat-
terns, however, than displayed here, yet we just choose the
six most frequent patterns for better visualization. More-
over, to avoid overlapping, the envelopes shown here is nar-
rower than the actual ones. Fig. 3(d) shows the envelope
representation of the result after second layer clustering,
where different lanes are separated from each other. These
figures clearly demonstrate the power of spectral clustering
in handling noisy data and skewed partition. All modes of
vehicle movements, including infrequent movements, are
represented exhaustively, while fuzzy clustering, on the other
hand, over-represents the frequent modes and loses others.

Here we also present some examples of real time anomaly
detection in Fig. 4 based on the spectral clustering results.
We can detect different types of abnormal movements, such
as moving outside the normal path in Fig. 4(a), overspeed-
ing in Fig. 4(b), and traveling in the opposite direction in
Fig. 4(c). Arrows point at the direction in which vehicle
moves. Normal trajectory segments are plotted in blue lines,
and abnormal parts are plotted in red lines with a cross sign
in the centers.

4. CONCLUSION

We proposed a novel method for vehicle trajectory clus-
tering based on spectral clustering. Compared with previ-
ous methods on trajectory clustering, our algorithm is more
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Fig. 4. Examples of Anomaly Detection.

robust to noise, less sensitive to initialization and can be
successfully applied to real traffic video. We also studied
anomaly detection based on the clustering result. In the fu-
ture, we will study trajectory modeling and prediction.
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