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SUMMARY

We present a review of the application of the spectral-element method to regional

and global seismology. This technique is a high-order variational method that allows

one to compute accurate synthetic seismograms in three-dimensional heterogeneous

Earth models with deformed geometry. We first recall the strong and weak forms of

the seismic wave equation with a particular emphasis set on fluid regions. We then

discuss in detail how the conditions that hold on the boundaries, including coupling

boundaries, are honored. We briefly outline the spectral-element discretization pro-

cedure and present the time-marching algorithm that makes use of the diagonal

structure of the mass matrix. We show examples that illustrate the capabilities of

the method and its interest in the context of the computation of three-dimensional

synthetic seismograms.
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1 INTRODUCTION

Coming along with the tremendous increase of computational power, the development of numerical methods for the

accurate calculation of synthetic seismograms in three-dimensional (3D) models of the Earth has been the subject of a

continuous effort in the past thirty years.

Among the different numerical approaches used to model the propagation of seismic waves, the most popular is

probably the finite-difference (FD) method, in which partial derivatives are approximated by discrete operators involving

differences between adjacent grid points. The literature about FD methods is huge, from the historical articles of Alterman

& Karal (1968), Alford et al. (1974), Kelly et al. (1976), Madariaga (1976) and Virieux (1986) to realistic applications

to 3D strong ground motion (e.g., Frankel & Vidale 1992; Frankel 1993; Olsen & Archuleta 1996; Pitarka et al. 1998;

Olsen 2000). However, in spite of recent improvements such as optimal or compact operators (e.g., Zingg et al. 1996;

Zingg 2000), FD methods still suffer from severe limitations regarding (i) the calculation of accurate surface waves; (ii)

the ability to account for deformed geometries, in particular to deal with topography at the free surface; and (iii) the

possibility to adapt the size of the grid to the seismic wavelengths under consideration in order to save computing time

and memory. As an illustration of such limitations, it is worth noting that FD methods have not been able to tackle

the challenge posed by global seismology, except in simplified geometries (e.g., Igel & Weber 1995, 1996; Chaljub &

Tarantola 1997).

Boundary-element methods based upon integral representation theorems combined with discrete wavenumber expan-

sions of Green’s functions have been proposed to incorporate realistic surface and interface topography (see e.g., Bouchon
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(1996) and references therein, Bouchon & Sánchez-Sesma (2006) (this book), Chen (2006) (this book)). However, these

methods are restricted to media consisting of a finite number of homogeneous layers, and lead to large ill-conditioned

linear matrix systems in 3D applications.

Spectral and pseudo-spectral methods have also been applied to regional (e.g., Tessmer & Kosloff 1994; Carcione

1994) and (axisymmetric) global (e.g., Furumura et al. 1998, 1999) elastodynamics, outperforming FD methods regarding

the very small amount of numerical dispersion obtained with only a small number of grid points per wavelength that can

be chosen very close to the theoretical Nyquist sampling limit. However, because of the global nature of the polynomial

basis chosen, these methods are restricted to smooth geological media and cannot be applied to complicated geometries

or sharp heterogeneities. Like FD methods, they are also unable to model surface waves with the same accuracy as body

waves because of the one-way treatment that needs to be performed in order to implement the free-surface condition

(e.g., Carcione 1994).

Although well suited to handle complex geometries and interface conditions, classical finite-element methods (FEM)

have not very often been applied to elastodynamics (e.g., Lysmer & Drake 1972; Toshinawa & Ohmachi 1992; Bao et al.

1998) because of the large amount of numerical dispersion related to the low-order polynomial bases used (Marfurt 1984),

and also because of the computational effort needed to solve the resulting large linear systems on parallel computers

with distributed memory.

The scope of this article is to review recent progress in the application of the spectral-element method (SEM) to

regional and global seismology. The SEM was introduced twenty years ago in computational fluid mechanics by Patera

(1984) and Maday & Patera (1989). It is a high-order variational method that retains the ability of FEMs to handle

complicated geometries while keeping the exponential convergence rate of spectral methods. This last property explains

the term ‘spectral element’ that was chosen by Patera (1984), which can be confusing because the method works in

the time domain, not in the frequency domain. Applications of the SEM to two-dimensional (2D) (e.g., Cohen et al.

1993; Priolo et al. 1994) and 3D elastodynamics (e.g., Komatitsch 1997; Faccioli et al. 1997; Komatitsch & Vilotte 1998;

Seriani 1998; Komatitsch & Tromp 1999; Komatitsch et al. 2004; Liu et al. 2004) have shown that very high accuracy

and low numerical dispersion are obtained and that an efficient parallel implementation is possible. The SEM has further

been applied successfully to global seismology in fully 3D Earth models (Chaljub 2000; Komatitsch & Tromp 2002a,b;

Komatitsch et al. 2002; Chaljub et al. 2003; Komatitsch et al. 2003; Chaljub & Valette 2004) by taking advantage of

its great geometrical flexibility. It is also worth mentioning other geophysical applications of the method to spherical

geometry, such as the resolution of the shallow water equation (Taylor et al. 1997).

In this article we first recall the wave equation, with particular emphasis on the potential formulation that is

used in the fluid parts of the model. We present the method used to couple the SEM with other methods for static or

dynamic problems, and to design adapted interface operators for specific problems such as the computation of the exterior

gravity potential and the coupling with a modal solution in the frequency domain. We further recall the weak form of

the equations and detail how boundary conditions are honored, in particular at fluid-solid interfaces. We then briefly

outline the spectral-element discretization and review technical aspects relevant to mesh generation and to the choice

of parameters for accurate calculations. Details are also given on how to adapt the time-marching algorithm in order

to include Perfectly Matched Layers, attenuation, rotation and self-gravitation. Examples of application to regional and

global seismology are finally presented, which illustrate the potentiality of the method in the context of 3D geophysical

problems.

2 THE WAVE EQUATION IN REGIONAL AND GLOBAL SEISMOLOGY

In this section we recall the seismic wave equation in the general framework of a self-gravitating, rotating Earth as well

as the simpler formulation relevant at a regional scale. We provide a potential decomposition of the displacement field

in the fluid regions. We also recall the continuity conditions that hold on the internal interfaces and we define a set of

boundaries through which the spectral-element solution can be coupled to solutions obtained based upon other methods.

Finally, we derive the weak form of the equations in the fluid and solid regions. The reader is referred to e.g. Aki &

Richards (1980) for a complete treatment of seismic wave propagation problems and to e.g. Dahlen & Tromp (1998) for

a general discussion of global seismology.

2.1 General framework

Let us start with a description of the geometry of the problem and define some notations. Let V denote the spatial

domain in which we are interested in modeling seismic wave propagation. V consists either of the whole Earth or of

a portion of it, as depicted in Figure 1. The solid and fluid regions of V are denoted by VS and VF , respectively, and
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ΣSS (resp. ΣFS) stands for the set of solid-solid (resp. fluid-solid) interfaces. We consider the ocean-crust boundary as

a particular interface, which we denote by ΣOC .

Finally, two interfaces are introduced depending on the size of the problem: the outer spherical boundary ∂B that

will be used when accounting for self-gravitation at the global scale, and the absorbing boundary Σabs that will be needed

in regional applications.

2.2 Reference configuration

A seismic wave is assumed to be a small perturbation about a rotating reference configuration in which the elastic

medium is stressed due to self-gravitation. The effect of deviatoric pre-stress on wave propagation being small (e.g.,

Valette 1986), the initial stress is usually assumed to be hydrostatic. Under this assumption, the static equilibrium in

the reference configuration is

∇ · T0 = −∇p0 = ρ∇φ , (1)

where T0 is the initial Cauchy stress tensor, p0 is the initial hydrostatic pressure, ρ is density and φ is the geopotential,

which is related to the non-rotating gravity potential φ′ by

φ(r) = φ′(r) − 1

2

�
Ω2r2 − (Ω · r)2

�
, (2)

where r denotes position and Ω is the Earth’s angular velocity vector. Gravity is defined from the geopotential by

g = −∇φ, and the non-rotating gravity potential is obtained by solving Poisson’s equation:

∇2φ′ =

(
4πGρ in V ,

0 outside V ,
(3)

together with the additional requirements that both φ′ and ∇φ′ · n̂ be continuous and that the regularity condition

lim
‖r‖→∞

φ′(r) = 0 , (4)

hold.

The equilibrium equation (1) implies that the level surfaces of density, geopotential and pressure coincide, which

imposes strong constraints on admissible distributions of density within the medium. In what follows, we use the so-called

quasi-hydrostatic approximation, in which lateral variations of density are allowed but where the effects of deviatoric

pre-stress are ignored (see Dahlen & Tromp 1998, p. 101).

2.3 The gravito-elastodynamic equations

The wave equation is obtained through a first-order Lagrangian perturbation of the equilibrium equation (1). We write

it under the general form:

ü + 2Ω × u̇ + A(u̇,u) =
1

ρ
f , (5)

where a dot over a symbol indicates time differentiation. In Eq. (5), u is the Lagrangian perturbation of displacement

and A denotes the elastic-gravitational operator. The dependence of A on velocity accounts for possible attenuation,

the treatment of which is postponed to Appendix A1.

In the case of global seismology, the seismic source f is usually represented by a point moment tensor:

f(r, t) = −∇ · (m0 δ(r − rs)) g(t) , (6)

where rs is the position of the source, m0 is a given seismic moment tensor, and g(t) is the source time function. The

spatial extent and the kinematics of the source can be accounted for by considering a superimposition of punctual sources

with different onset time, moment tensor and time history (e.g., Tsuboi et al. 2003).

The most general form of the elastic-gravitational operator is

ρA(u) = −∇ · T(u) − ∇ (ρu · g) + {∇·(ρu)} g + ρ∇ψ(u) , (7)

where T is the Lagrangian incremental stress tensor and ψ(u) is the Eulerian perturbation of the gravitational potential

φ′, also referred to as the mass redistribution potential. The first term on the right-hand side of Eq. (7) represents

the internal elastic forces, while the second term accounts for hydrostatic pre-stress. The remaining terms reflect the

perturbation of gravity, which is twofold: a local term in which only density is perturbed and a global term that accounts

for the perturbation of the gravitational field.

The Lagrangian incremental stress tensor is related to the infinitesimal strain tensor ε(u) = 1
2

�
∇u + ∇T u

�
by

Hooke’s law:

Tij(u) = dijkl εkl(u) , (8)
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in which the fourth-order tensor d is obtained from the classical elastic tensor c (i.e., that relating the Eulerian Cauchy

stress tensor to the infinitesimal strain tensor) by

dijkl = cijkl − T
0
ijδkl + T

0
ikδjl + T

0
jkδil, (9)

where δ is the Kronecker delta.

Whenever intrinsic attenuation is included, or when Perfectly Matched Layers are used in order to absorb energy in

the context of regional applications, the stress-strain relation (8) has to be modified. The reader is referred to Appendix

A for details on how to derive the modified Hooke’s law that needs to be used in such a case.

Finally, the mass redistribution potential is obtained by solving a Poisson-Laplace equation over the entire space:

∇2ψ(u) =

(
−4πG∇·(ρu) in V ,

0 outside V .
(10)

2.3.1 Cowling approximation

Ignoring the perturbation of the gravitational potential in Eq. (7) yields the so-called Cowling approximation (Cowling

1941), in which:

ρA(u) = −∇ · T(u) − ∇ (ρu · g) + {∇·(ρu)} g . (11)

The latter form has been used by Chaljub (2000); Komatitsch & Tromp (2002b); Capdeville et al. (2003a,b) and Chaljub

et al. (2003) because in that context it is not necessary to solve the unbounded Poisson-Laplace equation (10).

Note that even in the Cowling approximation, one needs to solve Eq. (3) in the entire space for the 3D gravitational

potential. This step was neglected by Komatitsch & Tromp (2002b) and Capdeville et al. (2003b), who used the alternative

approximation:

ρA(u) = −∇ · T(u) − ∇
�
ρu · g′� + {∇·(ρu)} g

′ , (12)

where ρ = ρ′+δρ consists of lateral variations δρ superimposed to a one-dimensional (1D) spherically-symmetric profile ρ′,

and where g′ is the (analytical) gravity vector computed from ρ′.

A consistent implementation of the Cowling approximation, i.e., that includes lateral variations in gravity, is proposed

in Appendix B2 based upon the work of Chaljub & Valette (2004).

2.3.2 Regional seismology

Self-gravitation and rotation can be safely neglected at the periods considered in regional applications (see e.g., Dahlen

& Tromp 1998, p. 142). The wave equation can then be written directly in Eulerian form using Eq. (1), without the

Coriolis term on the left-hand side and with

ρA(u) = −∇ · T(u) . (13)

In Eq. (13), T is the Cauchy stress tensor, which satisfies Hooke’s law (8) in which d is replaced with the usual elastic

tensor c by virtue of (9).

2.4 Potential formulation in fluid regions

Accounting for the propagation of seismic waves in media with both fluid and solid regions is known to be a difficult

task in the finite-element method: one cannot simply set the shear modulus to zero in the fluid because spurious (shear)

oscillations appear and evolve without any numerical control (e.g., Hamdi et al. 1978) due to the fact the wave equation,

when formulated in displacement, has too many degrees of freedom in the fluid. One must therefore impose an additional

constraint to prevent spurious modes from developing. From a numerical point of view, the critical aspect is to correctly

discretize the null space N (A) of the elastic-gravitational operator (Bermúdez & Rodŕıguez 1994). An alternative to the

discretization of N (A) is to resort to a potential formulation in order to eliminate the shear part of displacement.

In what follows, we recall the wave equation in the fluid and present a general approach to derive the potential

formulation to be used in global or regional seismology, which generalizes those of Komatitsch et al. (2000); Komatitsch

& Tromp (2002b); Chaljub et al. (2003) and Chaljub & Valette (2004) to the case of a self-gravitating, rotating, arbitrarily-

stratified fluid.
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2.4.1 Fluid regions

In the fluid regions, the stress tensor T(u) takes the form:

T(u) = −δp I = ρc2 ∇·u I , (14)

where δp is the Lagrangian pressure perturbation, c is the P -wave velocity and I denotes the second-order identity tensor.

The gravito-elastic operator can be rewritten in the general form

−A(u) = ∇
�
c2∇·u + u · g − ψ(u)

�
+ c2 ∇·u s , (15)

where s is defined by

s =
∇ρ
ρ

− g

c2
, (16)

and is related to the so-called Brunt-Väisälä squared frequency N2 by

N2 = s · g =
1

ρ

�
∇ρ − ρ

c2
g
�
· g . (17)

A fluid is said to be stably stratified if N2 is positive. In this case, the motion of a small fluid region moved away from its

equilibrium position is oscillatory, with a characteristic frequency equal to N . The restoring force in this process being

buoyancy, N is often referred to as the buoyancy frequency. The corresponding oscillations are referred to as internal

gravity waves in the ocean or in the atmosphere and as the core undertones in the Earth’s outer core. Wherever N2 < 0,

the stratification is said to be unstable because the motion of a small fluid region can diverge locally. This situation

corresponds to the onset of convection. Finally, a fluid that has N2 = 0 is said to be neutrally stratified. Note that

the spectrum of the elastic-gravitational operator acquires a continuous non-seismic low-frequency part when N2 6= 0

(Valette 1989), which makes a numerical solution difficult to design. In what follows, we do not make any assumption

about the stratification within the fluid, but let us mention that we do not intent to compute the non-seismic part of the

spectrum.

Upon substituting Eq. (15) into Eq. (1), we obtain the wave equation in the fluid regions:

ü = ∇
�
c2∇·u + u · g − ψ(u)

�
+ c2 ∇·u s − 2Ω × u̇ . (18)

2.4.2 Potential formulation

Considering the wave equation (18), we assume that the displacement field in the fluid takes the form:

u = ∇χ + ζ s + w , (19)

where χ and ζ denote two arbitrary potentials and w is an arbitrary vector field. Differentiating twice with respect to

time and identifying each term with the right-hand side of Eq. (18), we obtain a system of two scalar and one vector

wave equations:

ζ̈ = c2 ∇·(∇χ+ ζ s + w) , (20)

χ̈ = ζ̈ + (∇χ+ w) · g + N2 ζ − ψ(u) , (21)

ẅ = − 2Ω ×
�
∇χ̇+ ζ̇ s − 2Ω × ẇ

�
. (22)

Note that the displacement field defined by Eq. (19) with χ, ζ and w satisfying Eqs. (20–22) is the unique solution to

the wave equation (18), even though the choice of the potential decomposition is arbitrary. With the choice made in

Eq. (19), the two potentials ζ and χ are respectively related to the Lagrangian and Eulerian perturbations of pressure

through

δp = −ρ ζ̈ (23)

and

p′ = δp− ρu · g = −ρ (χ̈+ ψ(u)) . (24)

Note that for a neutrally stratified fluid (s = 0), only one scalar potential is required. Eqs. (20) and (21) can indeed be

combined into

χ̈ = c2 ∇·(∇χ+ w) + (∇χ+ w) · g − ψ(u) . (25)

Setting w = 0 and ψ(u) = 0 in (25), and noting that g = (c2/ρ)∇ρ for a neutrally stratified fluid, one obtains the

same equation as in Komatitsch & Tromp (2002b) and Chaljub et al. (2003) for the velocity potential. For the sake

of generality, we introduce a second potential such that ζ̈ = χ̈ − (∇χ+ w) · g + ψ(u), so that Eq. (23) defining the

Lagrangian perturbation of pressure still holds.
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Finally, note that the expression of displacement (19) also has to be used in Eq. (10) when solving for the mass

redistribution potential in the fluid regions VF .

2.4.3 Regional seismology

When self-gravitation is neglected, it is not convenient to deal with the general expression (15). Instead, we consider the

elastic operator obtained by inserting (14) into (13):

−ρA(u) = ∇
�
ρc2∇·u

�
. (26)

The process used to derive the potential formulation is the same as above: we write the wave equation

ü =
1

ρ
∇
�
ρc2∇·u

�
, (27)

from which we assume that the displacement field should have the form

u =
1

ρ
∇ (ρ ζ) , (28)

where ζ is a scalar potential. The equation governing the evolution of ζ is obtained by differentiating Eq. (28) twice with

respect to time and identifying it with the right-hand side of Eq. (27):

ζ̈ = c2∇·
�

1

ρ
∇ (ρ ζ)

�
. (29)

Note that we have chosen the potential in Eq. (28) so that pressure is p = − ρ ζ̈, as in the self-gravitating case, and

therefore our potential differs from that used by Komatitsch & Tromp (1999). As mentioned previously, this is not a

problem because the decomposition is not unique, only the solution to the wave equation is.

2.5 Initial and boundary conditions

In order to define a unique solution to the wave equation (5) and (10), we must provide both initial and boundary

conditions.

2.5.1 Initial conditions

According to the assumption that the medium is initially at rest, the initial conditions require that displacement and

velocity vanish in the reference configuration. We thus set u = u̇ = 0 in the solid and χ = χ̇ = ζ = ζ̇ = 0 and w = ẇ = 0

in the fluid at t = 0. There is no perturbation of the gravitational potential in the initial configuration, therefore ψ(u)

is also set to zero.

Taking the initial conditions into account, the precession equation (22) governing the evolution of w can be integrated

in time in order to get a form closer to that given by Komatitsch & Tromp (2002b):

ẇ + 2Ω × w = − 2Ω × (∇χ+ ζ s) . (30)

2.5.2 Internal boundary conditions

First, for the solid regions to remain in welded contact, the displacement must be continuous across the solid-solid

interfaces that are present at the contact between layers in the geological medium. This can be written as

[u]ΣSS
= 0 , (31)

where [ ]ΣSS
stands for the jump operator across ΣSS , defined in accordance with the unit normal vector n̂: [u]ΣSS

=

u+ − u−, with n̂ pointing from the − to the + side.

Then, because we assume that we deal with inviscid fluids only, any tangential slip is allowed at the fluid-solid

interfaces and therefore the kinematic condition to be used is the continuity of normal displacement:

[u · n̂]ΣF S
= 0 , (32)

which, using the decomposition (19), gives

u · n̂ = (∇χ + ζ s + w) · n̂ on ΣFS . (33)

Traction is continuous across every interface of the medium in virtue of the action-reaction principle. Let Σ stand for a

particular internal boundary, we have

[T(u) · n̂]Σ = 0 . (34)
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According to (23), this can be rewritten on the fluid-solid interfaces ΣFS as

T(u) · n̂ = ρ ζ̈ n̂ . (35)

Finally, the mass redistribution potential is continuous across every interface Σ:

[ψ(u)]Σ = 0 , (36)

but its normal derivative can be discontinuous if a density contrast is present:

[∇ψ(u) · n̂]Σ = −4πG [ρ]Σ u · n̂ . (37)

2.6 Coupling boundaries

In some situations, we may be interested in solving the wave equation outside the computational domain V based on

another method than the SEM. This is typically the case for applications in unbounded domains, for example when

computing the perturbation of the gravitational potential at the global scale or when imposing absorbing boundary

conditions at the regional scale. This situation also arises when a direct method, either exact or approximate, is available

to solve the wave equation outside V . In some applications in global seismology for example, one may assume that the

lower mantle and the core are radially stratified and that lateral heterogeneities are only present in the upper mantle.

In such a case, it is interesting to use a simpler method to compute the solution in the 1D regions of the model and to

restrict the use of the SEM to the mantle and the crust, where 3D heterogeneities are present. Another example arises

when accounting for the presence of the oceans in global seismology applications: in many (but not all) seismological

studies performed at the global scale, the thickness of the oceans is usually one order of magnitude smaller than the

seismic wavelengths of interest, allowing one to use an approximation of the wave equation in the water layer. In all cases,

the exterior domain, say W , can be accounted for by means of a boundary condition defined on the interface between

V and W . In what follows, we explain how to derive such a condition by introducing a so-called Dirichlet-to-Neumann

operator on the coupling boundary. Detailed expressions of the coupling operators needed in practical situations are

given in Appendix B.

2.6.1 Coupling principle

Suppose that we know how to solve the wave equation (5) and (10) in a region W , and let Γ stand for the interface

between W and the computational domain V . We can assume without loss of generality that Γ is a solid-solid boundary.

Then, according to Eqs. (31) and (34), both displacement and traction must match on Γ at all times. This means that

∀ t ∈ [0, T ]:

u
V
t = u

W
t , (38)

T(uV
t ) · n̂ = T(uW

t ) · n̂ , (39)

where the superscript denotes the region where the solution is defined. Let us now recall that for the wave equation to be

well-posed in region V or W , it is sufficient to know either traction or displacement on Γ at all times. The principle of the

coupling is to mix these conditions: for example to solve in V with the prescribed traction T(uW
t ) · n̂ on Γ and to solve

in W with the prescribed displacement uV
t on Γ. The key issue to apply this strategy is to compute the surface traction

from a given displacement on Γ. This process is referred to as a Dirichlet-to-Neumann (DtN) operator, in reference to

the nomenclature of classical boundary conditions in elasticity (e.g., Givoli 1992).

Let then D
W
t denote the DtN operator that computes the surface traction on Γ at time t. The superscript W

indicates that the operator is based upon the knowledge of the solution in region W . In order to be properly defined,

D
W
t must be applied to the entire history of surface displacements:

D
W
t (uW

t′≤t) = T(uW
t ) · n̂ . (40)

The boundary condition to be used in order to solve the wave equation in V can then be expressed formally as

T(uV
t ) · n̂ = D

W
t (uV

t′≤t) . (41)

The reader is referred to Appendix B for detailed expressions of DtN operators needed in practical applications to (i)

couple the SEM with a normal-mode solution in the frequency domain (see Appendix B1), (ii) take into account gravity

perturbations induced by low-frequency seismic waves (see Appendix B2) or (iii) approximate the elastic response of the

ocean in global seismology applications (see Appendix B3).
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2.7 Weak formulation

The SEM is a particular case of the finite-element method and is therefore based on the variational, or weak, form of the

wave equation. Let us recall the formulation in the solid and fluid regions with a particular emphasis on how to honor

the boundary conditions.

2.7.1 Solid regions

To obtain the weak form of the wave equation in the solid we first take the L2(VS) scalar product of Eq. (5) with an

admissible displacement field ũ:Z
VS

ρ (ü + 2Ω × u̇) · ũ dV +

Z
VS

ρA(u) · ũ dV =

Z
VS

f · ũ dV . (42)

Then, in the last term of the left-hand side we integrate by parts the divergence of the stress tensor to remove the

second-order spatial derivatives of the displacement. We obtain

−
Z

VS

∇ · T(u) · ũ dV =

Z
VS

T(u) · ∇ũ dV −
Z

Σ

T(u) · n̂ · ũ dS , (43)

where Σ comprises the free surface ∂V , the fluid-solid interfaces ΣFS , the ocean-crust boundary ΣOC , the coupling

boundaries Γ, and the absorbing boundaries Σabs. We then impose the free surface condition by setting the traction to

zero on ∂V ∩ ∂VS
, which gives:Z

Σ

T(u) · n̂ · ũ dS =

Z
ΣF S

T(u) · n̂ · ũ dS +

Z
ΣOC

T(u) · n̂ · ũ dS +

Z
Γ

T(u) · n̂ · ũ dS . (44)

Upon substituting the expressions of the different tractions given by Eqs. (35), (B.11) and (41) we obtain:Z
Σ

T(u) · n̂ · ũ dS =

Z
ΣF S

ρ ζ̈ ũ · n̂ dS −
Z

ΣOC

ρw hw (ü · n̂) (ũ · n̂) dS +

Z
Γ

D
W
t (uV

t′≤t) · ũ dS . (45)

The weak form (42) must be satisfied by every admissible displacement ũ ∈ H1(VS), where H1(VS) denotes the space

of vector fields that, together with their first derivatives, are square-integrable on VS . It can be shown that the vector

fields in H1(VS) are continuous in a weak sense in VS , which makes H1(VS) a suitable space for describing admissible

displacements in the solid. On the contrary, the continuity of traction is a natural property of weak formulations in the

sense that it is satisfied implicitly, just as the free surface condition.

2.7.2 Fluid regions

The weak form of the wave equation in the fluid regions is obtained by taking the L2(VF ) scalar product of each side

of Eqs. (21), (20) and (30) with admissible potentials χ̃ ∈ H1(VF ), ζ̃ ∈ H1(VF ) and an admissible vector w̃ ∈ L2(VF ),

respectively, and integrating by parts over VF to remove the second-order space derivatives, which gives:Z
VF

1

c2
ζ̈ ζ̃ dV = −

Z
VF

(∇χ+ ζ s + w) · ∇ζ̃ dV +

Z
ΣF S

(∇χ+ ζ s + w) · n̂ ζ̃ dS , (46)Z
VF

1

c2
χ̈ χ̃ dV =

Z
VF

1

c2

�
ζ̈ + (∇χ+ w) · g +N2 ζ − ψ(u)

�
χ̃ dV , (47)

and Z
VF

(ẇ + 2Ω × w) · w̃ dV = −
Z

VF

2Ω × (∇χ+ ζ s) · w̃ dV . (48)

Finally, we enforce the continuity of normal displacement across the fluid-solid interfaces, so that Eq. (46) becomes:Z
VF

1

c2
ζ̈ ζ̃ dV = −

Z
VF

(∇χ+ ζ s + w) · ∇ζ̃ dV +

Z
ΣF S

u · n̂ ζ̃ dS . (49)

Note that the way we couple the fluid and the solid regions is very similar to the DtN coupling strategy detailed in the

previous section. The key issue is again to solve the equation in the solid with a boundary condition in traction and to

solve the equation in the fluid with normal displacement imposed on ΣFS . The only difference is semantic: the normal

displacement is now a Neumann boundary condition from the fluid side because of the potential decomposition (19).

The fluid-solid coupling strategy therefore consists in building a Neumann-to-Dirichlet operator on ΣFS .

In many cases of practical interest, for example in applications involving offshore seismic acquisition in the petroleum

industry, we may be interested in a medium in which the fluid layer comprises a free surface (typically the surface of the

ocean). In this case, it is worth mentioning that the free-surface condition for the potential formulation we use in the

fluid is a Dirichlet condition, not a Neumann condition as in the case of a solid, because the potentials should vanish at

the surface to implement zero pressure, as can be deduced from (23) and (24).
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2.7.3 Self-gravitation

In order to establish the weak form of Eq. (10), we consider Poisson’s equation within the finite volume B. Multiplying

with an admissible potential ψ̃ ∈ H1(B) and integrating the Laplacian and the divergence terms by parts givesZ
B

∇ψ(u) · ∇ψ̃ dV −
Z

∂B

∇ψ(u) · n̂ ψ̃ dS = (50)

−4πG

�Z
VS

ρu · ∇ψ̃ dV −
Z

∂B

ρu · n̂ ψ̃ dS +

Z
VF

ρ (∇χ+ ζ s + w) · ∇ψ̃ dV

�
,

where the jump condition (37) across fluid-solid interfaces is taken into account naturally. Then, upon applying the

exterior boundary condition (B.8), we obtainZ
B

∇ψ(u) · ∇ψ̃ dV −
Z

∂B

DW (ψ(u)) ψ̃ dS = (51)

−4πG

�Z
VS

ρu · ∇ψ̃ dV +

Z
VF

ρ (∇χ+ ζ s + w) · ∇ψ̃ dV

�
,

where the DtN operator DW is given by (B.6).

3 SPECTRAL-ELEMENT APPROXIMATION

3.1 Spatial discretization

The SEM is based upon a generalized Galerkin approximation (see e.g., Deville et al. 2002, p. 51) of the weak forms

(42), (47), (49), (48) and (51), which we outline in this section.

Let h stand for a generic parameter related to the geometrical discretization process, for example the typical size

of an element or the distance between two adjacent grid points. The discrete problem can be written as: find uh ∈ Dh,

ζh ∈ Ph, χh ∈ Ph, wh ∈ Wh and ψh ∈ Gh such that ∀ũ ∈ Dh, ∀ζ̃ ∈ Ph, ∀χ̃ ∈ Ph, ∀w̃ ∈ Wh, ∀ψ̃ ∈ Gh:

(ρ üh ; ũ)S
h + (2ρΩ × u̇h ; ũ)S

h + A
S
h(uh, ψh ; ũ) = C

SF
h (ζ̈h ; ũ) + C

OC
h (üh ; ũ)

+ C
Γ
h(uh ; ũ) + (fh ; ũ)S

h , (52)�
1

c2
ζ̈h ; ζ̃

�F

h

+ A
F,ζ
h (ζh, χh,wh ; ζ̃) = C

FS
h (uh ; ζ̃) , (53)�

1

c2
χ̈h ; χ̃

�F

h

+ A
F,χ
h (ζ̈h, ζh, χh,wh ; χ̃) = 0 , (54)

(ẇh ; w̃)F
h + Rh(ζh, χh,wh ; w̃) = 0 , (55)

Ph(ψh ; ψ̃) = Dh(uh, ζh, χh,wh ; ψ̃) , (56)

where Dh, Ph, Wh and Gh denote some finite-dimensional subspaces of H1(VS), H1(VF ), L2(VF ) and H1(V ), respectively,

and ( ; )S
h (resp. ( ; )F

h ) stands for an approximate scalar product on L2(VS) (resp. L2(VF )). A
S
h results from the

approximation of Eq. (7), which involves the elastic-gravitational operator in the solid regions. By analogy, we have

denoted A
F,ζ
h and A

F,χ
h the result of the approximation of the right-hand sides of Eqs. (47) and (49). Approximate

coupling operators defined on the interfaces of the medium are labeled Ch, with a superscript referring to the different

boundary terms in Eqs. (45) and (49). Rh arises from the discretization of the precession equation (48) in the rotating

fluid regions. Finally, Ph refers to the approximation of the left-hand side of the Poisson-Laplace equation (51), while

Dh arises from the discretization of the right-hand side (i.e., the divergence term).

3.1.1 Geometrical approximation and mesh design

The first step of the spatial discretization process is to divide the computational domain into a mesh of E non-overlapping

elements:

V =
E[

e=1

V e , (57)

each of them being obtained from a reference square (in 2D) or cube (in 3D) based on an invertible mapping:

V e = F
e
�
Λd
�
, Λ = [−1, 1] , (58)

where d = 2 or 3 is the spatial dimension.
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Note that the choice of elements with tensorized geometries such as quadrangles in 2D and hexahedra in 3D is a

characteristic of the SEM that stems from the choice of tensorized polynomial bases, as will be illustrated in Section

3.1.2. Let us mention that one can generalize the SEM in 2D to triangles (Cohen et al. 2001; Giraldoa & Warburton 2005;

Bittencourt 2005; Mercerat et al. 2005) based upon the so-called Fekete points (Taylor et al. 2000), and combine triangles

and quadrangles within the same 2D mesh (Komatitsch et al. 2001; Pasquetti & Rapetti 2004). In 3D one could use

this approach to couple hexahedra with tetrahedra based upon pyramidal transition elements to ensure the geometrical

matching between quadrangular and triangular faces. However, it is worth noting that triangular spectral elements are

both more expensive and less accurate than quadrangular spectral elements (Komatitsch et al. 2001), therefore their

main interest is to allow for more geometrical flexibility during the mesh generation process.

For the sake of simplicity, we will hereafter assume that the mesh is geometrically conforming, i.e., that two neigh-

boring elements share either a single point or an entire edge or face, but not a partial edge.

Except in a few benchmark cases for which analytical transformations exist, each mapping F
e needs to be approx-

imated, for example based on a polynomial function defined by a set of na so-called ‘anchors’ or ‘control nodes’. If xe

and ζ denote the respective generic vectors on V e and Λd, this can be written as:

x
e = F

e(ζ) ≃
naX

a=1

Na(ζ)xe
a , (59)

where Na are the shape functions of the anchor nodes ζa (with by definition Na(ζb) = δab) and xe
a = F

e(ζa). In practice,

the shape functions are chosen to be linear or quadratic, so that the number of anchors is at most 9 in 2D (see Fig. 2)

and 27 in 3D. The reader is referred to Dhatt & Touzot (1984) for detailed formulas defining the shape functions of 2D

and 3D elements. Note that because the polynomial order used to approximate the solution of the wave equation in the

SEM (see next section) is higher than that defining the shape functions, the mapping is said to be sub-parametric.

The design of a mesh basically consists in choosing the values xe
a in Eq. (59) in order to define each spectral element.

During this process, it is important to honor the main geological layers and the surfaces across which the material

properties of the geological medium are discontinuous. Indeed, as will be seen in Section 3.1.2, density and seismic

velocities are approximated by smooth functions inside each element, which means that sharp local variations in the

geological medium such as an interface between two layers can only be accounted for at element boundaries. Note also

that because the interfaces are approximated based upon element-wise polynomials following Eq. (59), the number of

elements must be chosen large enough to correctly describe the variations of topography and of the shape of the interfaces.

At the scale of the full Earth, topography is defined as a small and smooth variation with respect to a spherical or

ellipsoidal reference. One must therefore first define a mesh of hexahedra that is suitable for a sphere or an ellipsoid.

A classical way of proceeding is to tile the spherical (or ellipsoidal) interfaces based upon the so-called ‘cubed sphere’

analytical transformation (e.g., Sadourny 1972; Ronchi et al. 1996). This mapping, which consists in a central projection

of the six faces of a cube onto its circumscribed sphere, provides a mesh with quasi-uniform grid sampling, as illustrated

in Fig. 3. Once the different interfaces have been meshed with a set of quadrangles, they are connected in the radial

direction to define a mesh of hexahedra. In order to circumvent the singularity at the center of the sphere, a cube is

used instead inside the inner core, as shown in Fig. 4. The reader is referred to Chaljub et al. (2003) for the analytical

expression defining the transition from the sphere to this central cube.

A proper mesh should be relatively regular, i.e., the seismic wavelengths should be sampled relatively uniformly

throughout the medium. The motivation is twofold: first, oversampling the wavelengths would result in unnecessary

calculations and memory storage from a computational point of view, and second, small grid elements would penalize

the choice of the time step used in the explicit time-marching scheme because of the Courant-Friedrichs-Lewy (CFL)

stability criterion (see Section 4).

The mesh shown in Fig. 4 does not satisfy this regularity property because the process of embedding spherical

interfaces makes the lateral grid size decrease linearly with depth, while seismic velocities usually increase with depth.

For geometrical reasons, the resulting number of grid points per P -wavelength in such a grid would be about eight

times greater in the inner core than in the crust. The same problem arises when studying the response of sedimentary

basins, because there is typically at least a factor of 5 between the values of seismic velocities in the bedrock and in the

sediments. To overcome this issue, the mesh must be coarsened with depth, either directly at the contact between two

layers of elements, or over a few layers of elements in the radial direction. In the first case, geometrical conformity is lost,

and one faces the difficulty of matching solutions defined on non-matching sub-grids. The second case is easier to handle

in the sense that the implementation of the continuity conditions between elements is unchanged, the only issue being

that the mesh becomes geometrically non-structured (which means that the number of elements that share a given grid

point, i.e., the valence of that grid point, can in principle become arbitrarily large). For more details, the reader can refer

to Chaljub et al. (2003) for an example of a non-conforming implementation of the SEM and to Komatitsch & Tromp

(1999, 2002a) for examples of conforming implementations on non-structured grids.

Once a spectral-element code has been written (following the principles detailed in the next sections), in many
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cases of practical interest mesh design is going to be the most critical and time-consuming task before being able to run

an accurate simulation. This task is difficult because the use of hexahedra as elementary mesh elements is not always

convenient to capture geological features (in classical finite-element methods, one usually has the flexibility of using

tetrahedra, pyramids and prisms in addition to hexahedra). For example when discretizing basin edges in site effect

studies, on the one hand one wants to have elements lying on the interface between the bedrock and the sediments in

order to properly account for the mechanical contrast, but on the other hand, the deformation within the elements must

be kept reasonably small for accuracy purposes. A trade-off can be found by defining an ad-hoc depth below which the

interface is properly accounted for, while it is only approximated at shallower depths (e.g., see Komatitsch et al. 2004,

and Section 6.1). What this example suggests is that in the SEM mesh design is always a difficult step that requires

expertise and trial-and-error, and that usually cannot be fully automated. Let us mention however that the field of

hexahedral mesh generation has significantly evolved in the last few years. Powerful mesh generation packages (also

known as ‘meshers’) are now available, for instance CUBIT by SANDIA National Laboratories, which is based upon

powerful mesh creation algorithms (Knupp 1999; Tautges 2004). The use of such packages greatly simplifies mesh design

for complex 3D models.

3.1.2 Functional approximation

Based upon the set of spectral elements defined above, we approximate admissible displacements and potentials by

continuous piecewise polynomials defined on the reference domain Λd and transported through the local mappings (58).

This can be written as:

Dh =

�
ũ ∈

�
C0(VS)

�d
, ũ

e ∈
�

QN (Λd)
�d

∀e = 1, . . . , ES

�
, (60)

Ph =
n
φ̃ ∈ C0(VF ), φ̃e ∈ QN (Λd) ∀e = 1, . . . , EF

o
, (61)

Gh =
n
ψ̃ ∈ C0(V ), ψ̃e ∈ QN (Λd) ∀e = 1, . . . , E

o
, (62)

where ES and EF stand for the number of elements in the solid and fluid regions, respectively. The superscript indicates

a composition with the local mapping: for example, ũe is defined on the reference domain by ũe = ũ|V e ◦F
e. The space

of continuous scalar fields on W (which stands for either V , VS or VF ) is denoted C0(W ), and QN (Λd) is the space of

polynomials of order at most N in each direction of space. In applications of the SEM to wave propagation problems,

N is typically selected between 4 and 8 (see section 5.1 for more details). Here we have assumed that the same order

was used for all directions, but this is not a constraint imposed by the method. However, in practice the mesh is often

non structured, i.e., the elements are not regularly distributed along X, Y and Z, and the three directions are therefore

coupled in the mesh, which implies that the same polynomial order must indeed be used for all directions.

The space of admissible precession vectors is discretized in the same way, except that the continuity requirement

does not hold anymore:

Wh =

�
w̃ ∈ L

2(VF ), w̃
e ∈

�
QN (Λd)

�d

∀e = 1, . . . , EF

�
. (63)

To make these definitions complete, a basis of QN (Λd) must be provided, and this is where tensorization arises. We start

by introducing the set of Gauss-Lobatto-Legendre (GLL) points (e.g., Canuto et al. 1988), which are by convention

defined on the reference interval Λ = [−1, 1] as the (N + 1) zeroes of the polynomial of order N Q(ξ) = (1 − ξ2)L′
N (ξ),

where L′
N is the derivative of the Legendre polynomial of order N on Λ:

Q(ξN
i ) = 0 ∀ i = 0, . . . , N. (64)

Note that we choose the GLL points because they include the extremities of the reference interval, which will ease the

implementation of continuity conditions between elements. Next, we define a basis of QN (Λ) by considering the Lagrange

interpolants at the GLL points (Figure 5), i.e., the N + 1 polynomials of order N that satisfy

hN
i (ξN

j ) = δij , ∀ (i, j) = {0, . . . , N}2, (65)

where δij is the Kronecker delta symbol. As mentioned previously, the polynomial basis on the reference domain Λd is

obtained by tensorization of these 1D bases. Let Ξd be the set of points obtained by tensorization of the GLL points

(Figure 6). Assuming that we are in 3D (i.e., d = 3), the points of Ξd are defined as ζN
ijk = (ξN

i , ξ
N
j , ξ

N
k ) and the

associated Lagrange interpolants are hN
ijk(ζ) = hN

i (ξ)hN
j (η)hN

k (γ), where ζ = (ξ, η, γ) is the generic coordinate vector

on the reference cube.

Let for example ũ ∈ Dh be a discrete displacement vector and let x = F
e(ζ) ∈ V e

S . For each component α = 1, . . . , d
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we can write

ũα(x) = ũe
α(ζ) =

NX
i=0

NX
j=0

NX
k=0

ũe
α(ζN

ijk)hN
ijk(ζ) =

NX
i=0

NX
j=0

NX
k=0

ũα(xe,N
ijk )hN

ijk(ζ) , (66)

where we have introduced the collocation points x
e,N
ijk defined by x

e,N
ijk = F

e(ζN
ijk). Note that the interpolation formula (66)

can handle local continuous variations of the elastic parameters inside the elements.

In order to build continuous bases for the displacements and potentials, it is customary to set up a global numbering of

the collocation points over the whole domain. We first introduce the number of local collocation points NL = E×(N+1)d,

where the subscript L refers to the fact that only a numbering local to the elements is needed. We then obtain the

number of global grid points in the entire mesh, NG, by counting only once the points that belong to several elements.

Efficient mesh numbering algorithms are available for this purpose from the finite-element community. Let us consider

for example a grid point with local coordinates (i, j, k) on the e-th element, its global index n ∈ {1, . . . ,NG} is defined

formally as the surjective function n = n(e, i, j, k). We then build a continuous basis of polynomials by considering shape

functions φn(x) that we define as follows: if the grid point is interior to an element then φn(x) is defined on V e by

φn(x) = hN
ijk(ζ) and φn vanishes outside V e. If the grid point is shared with the face, edge or corner of another element,

say n = n(e, i, j, k) = n(e′, i′, j′, k′), then φn(x) is extrapolated to V e′ by φn(x) = hN
i′j′k′(ζ). We can then assign to any

discrete displacement field ũ ∈ Dh a local vector ŨL of dimension d×NL and a global vector ŨG of dimension d×NG

(see Deville et al. (2002) for details). Both vectors store the values of the components of ũ at the collocation points.

The scatter operation that allows one to form the local vector from the global vector involves a rectangular Boolean

connectivity matrix, Q, and can be written ŨL = QŨG. The transpose operation, i.e., the action of QT , is a gather

process that consists in summing the entries of the local vector into the global vector. The successive action of QT and

Q is referred to as the assembly process, or direct stiffness summation, in the finite-element literature.

3.1.3 Numerical integration

After discretization, the integrals that appear in the weak form of the equation of motion must be evaluated numerically.

The choice made in the SEM is to use the GLL collocation points to perform this task. Let q be a function defined on

the reference interval Λ, then the integral of q is approximated byZ
Λ

q(ξ) dξ ≃
NX

i=0

ωN
i q(ξN

i ) , (67)

where the weights ωN
i are the integrals of the Lagrange interpolants at the GLL points: ωN

i =
R
Λ
hN

i dξ. This quadrature

formula is exact for polynomials of order up to 2N − 1 (see e.g., Funaro 1992).

The quadrature in a space of higher dimension (also known as cubature) is obtained in the SEM by a tensorization

process, which is the main reason why we chose to restrict ourselves to quadrangles rather than triangles in 2D, and to

hexahedra rather than tetrahedra in 3D. If q is a function defined on the reference domain Λd, its integral is approximated

by: Z
Λd

q(ζ)dζ ≃
NX

i=0

NX
j=0

NX
k=0

ωN
i ω

N
j ω

N
k q(ξN

ijk) . (68)

An important consequence of choosing the integration points to be the collocation points is that the mass matrix,

i.e., the matrix representation of the L2 scalar product, is exactly diagonal. Because this is a key property of the SEM

for wave propagation problems, let us briefly recall the proof. Let n = n(e, i, j, k) and n′ = n(e′, i′, j′, k′) denote two

global indices, we define the components of the scalar mass matrix M as

Mnn′ =

Z
V

φn(x)φn′(x) dx , (69)

where φn and φn′ denote the shape functions introduced in the previous section. The integral is non-zero only if the two

grid points belong to at least one common element. Let e denote such an element, and suppose that n = n(e, i, j, k) and

n′ = n(e, i′, j′, k′). Expressing the integral back on the reference domain gives:

Mnn′ =

Z
V e

φn(x)φn′(x) dx =

Z
Λd

hN
ijk(ζ)hN

i′j′k′(ζ)J e(ζ)dζ , (70)

where J e is the Jacobian (i.e., the determinant of the Jacobian matrix) of the local mapping (58). Applying the numerical

quadrature gives

Mnn′ = δii′δjj′δkk′ ωN
i ω

N
j ω

N
k J e(ξN

ijk) , (71)

which is the expected result since the right-hand side is non-zero only for n′ = n.
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3.1.4 System of ordinary differential equations

To finish the discretization process, we expand the generalized Galerkin approximation (52–55) on the polynomial basis

using (66) and compute the integrals with the numerical quadrature (68). This gives a system of ordinary differential

equations in time that can be written as

MS Ü(t) + CoU̇(t) = KS U(t) + Gψ(t) + C
OC

Ü(t) + C
SF
ζ̈(t) + C

Γ
U(t) + F

ext(t) , (72)

M̃F ζ̈(t) = KF,ζ (ζ,χ,W) (t) + C
FS

U(t) , (73)

M̃F χ̈(t) = KF,χ

�
ζ̈, ζ,χ,W

�
(t) , (74)

MF Ẇ(t) = R (ζ,χ,W) (t) , (75)

Pψ(t) = D (U, ζ,χ,W) (t) , (76)

where U, ζ, χ, W and ψ denote the vectors that store the values of the unknowns at the NG global collocation points;

MS is the mass matrix in the solid, modified to include density; MF is the mass matrix in the fluid and M̃F is modified

to include the inverse of c2; Co is the Coriolis matrix; KS and KF,ζ are the stiffness matrices in the solid and fluid,

respectively; G is the gradient matrix modified to include density; COC is the ocean-crust coupling matrix, CSF and

CFS are the fluid-solid coupling matrices, and CΓ is the DtN coupling matrix; R is the precession matrix, P and D are

the matrix approximations of the Poisson-Laplace and divergence operators and Fext is the vector of external forces.

It should be noted that none of the above global matrices needs to be explicitly built, because only their action on

a vector is needed in order to perform computations. Furthermore, these matrix-vector products can be defined at the

elemental level based upon the connectivity matrix Q introduced in Section 3.1.2. For example, the action of the mass

matrix MS can be decomposed into MS U = QT MS,L UL, where MS,L is a set of elemental matrices that act on the

local vector UL = QU. Note that the coefficients of MS,L are obtained after multiplying the right-hand side of Eq. (71)

by the pointwise values of density.

The reader is referred to Komatitsch & Tromp (1999) for a detailed derivation of the source term FL and of the

stiffness matrix KS,L in the absence of gravity. Regarding the effect of the ocean load, note that (45) involves a simple

surface integral along the ocean-crust boundary, which shows that in the context of the approximation of Appendix B3

we can efficiently take into account the effects of the oceans represented by the COC ocean-crust coupling matrix above

by a simple modification of the mass matrix for the degrees of freedom located exactly at the ocean floor.

Finally, let us note that because of the use of a tensorized polynomial basis, the operation count of a product with

the elemental stiffness matrix is only O(Nd+1) in d dimensions instead of O(N2d) for a full matrix, which is another

argument that makes the SEM efficient for 3D calculations.

4 TIME DISCRETIZATION

The system of ordinary differential equations (72–76) is marched in time using a finite-difference scheme. Let us postpone

to the end of this section the implementation of rotation, self-gravitation, attenuation and absorbing layers. For the sake

of clarity, we write the previous system of differential equations in the compact form:

Mq̈(t) = F
ext(t) − F

int(q) − F
Σ(q) (77)

where q is a global vector defined as q = (U, ζ,χ)T . The vector of all internal forces is denoted by Fint, and FΣ stands

for the surficial forces that result from the action of the coupling operators CSF , CFS and CΓ. As mentioned in the

previous section, the ocean-crust coupling term COC has been included in the mass matrix M.

4.1 Newmark time stepping method

The Newmark family of integrators (Newmark 1959; Hughes 1987) is written for a given time tn = n∆t as a map

(qn, q̇n) → (qn+1, q̇n+1) that is defined by enforcing the semi-discrete momentum equations at time tn+1:

q̈n+1 = M
−1
�
F

ext
n+1 − F

int(qn+1) − F
Σ(qn+1)

�
, (78)

qn+1 = qn + ∆t q̇n + ∆t2
��

1

2
− β

�
q̈n + β q̈n+1

�
, (79)

q̇n+1 = q̇n + ∆t ((1 − γ) q̈n + γ q̈n+1) , (80)

where one needs to select the two parameters γ ∈ [0, 1] and β ∈ [0, 1/2].

Second-order accuracy (instead of first-order) is obtained if and only if the velocity is updated based upon a centered

scheme, i.e., if γ = 1/2. The particular choice of setting β = 0 and γ = 1/2 leads to the explicit central difference method,
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which is the most widely used in the context of spectral-element simulations of seismic wave propagation. It has the

important property of conserving linear and angular momentum and having bounded energy errors (see Hughes (1987)

and Kane et al. (2003) for theoretical considerations and Komatitsch & Vilotte (1998) for numerical illustrations of

energy conservation). It is conditionally stable, the maximal time step being imposed by the Courant-Friedrichs-Lewy

(CFL) (Courant et al. 1928) criterion that states that the speed at which information travels cannot exceed one grid cell

per time step. This means that

∆t ≤ C

�
∆x

α

�
min

, (81)

where ∆x is the distance between adjacent grid points, α is the P -wave speed and C is a constant (typically ranging

between 0.3 and 0.5) that depends on the geometry of the mesh and on the spatial dimension of the problem. The

order in which operations are performed in the explicit scheme is the following: first, q (the displacement) is updated

from q̇ (the velocity) and q̈ (the acceleration) at time tn using (79); second, acceleration at time tn+1 is computed by

solving (78); finally, velocity is updated based upon the centered formula (80). The only linear system to invert during

this process involves the mass matrix, which is exactly diagonal by construction. This is an important argument that

favors the Legendre SEM when compared to other spectral methods such as the Chebyshev SEM (see section 5.1).

An alternative formulation of the explicit central-difference method, more adapted to mixed velocity-stress formu-

lations, is to write it in terms of displacement and velocity, provided that the two quantities be staggered in time (Festa

& Vilotte 2005). The scheme consists in defining the map
�
qn− 1

2

, q̇n

�
→
�
qn+ 1

2

, q̇n+1

�
based upon the mid-point rule

qn+ 1

2

= qn− 1

2

+ ∆t q̇n , (82)

q̇n+1 = q̇n + ∆t M
−1
�
F

ext
n+ 1

2

− F
int(qn+ 1

2

) − F
Σ(qn+ 1

2

)
�
. (83)

The slight difference between the two methods is that the mid-point rule evaluates forces at averaged times, whereas the

Newmark scheme performs a time-average of the forces.

Finally, let us recall that coupling fluid and solid regions requires exchanging the normal displacement u · n̂ and the

Lagrangian pressure perturbation (−ρ ζ̈) from one side of the fluid-solid interface to the other. This can be done without

iterating on the coupling condition because both quantities are known at the same time (through q and q̈). As noticed

by Chaljub & Valette (2004), this is a consequence of applying the potential decomposition (19) to the displacement

instead of velocity. This has important consequences in practice because it greatly simplifies the implementation of the

SEM algorithm and reduces the computational cost by completely suppressing iterations.

4.2 Rotation

Taking into account the effects of rotation requires adding the Coriolis force in the solid regions and solving (75) for the

precession vector W in the fluid regions. Note that because the Coriolis force involves velocity, in principle this term

should be treated based upon an implicit time-marching scheme. However, because the Coriolis effect matters mostly at

very long period (e.g., Dahlen & Tromp 1998), in practice it is acceptable to purposely lose the second-order accuracy

of the time-stepping method for the Coriolis term by handling it based upon an explicit scheme (Komatitsch & Tromp

2002b) because the time step used is always very small compared to the periods involved. Likewise, the precession

equation in the fluid regions can be solved based upon a simple first-order Euler scheme.

In Figure 7, we show the effect of the Coriolis forcing on the frequencies of two eigenmodes of the Earth: the so-called

football mode 0S2 and the recently detected 2S1 mode that involves the motion of the entire core (Rosat et al. 2003).

The spectra have been obtained by post-processing a spectral-element time series recorded at an epicentral distance of

90◦ of a point double-couple source in the PREM reference Earth model (Dziewonski & Anderson 1981) without the

ocean layer. Note that only the Coriolis forcing term has been included in the spectral-element calculations. Other effects

of the rotation of the Earth (centrifugal potential, ellipticity) have been ignored. Because we needed a long time series

to compute the spectra (about 100 hours), we also neglected the redistribution of mass to get results in a reasonable

amount of compute time.

The effect of rotation is to split the degenerate eigenfrequencies nωl of the spherically-symmetric model into 2l + 1

singlets, which are visible on the plots. Also shown on Figure 7 are the predictions of a first-order splitting theory (see

e.g., Dahlen & Tromp 1998, p. 605). The difference with the apparent eigenfrequencies derived from the spectral-element

synthetic seismograms illustrates the magnitude of higher-order effects in the Coriolis splitting.
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4.3 Self-gravitation

Taking into account the perturbation of the gravitational potential does not affect the accuracy of the time-stepping

method but reduces its efficiency because the algebraic system (76) must be solved at each time step. Because the

Poisson-Laplace matrix P is symmetric, the system can be solved for instance based on a conjugate gradient (CG)

method, the efficiency of which is governed by the condition number κ of the matrix (i.e., the ratio between the largest

and the smallest of its eigenvalues). The number of CG iterations needed to reach a given level of accuracy scales as the

square root of κ. Unfortunately, the Poisson-Laplace matrix arising from the spectral-element discretization is known

for being poorly conditioned (see e.g., Deville et al. 2002). A diagonal preconditioner is used by Chaljub & Valette

(2004) but results in poor numerical efficiency (a number of iterations ranging between 50 and 100 is needed to obtain

an acceptable level of accuracy). Additional work is therefore needed to build an efficient preconditioner and to be able

to include the redistribution of mass in routine calculations.

4.4 Attenuation

Including the effects of attenuation requires marching the memory variables in time according to Eq. (A.7). This can be

achieved based upon a fourth-order Runge-Kutta method (see e.g., Komatitsch & Tromp 1999, and references therein).

Once the memory variables are updated, the stress tensor is given by Hooke’s law (A.6), and the internal forces can be

computed.

In global seismology, bulk attenuation is often ignored because Qκ is typically one order of magnitude greater than

Qµ. Note that a complete treatment of attenuation should in principle include fluid regions, which implies that the

potential formulation (19) should be modified to include appropriate memory variables. However, in global seismology,

attenuation in the fluid is almost always completely negligible (e.g., Dahlen & Tromp 1998).

4.5 Implementation of a Perfectly Matched Layer

As mentioned in Appendix (A2), a Perfectly Matched Layer (PML) absorbing region for the seismic wave equation is

naturally formulated in terms of velocity and stress, i.e., for a system of first-order equations in time (e.g., Collino &

Tsogka 2001). In recent years, efforts have been made to derive PML formulations suitable for the seismic wave equation

written as a second-order system in displacement (e.g., Komatitsch & Tromp 2003; Basu & Chopra 2003, 2004; Festa

& Vilotte 2005). To our knowledge, so far two of these approaches have been employed to adapt the PML to the SEM,

which is based on the second-order system in displacement: Komatitsch & Tromp (2003) derived a formulation of the

PML that is directly adapted to second-order equations, and Festa & Vilotte (2005) showed that the classical first-order

PML formulation could be used as is, based upon a discrete equivalence between the Newmark time-stepping method

and the mid-point rule applied to a staggered velocity-stress approximation of Eqs. (A.13) and (A.14). An alternative is

to adapt the SEM to the PML by constructing a SEM formulation based on the mixed velocity-stress system, which is

well adapted to the introduction of PML (Cohen & Fauqueux 2005).

Both formulations are equivalent in the sense that they are equally efficient for absorbing body and surface waves

and that they suffer from the same drawbacks as the original method: i.e., difficulties to absorb waves at grazing incidence

(Collino & Monk 1998; Winton & Rappaport 2000) and intrinsic instabilities in some anisotropic media (Bécache et al.

2003). However, while Komatitsch & Tromp (2003) obtain a system of third-order equations in time (which is further

decomposed into a second-order system plus a first-order equation solved by an additional Runge-Kutta scheme), the

formulation of Festa & Vilotte (2005) fits naturally in the context of the Newmark scheme and can therefore be more

easily added to existing spectral-element algorithms without major modifications of the time-stepping scheme.

5 IMPLEMENTATION

5.1 Choice of parameters for accurate calculations

In a standard FEM, low-order polynomials (usually of order 1 or 2) are used to discretize functions, and therefore the

accuracy of the method is mainly governed by the typical size of an element in the mesh, h. In a SEM, however, high-order

Lagrange interpolants are used to express functions. Therefore, one can use the polynomial order N chosen to represent

functions on an element as an additional parameter to control the accuracy of the method.

The GLL numerical integration rule is exact only for polynomials of order 2N − 1 (e.g., Canuto et al. 1988). This

implies that because it involves the product of two polynomials of order N , the displacement and the test function,

integration on the reference element is never exact, even in the simplest case of a reference cube with homogeneous

material properties. For deformed and/or heterogeneous elements, there are additional errors related to curvature (Maday
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& Rønquist 1990). Thus in the Legendre SEM we obtain a diagonal mass matrix by purposely selecting a numerical

integration rule that is not exact (but of course still very accurate) for the polynomial basis chosen (in the finite-element

literature, such a choice is known as sub-integration). A different choice is made in the Chebyshev SEM used by some

authors (e.g., Priolo et al. 1994; Seriani 1998), in which an integration rule that is exact for the polynomial basis chosen

is used, with the consequence that the mass matrix is no longer diagonal.

To our knowledge, no theoretical analysis of the accuracy of the SEM for elastic media is available in the literature,

and only Tordjman (1995) and Cohen & Fauqueux (2000) have attempted such a theoretical accuracy study for the

SEM in the acoustic case, and Seriani & Priolo (1994) have addressed the issue based on a numerical study, also in the

acoustic case. Because of the lack of such theoretical criteria, we use heuristic rules in order to select the polynomial

order to use in practice for an elastic SEM with a non-regular deformed mesh and a heterogeneous medium. These rules

of thumb have been developed over the years by trial and error based upon a large number of numerical tests for which

a quasi-analytical reference solution was known. In particular, we have used the main conclusions of Seriani & Priolo

(1994) in the acoustic case and checked numerically for simple cases that these conclusions extend reasonably well to the

elastic case. Based on these numerical experiments, we observe that if one uses a polynomial order lower than typically 4,

one looses the advantages of using a SEM, because the calculations lead to a large amount of numerical dispersion, i.e.,

to similar inaccuracies as with standard FEMs (Marfurt 1984). On the contrary, if one selects a very large polynomial

order, e.g., greater than 10, the SEM is spatially very accurate, but the computational requirements become prohibitive

because of the size of the calculations related to matrix multiplications involving the full stiffness matrix, a process with

a cost of O(N4) in 3D, i.e., the numerical cost of the technique becomes very high. Let us also recall that the GLL

numerical integration points are non-evenly spaced and that in the case of a high order they become clustered toward

the edges of each spectral element (e.g., Canuto et al. 1988). More precisely, one can show that the spacing between

the first two GLL points of the reference interval varies approximately as O(N−2), and as a result of the small distance

between these first two points, very small time steps have to be used to keep the explicit time-marching scheme stable

(see Section 4), which drastically increases the cost of the Legendre SEM. Therefore, the empirical conclusion is that for

most seismic wave propagation problems, polynomial orders between approximately 4 and 10 should be used in practice.

In our numerical simulations, we often use a polynomial order N = 4. In order to obtain accurate results, we use another

heuristic rule of thumb that says that for this polynomial order the average grid spacing h should be chosen such that

the average number of points per minimum wavelength λmin in an element, (N + 1)λmin/h, be roughly equal to 5. Note

that this value is of the same order as that obtained in the context of high-order finite-difference methods applied to

wave propagation problems.

5.2 Parallel implementation

Section 3.1.1 explained the basic concepts of mesh design in the SEM. However, real meshes designed to study large 3D

models are usually too large to fit on a single computer in terms of memory. One then needs to turn to parallel machines,

for instance clusters of personal computers or grids of computers, which all have a distributed memory architecture. In

order to program such parallel machines, one needs to use a message-passing methodology, usually based upon a library

called MPI (e.g., Gropp et al. 1994), an acronym for ‘Message Passing Interface’, which has the advantage of being

freely available on most computer systems and therefore very portable.

Let us mention that the SEM can efficiently run on high-latency networks such as clusters or grids of computers

because it is relatively insensitive to the speed of the network connecting the different processors. The main reason for

that is that we can use a fully explicit time-marching scheme (see Section 4). In such schemes, one mostly needs to

perform small local matrix-vector products in each spectral element, and as a consequence the processors spend most

of their time doing actual calculations, and only a small amount of time exchanging information, which means that the

algorithm is not very sensitive to the communication speed.

Once a mesh has been created, it needs to be split into slices if one wants to run the SEM on a parallel computer.

Powerful algorithms called ‘mesh partitioners’ are available for this purpose, such as METIS, which is a set of programs

for partitioning graphs and finite-element meshes. The algorithms implemented in METIS are based on sophisticated

multilevel graph-partitioning schemes (Karypis & Kumar 1998a,b). The mesh should be decomposed into as many slices

as the number of processors one plans to use on the machine. Calculations can then be performed locally by each processor

on the spectral elements that constitute the mesh slice it carries after the mesh partitioning step. In the time-marching

algorithm, one communication phase is then required at each time step in order to sum the internal forces computed

at the common faces, edges, and corners shared by mesh slices carried by different processors. MPI communications are

performed based upon a (constant) communication topology produced once and for all by the mesh partitioner. This

topology represents the sequence of messages that needs to be exchanged between the slices at each time step. It is
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constant because there is no dynamic (i.e., adaptive) remeshing in the SEM applied to seismic wave propagation studies,

which are small perturbation problems for which a constant mesh is sufficient.

6 APPLICATIONS

6.1 3D ground motion in alpine valleys

As a first example of the application of the SEM to realistic wave propagation problems, we consider the simulation of

ground motion in the alpine valley of Grenoble, French Alps, France. Like sedimentary basins, alpine valleys are known for

producing strong site effects because of (i) stiff bedrock conditions leading to large impedance contrasts between bedrock

and sediments and (ii) thick post-glacial deposits of lacustrine and fluviatile sediments. The computation of site effects

in alpine valleys has received considerable attention since the pioneering work of Bard & Bouchon (1980a,b). It is out of

the scope of this article to review all the studies and methods devoted to this topic. Let us mention however that most

of these studies are restricted to two-dimensional geometries. The computation of 3D seismic wave propagation in alpine

valleys is challenging for two reasons: first, unlike in large sedimentary basins, seismic energy diffracted off the valley

edges and transported by surface waves dominates the seismic signal (e.g., Cornou et al. 2003) and is hardly separable

from body wave reflections. Second, alpine valleys are often deeply embanked and exhibit strong topographic variations

of the free surface and of the interface between sediments and bedrock. With its ability to handle 3D geometries and its

accuracy regarding the computation of surface waves, the SEM is therefore well suited to simulate wave propagation in

alpine valleys.

We consider the city of Grenoble in the French Alps. Fig. 8 shows the ‘Y’ shape of the valley, surrounded by three

topographic units with a typical elevation of 1000 m to 1500 m on the western side (Vercors and Chartreuse massifs)

and 2500 m to 3000 m on the eastern side (Belledonne chain). Fig. 8 also displays the surface of the spectral-element

mesh used to propagate seismic waves at frequencies up to 1 Hz, assuming a minimal shear wave velocity of 300 m.s−1

in the sediments. The 3D mesh shown in Fig. 9 honors the sediment/bedrock interface, which is well constrained by the

inversion of gravimetric anomalies performed by Vallon (1999). As explained in section 3.1.1, it is difficult to honor the

interface near the edges of the valley because (i) this requires the use of a fully 3D mesh generator and (ii) even with such

a tool, the elements located near the edges are expected to be strongly distorted, thus leading to a loss of accuracy. Here

we avoid this difficulty by defining a threshold depth above which the interface is not honored but rather interpolated

within the spectral elements (see Fig. 9), as suggested by Komatitsch et al. (2004). This solution is not fully satisfactory

because at shallow depths (in particular near valley edges) the contrast between bedrock and sediments is smeared out

due to the use of high-order (N = 4) polynomial interpolation within each spectral element.

We choose to simulate the April 26, 2003 ML = 2.9 Lancey event, which occurred on the Belledonne border fault

less than 10 km from the valley edges (Thouvenot et al. 2003). Based upon measurements performed in a 550 m-deep

borehole (Nicoud et al. 2002), the velocity model used in the sediments is defined as:(
β = 300.0 + 19.0

√
d ,

α = 1450.0 + 1.2 d ,
(84)

in which d is depth in m, α and β are the P and S velocities in m.s−1, and mass density in kg.m−3 is defined by

ρ = 2140.0 + 0.125 d. Attenuation is taken into account by defining a constant shear quality factor QS = 50 in the

sediments. The bedrock model is adapted from that used by Thouvenot et al. (2003), with P and S velocities in the

uppermost layer equal to α = 5600 m.s−1 and β = 3200 m.s−1, respectively. We use a polynomial order N = 4 (i.e.,

(N + 1)3 = 125 GLL points per spectral element) in the SEM, which yields a total of approximately 3.3 million grid

points and about 10 millions of degrees of freedom.

The time evolution of synthetic vertical ground velocity is represented in Fig. 10. The calculation is accurate up

to approximately 1 Hz, and the source we use does not contain energy above this cutoff limit. The source mechanism,

a strike-slip event with almost vertical dip, is clearly seen in the first second of the recorded signals. In the next four

seconds, one sees the distortion of P and S wavefronts by the low velocities in the sediments. Surface waves generated at

the edges of the valley can be observed relatively early (from 3.5 s on) and tend to form planar features aligned with the

borders (e.g., between 7.5 s and 8.5 s). The rest of the simulation shows the trapping of energy within the sediments,

causing the progressive illumination of the whole basin structure. Note how the wave field becomes complex after only

a dozen of seconds of propagation, due to multiple reflections of surface waves diffracted off the valley edges. To give

an idea of the typical numerical cost of such a simulation, the calculations required about one gigabyte of memory, and

took (in 2004) about 16 hours of CPU time on four 3 GHz Intel Xeon processors to run 60000 time steps of 1 ms each.

Time series of ground velocity recorded at two sites with different soil conditions are displayed in Fig. 11. The source

time function used is a smoothed version of a Heaviside step (in practice an error function with a short rise time τ = 0.01
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s). The synthetic seismograms are further bandpass-filtered between 0.1 Hz and 2 Hz. The reason why we can analyze

frequencies higher than the limit used to design the mesh (1 Hz) is that the signal is dominated by surface waves that

at low frequency are sensitive to the velocity model at depth, were velocity increases, and therefore travel at a velocity

higher (typically about 600 m.s−1 at 2 Hz) than the minimal S wave velocity in the model, which is found at the surface.

The comparison shows a strong amplification (by about a factor of 10) and an increase in duration between the signal

recorded in the sediments and on the rock site.

Comparison to data (Chaljub et al. 2005) shows a reasonable agreement for frequencies smaller than 1 Hz, confirming

that the long-wavelength structure of the basin is well constrained. The perspective is now to better understand the

variability of ground motion observed in high-frequency data (i.e., from 1 Hz to 10 Hz). The small size of the model,

allowing computations up to 4 Hz to be performed with accessible computing facilities will help us to address this problem

with the SEM.

6.2 3D spectral-element reference solution

One of the goals of seismologists is to constrain the physical properties of the Earth’s interior by solving the inverse

problem of finding Earth models for which synthetic seismograms match the observations. Most of the methods developed

to solve the inverse problem involve the computation of a large number of synthetic seismograms, and different approx-

imations have been derived to produce them in a reasonable amount of CPU time. These methods provide accurate

results as long as they are used within their domain of validity, a condition unfortunately not always met in practice.

A precise series of tests should therefore be performed to assess the effects of such approximations, but so far these have

rarely been conducted due to the lack of an independent solution to compare with (Clévédé et al. 2000).

The application of the SEM to global seismology offers the possibility of overcoming this difficulty by providing

a three-dimensional reference solution. As an example, let us show a comparison between the SEM and two methods

widely used in global tomography: the Path Average Approximation (PAVA) (Woodhouse & Dziewonski 1984) and

Non-linear Asymptotic Coupling Theory (NACT) (Li & Tanimoto 1993; Li & Romanowicz 1995). Both methods are

based on perturbation theory around a spherical reference Earth model. The reference solution, expanded on the basis

of normal modes, is perturbed to the first order based on the Born approximation to obtain an approximate solution in

the 3D model. The solution is thus only valid for ‘weak’ and smooth-enough 3D heterogeneities. In addition to the Born

approximation, PAVA and NACT use the great-circle approximation, in which only 3D heterogeneities lying under the

great circle between the source and the receiver are taken into account. This approximation is valid when the wavelength

of the model is much larger than the wavelength of the displacement field, i.e., for ‘smooth-enough’ models. Compared to

NACT, PAVA makes the additional approximation that the coupling between dispersion branches is not accounted for in

the perturbation. This results in a 1D sensitivity kernel: the effect of an heterogeneity at a given depth does not depend

on the position along the great circle. While this is acceptable for Love and Rayleigh waves, such an approximation

cannot account for the ray-like sensitivity of body waves. We therefore expect NACT to give a more precise result than

PAVA in a 3D model, especially for higher modes.

Fig. 12 shows an example of long-period (100 s and above) synthetic seismograms computed with PAVA, NACT

and SEM in the tomographic model SAW24B16 (Mégnin & Romanowicz 2000). The SEM synthetic seismograms are

computed on a grid of 1782 spectral elements with 54936 collocation points, and the time step used is 1 s. The comparison

of differential seismograms (defined as the difference between 3D and 1D synthetic seismograms) shows that both PAVA

and NACT predictions are accurate for the Rayleigh wave R1, but only NACT retrieves the waveforms of higher modes,

such as the X wave (Jobert et al. 1977). Note that none of the results perfectly match the spectral-element solution,

which is consistent with the approximations used in each method.

Another example in which a spectral-element calculation proved useful can be found in Favier et al. (2004), where a

new sensitivity kernel to invert splitting measurements in anisotropic media is proposed, which includes the middle- and

near-field terms of the Green’s tensor generally neglected in classical theories. Using the spectral-element solution as a

reference, the authors assessed the domain of validity of their new kernel and the error made by using classical far-field

kernels.

6.3 3D modeling in the D′′ region

Another application of the SEM is to assess the quality of current tomographic models by providing an independent

measure of their ability to fit the data. For example Komatitsch et al. (2002) compute synthetic seismograms using

tomographic mantle model S20RTS (Ritsema et al. 1999) and crustal model CRUST2.0 (Bassin et al. 2000). They show

that this 3D model explains body-wave travel times for periods up to approximately 20 s but that surface wave dispersion

is not accurately accounted for at periods shorter than 40 s.
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Here we show a similar comparison between data and synthetic seismograms obtained by coupling the SEM to a

normal-mode solution, and we focus our attention on the D′′ region. This region at the base of the Earth’s mantle is

known for being very heterogeneous and for significantly affecting the travel times and amplitudes of seismic waves, in

particular those diffracted by the core-mantle boundary (CMB). We simulate the September 4, 1997, 621-km deep Fiji

event (Mw = 6.8) using the PREM model everywhere except in a 370-km thick layer above the CMB (D′′ region) in

which we replace it by the 3D tomographic S-velocity model SAW24B16 (Mégnin & Romanowicz 2000). Perturbations

in P -wave velocity and density are obtained from S-wave values by the linear scaling rules δα = 0.40 δβ and δρ = 0.25 δβ

(Kumazawa & Anderson 1969). The spectral-element solution is computed in D′′ and coupled to two normal-mode

solutions in the mantle and core, respectively. The spectral-element mesh used contains about 12000 elements, which

corresponds to approximately 4 million grid points. This allows us to compute accurate synthetic seismograms for periods

greater than about 12 s. Note that at these periods, using the SEM in the whole model would require us to run on a large

parallel computer (Komatitsch et al. 2003), but because of the coupling with the normal-mode solution, the simulation

only requires 13 gigabytes of computer memory and runs in less than a day on a cluster of 64 processors (Capdeville

et al. 2003b).

Fig. 13 displays the ten stations at which we compare synthetic seismograms to data. These stations are taken

from the following networks: CNSN (the code used on the plot is CN), USAF/USGS (GT), GSN-IRIS/IDA (II), GSN-

IRIS/USGS (IU), USNSN (US) and LODORE (XT). The stations are located at epicentral distances ranging between

95◦ and 127◦, where the core-reflected waves ScS, sScS and core-diffracted waves Sdiff, sSdiff can easily be identified. In

Fig. 14 we compare data to synthetic seismograms computed in the 3D hybrid model. We also display the 1D synthetic

seismograms obtained in PREM as a reference. For most of the stations, it is clear that the 3D model performs better

than PREM in explaining both time delays and amplitudes. This is particularly true for stations LMN and BOSA at large

epicentral distance, where the effect on the amplitude is the largest. Note that slow regions are systematically associated

with amplitudes higher than in PREM (e.g., YKW3, LMN) and fast regions with smaller amplitudes than in PREM

(e.g., BOSA). Notice however that only first-order characteristics are reproduced by the 3D synthetic seismograms.

More detailed analysis reveals that time shifts are sometimes too large (e.g., WMQ) or that both amplitude and phase

are poorly fit (e.g., BW06 and TLY). The second phase, sSdiff, is generally poorly modeled. One of the reasons for this

discrepancy is that sSdiff spends significant time in the strongly heterogeneous upper mantle, which is not accounted for

in our 3D hybrid model.

7 CONCLUSIONS AND PERSPECTIVES

We have given an overview of the application of the spectral-element method (SEM) to realistic problems in regional

and global seismology. We have shown examples of spectral-element calculations and have illustrated the ability of the

method to provide a reference solution in 3D heterogeneous models of the Earth. The method has been extended for

example to include the dynamics of the rupture in seismic source studies (Ampuero 2002; Vilotte & Festa 2004). With

the increasing computational power available, SEM-based inversions have started to appear, with the first SEM-based

moment tensor inversions in a 3D model (Liu et al. 2004) as well as SEM adjoint formulations for seismic tomography

(Tromp et al. 2005) and SEM tomographic methods based on source stacking (Capdeville et al. 2005).

The source code, called SPECFEM3D, of our implementation of the SEM for parallel computers is freely available

for academic, non-commercial research from www.geodynamics.org.
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39–49, in French.

Olsen, K. B., 2000, Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion, Bull. Seismol.

Soc. Am., 90, S77–S94.
Olsen, K. B. & Archuleta, R. J., 1996, 3-D simulation of earthquakes on the Los Angeles fault system, Bull. Seismol. Soc. Am.,
86(3), 575–596.

Pasquetti, R. & Rapetti, F., 2004, Spectral element methods on triangles and quadrilaterals: comparisons and applications, J.
Comput. Phys., 198(1), 349–362, doi: 10.1016/j.jcp.2004.01.010.

Patera, A. T., 1984, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54,
468–488.

Phinney, R. A. & Burridge, R., 1973, Representation of elastic-gravitational excitation of a spherical Earth model by generalized
spherical harmonics, Geophys. J. R. Astron. Soc., 34, 451–487.

Pitarka, A., Irikura, K., Iwata, T., & Sekiguchi, H., 1998, Three-dimensional simulation of the near-fault ground motion for the
1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake, Bull. Seismol. Soc. Am., 88, 428–440.

Priolo, E., Carcione, J. M., & Seriani, G., 1994, Numerical simulation of interface waves by high-order spectral modeling techniques,
J. Acoust. Soc. Am., 95(2), 681–693.

Ritsema, J., Van Heijst, H. J., & Woodhouse, J. H., 1999, Complex shear velocity structure imaged beneath Africa and Iceland,

Science, 286, 1925–1928.
Ronchi, C., Ianoco, R., & Paolucci, P. S., 1996, The “Cubed Sphere”: a new method for the solution of partial differential equations
in spherical geometry, J. Comput. Phys., 124, 93–114.

Rosat, S., Hinderer, J., & Rivera, L., 2003, First observation of 2S1 and study of the splitting of the football mode 0S2 after the

June 2001 Peru earthquake of magnitude 8.4, Geophys. Res. Lett., 30(21), 2111, doi:10.1029/2003GL018304.
Sadourny, R., 1972, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids,
Monthly Weather Review , 100, 136–144.

Seriani, G., 1998, 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor, Comput.
Methods Appl. Mech. Engrg., 164, 235–247.

Seriani, G. & Priolo, E., 1994, A spectral element method for acoustic wave simulation in heterogeneous media, Finite Elements



Spectral-Element Analysis in Seismology 23

in Analysis and Design, 16, 337–348.
Tautges, T. J., 2004, MOAB-SD: integrated structured and unstructured mesh representation, Engineering with Computers, 20(3),
286–293, doi: 10.1007/s00366-004-0296-0.

Taylor, M., Tribbia, J., & Iskandarani, M., 1997, The spectral element method for the shallow water equation on the sphere, J.
Comput. Phys., 130, 92–108.

Taylor, M. A., Wingate, B. A., & Vincent, R. E., 2000, An algorithm for computing Fekete points in the triangle, SIAM Journal
on Numerical Analysis, 38(5), 1707–1720.

Teixeira, F. L. & Chew, W. C., 1999, On causality and dynamic stability of Perfectly Matched Layers for FDTD simulations,
IEEE transactions on Microwave Theory and Techniques, 47(6), 775–785.

Tessmer, E. & Kosloff, D., 1994, 3-D elastic modeling with surface topography by a Chebyshev spectral method, Geophysics,

59(3), 464–473.
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Valette, B., 1989, Spectre des vibrations propres d’un corps élastique, auto-gravitant, en rotation uniforme et contenant une partie
fluide (Free oscillations spectrum of an elastic, self-gravitating, uniformly rotating body with a fluid inclusion), C. R. Acad. Sci.

Paris, 309, 419–422, in French.
Vallon, M., 1999, Estimation de l’épaisseur d’alluvions et sédiments quaternaires dans la région grenobloise par inversion des
anomalies gravimétriques (Estimation of the thickness of alluvial and quaternary deposits in the Grenoble area by inverting

gravimetric anomalies), Tech. rep., LGGE, IPSN/CNRS, Université Joseph Fourier, in French.
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Figure 1. Sketch of a typical problem geometry for global (left) and regional (right) simulations of wave propagation. Shaded areas

denote fluid regions, i.e., the outer core and the oceans. Dashed lines are specific to each problem: the spherical outer boundary
∂B is relevant for the treatment of self-gravitation at the global scale, while the absorbing boundary Σabs only matters for regional
applications.
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Figure 2. Example of a 2D mapping on the reference square based upon 9 control or ‘anchor’ points.
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0

0.29 0.23

Figure 3. Left: One-sixth of the surface of a sphere is tiled with a 16 × 16 quadrangular grid obtained by applying the ‘cubed
sphere’ transformation. Right: Contour lines of area variation within the grid show that the area of each element is at most 29%
smaller than a reference element that would be located at the center of the face.
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a) b) c)

Figure 4. Process used to build a mesh of hexahedra for a sphere: a) the spherical interfaces are tiled based upon the cubed sphere

transformation, and then connected in the radial direction; b) a cube is inserted in the center; c) the final 3D mesh of the sphere
is obtained by connecting a) and b).
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Figure 5. Lagrange interpolants of degree N = 4 on the reference interval Λ = [−1, 1]. The corresponding N + 1 = 5 Gauss-
Lobatto-Legendre points can be seen along the horizontal axis. All Lagrange polynomials are, by definition, equal to 1 or 0 at each

of these points. Note that the first and last points are exactly -1 and 1.
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Figure 6. When a polynomial degree N is used to discretize the wave field, each 3D spectral element contains a grid of (N + 1)3

Gauss-Lobatto-Legendre points, and each 2D face of an element contains a grid of (N + 1)2 Gauss-Lobatto-Legendre points, as
illustrated here in the case of N = 4. By construction, these points are non-evenly spaced.
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Figure 7. Amplitude spectrum of spectral-element synthetic seismograms computed at a station located 90◦ away from the source.
The left and right frequency windows display the 0S2 and 2S1 modes, respectively. The different singlets appear on the radial

(solid line), longitudinal (dashed line) and transverse (dot-dashed line) components for this geometry. The vertical lines show the
first-order theoretical prediction of the Coriolis splitting. The difference with the synthetic values illustrates the magnitude of
higher-order effects. Note that the eigenvalues given here are slightly higher than real values because self-gravitation has not been
accounted for in our calculations.
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Figure 8. Left: Topographic map of the Alps showing the city of Grenoble surrounded by the Vercors, Chartreuse and Belledonne
massifs. The white square denotes the edges of the computing grid used to simulate ground motion. Right: Surface view of the

spectral-element mesh used to compute synthetic waveforms accurate up to approximately 1 Hz. The mesh contains 96×80 surface
elements. The vertical exaggeration factor is 5 and a spatial Gaussian filter has been applied to smooth sharp topographic variations.
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Figure 9. Left: Map of the shape of the bedrock obtained by inverting gravimetric measurements over the Grenoble valley.
The maximum sediment thickness, which is located in the western part of the ‘Y’ shaped valley, exceeds 1000 m. The black line
represents the Isère river. Right: view from the south-east with no vertical exaggeration of a cross section through the spectral-
element mesh (in the area indicated by the dashed lines in the left picture). Red indicates elements that intersect the bedrock,

whereas blue represents elements located entirely within the sediments. The mesh is coarsened twice in depth to adapt it to the
variations of seismic wavelengths within the model. The sediment/bedrock interface is honored exactly (i.e., the elastic parameters
are discontinuous across the interface in the mesh) for depths greater than 220 m. At shallower depths (in particular near valley

edges) the contrast between bedrock and sediments is smeared out due to the use of high-order (N = 4) polynomial interpolation
within each spectral element.
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Figure 10. Time evolution of the vertical component of synthetic ground velocity simulated for the April 26, 2003, ML = 2.9,
Lancey event, whose epicenter is indicated by the black and white star. Red and blue colors denote upward and downward motion,
respectively. The radiation pattern of this strike-slip event is clearly seen at time 0.5 s. At times between 1.5 s and 3.5 s, the P

and S wavefronts are deflected by the slow wave speeds in the basin. Energy diffracted off the edges of the basin and traveling as

surface waves can be observed before 8.5 s. Note the complex shape of the wave field, with almost no coherent pattern after 10 s
of propagation.
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Figure 11. Time series of ground velocity (in m.s−1) computed for the April 26, 2003, ML = 2.9 Lancey event, whose epicenter
is indicated by the black and white star, at two stations of the French accelerometric network (black and white triangles). The
left records correspond to a rock site, and the right records to a site located in the center of the basin, where the sediment
thickness exceeds 800 m. Both synthetic seismograms have been bandpass-filtered between 0.1 Hz and 2 Hz using a six-pole two-

pass Butterworth filter. Note the strong amplification as well as the increased duration of the signal recorded in the basin even
though the two sites are only separated by a distance of about 1 km.
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Figure 12. Comparison of the two asymptotic methods PAVA and NACT on a 3D synthetic example in tomographic model
SAW24B16. The map shows the path selected. In this long-period test (100 s and above) only the longitudinal component is

displayed. The top panel shows the SEM synthetic seismograms computed in the reference model (solid line) and in the 3D model
(dotted line). The last two panels show differential seismograms (3D results minus 1D results) obtained based upon the PAVA
(middle) and NACT (bottom) methods and amplified by a factor of four. In each case, the solid line represents the differential

synthetic seismograms obtained based upon the SEM. As expected, NACT performs better than PAVA in fitting the high-order
harmonics (here the X wave). In this example, the spectral-element solution is used as a 3D reference to estimate the fit obtained.
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Figure 13. Configuration of source and stations used to model wave propagation in the D′′ layer. The background model is

tomographic model SAW24B16 above the CMB. The paths between the source and the stations are plotted, and the part of the
path that samples the D′′ layer in PREM is represented in bold.
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Figure 14. Comparison between data (thin solid line), synthetic seismograms computed in PREM (dotted line) and synthetic
seismograms computed in a velocity model that is heterogeneous in the 370 km above the CMB (bold solid line) for the transverse

component of displacement. In the D′′ layer, perturbations relative to PREM are taken from tomographic model SAW24B16. The
traces are aligned with respect to the Sdiff arrival time and represented with increasing azimuth. On each trace, the first energy
arrival is a combination of the core reflected S wave (ScS) and the S wave diffracted at the CMB (Sdiff). The second energy arrival

corresponds to a similar interference between phases (sScS and sSdiff) that have first been reflected off the Earth’s surface. Except
in a few places (e.g., at station TLY), the 3D model generally improves the fit to data for the first energy arrival, both in amplitude
and phase. The prediction of the 3D model is not as good for the second energy arrival, because the effect of the crust and mantle
(which is not accounted for in our calculation) represents an important contribution to the misfit between synthetic seismograms

and data.
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APPENDIX A: MODIFIED HOOKE’S LAW

A1 Intrinsic attenuation

In an anelastic medium, the stress tensor is defined from the entire strain history. We can write this dependence as

σ(t) = ([M H] ⋆ ε̇) (t) =
�h
M δ + Ṁ H

i
⋆ ε
�

(t) , (A.1)

where σ stands for either hydrostatic or deviatoric stress, ε for the corresponding strain and M for the bulk or shear

modulus. The star ⋆ denotes time convolution, δ is the Dirac delta distribution and H is the Heaviside distribution that

ensures the causality of the stress-strain relation.

Following Liu et al. (1976), we simulate a constant Q attenuation mechanism by choosing a stress relaxation function

M(t) in (A.1) that is the superimposition of L standard linear solids. This can be formally written as

M(t) = MR +
LX

ℓ=1

aℓ e
−t/τℓ , (A.2)

or

M(t) = MU −
LX

ℓ=1

aℓ

�
1 − e−t/τℓ

�
, (A.3)

where MR (resp. MU ) stands for the relaxed (resp. unrelaxed) elastic modulus and τℓ denotes the relaxation time of

the l-th mechanism. The aℓ are coefficients that can be chosen in order to fit a given Q law. Their sum is the modulus

defect:
PL

ℓ=1 aℓ = δM = MU −MR. A constant Q law is well approximated if the inverse relaxation times (i.e., the

central frequencies of the L mechanisms) are chosen to be evenly distributed in logarithmic scale (e.g., Emmerich &

Korn 1987).

Next, we set Φ(t) = Ṁ H (t) =
PL

ℓ=1 Φℓ H (t) where

Φℓ(t) = −aℓ

τℓ
e−t/τℓ , (A.4)

and we define a set of L memory variables (e.g., Carcione et al. 1988) by

Rl(t) = ([Φl H] ⋆ ε) (t) . (A.5)

The stress-strain relation (A.1) then becomes

σ(t) = MU ε (t) +
LX

ℓ=1

Rℓ (t) , (A.6)

The advantage of the modified stress-strain relation (A.6) is that it can be implemented in the time domain because

each memory variable Rℓ obeys the first-order differential equation:

Ṙℓ(t) +
1

τℓ
Rℓ(t) = −aℓ

τℓ
ε(t) . (A.7)

In practice, three or four mechanisms are used to obtain a quality factor that is almost constant in the frequency range

of interest (e.g., Emmerich & Korn 1987; Komatitsch & Tromp 2002a). In terms of implementation, the implication is

that the memory variables need to be stored on the grid, and therefore the memory requirements increase substantially

compared to purely elastic simulations. It is worth mentioning that to alleviate this burden, memory variables can be

spread across an element, such that one carries only one memory variable at each grid point, obtaining the expected

anelastic behavior in average (Zeng 1996; Day 1998; Day & Bradley 2001; Graves & Day 2003). In our implementation

however, we do not spread the memory variables across the grid.

A2 Fictitious attenuation in absorbing layers

In regional applications, non-reflecting conditions must be defined at the boundaries of the computational domain to

mimic an unbounded medium. Among the different methods that can be used, we focus here on the Perfectly Matched

Layer (PML) method, originally developed by Bérenger (1994, 1996) in the context of electromagnetics, because it is the

most efficient.

The PML can be viewed as an analytical continuation of the real coordinates in the complex space, where the

stretching s is given by (e.g., Teixeira & Chew 1999):

x̃j =

Z xj

0

1 + i
sj (ξ)

ω
dξ . (A.8)

Here ξ stands for the distance away from the interface between the PML and the regular domain in the j direction, and

ω denotes angular frequency. With this definition, the amplitude of a plane wave defined by exp (i(ωt− k · x)) decreases

along the j direction by the frequency-independent factor exp
�
− kj

ω

R
sj(ξ)dξ

�
.
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The mapping (A.8) induces a metric change G̃ = ΛGΛ, where G is the Euclidean metric and

Λ =

0B� s1 0 0

0 s2 0

0 0 s3

1CA . (A.9)

The conservation of momentum gives (see e.g., Festa & Vilotte 2005):

i ω ρ det(Λ) u̇ = ∇ ·
�
T̃(u)

�
(A.10)

where T̃ = det(Λ)Λ−1T is the Piola transform of T. The elastic properties of the medium are given by the symmetric

second Piola tensor T′ = T̃Λ−1, which satisfies Hooke’s law:

T
′ = c̃ : ∇u (A.11)

where the fourth-order elastic tensor c is defined by

c̃ijkl = det(Λ) cmnsl Λ
−1
mi Λ

−1
nj Λ

−1
sk . (A.12)

When going back to the time domain, the convolution can be avoided by splitting kinematic and dynamic fields into

non-physical components following the directions of the derivatives normal and parallel to the interface between the PML

and the regular domain. The original equations can then be written as (e.g., Festa & Nielsen 2003):

ρ(ü
(m)
i + dm u̇

(m)
i ) =

∂Tij

∂xj
δjm , (A.13)

Ṫ
(m)
ij + dm T

(m)
ij = cijkl

∂u̇l

∂xk
δkm , (A.14)

where the superscripts refer to the only derivative that is kept on the right-hand side. The total fields are finally obtained

by summing the split components:

u̇i =

3X
m=1

u̇
(m)
i , Tij =

3X
m=1

T
(m)
ij . (A.15)

It is worth noting that unsplit PML formulations are currently under development for the seismic wave equation.

Such formulations would have the advantage of reducing the memory cost of the technique because one would not need to

define additional arrays to store the split components of the fields. They would also be simpler to implement in existing

codes without PML because these are based on the total field.

APPENDIX B: DTN OPERATORS

B1 Dynamic coupling

Consider the coupling of a spectral-element solution with a normal-mode solution in global seismology. Such coupling is

said to be dynamic because it depends on time (an example of static coupling is given in the next section). Such a coupling

strategy is useful when some regions of the Earth can be assumed to be spherically symmetric. In those regions, the

solution can therefore be sought in the frequency domain and expanded onto the basis of generalized spherical harmonics

Yℓm (e.g., Phinney & Burridge 1973), where ℓ and m stand for the angular and azimuthal degree, respectively. We

thus face the problem of coupling a solution in the space-time domain with a solution in the spectral-frequency domain.

Several options are available for that purpose. To derive the traction boundary condition on Γ, one can either convert

the incoming displacement uV in the spectral-frequency domain, apply the DtN operator to obtain the traction in the

spectral-frequency domain, and then convert it back to the space-time domain. The DtN operator can also be converted

to the space-time domain and applied to the incoming displacement uV , which implies a series of convolution in time

and space. Even if not strictly equivalent numerically, both solutions require an infinite sum over the spherical harmonic

degree ℓ and an unbounded integration over frequency, which both need to be truncated in order to be performed

numerically. In the remainder of this section, we will assume that the DtN operator is applied in the space-time domain.

We start with the expression of the operator in the spectral-frequency domain. Denoting uω(x) = u(x, ω), the

counterpart of Eq. (40) in the frequency domain can be written as

D
W
ω (uW

ω ) = T(uW
ω ) · n̂ , (B.1)

which we expand on the basis of generalized spherical harmonics as

D
W
ω (uW

ω ) =
∞X

ℓ=0

+ℓX
m=−ℓ

ℓD
W
ω (uW

ω ) : Yℓm , (B.2)

where the colon denotes the dot product with the canonical basis (see e.g., Dahlen & Tromp 1998, p. 901 for details).
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Note that the operator is local in the spectral-frequency domain, in the sense that the ℓm coefficients of traction at a

given frequency ω only depend on the same coefficients of displacement at the same frequency. Note also that ℓD
W
ω has

no dependence on the azimuthal degree m because of the spherical symmetry of W .

The DtN in the space-time domain is obtained by an inverse Fourier transform:

D
W
t (uV

t′≤t) =

∞X
ℓ=0

+ℓX
m=−ℓ

Z +∞

−∞
ℓD

W
ω (uW

ω ) : Yℓm eiωtdω . (B.3)

In order to be performed numerically, the sum over ℓ needs to be truncated to a cutoff angular degree ℓmax large enough

to provide an accurate approximation of the DtN operator in the space domain. In a spherically-symmetric model and

far enough from the source, the relation between the corner frequency of the source and the maximum angular degree

of the wave field is known from the dispersion relation. In practice, when dealing with a 3D Earth model, we apply this

1D criterion to the spherical average of the 3D model in V .

Computing the inverse Fourier transform (B.3) requires one to circumvent two issues. First, because W is bounded,

ℓD
W
ω is undefined for the set of frequencies corresponding to the eigenmodes ofW with a homogeneous Dirichlet boundary

condition on Γ. To perform the frequency integration, the DtN operator is split into a discrete spectrum for which the

Cauchy theorem is used, and a continuous spectrum for which a fast Fourier transform is applied. Second, the infinite

frequency range in Eq. (B.3) cannot be truncated without affecting the causality of the DtN operator. Let ωc stand for

a frequency greater than the corner frequency of the source, then the truncated DtN operator obtained by replacing the

infinite frequency interval in (B.3) by [−ωc, ωc] is not causal. To solve this problem, Capdeville et al. (2003a) introduced

a regularized, causal operator based upon an asymptotic approximation at high frequency. This regularized operator rDt

is defined by

rD
W
ω = D

W
ω − aD

W
ω , (B.4)

where aD
W
w stands for an asymptotic approximation of the operator based on an expansion in powers of iω. By definition,

the regularized operator converges toward zero at high frequency. The final operator D
W
t is obtained by summing the

inverse Fourier transforms:

D
W
t = rD

W
t + aD

W
t . (B.5)

The reader is referred to Capdeville et al. (2003a) for details about the regularization procedure applied to the DtN

operator, and to Capdeville et al. (2003b) for the extension to the case where the source is located within W .

B2 Static coupling

Another example of DtN coupling arises when accounting for the perturbation of the gravitational potential in the wave

equation, or when computing the gravity field induced by a 3D distribution of density. Both problems involve a scalar

potential that is defined everywhere in space, whereas the computational domain is bounded. A coupling strategy with

the analytical solution of the exterior problem allows one to circumvent this issue.

Let W denote the region exterior to B: W = R3 \B, so that the coupling interface Γ = ∂B is the sphere of radius b (see

Fig. 1). The coupling strategy is to solve Poisson’s equation in B with a condition on Γ involving the normal derivative

of the potential (i.e., the Neumann variable for this problem) and to solve Laplace’s equation in W with a prescribed

potential (the Dirichlet variable) on the boundary.

The DtN operator for the Poisson-Laplace equation is thus DW (χW ) = ∇χW · n̂, where χ stands for either the mass

redistribution potential ψ(u) or the non-rotating gravity potential φ′. Because the coupling interface is spherical, the

expression of the DtN operator is readily obtained in the spherical harmonics basis (see Chaljub & Valette 2004):

DW (χW ) = −1

b

∞X
ℓ=0

(ℓ+ 1)

ℓX
m=−ℓ

χW
lm(b)Yℓm(θ, ϕ) , (B.6)

where Yℓm denotes the real spherical harmonic of degree ℓ and order m, (θ, ϕ) are the spherical coordinates and χW
ℓm(b) =R

Γ
χWYℓm dS.

Finally, the boundary condition to be used to solve for the non-rotating gravity potential in B is

∇φ′B · n̂ = DW (φ′B) , (B.7)

and that for the mass redistribution potential is

∇ψ(u)B · n̂ = DW (ψ(u)B) + 4πGρB u
B · n̂ , (B.8)

according to the jump condition (37) and assuming that the exterior domain W is a vacuum, i.e., ρW = 0. Note that the

second term on the right-hand side of Eq. (B.8) only matters when topography or ellipticity is considered at the surface

of the Earth.
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B3 Ocean load approximation

More than 71% of the surface of the Earth is covered by oceans. At short period, one may want to take into account

the effect of these oceans on global seismic wave propagation (e.g., their effect on the reflection coefficient of phases

reflected at the ocean bottom, such as PP , SS and SP , as well as on the dispersion of Rayleigh waves).

Following Komatitsch & Tromp (2002b), we assume that the oceans are incompressible, i.e., that the entire water

column moves as a whole as a result of the normal displacement u · n̂ of the sea floor. This approximation, which is

accurate for seismic wavelengths larger than the thickness of the oceans, is valid down to periods of approximately 20 s,

but not below. With such an assumption, we can only reproduce the effect of the load at the ocean floor, but we cannot

model phases such as the tsunami that propagate in the oceans themselves.

Assuming a homogeneous fluid layer (therefore neutrally stratified, i.e., its Brunt-Väisälä frequency N is zero in

Eq. (17)) and neglecting the redistribution of mass, the wave equation (5) in the oceans reduces to

ü + 2Ω × u̇ = −∇(
δp

ρ
− u · g) , (B.9)

where δp is the Lagrangian perturbation of pressure defined by (14).

Let hw denote the local thickness of the oceans (i.e., of the equivalent local water column), which can be taken from

a bathymetry map. If one considers the normal component of Eq. (B.9), integrates over the column of water and takes

into account the variations of gravity with radius, one can show that locally

δp = ρw hw ü · n̂ + 2ρw hw (Ω × u̇) · n̂ + 4πGρ2
w hw u · n̂, (B.10)

where ρw denotes the density of sea water (ρw ≃ 1020 kg.m−3). In practice, at periods above typically 20 s the ocean

load is a small effect, and the gravity and rotation terms in (B.10) are even smaller corrections that can be safely ignored.

We therefore get the following equation at the ocean floor

T(u) · n̂ = − δp n̂ ≃ − ρw hw (ü · n̂) n̂ . (B.11)


