TWO-SIDED ESSENTIAL SUBMODULES OF *Q^r* (*R*)

ULRICH ALBRECHT

Communicated by Jutta Hausen

Abstract. The focus of this paper are essential submodules, *A*, of the maximal right ring of quotients, Q_R^r , of a right non-singular ring R . Since Q^r is a *R*-*R*-bimodule, particular attention is given to submodules of Q_R^r which are also submodules of *^RQ^r* . In this discussion, properties of *R* which are inherited by intermediate rings $R \subseteq S \subseteq Q^r$ are investigated. The results obtained are used to discuss homological properties of essential submodules *A* of Q_R^r . In particular, the paper addresses the question when *S*-closed submodules of finite direct sums of copies of *A* are direct summands.

1. INTRODUCTION

The classical notion of torsion-freeness for modules over an integral domain can also be formulated for non-commutative rings. However, fundamental difficulties make such an extension meaningful only if one restricts the discussion to modules over semi-prime, right and left Goldie-rings [12]. Because of this, the concept of non-singular modules was introduced as a replacement of torsion-freeness in the non-commutative setting. A right module *M* over a ring *R* is *non-singular* if every non-zero element *x* of *M* has a non-essential right annihilator $r_R(x) = \{r \in$ $R : xr = 0$. The ring *R* is right non-singular if R_R is a non-singular *R*-module. Every right non-singular ring *R* has a right self-injective regular maximal right ring of quotients $Q^r = Q^r(R)$, e.g. see [12] and [16]. The class of right nonsingular rings contains the *right p.p.-rings*, i.e. the rings *R* for which every cyclic right ideal is projective, or equivalently, such that the right annihilator of every element of *R* is generated by an idempotent. Finally, *R* is a *Baer-ring* if the right annihilator of every subset of *R* is generated by an idempotent. In contrast to being non-singular or p.p., the property to be a Baer-ring is right-left-symmetric.

¹⁹⁹¹ *Mathematics Subject Classification.* 16D10.

¹⁰³

104 ULRICH ALBRECHT

While avoiding many of the problems associated with the classical notion of torsion-freeness in the non-commutative setting, non-singularity fails to capture some of the homological properties of torsion-free modules over integral domains. For instance, flat modules need not be non-singular. Because of this, Hattori called a right *R*-module *M torsion-free* if $\text{Tor}_{1}^{R}(M, R/Rr) = 0$ for all $r \in R$ [13]. Naturally, the question arises when these two approaches yield the same "torsionfree" modules. Its answer in [3] focused on the class of right Utumi rings: A right non-singular ring *R* is *right Utumi* if every *S*-closed right ideal of *R* is the right annihilator of a subset of *R*. Here, a submodule *U* of a right *R*-module *M* is S -closed if M/U is non-singular. The right and left Utumi-rings are the right and left non-singular rings for which $Q^r = Q^{\ell}$ [16]. Finally, a right non-singular ring *R* is *right strongly non-singular* if every finitely generated non-singular right *R*-module can be embedded into a projective module. Right strongly non-singular rings can be described as the right non-singular rings *R* for which *Q^r* is a *perfect left localization* of R , i.e. Q^r is flat as a right R -module and the multiplication map $Q^r \otimes_R Q^r \to Q^r$ is an isomorphism, see [12] and [16].

The rings *R* for which the concept of non-singularity and Hattori's notion of torsion-freeness coincide are the right Utumi p.p.-ring without an infinite set of orthogonal idempotents [3]. These rings resemble integral domains in many ways, in particular, when they are right strongly non-singular [3]. This becomes apparent when considering subrings *S* of *Q^r* which contain *R*. In case that *R* is a Prüfer domain, every such S is Prüfer too. Section 3 investigates properties of right non-singular rings *R* which are inherited by intermediate rings $R \subseteq S \subseteq$ *Q^r* . Proposition 3.1 and Theorem 3.2 show that being right Utumi, right and left Utumi p.p., and right strongly non-singular, right semi-hereditary are such properties provided that *R* has no infinite set of orthogonal idempotents.

Such intermediate rings arise naturally in the investigation of essential submodules of Q_R^r , as is shown in Section 2. It begins with an example demonstrating the significant differences between the commutative and the non-commutative setting. Because *Q^r* is a *R*-*R*-bimodule, we are particularly interested in *two-sided R*-submodules *A* of Q^r , i.e. submodules of Q^r_R which also are submodules of $_RQ^r$. In case that R a right and left Utumi-ring, we investigate how A_R being essential in Q_R^r is related to $_R A$ being essential in $_R Q^r$. Furthermore, we describe the endomorphism ring of an essential submodule A_R of Q_R^r . This ring will be one of the subrings investigated in Section 3 exactly if *A* is a two-sided *R*-submodule of *Q^r* .

Section 4 applies these results to the investigation of homological properties of *S*-closed submodules of finite direct sums of copies of *A*. We concentrate on the case that *R* is a right non-singular ring without an infinite set of orthogonal idempotents and that *A* is a two-sided *R*-submodule of *Q^r* which is essential as a submodule of Q_R^r . We call such an *A* a *right essential submodule*. In this case, *S*-closed submodules of finite direct sums of copies of *A* are direct summands exactly if R is a strongly non-singular right semi-hereditary ring. We conclude with further examples, and apply the previous results to modules over integral domains.

2. Essential Submodules of *Q^r*

Let *R* be a right non-singular ring, and *A* be a submodule of Q_R^r . Consider the subring $Fix(A) = \{q \in Q^r | qA \subseteq A\}$ of Q^r and the two-sided ideal $\ell(A) =$ ${q \in Q^r | qA = 0}$ of *Fix*(*A*). The ring *Fix*(*A*) is a subring of Q^r which contains *R* if and only if *A* is a two-sided *R*-submodule of Q^r . For every $q \in Fix(A)$, let $\lambda_q: A \to A$ be left multiplication by *q*. It is easy to see that $\phi_A(q) = \lambda_q$ defines a ring homomorphism ϕ_A from $Fix(A) \to End_R(A)$ whose kernel is $\ell(A)$. Since Q^r is the injective hull of R_R , every map $\phi: A \to A$ is induced by a *R*-homomorphism $\hat{\phi}: Q^r \to Q^r$ which can easily be shown to be a Q^r -map. Therefore, there exists $q \in Q^r$ such that $\hat{\phi}(x) = qx$ for all $x \in Q$, and ϕ_A is onto.

To illustrate the difference between the commutative and the non-commutative setting, consider the ring

$$
R = \left\{ \left(\begin{array}{cc} n & 0 \\ x & y \end{array} \right) | n \in \mathbb{Z}, x, y \in \mathbb{Q} \right\}
$$

which is right non-singular with maximal right ring of quotients $Q^r = Mat_2(\mathbb{Q})$ [12]. For a subgroup *A* of Q, let

$$
M_A = \left\{ \left(\begin{array}{cc} a & 0 \\ x & y \end{array} \right) \mid a \in A, x, y \in \mathbb{Q} \right\} \text{ and } L_A = \left\{ \left(\begin{array}{cc} a & 0 \\ x & 0 \end{array} \right) \mid a \in A, x \in \mathbb{Q} \right\}.
$$

Observe that L_0 is the nilradical of R . Consider the idempotents

$$
e_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), e_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \text{ and } e_{(x)} = \left(\begin{array}{cc} 1 & 0 \\ x & 0 \end{array}\right)
$$

of *R* where $x \in \mathbb{Q}$.

Example 2.1. a) *The ring R described above is a right strongly non-singular p.p.-ring.*

b) *Q^r , MA, and LA, where A is a subgroup of* Q*, are the non-zero two-sided R-submodules of Q^r . Moreover, M^A and L^A are right essential if and only* if $A \neq 0$ *.*

c) i) *If A is a non-zero subgroup of* Q*, then*

$$
Fix(M_A) = \left\{ \begin{pmatrix} a & 0 \\ x & y \end{pmatrix} | a \in End_{\mathbb{Z}}(A), x, y \in \mathbb{Q} \right\}.
$$

ii) *If A is a non-zero, proper subgroup of* Q*, then*

$$
Fix(L_A) = \left\{ \begin{pmatrix} a & 0 \\ x & y \end{pmatrix} | a \in End_{\mathbb{Z}}(A), x, y \in \mathbb{Q} \right\},
$$

while
$$
Fix(L_{\mathbb{Q}}) = Q^r.
$$

iii)
$$
Fix(M_0) = \left\{ \begin{pmatrix} u & 0 \\ x & y \end{pmatrix} | u, x, y \in \mathbb{Q} \right\}.
$$

iv)
$$
Fix(e_1R) = \left\{ \begin{pmatrix} n & x \\ 0 & y \end{pmatrix} | n \in \mathbb{Z}, x, y \in \mathbb{Q} \right\}.
$$

PROOF. a) To see that R is a right p.p.-ring, consider be a non-zero element $t = \begin{pmatrix} n & 0 \\ x & y \end{pmatrix}$ of *R*. If both, *n* and *y*, are non-zero, then *t* is a regular element of *R*, and $r(t) = 0$. Thus, we may assume $n = 0$ or $y = 0$.

Every $s = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in r_R(t)$ yields the equations $na = 0$, $xa + yb = 0$ and $yc = 0$. Suppose $n = 0$. If $y = 0$ too, then the equations reduce to $xa = 0$ which yields $a = 0$ since $t \neq 0$. Hence, $r_R(t) = e_2R$. On the other hand, if $y \neq 0$, then *yc* = 0 yields $c = 0$ and $b = -xy^{-1}a$. From this, we obtain $r_R(t) = e_{(-xy^{-1})}R$. On the other hand, if $n \neq 0$, then $na = 0$ yields $a = 0$. Since $y = 0$, we have $r_R(t) = e_2R$. In either case, $r_R(t)$ is generated by an idempotent, i.e. *R* is a right p.p.-ring.

Observe that $Q^r = e_1 Q^r \oplus e_2 Q^r$. Since $e_2 Q^r = e_2 R$, it is a projective Rmodule. Moreover, e_1Q^r is generated by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ as a *R*-module. One obtains $e_1Q^r \cong e_2R$ as *R*-modules since $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = e_2$ and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} e_2 =$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Therefore, Q^r is a projective *R*-module. Since every finitely generated non-singular right *R*-module can be embedded into a direct sum of copies of *Q^r* , it is isomorphic to a submodule of a projective module, i.e. *R* is right strongly

b) Direct computation shows that all the listed modules are two-sided *R*submodules of Q^r . To see that M_A and L_A are right essential in Q_R^r if $A \neq 0$, let

non-singular.

 $u, v, x, y \in \mathbb{Q}$. Observe

$$
\left(\begin{array}{cc} u & v \\ x & y \end{array}\right) e_1 = \left(\begin{array}{cc} u & 0 \\ x & 0 \end{array}\right)
$$

and

$$
\left(\begin{array}{cc} u & v \\ x & y \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} v & 0 \\ y & 0 \end{array}\right).
$$

On the other hand, $e_1R \cap M_0 = 0$ shows that M_0 and L_0 are not right essential. Finally, let *U* be a non-zero two-sided *R*-submodule of *Q^r* . If *U* contains an

element of the form $\begin{pmatrix} u & v \\ x & y \end{pmatrix}$ with $v \neq 0$, then $e_1 \begin{pmatrix} u & v \\ x & y \end{pmatrix} e_2 = \begin{pmatrix} 0 & v \\ 0 & 0 \end{pmatrix} \in$ $U.$ But, $\begin{pmatrix} 0 & v \\ 0 & 0 \end{pmatrix} R = e_1 Q^r.$ On the other hand,

$$
\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & v \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & v \end{array}\right) \in U.
$$

But, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 0 *v* $R = e_2 Q^r$. Hence, $Q^r = e_1 Q^r \oplus e_2 Q^r \subseteq U$. Therefore, one may assume that *U* is a submodule of M_0 . If *U* is not contained in L_0 , then $e_2Q^r \subseteq U$, and $U = M_A$ for some subgroup *A* of Q. On the other hand if $U \subseteq L_0$, then $L_0 \cap U \neq 0$. Hence, $L_0 \subseteq U$. Therefore, $U = L_A$ for some $A \subseteq \mathbb{Q}$.

c) Suppose $\begin{pmatrix} u & v \\ x & y \end{pmatrix} \in Fix(M_A)$. One immediately obtains $uA + v\mathbb{Q} \subseteq A$ and $vQ = 0$. Hence, $v = 0$ and $uA = A$, i.e. $u \in End_{\mathbb{Z}}(A)$. On the other hand, if *A* is a proper subgroup of \mathbb{Q} , then $\begin{pmatrix} u & v \\ x & y \end{pmatrix} \in Fix(L_A)$ also yields $uA + v\mathbb{Q} \subseteq A$, which is not possible unless $v = 0$ since *A* is a proper subgroup of Q. Direct computation shows $Q^r L_{\mathbb{Q}} = L_{\mathbb{Q}}$. This establishes i) - iii). Part iv) is shown similarly. \Box

Other non-commutative rings with an ample supply of two-sided ideals are the right bounded rings, where a ring *R* is *right bounded* if every essential right ideal of *R* contains an essential two-sided ideal (e.g. see [9]).

In the following, let *dimRM* denote the Goldie-dimension of a right *R*-module *M*.

Theorem 2.2. *Consider the following conditions for a right non-singular ring R:*

a) *R has finite right Goldie dimension.*

b) i) *R has the ACC for right annihilators.*

ii) *A submodule A of* Q_R *is essential if and only if* $\ell(A) = 0$ *.*

Then, a) always implies b), and the converse is true if R is a right and left nonsingular right and left Utumi-ring.

PROOF. $a) \Rightarrow b$: Since R has finite right Goldie dimension, Q^r is a semi-simple Artinian ring, e.g. see [16]. By [12], *R* has the ACC for right annihilators. Suppose that *A* is an essential submodule of Q_R^r , and $q \in \ell(A)$. Then, $A \cap R$ is an essential right ideal of *R*, and so $q(A \cap R) = 0$ yields $q = 0$ since Q_R^r is a non-singular module.

Conversely, if $\ell(A) = 0$, select a submodule *U* of Q_R^r maximal with respect to the property that $A \cap U = 0$. If $x \in AQ^r \cap UQ^r$, then there are $a_1, \ldots, a_m \in A$, $u_1, \ldots, u_n \in U$, and $q_1, \ldots, q_m, s_1, \ldots, s_n \in Q^r$ with $x = \sum_{i=1}^m a_i q_i = \sum_{j=1}^n u_j s_j$. Choose an essential right ideal *J* of *R* such that $u_i J, s_j J \subseteq R$ for all $i = 1, \ldots, m$ and $j = 1, ..., n$. Then, $xJ \subseteq A \cap U = 0$. Since Q^r is non-singular, $x = 0$. Since $A \oplus U$ is an essential submodule of Q^r , we have that $AQ^r \oplus UQ^r$ is an essential Q^r submodule of Q^r [12]. Because Q^r is semi-simple Artinian, $Q^r = A Q^r \oplus U Q^r$. If A is not essential in Q^r , then $U \neq 0$, and the projection of Q^r onto UQ^r with kernel *AQ^{r*} induces a non-zero *Q^r*-endomorphism ϕ of *Q^r* with $\phi(A) = 0$. However, ϕ is left multiplication by some $q \in Q^r$ as has been shown at the beginning of this section. Then, $qA = 0$ yields $q \in \ell(A) = 0$. Thus, *A* is essential.

b) \Rightarrow *a*): Suppose that *R* is not finite dimensional, and consider a family ${I_n}_{n \leq w}$ of non-zero right ideals of *R* whose sum is direct. Without loss of generality, one may assume that $I = \bigoplus_n I_n$ is essential in *R*. Then, $\ell(I) = 0$. Let $J_n = \ell_R(I_1 \oplus \ldots \oplus I_n)$. Since the J_n 's form a descending chain of left annihilators of *R*, it has to becomes stationary at some point, say $J_n = J_{n+k}$ for all $k < \omega$. For this, observe the ACC for right annihilators is equivalent to the DCC for left annihilators. In particular, $J_nI = 0$, and $J_n \subseteq \ell(I) = 0$ yields $J_n = 0$. On the other hand, there is $0 \neq q \in Q^r$ with $q(I_1 \oplus \ldots \oplus I_n) = 0$ since $I_1 \oplus \ldots \oplus I_n$ is not essential in *R*. Since *R* is a right and left Utumi-ring, Q^r is also the left ring of quotients of *R*, and there is an essential left ideal *K* of *R* with $Kq \subseteq R$. Since Q^r is a non-singular left *R*-module, there is a non-zero $x \in K$ with $xq \neq 0$. Then, $xq \in J_n$ contradicts $J_n = 0$.

Consequently, if *R* has finite right Goldie dimension, then a submodule *A* of Q_R is essential if and only if ϕ_A is a monomorphism.

Corollary 2.3. *The following conditions are equivalent for a right and left nonsingular ring R which has finite right and left Goldie-dimension.*

- a) *Let A be a two-sided R-submodule of Q^r . Then, A is essential as a right R-module if and only it is essential as a left R-module.*
- b) *R is a semi-prime right and left Utumi-ring.*

PROOF. $a) \Rightarrow b$: Because R_R is an essential submodule of Q_R^r , it is an essential submodule of $_RQ^r$. Observe that Q^r is semi-simple Artinian since R has finite right Goldie-dimension. Thus, it is its own maximal left ring of quotients. On the other hand, *R* is a left non-singular ring which is essential in ${}_{R}Q^{r}$. Thus, Q^{r} is a left ring of quotients of *R*. By [12, Theorem 2.30], *Q^r* is a maximal left ring of quotients of *R*, and $Q^r = Q^{\ell}$, i.e. *R* is a right and left Utumi-ring.

If $N(R) \neq 0$, then there exists a non-zero two-sided ideal *I* of *R* with $I^2 = 0$. Select a right ideal *J* of *R* such that $I \oplus J$ is essential in *R*, and consider $A = I + RJ$ which is a two-sided ideal of *R*. One has $AI \subseteq I^2 + RJI = RJI$. However, $JI \subseteq J \cap I = 0$ yields $0 \neq I \subseteq r(A)$, a contradiction.

b) \Rightarrow *a*): By symmetry, it suffices to show that *A* is essential as a submodule of ${}_{R}Q^{r}$ if it essential in Q_{R}^{r} . Suppose that such an *A* is not essential in ${}_{R}Q^{r}$. Since *R* is right and left Utumi, Theorem 2.2 applies to *A* as a submodule of RQ^r . It yields $I = r(A)$ is a non-zero right ideal of $Fix(RA)$. However, since *A* is a submodule of Q_R^r , we have $R \subseteq Fix(RA)$. Considered as right *R*-modules, *R* is essential in $Fix(RA)$, and hence $I \cap R$ is a non-zero *R*-submodule of Q_R^r . However, A_R essential in Q_R yields that $I \cap R \cap A$ is a non-zero right ideal of R . But $(I \cap R \cap A)^2 \subseteq AI = 0$ implies $N(R) \neq 0$, a contradiction.

Observe that the previous results, in particular, apply to strongly non-singular p.p.-rings without an infinite family of orthogonal idempotents since they have finite right and left Goldie dimension and are right and left Utumi by [3].

Theorem 2.4. *Let R be a right and left non-singular, right and left Utumi ring. The following are equivalent:*

- a) *R is a Baer-ring.*
- b) If *A* is a submodule of Q_R^r , then $\ell(A) = Fix(A)e$ for an idempotent e of *R.*

In this case, $End_R(A) \cong eFix(A)e$ *where* $e \in R$ *is an idempotent with* $\ell(A) = Fix(A)e$.

PROOF. Since R is right and left Utumi, Q^r is the maximal left ring of quotients of *R* too. We thus write *Q* for *Q^r* . To simplify our notation, *S* denotes the ring $Fix(A).$

 $a) \Rightarrow b$: To see that $\ell(A)$ is generated by an idempotent of *R*, let $q \in Q$ such that $q(A \cap R) = 0$, and consider $a \in A$. There is an essential right ideal *I* of *R* such that $aI \subseteq R$. Since $aI \subseteq A \cap R$, one has $qaI = 0$. But this is only possible if $qa = 0$. Hence $\ell(A \cap R) \subseteq \ell(A)$. Therefore, it suffices to show that $\ell(A \cap R)$ is generated by an idempotent *e* of *R*. For this, observe that $\ell(A \cap R) \cap R = \ell_R(A \cap R)$. However, since *R* is a Baer-ring, there is an idempotent $e \in R$ with $\ell_R(A \cap R) = Re$. In particular, $eA = 0$ yields $Se \subseteq \ell(A)$. On the other hand, let $q \in \ell(A)$. Since *Q* is the maximal left ring of quotients of *R*, there is an essential left ideal *J* of *R* with $Jq \subseteq R$. But $Jq(A \cap R) = 0$ yields $Jq \subseteq Re$. Then, $Jq(1-e) = 0$ which is only possible if $q(1-e) = 0$ since Q is a non-singular left R-module. Therefore, *q* = *qe* + *q*(1 − *e*) = *qe* ∈ *Se*.

Since $\ell(A) = Se$ is a two-sided ideal of *S*, one obtains $eS \subseteq Se$, and hence $eS(1-e) = 0$. Then, $S = \ell(A) \oplus (1-e)S(1-e)$ as abelian groups, and $S/\ell(A) \cong$ $(1 - e)S(1 - e)$ as rings. Define a map λ : *S* → *End_R*(*A*) by $[\lambda(q)](a) = qa$. By what has been shown at the beginning of this section, λ is an epimorphism of rings with ker $\lambda = \ell(A)$.

 $b) \Rightarrow a$): Assume that $\ell(A) = Se$ for some idempotent $e \in R$ whenever $A \subseteq Q_R$, and let X be a subset of R . The right ideal I of R generated by X satisfies $\ell_R(X) = \ell_R(I) = \ell(I) \cap R$. By b), $\ell(I) = Fix(I)e$ for some idempotent $e \in R$. Hence, $Re \subseteq \ell_R(X)$. On the other hand, if $r \in R$ satisfies $rx = 0$ for all $x \in X$, then $rI = 0$, and $r = qe$ for some $q \in Fix(I)$. Since Q is the maximal left ring of quotient of *R*, there is an essential left ideal *J* of *R* such that $Jq \subseteq R$. Hence, $Jr = Jqe \subseteq Re$. Since R/Re is non-singular, $r \in Re$. Therefore, R is a Baer-ring. \Box

3. Essential Ring Extensions

This section investigates properties of a right non-singular ring *R* which are inherited by intermediate rings *S* between *R* and *Q^r* .

Proposition 3.1. *Let R be a right non-singular ring without an infinite set of orthogonal idempotents, and consider an intermediate ring* $R \subseteq S \subseteq Q^r$.

- a) *If R is a right Utumi-ring, then so is S.*
- b) *If R is a semi-prime right Goldie-ring, so is S.*
- c) *If R is a right Utumi p.p.-ring, then so is S.*

PROOF. To see that *S* is a right non-singular ring, consider $x \in S$, and assume $xI = 0$ for some essential right ideal *I* of *S*. Then, $x(I \cap R) = 0$ yields $x = 0$ since Q_R^r is a non-singular module and $I \cap R$ obviously is essential in R .

a) Let *I* be a *S*-closed right ideal of *S*. To see that $I \cap R$ is *S*-closed in *R*, choose $r \in R$ such that $rJ \subseteq I \cap R$ for some essential right ideal *J* of *R*. For every non-zero $s \in S$, there exists an essential right ideal K_s of R such that $sK_s \subseteq J$ since *J* is essential in R_R and R_R is essential in Q_R . Then, $sK_sS \subseteq JS$. Moreover, since Q_R is non-singular, there exists $r_s \in K_s$ such that $sr_s \neq 0$. Because $0 \neq sr_s \in JS \cap sS$, the right ideal *JS* of *S* is essential. Hence, $rJS \subseteq I$ yields $r \in I$ since S/I is a non-singular *S*-module. Consequently, $r \in I \cap R$, and *I ∩ R* is *S*-closed in *R*. Since *R* is a right Utumi-ring, there is a subset *X* of *R* such that $I \cap R = r_R(X)$.

If $s \in I$, then there is an essential right ideal *J* of *R* such that $sJ \subseteq R$. Hence, $sJ \subseteq I \cap R$, and $XsJ = 0$. By the non-singularity of *S* as an *R*-module, $Xs = 0$, and $I \subseteq r_S(X)$. On the other hand, for $s_1 \in r_S(X)$, choose an essential right ideal *K* of *R* with $s_1 K \subseteq R$. For each $y \in K$, one has $X(s_1 y) = 0$. This yields *s*₁*K* ⊆ *I* ∩ *R*, and hence *s*₁*K* ⊆ *I*. Then, *s*₁*KS* ⊆ *I* from which *s*₁ ∈ *I* follows since *KS* is an essential right ideal of *S* and *S/I* is non-singular as a *S*-module. Thus, *S* is right Utumi.

b) If *R* is a semi-prime Goldie-ring, then *R* is right non-singular and finitedimensional. Clearly, every such *S* is a finite dimensional *R*-module, and consequently has finite right Goldie dimension as a *S*-module too. Since we have already seen that *S* is a right non-singular ring, it remains to show that it is semi-prime by [12, Corollary 3.32]. For a right ideal *I* of *S* with $I^2 = 0$, we have that $I \cap R$ is a right ideal of R with $(I \cap R)^2 = 0$. This yields $I \cap R = 0$ because *R* is semi-prime. Since *R* is essential in *S*, one has $I = 0$.

c) Because of a), it remains to show that *S* is a right p.p.-ring. Let $x \in S$. By [3], every non-singular cyclic right *R*-module is projective. Hence, there is an idempotent $e \in R$ such that $r_R(x) = eR$. Consequently, $eS \subseteq r_S(x)$. Conversely, suppose that $xt = 0$ for some $t \in S$. There exists an essential right ideal *I* of *R* with $tI \subseteq R$. Then, $tI \subseteq eR \subseteq eS$. But $S/eS \cong (1-e)S$ is a non-singular *R*-module, and hence $t \in eS$ as desired. \Box

Theorem 3.2. *Let R be a right and left non-singular ring without an infinite set of orthogonal idempotents. Consider an intermediate ring* $R \subseteq S \subseteq Q^r$.

- a) *If R is a right and left Utumi p.p.-ring, then S is a right and left Utumi p.p-ring.*
- b) *If R is a right and left Utumi-ring, then S has the ACC (DCC) for right (left) annihilators provided that R has it.*
- c) *If R is a right strongly non-singular right semi-hereditary ring, then so is S.*

PROOF. a) By [3], R has finite right Goldie-dimension; and Q^r is a semi-simple Artinian ring. Observe that *R* is also a left p.p.-ring. Therefore, *R* is a right and left Utumi p.p-ring, and the same holds for *S* by Proposition 3.1b. Because *Q^r* is the maximal right ring of quotients of *S*, it is also its maximal left ring of quotients.

b) Since the ACC (DCC) for right annihilators is equivalent to the DCC (ACC) for left annihilators, it suffices to consider subsets X_1 and X_2 of S such that $\ell_S(X_1) \subseteq \ell_S(X_2)$. For each $x \in X_i$, choose an essential right ideal *J_x* of *R* with $xJ_x \subseteq R$, and let $S_i = \sum_{x \in X_i} xJ_x \subseteq R$. Clearly, $\ell_S(X_i) \subseteq \ell_S(S_i)$. On the other hand, if $sS_i = 0$ for some $s \in S$, then $sxJ_x = 0$ for all $x \in X_i$. Since *S* is non-singular, $sx = 0$, and $\ell_S(X_i) = \ell_S(S_i)$. Hence, $\ell_R(S_1) = \ell_S(S_1) \cap R \subseteq$ $\ell_S(S_2) \cap R = \ell_R(S_2)$. If $\ell_S(X_1) \neq \ell_S(X_2)$, then there is $s \in S$ such that $sS_1 = 0$ but $sS_2 \neq 0$. Since *R* is a left and right Utumi-ring, Q^r is the maximal left ring of quotient of *R*, and there exists an essential left ideal *I* of *R* with $Is \subseteq R$. Then, $I s S_1 = 0$, but $I s S_2 \neq 0$ since *S* is a non-singular left *R*-module. Hence, we can find $r \in I$ such that $rsS_2 \neq 0$ and $rs \in R$, i.e. $\ell_R(S_1) \neq \ell_R(S_2)$. The rest of b) follows immediately.

c) To show that *S* is a right semi-hereditary ring for which *Q^r* is a perfect left localization of *S*, it suffices to establish that every finitely generated non-singular right *S*-module *M* is projective [16]. Since *Q^r* is semi-simple Artinian, and *S^S* is essential in Q^r , one obtains that Q^r is the maximal right ring of quotients of S [12]. We first consider the case that *M* is a *S*-submodule of Q^r . If $M = x_1S + \ldots + x_nS$, then $U = x_1 R + \ldots + x_n R$ is an essential *R*-submodule of Q^r . Because *R* is a right strongly non-singular, right semi-hereditary ring, every finitely generated non-singular right *R*-module is projective. Hence, there exists a right *R*-module *W* such that $U \oplus W \cong \oplus_n R$. Then, $(U \otimes_R S) \oplus (W \otimes_R S) \cong \oplus_n S$ yields that $U \otimes_R S$ is a projective right *S*-module.

The map $\phi: U \otimes_R S \to M$ defined by $\phi(x \otimes s) = xs$ is onto because $US = M$. It remains to show that ϕ is one-to-one. Since $U \otimes_R S$, as a projective *S*-module, is *R*-non-singular, it suffices to show $\dim_R U \otimes_R S = \dim_R M$ observing that the latter is finite by [3]. Since U is an essential submodule of M , they have the same Goldie-dimension over *R*. The inclusion $R \subseteq S$ of *R*-*R*-bimodules induces an exact sequence $0 \to U \otimes_R R \to U \otimes_R S \to U \otimes_R (S/R) \to 0$ of right *R*-modules since *U* is flat. In view of the fact that S/R is singular, we have $(U \otimes_R S)/(U \otimes_R R)$ is singular, and $dim_R U = dim_R (U \otimes_R S)$. Therefore, *S* is right semi-hereditary and right strongly non-singular.

If *M* is a finitely generated non-singular right *S*-module, then $M \subseteq \bigoplus_{n} Q^{r}$ for some $n < \omega$. We induct on *n*, and consider $U = M \cap \bigoplus_{n=1}^{\infty} Q^r$. Since *M*/*U* \cong [*M* + \oplus_{n-1} *Q^{<i>r*}</sup>]/ \oplus_{n-1} *Q^{<i>r*} is isomorphic to a finitely generated submodule

of Q^r , it is projective by what has been shown so far. Thus, $M = U \oplus P$ for some projective module P .

By [3], a right Utumi p.p.-ring without an infinite set of orthogonal idempotents is Baer. Thus, Part c) of Lemma 3.1 shows that *S* is a Baer right Utumi-ring provided *R* is.

Lemma 3.3. *Let R be a right strongly non-singular, right semi-hereditary ring without an infinite set of orthogonal idempotents, and* $R \subseteq S \subseteq Q^r$ *an intermediate ring. Then, S is a perfect right localization of R.*

PROOF. By 3, R also is left strongly non-singular and left semi-hereditary. In particular, its maximal right and left rings of quotients coincide. Denote this ring by *Q*. Then, *Q* is a perfect left localization of *R*. Furthermore, every finitely generated non-singular left *R*-module is projective, and *S* is flat as a left *R*module. By [16, XI.2.4], *S* is a perfect right localization of *R*.

A ring *R* has the *restricted right minimum condition* if *R/I* is Artinian for every essential right ideal *I* of *R*. Right and left Noetherian hereditary rings have the restricted right minimum condition [9].

Proposition 3.4. *Let R be a right strongly non-singular p.p.-ring without an infinite set of orthogonal idempotents. Consider an intermediate ring* $R \subseteq S \subseteq Q^r$ *such that S is a perfect right localization of R.*

- a) *The multiplication map* $M \otimes_R S \to M$ *is an isomorphism for all right S-modules M.*
- b) *If R has the restricted right minimum condition, so does S.*

PROOF. a) Consider an exact sequence $P \to F \to M \to 0$ where P and F are free *S*-modules. Since *S* is a perfect right localization of *R*, the multiplication map $S \otimes_R S \to S$ is an isomorphism. Then, the multiplication maps $P \otimes_R S \to P$ and $F \otimes_R S \to F$ are isomorphisms too, and fit into the commutative diagram

$$
P \otimes_R S \longrightarrow F \otimes_R S \longrightarrow M \otimes_R S \longrightarrow 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
P \longrightarrow F \longrightarrow M \longrightarrow 0.
$$

By the 5-Lemma, the multiplication map $M \otimes_R S \to M$ is an isomorphism.

b) We first show that $(I \cap R)S = I$ for every right ideal *I* of *S*. Associated with every submodule *A* of S_R is a natural map $\sigma_A : A \otimes_R S \to AS$ defined by $\sigma_A(a \otimes s) = as$ for all $a \in A$ and $s \in S$. Since *S* is a perfect right localization of *R*, the map *σ^S* is an isomorphism. The flatness of *S* as a left *R*-module gives the exactness of the top-row of the commutative diagram

$$
0 \longrightarrow A \otimes_R S \longrightarrow S \otimes_R S
$$

$$
\downarrow_{\sigma_A} \qquad \qquad \downarrow_{\sigma_S} \qquad \qquad 0 \longrightarrow AS \longrightarrow S
$$

whose rows are induced by the inclusion map. Thus, σ_A is an isomorphism.

By [16, XI.1.2], we have $(S/R) \otimes_R S = 0$. As an *R*-module, $I/(I \cap R) \cong$ $(I+R)/R \subseteq S/R$ yields the exact sequence $0 \to [I/(I \cap R)] \otimes_R S \to (S/R) \otimes_R S = 0$ from which we get the exact sequence $0 \to (I \cap R) \otimes_R S \to I \otimes_R S \to [I/(I \cap R)]$ *R*)] \otimes *R S* = 0. The isomorphisms σ _{*I*∩*R* and σ *I* fit into the commutative diagram}

$$
(I \cap R) \otimes_R S \xrightarrow{\tau} I \otimes_R S
$$

$$
\downarrow \sigma_{I \cap R} \qquad \qquad \downarrow \sigma_I
$$

$$
(I \cap R)S \xrightarrow{\tau} IS = I
$$

where *ι* denotes the inclusion map. Thus, *ι* is an isomorphism, and $I = (I \cap R)S$ as desired.

Let *J* be an essential right ideal of *S*. Arguing as before, $J \cap R$ is an essential right ideal of *R*. If $I_0 \supseteq \ldots \supseteq I_n \supseteq \ldots \supseteq J$ is a descending chain of right ideals of *S*, then the descending chain $\ldots \supseteq R \cap I_n \supseteq R \cap I_{n+1} \supseteq \ldots$ becomes stationary, say $R \cap I_m = R \cap I_{m+k}$ for all $k < \omega$. But then, $I_m = (R \cap I_m)S = (R \cap I_{m+k})S =$ I_{m+k} .

Corollary 3.5. *Let R be a right strongly non-singular, right hereditary ring without an infinite set of orthogonal idempotents. Every intermediate ring* $R \subseteq S \subseteq$ *Q^r is right hereditary.*

PROOF. Since R is right hereditary and has finite right Goldie-dimension [3], it is right Noetherian by Sandomirski's Theorem. By Theorem 3.2 and [16], *S* is a right Noetherian, right semi-hereditary ring. \Box

4. *S*-Closed Submodules of *A*-Projective Modules

Let *A* and *M* be right *R*-modules. The *A*-radical of *M* is $\rho_A(M) = \cap \{ \text{ker } \alpha | \alpha \in$ Hom $\left(\frac{R(M, A)}{R}\right)$. A right *R*-module *P* is *A-projective* if it is a direct summand of *⊕IA* for some index-set *I* (see [6] and [7]). Finally, a *R*-module *M* is *A-generated* if it is an epimorphic image of $\bigoplus_{I} A$ for some index-set *I*. If *I* can be chosen to be finite, then *M* is *finitely A-generated*.

Theorem 4.1. *The following are equivalent for a right non-singular ring R without an infinite set of orthogonal idempotents:*

- a) *R is right strongly non-singular and right semi-hereditary.*
- b) Let *A* be a right essential two-sided *R*-submodule of Q^r . For all $n < \omega$, *an S-closed submodule of Aⁿ is a direct summand.*
- c) *Let A be a right essential two-sided R-submodule of Q^r . Every finitely A-generated non-singular right R-module is A-projective.*
- d) i) *R is right strongly non-singular.*
	- ii) *Let A be a right essential two-sided R-submodule of Q^r . A finitely A-generated right R-module M of finite Goldie dimension such that* $\rho_A(M) = 0$ *is A-projective.*

PROOF. $a) \Rightarrow b$: By [3], *R* also is a left strongly non-singular left semi-hereditary ring whose maximal right and left ring of quotients coincide. We denote the latter by *Q*. Section 2 shows that $S = End_R(S) = Fix(A)$ is a subring of *Q* which contains *R*. Because of Proposition 3.1 and Theorem 3.2, *S* is a right and left strongly non-singular, right and left semi-hereditary ring without an infinite family of orthogonal idempotents. Associated with the *S*-*R*-bimodule *A* is a pair of adjoint functors $H_A(-) = Hom_R(A, -)$ and $T_A = -\otimes_S A$ between the categories of right *R*-modules and right *S*-modules respectively.

Denote the embedding $A \subseteq Q$ by α . Since it is both a right *R*-module and a left *S*-module map, the induced map α^* : $\text{Hom}_R(Q, Q) \to \text{Hom}_R(A, Q)$ is a map of right *S*-modules. Moreover, it is an isomorphism since it fits into the exact sequence $0 = \text{Hom}_R(Q/A, Q) \to \text{Hom}_R(Q, Q) \xrightarrow{\alpha^*} \text{Hom}_R(A, Q) \to \text{Ext}^1_R(Q/A, Q) =$ 0 where the first term vanishes by the singularity of Q/R , while the last term does the same since Q_R is an injective *R*-module. However, $\text{Hom}_R(Q,Q) \cong Q$ as an *S*-module since *R*-maps $Q \rightarrow Q$ are *Q*-homogeneous. On the other hand, $Q \otimes_S A$ is the injective hull of *A* as an *S*-module by [16]. The map α induces a monomorphism $Q \otimes_S A \to Q \otimes_S Q$ of right *R*-modules because *Q* is flat over *S*. Since *Q* is a perfect right and left localization of *S*, the multiplication map $Q \otimes_S Q \to Q$ is an isomorphism. Hence, $\dim_R Q \otimes_S A \leq \dim_R Q$. On the other hand, the natural map θ_Q : $\text{Hom}_R(A, Q) \otimes_S A \to Q$ is an epimorphism because *Q* is *A*-generated. We have seen that $H_A(Q) \cong Q$ as right *S*-modules. Thus, $\dim_R Q \otimes_S A = \dim_R Q + \dim_R \ker \theta_Q < \infty$ since Goldie-dimension is additive over *S*-closed sequences. Thus, ker $\theta_Q = 0$, and θ_M is an isomorphism whenever $M \cong Q^m$ for some $m < \omega$.

116 ULRICH ALBRECHT

Since *S* is a right and left strongly non-singular right and left semi-hereditary ring, every finitely generated non-singular *S*-module is projective, and all nonsingular *S*-modules are flat. Because *A* is an *S*-submodule of *Q*, we obtain that the functor T_A is exact. Consider an *S*-closed submodule *U* of A^n for some $n < \omega$. Since A^n/U is a non-singular module of finite Goldie dimension, there is a monomorphism $\alpha: A^n/U \to Q^\ell$ for some $\ell < \omega$. It induces the commutative diagram

$$
0 \longrightarrow T_A H_A(A^n/U) \longrightarrow T_A H_A(Q^{\ell})
$$

$$
\downarrow \theta_{A^n/U} \longrightarrow \downarrow \downarrow \theta_{Q^{\ell}}
$$

$$
0 \longrightarrow A^n/U \longrightarrow Q^{\ell}
$$

whose rows are exact. Since $\theta_{A^n/U}$ is onto, it is actually an isomorphism.

Let π : $A^n \rightarrow A^n/U$ be a projection map with kernel *U*. It induces the exact sequence $0 \to H_A(U) \to H_A(A^n) \stackrel{H_A(\pi)}{\to} X \to 0$ of right *S*-modules where $X = im$ $H_A(\pi)$ is a finitely generated *S*-submodule of $H_A(A^n/U)$. Since A^n/U is isomorphic to a submodule of Q^{ℓ} for some $\ell < \omega$, we obtain that $H_A(A^n/U)$ is a non-singular right *S*-module by what has been shown so far. Because *S* is right strongly non-singular and right semi-hereditary, *X* is a projective right *S*-module; and the last sequence splits. But then, the top-row of the following commutative diagram will also split:

$$
0 \longrightarrow T_A H_A(U) \longrightarrow T_A H_A(A^n) \longrightarrow T_A H_A(\pi) \longrightarrow T_A(X) \longrightarrow 0
$$

$$
\downarrow \theta_U \qquad \qquad \downarrow \theta_{A^n} \qquad \qquad \downarrow \theta
$$

$$
0 \longrightarrow U \longrightarrow A^n \longrightarrow A^n/U \longrightarrow 0
$$

in which the induced map θ is defined by $\theta(\phi \otimes a) = \phi(a)$ for all $\phi \in X \subseteq$ $H_A(A^n/U)$ and $a \in A$. Since the top-row of the diagram splits, the same will hold for the bottom, once we have shown that θ is a monomorphism, which follows immediately from the commutative diagram

$$
0 \longrightarrow T_A(X) \longrightarrow T_A H_A(A^n/U)
$$

$$
\downarrow \theta \qquad \qquad \downarrow \theta_{A^n/U}
$$

$$
A^n/U \longrightarrow A^n/U.
$$

b) \Rightarrow *c*) follows directly from the fact that *M* fits into an exact sequence $0 \to U \to A^n \to M \to 0$ in which *U* is an *S*-closed submodule of A^n .

For c) \Rightarrow *d*), it remains to show that *R* is right strongly non-singular. Since *R* is one of the modules *A* to which c) can be applied, the latter yields that finitely generated non-singular right *R*-modules are projective, i.e. *R* is right strongly non-singular and right semi-hereditary. Finally, to see $d \Rightarrow a$, again consider the case $A = R$.

As in [7], call an *R*-module *A* self-small if, for every index-set *I* and every map $\alpha: A \to \bigoplus_{I} A$, there is a finite subset *J* of *I* with $\alpha(A) \subseteq \bigoplus_{J} A$. It is easy to see that non-singular modules which have finite Goldie-dimension are self-small.

Corollary 4.2. *Let R be a right strongly non-singular, right semi-hereditary ring without an infinite family of orthogonal idempotents, and consider a right essential two-sided R-submodule A of Q^r . Every A-projective right R-module is a direct sum of submodules of Q^r .*

PROOF. Since *A* is self-small, $H_A(P)$ is a projective right $S = End_R(A)$ -module whenever *P* is *A*-projective [7]. Therefore, there exists right ideals $\{I_i | j \in J\}$ of *S* with $H_A(P) \cong \bigoplus J I_j$ since *S* is right semi-hereditary [16]. Hence, $P \cong T_A H_A(P) \cong \bigoplus J I_j$ \oplus *J T*_{*A*}(*I*_{*j*}). Since *A* is flat as left *S*-module, one has $T_A(I_j) \cong I_jA \subseteq Q$. □

Corollary 4.3. *The following are equivalent for a right non-singular ring R without an infinite set of orthogonal idempotents:*

- a) *R is a right Utumi p.p.-ring.*
- b) *Let A be a right essential two-sided R-submodule of Q^r . Every A-generated S-closed submodule of A is a direct summand.*

PROOF. $a) \Rightarrow b$: Denote the endomorphism ring of *A* by *S*, and let Q^r be the maximal right ring of quotient of *R*. Let *U* be an *S*-closed *A*-generated submodule of *A*, and consider the induced diagram

$$
T_A H_A(U) \longrightarrow T_A H_A(A) \longrightarrow X \longrightarrow 0
$$

\n
$$
\downarrow \theta_U \qquad \qquad \downarrow \theta_A \qquad \qquad \downarrow \theta
$$

\n
$$
U \longrightarrow A \longrightarrow A/U \longrightarrow 0
$$

where X is a cyclic submodule of $H_A(A/U)$. As in the proof of Theorem 4.1, $H_A(Q^r)$ is a non-singular right *S*-module. Hence, $H_A(A/U)$ is non-singular. By [3], cyclic non-singular modules over right Utumi p.p.-rings without an infinite set of orthogonal idempotents are projective. Since θ is an isomorphism by the Snake-Lemma, *U* is a direct summand of *A*.

 $b) \Rightarrow a$: Condition b) applies in particular to the case $A = R$, and yields that every *S*-closed right ideal of *R* is a direct summand of *R*. But a ring with this property clearly is a right Utumi p.p.-ring. \Box

Corollary 4.4. *Let R be a right strongly non-singular p.p.-ring without an infinite set of orthogonal idempotents. The following are equivalent:*

- a) *R is right hereditary.*
- b) *Let A be a right essential two-sided R-submodule of Q^r . Every A-generated right R-module M of finite right Goldie dimension such that* $\rho_A(M) = 0$ *is A-projective.*

PROOF. *a*) \Rightarrow *b*): Let *M* be an *A*-generated right *R*-module with $\rho_A(M) = 0$ which has finite Goldie-dimension. There exist an index-set *I* and a monomorphism $M \to A^I$. Suppose that *I* cannot be chosen to be finite, and set $U_0 = A$. Assume that we have constructed a strictly descending chain $U_0 \supseteq \ldots \supseteq U_n$ of S closed submodules U_0, \ldots, U_n of M such that M/U_n is isomorphic to a submodule of A^n . Since $U_n \neq 0$, select $0 \neq u \in U_n$, for which we can find a map $\alpha_n : M \to A$ with $\alpha_n(u) \neq 0$. Setting $U_{n+1} = U_n \cap \text{ker } \alpha_n$, one obtains a monomorphism $M/U_{n+1} \rightarrow A^{n+1}$. Furthermore, $0 \neq U_n/U_{n+1} \cong [U_n + \text{ker } \alpha_n]/\text{ker } \alpha_n \subseteq A$ is non-singular. Since Goldie-dimension is additive over *S*-closed submodules, $dim_R M \geq n$ for all $n < \omega$, a contradiction. Therefore, $M \subseteq A^n$ for some *n*.

Consider an epimorphism $\pi : \bigoplus_{I} A \to M$ for some $m < \omega$. As in the proof of Theorem 4.1, *A* is flat as a right $S = End_R(A) = Fix(A)$ -module, and the map θ_M is an isomorphism. Arguing similar to the proof of a) \Rightarrow *b*) in Theorem 4.1, one obtains that *M* is *A*-projective since $H_A(M) \subseteq H_A(A^n)$ yields that $H_A(M)$ is a projective *S*-module because *S* is right hereditary by Corollary 3.5. \Box

The modules *A* under consideration behave very much like submodules of *Q*(*D*) for an integral domain *D*:

Theorem 4.5. *Let R be a right strongly non-singular, right semi-hereditary ring without an infinite family of orthogonal idempotents. If A is a right essential two-sided R-submodule of Q^r , then the following hold:*

- a) *θ^M is an isomorphism for each non-singular A-generated R-module.*
- b) *S-closed submodules of A-generated modules are A-generated.*
- c) If *M* is a finitely presented non-zero right $S = Fix(A)$ -module, then $M \otimes_S A \neq 0$.
- d) If *M* is a non-singular non-zero right $S = Fix(A)$ -module, then $M \otimes_S A \neq$ 0*.*

PROOF. a) As in the proof of Theorem 4.1, one obtains that *A* is flat as an *S*-module, and that *θ^Q* is an isomorphism. In the same way, submodules of a module *M* with θ_M an isomorphism have this property too. Since *Q* is a semisimple Artinian ring, the injective hull of a non-singular module *M* is a direct summand of a module of the form $\bigoplus_{I} Q$ for some index-set *I*. Since *A* has finite Goldie-dimension, it follows that $\theta_{\oplus IQ}$ is an isomorphism.

b) Consider an exact sequence $0 \rightarrow B \rightarrow C \stackrel{\pi}{\rightarrow} M \rightarrow 0$ in which *C* is *A*generated and *M* is non-singular. By a), θ_M is an isomorphism. With $X =$ *im* $H_A(\pi) \subseteq H_A(M)$, we obtain the commutative diagram

$$
0 \longrightarrow T_A H_A(B) \longrightarrow T_A H_A(C) \xrightarrow{T_A H_A(\pi)} T_A(X) \longrightarrow 0
$$

$$
\downarrow \theta_B \qquad \qquad \downarrow \theta_C \qquad \qquad \downarrow \theta
$$

$$
0 \longrightarrow B \longrightarrow C \longrightarrow M \longrightarrow 0
$$

in which θ_C is onto. By the Snake Lemma, the map θ_B will be onto provided that θ is an isomorphism. To see this, observe that θ satisfies $\theta_{M}T_{A}(\iota) = \theta$ where $\iota: X \to H_A(M)$ is the inclusion map. Since *A* is flat, $T_A(\iota)$ is one-to-one, and the same holds for *θ*.

c) Suppose that *M* is a non-zero finitely presented right *S*-module such that $M \otimes_S A = 0$, and consider a projective resolution $0 \to U \to F \to M \to 0$ in which *F* is a finitely generated free module. Then, *U* is finitely generated, and hence projective since *R* is right semi-hereditary. Since *A* is flat as a left *S*-module, we obtain the exact sequence $0 \to T_A(U) \to T_A(P) \to T_A(M) = 0$ which yields the commutative diagram

$$
0 \longrightarrow H_A T_A(U) \longrightarrow H_A T_A(F) \longrightarrow 0
$$

\n
$$
\downarrow \downarrow \theta_U \qquad \qquad \downarrow \downarrow \theta_F
$$

\n
$$
0 \longrightarrow U \longrightarrow F \longrightarrow M \longrightarrow 0
$$

from which $M = 0$ follows immediately.

d) Let *M* be a non-singular right *S*-module with $T_A(M) = 0$. Since *A* is *S*-flat, $T_A(U) = 0$ for all finitely generated submodules *U* of *M*. However, every finitely generated non-singular module is projective and hence finitely presented. By c), $U = 0$, and the same holds for *M*.

Corollary 4.6. *Let R be a right strongly non-singular semi-hereditary ring without an infinite family of orthogonal idempotents such that every maximal right ideal of R is principal. If A is a right essential two-sided R-submodule of Q^r , then* $M \otimes_S A \neq 0$ *for all non-zero right* $S = End_R(A_R)$ *-modules.*

Proof. Since *A* is flat as a right *S*-module, it suffices to show that *IA* = *A* yields $I = S$ for all right ideal *I* of *S*. Suppose that *I* is a proper right ideal of *S* with $IA = A$. Arguing as in the proof of Proposition 3.4, one obtains $I = JS$ where $J = I \cap R$ is a proper right ideal of R. One has $A = IA =$ $JSA = JA$. Choose a proper maximal right ideal J_0 of R containing J . Then, $J_0A = A$, and there exists $c \in J_0$ with $J_0 = cR$. Therefore, $A = c(A)$ where we identify *c* with the endomorphism of *A* induced by left multiplication with *c*. Now, $\dim_R(\ker c) + \dim_R A = \dim_R A < \infty$ since *A* is non-singular as a right and left *R*-module. Consequently, ker $c = 0$, and c is a unit of R , which is not possible since J_0 is proper. \Box

Corollary 4.7. *Let R be a right strongly non-singular, right hereditary ring without an infinite family of orthogonal idempotents. If A is an essential two-sided R*-submodule of Q^r , then $M \otimes_S A \neq 0$ for all non-zero right $S = End_R(A_R)$ *modules.*

PROOF. Let *M* be a right *S*-module with $M \otimes_S A = 0$. The ring *S* is right hereditary by Corollary 3.5. Consider a projective resolution $0 \rightarrow U \rightarrow F \rightarrow$ $M \to 0$ in which *F* is free, and *U* is projective. Now argue as in the proof of Theorem 4.5c. \Box

We now turn to examples of rings which satisfy Theorem 4.1. A ring *R* without zero-divisors is *a right chain domain* if, for all right ideals *I* and *J* of *R*, we have $I \subseteq J$ or $J \subseteq I$.

Example 4.8. *A right and left chain domain R is right strongly non-singular and right semi-hereditary since it has right and left Goldie-dimension* 1 *and every finitely generated right ideal is isomorphic to RR. Every two-sided ideal of R, e.g. J*(*R*)*, is a right essential two-sided submodule of Q^r . Such rings have been constructed by Neumann in* [15] *and as localizations of groups algebras over right ordered groups in* [4]*.*

Another class of rings, to which Theorem 4.1 can be applied, arises from the discussion of right and left Noetherian hereditary rings *R*. By [9, Theorem 5.4], such a ring *R* is the product of prime rings and right Artinian rings. Furthermore, every right Artinian ring in this product is also left Artinian.

If *R* is a right and left Artinian, hereditary ring, then *R* is right strongly nonsingular if and only if it is left strongly non-singular [3]. But then, *R* is a right and left Utumi-ring, and all non-singular right *R*-modules are projective by [12, Theorem 5.23]. Because of [12, Theorem 5.28], *R* is Morita equivalent to a finite product of lower triangular matrix rings over division rings. On the other hand, a prime right and left Noetherian ring has a semi-simple Artinian right and left classical ring of quotients, and hence is strongly non-singular. We thus obtain:

Theorem 4.9. *The following condition are equivalent for a right and left Noetherian ring R:*

- a) Let A be a right essential two-sided R-submodule of Q^r . For all $n < \omega$, *an S-closed submodule of Aⁿ is a direct summand.*
- b) *R is a product of prime hereditary rings and rings Morita-equivalent to lower triangular matrix rings over division algebras.*

 \Box

Examples of right and left Noetherian hereditary primes rings include maximal *S*-orders in a finite-dimensional Q-algebra *K* where *S* is a subring of $Center(K)$ with $\mathbb{Q} = Center(K)$ (e.g., see [8, Chapter 11]).

Turning to the commutative setting, observe that every commutative strongly non-singular semi-hereditary ring without an infinite family of orthogonal idempotents is the finite product of Prüfer domains by [3]. In addition, every ring *R* which is Morita-equivalent to a Prüfer domain is a right and left strongly nonsingular, semi-hereditary ring of finite Goldie-dimension. Hence, we shall restrict our discussion to domains in the following.

A submodule *U* of an *R*-module *M* is an rd-submodule of *M* if $rM \cap U = rU$ for all $r \in R$. If *M* is torsion-free, rd-submodules of *M* are *S*-closed and vice-versa.

Corollary 4.10. *The following are equivalent for an integral domain R:*

- a) R *is Prüfer.*
- b) Let A be a submodule of Q. Every rd-submodule of A^n for some $n < \omega$ *is a direct summand.*
- c) *Let A be a submodule of Q. Every finitely A-generated torsion-free Rmodule is A-projective.*
- d) *Let A be a submodule of Q. Every finitely A-generated R-module M of finite rank such that* $\rho_A(M) = 0$ *is A-projective.*

 \Box

In particular, an integral domain *R* is Dedekind if and only if, for every submodule *A* of *Q*, every *A*-generated right *R*-module *M* of finite rank such that $\rho_A(M) = 0$ is *A*-projective.

Corollary 4.11. *Let R be a Pr¨ufer domain, and A a rank* 1 *R-module.*

a) *θ^M is an isomorphism for each torsion-free A-generated R-module.*

- b) *Rd-submodules of A-generated modules are A-generated.*
- c) *If M* is a right $S = Fix(A)$ -module with $M \otimes_S A = 0$, then *M* is torsion.

 \Box

Corollary 4.12. *Let R be a Pr¨ufer domain such that R/rR is Artinian for each non-zero* $r \in R$ *. Then, every rank* 1 *torsion-free R-module is faithful.*

PROOF. Since R/rR is Artinian for each non-zero r , the ring R satisfies the restricted minimum condition, and the same holds for $S = End_R(A)$ by Corollary 3.4. Let *I* be an ideal of *S* with $IA = A$. Select a non-zero $s \in I$, and consider the descending chain $\dots (I/sS)^n \supseteq (I/sS)^{n+1} \dots$ of ideals of the Artinian ring *R/sS*. There is $m < \omega$ with $(I/sS)^m = (I/sS)^{m+1}$. Since each Artinian ring is Noetherian, $(I/sS)^m$ is finitely generated. By [8, Lemma 5.8], there is $y \in I$ such that $(1 + y + sS)(I/sS)^m = 0$. Therefore, $(1 + y)I^m \subseteq sS$ and $(1 + y)(A) =$ $(1 + y)I^mA \subseteq sA$. For each $a \in A$, choose $a' \in A$ with $(1 + y)(a) = sa'$. Define $\phi \in S$ by $\phi(a) = a'$. Then, $1 + y = s\phi \in sS \subseteq I$ yields $1 \in I$.

Corollary 4.13. *Let R be a Pr¨ufer domain such that every maximal ideal is principal. If A is a non-zero submodule of Q, then* $M \otimes_S A \neq 0$ *for all non-zero right* $S = End_R(A_R)$ *-modules.*

 \Box

REFERENCES

- [1] Albrecht, U.; *Faithful abelian groups of infinite rank*; Proc. Amer. Math. Soc. 103 (1988); 21 - 26.
- [2] Albrecht, U.; *On direct summands of A-separable R-modules*; Forum Math. 2(1990); 103 117
- [3] Albrecht, U., Dauns, J., and Fuchs, L.; *Torsion-freeness and non-singularity over right p.p.-rings*; to appear.
- [4] Albrecht, U., and Törner, G.; *Group rings and generalized valuations*; Comm. in Algebra 12(18) (1984); 2243 - 2272.
- [5] Anderson, F., and Fuller, K.; *Rings and Categories of Modules*; Graduate Texts in Mathematics 13; Springer Verlag (1992).
- [6] Arnold, D., and Lady, L.; *Endomorphism rings and direct sums of torsion-free abelian groups*; Trans. Amer. Math. Soc. 211 (1975); 225 - 237.
- [7] Arnold, D., and Murley, C.; Abelian groups, *A*, such that *Hom*(*A, −*) preserves direct sums of copies of *A*; Pac. J. of Math. 56 (1975); 7 - 20.
- [8] Arnold, D.M.; *Finite Rank Torsion-Free Abelian Groups and Rings*; LNM 931; Springer Verlag (1983).
- [9] Chatters, A.W., and Hajarnavis, C.R.; *Rings with Chain Conditions*; Pitman Advanced Publishing 44; Boston, London, Melbourne (1980).

- [10] Dauns, J., and Fuchs, L.; *Torsion-freeness in rings with zero divisors*; to appear.
- [11] Fuchs, L., and Salce, L.; *Modules over Non-Noetherian Domains*; AMS 84 (2001).
- [12] Goodearl, K.; *Ring Theory*; Marcel Dekker; New York, Basel (1976).
- [13] Hattori, A., *A foundation of torsion theory for modules over general rings*; Nagoya Math. J. 17 (1960), 147-158.
- [14] Levy, L.S.,*Torsion-free and divisible modules over non-integral domains*, Canad. J. of Math. 5 (1963), 132-151.
- [15] Neumann, B.H.; *On ordered division rings*; Trans. Amer. Math. Soc. 66 (1949); 202 252.
- [16] Stenström, B.; *Rings of Quotients*; Lecture Notes in Math. 217; Springer Verlag, Berlin, Heidelberg, New York (1975).

Received April 25, 2005 Revised version received October 25, 2005

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, U.S.A.