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Abstract. The focus of this paper are essential submodules, A, of the max-

imal right ring of quotients, Qr
R, of a right non-singular ring R. Since Qr is

a R-R-bimodule, particular attention is given to submodules of Qr
R which

are also submodules of RQr. In this discussion, properties of R which are

inherited by intermediate rings R ⊆ S ⊆ Qr are investigated. The results

obtained are used to discuss homological properties of essential submodules

A of Qr
R. In particular, the paper addresses the question when S-closed

submodules of finite direct sums of copies of A are direct summands.

1. Introduction

The classical notion of torsion-freeness for modules over an integral domain can
also be formulated for non-commutative rings. However, fundamental difficulties
make such an extension meaningful only if one restricts the discussion to modules
over semi-prime, right and left Goldie-rings [12]. Because of this, the concept
of non-singular modules was introduced as a replacement of torsion-freeness in
the non-commutative setting. A right module M over a ring R is non-singular if
every non-zero element x of M has a non-essential right annihilator rR(x) = {r ∈
R : xr = 0}. The ring R is right non-singular if RR is a non-singular R-module.
Every right non-singular ring R has a right self-injective regular maximal right
ring of quotients Qr = Qr(R), e.g. see [12] and [16]. The class of right non-
singular rings contains the right p.p.-rings, i.e. the rings R for which every cyclic
right ideal is projective, or equivalently, such that the right annihilator of every
element of R is generated by an idempotent. Finally, R is a Baer-ring if the right
annihilator of every subset of R is generated by an idempotent. In contrast to
being non-singular or p.p., the property to be a Baer-ring is right-left-symmetric.
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While avoiding many of the problems associated with the classical notion of
torsion-freeness in the non-commutative setting, non-singularity fails to capture
some of the homological properties of torsion-free modules over integral domains.
For instance, flat modules need not be non-singular. Because of this, Hattori
called a right R-module M torsion-free if TorR

1 (M, R/Rr) = 0 for all r ∈ R [13].
Naturally, the question arises when these two approaches yield the same ”torsion-
free” modules. Its answer in [3] focused on the class of right Utumi rings: A
right non-singular ring R is right Utumi if every S-closed right ideal of R is the
right annihilator of a subset of R. Here, a submodule U of a right R-module M

is S-closed if M/U is non-singular. The right and left Utumi-rings are the right
and left non-singular rings for which Qr = Q` [16]. Finally, a right non-singular
ring R is right strongly non-singular if every finitely generated non-singular right
R-module can be embedded into a projective module. Right strongly non-singular
rings can be described as the right non-singular rings R for which Qr is a perfect
left localization of R, i.e. Qr is flat as a right R-module and the multiplication
map Qr ⊗R Qr → Qr is an isomorphism, see [12] and [16].

The rings R for which the concept of non-singularity and Hattori’s notion
of torsion-freeness coincide are the right Utumi p.p.-ring without an infinite set
of orthogonal idempotents [3]. These rings resemble integral domains in many
ways, in particular, when they are right strongly non-singular [3]. This becomes
apparent when considering subrings S of Qr which contain R. In case that R is
a Prüfer domain, every such S is Prüfer too. Section 3 investigates properties
of right non-singular rings R which are inherited by intermediate rings R ⊆ S ⊆
Qr. Proposition 3.1 and Theorem 3.2 show that being right Utumi, right and
left Utumi p.p., and right strongly non-singular, right semi-hereditary are such
properties provided that R has no infinite set of orthogonal idempotents.

Such intermediate rings arise naturally in the investigation of essential submod-
ules of Qr

R, as is shown in Section 2. It begins with an example demonstrating
the significant differences between the commutative and the non-commutative set-
ting. Because Qr is a R-R-bimodule, we are particularly interested in two-sided
R-submodules A of Qr, i.e. submodules of Qr

R which also are submodules of RQr.
In case that R a right and left Utumi-ring, we investigate how AR being essential
in Qr

R is related to RA being essential in RQr. Furthermore, we describe the
endomorphism ring of an essential submodule AR of Qr

R. This ring will be one of
the subrings investigated in Section 3 exactly if A is a two-sided R-submodule of
Qr.

Section 4 applies these results to the investigation of homological properties
of S-closed submodules of finite direct sums of copies of A. We concentrate on
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the case that R is a right non-singular ring without an infinite set of orthogonal
idempotents and that A is a two-sided R-submodule of Qr which is essential as
a submodule of Qr

R. We call such an A a right essential submodule. In this case,
S-closed submodules of finite direct sums of copies of A are direct summands
exactly if R is a strongly non-singular right semi-hereditary ring. We conclude
with further examples, and apply the previous results to modules over integral
domains.

2. Essential Submodules of Qr

Let R be a right non-singular ring, and A be a submodule of Qr
R. Consider

the subring Fix(A) = {q ∈ Qr|qA ⊆ A} of Qr and the two-sided ideal `(A) =
{q ∈ Qr|qA = 0} of Fix(A). The ring Fix(A) is a subring of Qr which contains
R if and only if A is a two-sided R-submodule of Qr. For every q ∈ Fix(A), let
λq : A → A be left multiplication by q. It is easy to see that φA(q) = λq defines a
ring homomorphism φA from Fix(A) → EndR(A) whose kernel is `(A). Since Qr

is the injective hull of RR, every map φ : A → A is induced by a R-homomorphism
φ̂ : Qr → Qr which can easily be shown to be a Qr-map. Therefore, there exists
q ∈ Qr such that φ̂(x) = qx for all x ∈ Q, and φA is onto.

To illustrate the difference between the commutative and the non-commutative
setting, consider the ring

R =
{(

n 0
x y

)

|n ∈ Z, x, y ∈ Q
}

which is right non-singular with maximal right ring of quotients Qr = Mat2(Q)
[12]. For a subgroup A of Q, let

MA =
{(

a 0
x y

)

|a ∈ A, x, y ∈ Q
}

and LA =
{(

a 0
x 0

)

|a ∈ A, x ∈ Q
}

.

Observe that L0 is the nilradical of R. Consider the idempotents

e1 =
(

1 0
0 0

)

, e2 =
(

0 0
0 1

)

and e(x) =
(

1 0
x 0

)

of R where x ∈ Q.

Example 2.1. a) The ring R described above is a right strongly non-singular
p.p.-ring.

b) Qr, MA, and LA, where A is a subgroup of Q, are the non-zero two-sided
R-submodules of Qr. Moreover, MA and LA are right essential if and
only if A 6= 0.
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c) i) If A is a non-zero subgroup of Q, then

Fix(MA) =
{(

a 0
x y

)

|a ∈ EndZ(A), x, y ∈ Q
}

.

ii) If A is a non-zero, proper subgroup of Q, then

Fix(LA) =
{(

a 0
x y

)

|a ∈ EndZ(A), x, y ∈ Q
}

,

while Fix(LQ) = Qr.

iii) Fix(M0) =
{(

u 0
x y

)

|u, x, y ∈ Q
}

.

iv) Fix(e1R) =
{(

n x

0 y

)

|n ∈ Z, x, y ∈ Q
}

.

Proof. a) To see that R is a right p.p.-ring, consider be a non-zero element

t =
(

n 0
x y

)

of R. If both, n and y, are non-zero, then t is a regular element of

R, and r(t) = 0. Thus, we may assume n = 0 or y = 0.

Every s =
(

a 0
b c

)

∈ rR(t) yields the equations na = 0, xa + yb = 0 and

yc = 0. Suppose n = 0. If y = 0 too, then the equations reduce to xa = 0 which
yields a = 0 since t 6= 0. Hence, rR(t) = e2R. On the other hand, if y 6= 0, then
yc = 0 yields c = 0 and b = −xy−1a. From this, we obtain rR(t) = e(−xy−1)R.
On the other hand, if n 6= 0, then na = 0 yields a = 0. Since y = 0, we have
rR(t) = e2R. In either case, rR(t) is generated by an idempotent, i.e. R is a right
p.p.-ring.

Observe that Qr = e1Q
r ⊕ e2Q

r. Since e2Q
r = e2R, it is a projective R-

module. Moreover, e1Q
r is generated by

(

0 1
0 0

)

as a R-module. One obtains

e1Q
r ∼= e2R as R-modules since

(

0 0
1 0

) (

0 1
0 0

)

= e2 and
(

0 1
0 0

)

e2 =
(

0 1
0 0

)

. Therefore, Qr is a projective R-module. Since every finitely generated

non-singular right R-module can be embedded into a direct sum of copies of Qr,
it is isomorphic to a submodule of a projective module, i.e. R is right strongly
non-singular.

b) Direct computation shows that all the listed modules are two-sided R-
submodules of Qr. To see that MA and LA are right essential in Qr

R if A 6= 0, let
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u, v, x, y ∈ Q. Observe
(

u v

x y

)

e1 =
(

u 0
x 0

)

and
(

u v

x y

) (

0 0
1 0

)

=
(

v 0
y 0

)

.

On the other hand, e1R ∩M0 = 0 shows that M0 and L0 are not right essential.
Finally, let U be a non-zero two-sided R-submodule of Qr. If U contains an

element of the form
(

u v

x y

)

with v 6= 0, then e1

(

u v

x y

)

e2 =
(

0 v

0 0

)

∈

U . But,
(

0 v

0 0

)

R = e1Q
r.

On the other hand,
(

0 0
1 0

) (

0 v

0 0

)

=
(

0 0
0 v

)

∈ U.

But,
(

0 0
0 v

)

R = e2Q
r. Hence, Qr = e1Q

r ⊕ e2Q
r ⊆ U . Therefore, one may

assume that U is a submodule of MQ. If U is not contained in LQ, then e2Q
r ⊆ U ,

and U = MA for some subgroup A of Q. On the other hand if U ⊆ LQ, then
L0 ∩ U 6= 0. Hence, L0 ⊆ U . Therefore, U = LA for some A ⊆ Q.

c) Suppose
(

u v

x y

)

∈ Fix(MA). One immediately obtains uA + vQ ⊆ A

and vQ = 0. Hence, v = 0 and uA = A, i.e. u ∈ EndZ(A). On the other

hand, if A is a proper subgroup of Q, then
(

u v

x y

)

∈ Fix(LA) also yields

uA + vQ ⊆ A, which is not possible unless v = 0 since A is a proper subgroup of
Q. Direct computation shows QrLQ = LQ. This establishes i) - iii). Part iv) is
shown similarly. £

Other non-commutative rings with an ample supply of two-sided ideals are the
right bounded rings, where a ring R is right bounded if every essential right ideal
of R contains an essential two-sided ideal (e.g. see [9]).

In the following, let dimRM denote the Goldie-dimension of a right R-module
M .

Theorem 2.2. Consider the following conditions for a right non-singular ring
R:

a) R has finite right Goldie dimension.
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b) i) R has the ACC for right annihilators.
ii) A submodule A of QR is essential if and only if `(A) = 0.

Then, a) always implies b), and the converse is true if R is a right and left non-
singular right and left Utumi-ring.

Proof. a) ⇒ b): Since R has finite right Goldie dimension, Qr is a semi-simple
Artinian ring, e.g. see [16]. By [12], R has the ACC for right annihilators.
Suppose that A is an essential submodule of Qr

R, and q ∈ `(A). Then, A ∩ R

is an essential right ideal of R, and so q(A ∩ R) = 0 yields q = 0 since Qr
R is a

non-singular module.
Conversely, if `(A) = 0, select a submodule U of Qr

R maximal with respect to
the property that A ∩ U = 0. If x ∈ AQr ∩ UQr, then there are a1, . . . , am ∈ A,
u1, . . . , un ∈ U , and q1, . . . , qm, s1, . . . , sn ∈ Qr with x = Σm

i=1aiqi = Σn
j=1ujsj .

Choose an essential right ideal J of R such that uiJ, sjJ ⊆ R for all i = 1, . . . , m

and j = 1, . . . , n. Then, xJ ⊆ A ∩ U = 0. Since Qr is non-singular, x = 0. Since
A⊕U is an essential submodule of Qr, we have that AQr⊕UQr is an essential Qr-
submodule of Qr [12]. Because Qr is semi-simple Artinian, Qr = AQr⊕UQr. If A

is not essential in Qr, then U 6= 0, and the projection of Qr onto UQr with kernel
AQr induces a non-zero Qr-endomorphism φ of Qr with φ(A) = 0. However, φ

is left multiplication by some q ∈ Qr as has been shown at the beginning of this
section. Then, qA = 0 yields q ∈ `(A) = 0. Thus, A is essential.

b) ⇒ a): Suppose that R is not finite dimensional, and consider a family
{In}n<ω of non-zero right ideals of R whose sum is direct. Without loss of gen-
erality, one may assume that I = ⊕nIn is essential in R. Then, `(I) = 0. Let
Jn = `R(I1⊕ . . .⊕ In). Since the Jn’s form a descending chain of left annihilators
of R, it has to becomes stationary at some point, say Jn = Jn+k for all k < ω.
For this, observe the ACC for right annihilators is equivalent to the DCC for left
annihilators. In particular, JnI = 0, and Jn ⊆ `(I) = 0 yields Jn = 0. On the
other hand, there is 0 6= q ∈ Qr with q(I1⊕ . . .⊕ In) = 0 since I1⊕ . . .⊕ In is not
essential in R. Since R is a right and left Utumi-ring, Qr is also the left ring of
quotients of R, and there is an essential left ideal K of R with Kq ⊆ R. Since Qr

is a non-singular left R-module, there is a non-zero x ∈ K with xq 6= 0. Then,
xq ∈ Jn contradicts Jn = 0. £

Consequently, if R has finite right Goldie dimension, then a submodule A of
QR is essential if and only if φA is a monomorphism.

Corollary 2.3. The following conditions are equivalent for a right and left non-
singular ring R which has finite right and left Goldie-dimension.
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a) Let A be a two-sided R-submodule of Qr. Then, A is essential as a right
R-module if and only it is essential as a left R-module.

b) R is a semi-prime right and left Utumi-ring.

Proof. a) ⇒ b): Because RR is an essential submodule of Qr
R, it is an essential

submodule of RQr. Observe that Qr is semi-simple Artinian since R has finite
right Goldie-dimension. Thus, it is its own maximal left ring of quotients. On
the other hand, R is a left non-singular ring which is essential in RQr. Thus, Qr

is a left ring of quotients of R. By [12, Theorem 2.30], Qr is a maximal left ring
of quotients of R, and Qr = Q`, i.e. R is a right and left Utumi-ring.

If N(R) 6= 0, then there exists a non-zero two-sided ideal I of R with I2 = 0.
Select a right ideal J of R such that I⊕J is essential in R, and consider A = I+RJ

which is a two-sided ideal of R. One has AI ⊆ I2 + RJI = RJI. However,
JI ⊆ J ∩ I = 0 yields 0 6= I ⊆ r(A), a contradiction.

b) ⇒ a): By symmetry, it suffices to show that A is essential as a submodule
of RQr if it essential in Qr

R. Suppose that such an A is not essential in RQr.
Since R is right and left Utumi, Theorem 2.2 applies to A as a submodule of
RQr. It yields I = r(A) is a non-zero right ideal of Fix(RA). However, since A

is a submodule of Qr
R, we have R ⊆ Fix(RA). Considered as right R-modules,

R is essential in Fix(RA), and hence I ∩ R is a non-zero R-submodule of Qr
R.

However, AR essential in QR yields that I ∩R ∩A is a non-zero right ideal of R.
But (I ∩R ∩A)2 ⊆ AI = 0 implies N(R) 6= 0, a contradiction. £

Observe that the previous results, in particular, apply to strongly non-singular
p.p.-rings without an infinite family of orthogonal idempotents since they have
finite right and left Goldie dimension and are right and left Utumi by [3].

Theorem 2.4. Let R be a right and left non-singular, right and left Utumi ring.
The following are equivalent:

a) R is a Baer-ring.
b) If A is a submodule of Qr

R, then `(A) = Fix(A)e for an idempotent e of
R.

In this case, EndR(A) ∼= eF ix(A)e where e ∈ R is an idempotent with
`(A) = Fix(A)e .

Proof. Since R is right and left Utumi, Qr is the maximal left ring of quotients
of R too. We thus write Q for Qr. To simplify our notation, S denotes the ring
Fix(A).

a) ⇒ b): To see that `(A) is generated by an idempotent of R, let q ∈ Q such
that q(A∩R) = 0, and consider a ∈ A. There is an essential right ideal I of R such
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that aI ⊆ R. Since aI ⊆ A∩R, one has qaI = 0. But this is only possible if qa = 0.
Hence `(A∩R) ⊆ `(A). Therefore, it suffices to show that `(A∩R) is generated by
an idempotent e of R. For this, observe that `(A∩R)∩R = `R(A∩R). However,
since R is a Baer-ring, there is an idempotent e ∈ R with `R(A ∩ R) = Re. In
particular, eA = 0 yields Se ⊆ `(A). On the other hand, let q ∈ `(A). Since Q

is the maximal left ring of quotients of R, there is an essential left ideal J of R

with Jq ⊆ R. But Jq(A ∩ R) = 0 yields Jq ⊆ Re. Then, Jq(1− e) = 0 which is
only possible if q(1 − e) = 0 since Q is a non-singular left R-module. Therefore,
q = qe + q(1− e) = qe ∈ Se.

Since `(A) = Se is a two-sided ideal of S, one obtains eS ⊆ Se, and hence
eS(1− e) = 0. Then, S = `(A)⊕ (1− e)S(1− e) as abelian groups, and S/`(A) ∼=
(1 − e)S(1 − e) as rings. Define a map λ : S → EndR(A) by [λ(q)](a) = qa. By
what has been shown at the beginning of this section, λ is an epimorphism of
rings with ker λ = `(A).

b) ⇒ a): Assume that `(A) = Se for some idempotent e ∈ R whenever A ⊆ QR,
and let X be a subset of R. The right ideal I of R generated by X satisfies
`R(X) = `R(I) = `(I) ∩ R. By b), `(I) = Fix(I)e for some idempotent e ∈ R.
Hence, Re ⊆ `R(X). On the other hand, if r ∈ R satisfies rx = 0 for all x ∈ X,
then rI = 0, and r = qe for some q ∈ Fix(I). Since Q is the maximal left
ring of quotient of R, there is an essential left ideal J of R such that Jq ⊆ R.
Hence, Jr = Jqe ⊆ Re. Since R/Re is non-singular, r ∈ Re. Therefore, R is a
Baer-ring. £

3. Essential Ring Extensions

This section investigates properties of a right non-singular ring R which are
inherited by intermediate rings S between R and Qr.

Proposition 3.1. Let R be a right non-singular ring without an infinite set of
orthogonal idempotents, and consider an intermediate ring R ⊆ S ⊆ Qr.

a) If R is a right Utumi-ring, then so is S.
b) If R is a semi-prime right Goldie-ring, so is S.
c) If R is a right Utumi p.p.-ring, then so is S.

Proof. To see that S is a right non-singular ring, consider x ∈ S, and assume
xI = 0 for some essential right ideal I of S. Then, x(I ∩R) = 0 yields x = 0 since
Qr

R is a non-singular module and I ∩R obviously is essential in R.
a) Let I be a S-closed right ideal of S. To see that I ∩ R is S-closed in R,

choose r ∈ R such that rJ ⊆ I ∩ R for some essential right ideal J of R. For
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every non-zero s ∈ S, there exists an essential right ideal Ks of R such that
sKs ⊆ J since J is essential in RR and RR is essential in QR. Then, sKsS ⊆ JS.
Moreover, since QR is non-singular, there exists rs ∈ Ks such that srs 6= 0.
Because 0 6= srs ∈ JS ∩ sS, the right ideal JS of S is essential. Hence, rJS ⊆ I

yields r ∈ I since S/I is a non-singular S-module. Consequently, r ∈ I ∩ R, and
I ∩ R is S-closed in R. Since R is a right Utumi-ring, there is a subset X of R

such that I ∩R = rR(X).
If s ∈ I, then there is an essential right ideal J of R such that sJ ⊆ R. Hence,

sJ ⊆ I ∩R, and XsJ = 0. By the non-singularity of S as an R-module, Xs = 0,
and I ⊆ rS(X). On the other hand, for s1 ∈ rS(X), choose an essential right
ideal K of R with s1K ⊆ R. For each y ∈ K, one has X(s1y) = 0. This yields
s1K ⊆ I ∩ R, and hence s1K ⊆ I. Then, s1KS ⊆ I from which s1 ∈ I follows
since KS is an essential right ideal of S and S/I is non-singular as a S-module.
Thus, S is right Utumi.

b) If R is a semi-prime Goldie-ring, then R is right non-singular and finite-
dimensional. Clearly, every such S is a finite dimensional R-module, and con-
sequently has finite right Goldie dimension as a S-module too. Since we have
already seen that S is a right non-singular ring, it remains to show that it is
semi-prime by [12, Corollary 3.32]. For a right ideal I of S with I2 = 0, we have
that I ∩R is a right ideal of R with (I ∩R)2 = 0. This yields I ∩R = 0 because
R is semi-prime. Since R is essential in S, one has I = 0.

c) Because of a), it remains to show that S is a right p.p.-ring. Let x ∈ S.
By [3], every non-singular cyclic right R-module is projective. Hence, there is an
idempotent e ∈ R such that rR(x) = eR. Consequently, eS ⊆ rS(x). Conversely,
suppose that xt = 0 for some t ∈ S. There exists an essential right ideal I of
R with tI ⊆ R. Then, tI ⊆ eR ⊆ eS. But S/eS ∼= (1 − e)S is a non-singular
R-module, and hence t ∈ eS as desired. £

Theorem 3.2. Let R be a right and left non-singular ring without an infinite set
of orthogonal idempotents. Consider an intermediate ring R ⊆ S ⊆ Qr.

a) If R is a right and left Utumi p.p.-ring, then S is a right and left Utumi
p.p-ring.

b) If R is a right and left Utumi-ring, then S has the ACC (DCC) for right
(left) annihilators provided that R has it.

c) If R is a right strongly non-singular right semi-hereditary ring, then so is
S.

Proof. a) By [3], R has finite right Goldie-dimension; and Qr is a semi-simple
Artinian ring. Observe that R is also a left p.p.-ring. Therefore, R is a right
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and left Utumi p.p-ring, and the same holds for S by Proposition 3.1b. Because
Qr is the maximal right ring of quotients of S, it is also its maximal left ring of
quotients.

b) Since the ACC (DCC) for right annihilators is equivalent to the DCC (ACC)
for left annihilators, it suffices to consider subsets X1 and X2 of S such that
`S(X1) ⊆ `S(X2). For each x ∈ Xi, choose an essential right ideal Jx of R

with xJx ⊆ R, and let Si = Σx∈Xi
xJx ⊆ R. Clearly, `S(Xi) ⊆ `S(Si). On the

other hand, if sSi = 0 for some s ∈ S, then sxJx = 0 for all x ∈ Xi. Since S

is non-singular, sx = 0, and `S(Xi) = `S(Si). Hence, `R(S1) = `S(S1) ∩ R ⊆
`S(S2) ∩R = `R(S2). If `S(X1) 6= `S(X2), then there is s ∈ S such that sS1 = 0
but sS2 6= 0. Since R is a left and right Utumi-ring, Qr is the maximal left ring of
quotient of R, and there exists an essential left ideal I of R with Is ⊆ R. Then,
IsS1 = 0, but IsS2 6= 0 since S is a non-singular left R-module. Hence, we can
find r ∈ I such that rsS2 6= 0 and rs ∈ R, i.e. `R(S1) 6= `R(S2). The rest of b)
follows immediately.

c) To show that S is a right semi-hereditary ring for which Qr is a perfect left
localization of S, it suffices to establish that every finitely generated non-singular
right S-module M is projective [16]. Since Qr is semi-simple Artinian, and SS is
essential in Qr

S , one obtains that Qr is the maximal right ring of quotients of S [12].
We first consider the case that M is a S-submodule of Qr. If M = x1S+. . .+xnS,
then U = x1R + . . . + xnR is an essential R-submodule of Qr. Because R is a
right strongly non-singular, right semi-hereditary ring, every finitely generated
non-singular right R-module is projective. Hence, there exists a right R-module
W such that U ⊕ W ∼= ⊕nR. Then, (U ⊗R S) ⊕ (W ⊗R S) ∼= ⊕nS yields that
U ⊗R S is a projective right S-module.

The map φ : U ⊗R S → M defined by φ(x⊗ s) = xs is onto because US = M .
It remains to show that φ is one-to-one. Since U ⊗R S, as a projective S-module,
is R-non-singular, it suffices to show dimRU ⊗R S = dimRM observing that the
latter is finite by [3]. Since U is an essential submodule of M , they have the
same Goldie-dimension over R. The inclusion R ⊆ S of R-R-bimodules induces
an exact sequence 0 → U ⊗R R → U ⊗R S → U ⊗R (S/R) → 0 of right R-modules
since U is flat. In view of the fact that S/R is singular, we have (U⊗RS)/(U⊗RR)
is singular, and dimRU = dimR(U ⊗R S). Therefore, S is right semi-hereditary
and right strongly non-singular.

If M is a finitely generated non-singular right S-module, then M ⊆ ⊕nQr

for some n < ω. We induct on n, and consider U = M ∩ ⊕n−1Q
r. Since

M/U ∼= [M +⊕n−1Q
r]/⊕n−1 Qr is isomorphic to a finitely generated submodule
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of Qr, it is projective by what has been shown so far. Thus, M = U ⊕P for some
projective module P . £

By [3], a right Utumi p.p.-ring without an infinite set of orthogonal idempotents
is Baer. Thus, Part c) of Lemma 3.1 shows that S is a Baer right Utumi-ring
provided R is.

Lemma 3.3. Let R be a right strongly non-singular, right semi-hereditary ring
without an infinite set of orthogonal idempotents, and R ⊆ S ⊆ Qr an intermedi-
ate ring. Then, S is a perfect right localization of R.

Proof. By [3], R also is left strongly non-singular and left semi-hereditary. In
particular, its maximal right and left rings of quotients coincide. Denote this ring
by Q. Then, Q is a perfect left localization of R. Furthermore, every finitely
generated non-singular left R-module is projective, and S is flat as a left R-
module. By [16, XI.2.4], S is a perfect right localization of R. £

A ring R has the restricted right minimum condition if R/I is Artinian for
every essential right ideal I of R. Right and left Noetherian hereditary rings have
the restricted right minimum condition [9].

Proposition 3.4. Let R be a right strongly non-singular p.p.-ring without an
infinite set of orthogonal idempotents. Consider an intermediate ring R ⊆ S ⊆ Qr

such that S is a perfect right localization of R.

a) The multiplication map M ⊗R S → M is an isomorphism for all right
S-modules M .

b) If R has the restricted right minimum condition, so does S.

Proof. a) Consider an exact sequence P → F → M → 0 where P and F are
free S-modules. Since S is a perfect right localization of R, the multiplication
map S⊗R S → S is an isomorphism. Then, the multiplication maps P ⊗R S → P

and F ⊗R S → F are isomorphisms too, and fit into the commutative diagram

P ⊗R S −−−−→ F ⊗R S −−−−→ M ⊗R S −−−−→ 0

o




y
o




y





y

P −−−−→ F −−−−→ M −−−−→ 0.

By the 5-Lemma, the multiplication map M ⊗R S → M is an isomorphism.
b) We first show that (I ∩ R)S = I for every right ideal I of S. Associated

with every submodule A of SR is a natural map σA : A ⊗R S → AS defined by
σA(a⊗ s) = as for all a ∈ A and s ∈ S. Since S is a perfect right localization of
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R, the map σS is an isomorphism. The flatness of S as a left R-module gives the
exactness of the top-row of the commutative diagram

0 −−−−→ A⊗R S −−−−→ S ⊗R S




y
σA o





y
σS

0 −−−−→ AS −−−−→ S

whose rows are induced by the inclusion map. Thus, σA is an isomorphism.
By [16, XI.1.2], we have (S/R) ⊗R S = 0. As an R-module, I/(I ∩ R) ∼=

(I+R)/R ⊆ S/R yields the exact sequence 0 → [I/(I∩R)]⊗RS → (S/R)⊗RS = 0
from which we get the exact sequence 0 → (I ∩ R) ⊗R S → I ⊗R S → [I/(I ∩
R)]⊗R S = 0. The isomorphisms σI∩R and σI fit into the commutative diagram

(I ∩R)⊗R S −−−−→
˜

I ⊗R S

o




y
σI∩R o





y
σI

(I ∩R)S −−−−→
ι

IS = I

where ι denotes the inclusion map. Thus, ι is an isomorphism, and I = (I ∩R)S
as desired.

Let J be an essential right ideal of S. Arguing as before, J ∩R is an essential
right ideal of R. If I0 ⊇ . . . ⊇ In ⊇ . . . ⊇ J is a descending chain of right ideals of
S, then the descending chain . . . ⊇ R ∩ In ⊇ R ∩ In+1 ⊇ . . . becomes stationary,
say R∩Im = R∩Im+k for all k < ω . But then, Im = (R∩Im)S = (R∩Im+k)S =
Im+k. £

Corollary 3.5. Let R be a right strongly non-singular, right hereditary ring with-
out an infinite set of orthogonal idempotents. Every intermediate ring R ⊆ S ⊆
Qr is right hereditary.

Proof. Since R is right hereditary and has finite right Goldie-dimension [3], it
is right Noetherian by Sandomirski’s Theorem. By Theorem 3.2 and [16], S is a
right Noetherian, right semi-hereditary ring. £

4. S-Closed Submodules of A-Projective Modules

Let A and M be right R-modules. The A-radical of M is ρA(M) = ∩{ker α|α ∈
Hom(R(M, A)}. A right R-module P is A-projective if it is a direct summand of
⊕IA for some index-set I (see [6] and [7]). Finally, a R-module M is A-generated
if it is an epimorphic image of ⊕IA for some index-set I. If I can be chosen to
be finite, then M is finitely A-generated.
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Theorem 4.1. The following are equivalent for a right non-singular ring R with-
out an infinite set of orthogonal idempotents:

a) R is right strongly non-singular and right semi-hereditary.
b) Let A be a right essential two-sided R-submodule of Qr. For all n < ω,

an S-closed submodule of An is a direct summand.
c) Let A be a right essential two-sided R-submodule of Qr. Every finitely

A-generated non-singular right R-module is A-projective.
d) i) R is right strongly non-singular.

ii) Let A be a right essential two-sided R-submodule of Qr. A finitely
A-generated right R-module M of finite Goldie dimension such that
ρA(M) = 0 is A-projective.

Proof. a) ⇒ b): By [3], R also is a left strongly non-singular left semi-hereditary
ring whose maximal right and left ring of quotients coincide. We denote the
latter by Q. Section 2 shows that S = EndR(S) = Fix(A) is a subring of Q

which contains R. Because of Proposition 3.1 and Theorem 3.2, S is a right and
left strongly non-singular, right and left semi-hereditary ring without an infinite
family of orthogonal idempotents. Associated with the S-R-bimodule A is a
pair of adjoint functors HA(−) = HomR(A,−) and TA = − ⊗S A between the
categories of right R-modules and right S-modules respectively.

Denote the embedding A ⊆ Q by α. Since it is both a right R-module and a
left S-module map, the induced map α∗ : HomR(Q, Q) → HomR(A, Q) is a map
of right S-modules. Moreover, it is an isomorphism since it fits into the exact se-
quence 0 = HomR(Q/A, Q) → HomR(Q, Q) α∗→ HomR(A, Q) → Ext1R(Q/A, Q) =
0 where the first term vanishes by the singularity of Q/R, while the last term
does the same since QR is an injective R-module. However, HomR(Q, Q) ∼= Q

as an S-module since R-maps Q → Q are Q-homogeneous. On the other hand,
Q ⊗S A is the injective hull of A as an S-module by [16]. The map α induces
a monomorphism Q ⊗S A → Q ⊗S Q of right R-modules because Q is flat over
S. Since Q is a perfect right and left localization of S, the multiplication map
Q ⊗S Q → Q is an isomorphism. Hence, dimRQ ⊗S A ≤ dimRQ. On the other
hand, the natural map θQ : HomR(A, Q) ⊗S A → Q is an epimorphism because
Q is A-generated. We have seen that HA(Q) ∼= Q as right S-modules. Thus,
dimRQ ⊗S A = dimRQ + dimR ker θQ < ∞ since Goldie-dimension is additive
over S-closed sequences. Thus, ker θQ = 0, and θM is an isomorphism whenever
M ∼= Qm for some m < ω.
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Since S is a right and left strongly non-singular right and left semi-hereditary
ring, every finitely generated non-singular S-module is projective, and all non-
singular S-modules are flat. Because A is an S-submodule of Q, we obtain that
the functor TA is exact. Consider an S-closed submodule U of An for some
n < ω. Since An/U is a non-singular module of finite Goldie dimension, there is
a monomorphism α : An/U → Q` for some ` < ω. It induces the commutative
diagram

0 −−−−→ TAHA(An/U) −−−−→
HA(α)

TAHA(Q`)




y
θAn/U o





y
θ

Q`

0 −−−−→ An/U −−−−→
α

Q`

whose rows are exact. Since θAn/U is onto, it is actually an isomorphism.
Let π : An → An/U be a projection map with kernel U . It induces the

exact sequence 0 → HA(U) → HA(An)
HA(π)→ X → 0 of right S-modules where

X = im HA(π) is a finitely generated S-submodule of HA(An/U). Since An/U

is isomorphic to a submodule of Q` for some ` < ω, we obtain that HA(An/U) is
a non-singular right S-module by what has been shown so far. Because S is right
strongly non-singular and right semi-hereditary, X is a projective right S-module;
and the last sequence splits. But then, the top-row of the following commutative
diagram will also split:

0 −−−−→ TAHA(U) −−−−→ TAHA(An) −−−−−−→
TAHA(π)

TA(X) −−−−→ 0




y
θU o





y
θAn





yθ

0 −−−−→ U −−−−→ An −−−−→
π

An/U −−−−→ 0

in which the induced map θ is defined by θ(φ ⊗ a) = φ(a) for all φ ∈ X ⊆
HA(An/U) and a ∈ A. Since the top-row of the diagram splits, the same will
hold for the bottom, once we have shown that θ is a monomorphism, which follows
immediately from the commutative diagram

0 −−−−→ TA(X) −−−−→ TAHA(An/U)




yθ o




y
θAn/U

An/U −−−−→
1An/U

An/U.

b) ⇒ c) follows directly from the fact that M fits into an exact sequence
0 → U → An → M → 0 in which U is an S-closed submodule of An.
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For c) ⇒ d), it remains to show that R is right strongly non-singular. Since R

is one of the modules A to which c) can be applied, the latter yields that finitely
generated non-singular right R-modules are projective, i.e. R is right strongly
non-singular and right semi-hereditary. Finally, to see d) ⇒ a), again consider
the case A = R. £

As in [7], call an R-module A self-small if, for every index-set I and every map
α : A → ⊕IA, there is a finite subset J of I with α(A) ⊆ ⊕JA. It is easy to see
that non-singular modules which have finite Goldie-dimension are self-small.

Corollary 4.2. Let R be a right strongly non-singular, right semi-hereditary ring
without an infinite family of orthogonal idempotents, and consider a right essential
two-sided R-submodule A of Qr. Every A-projective right R-module is a direct
sum of submodules of Qr.

Proof. Since A is self-small, HA(P ) is a projective right S = EndR(A)-module
whenever P is A-projective [7]. Therefore, there exists right ideals {Ij |j ∈ J} of S

with HA(P ) ∼= ⊕JIj since S is right semi-hereditary [16]. Hence, P ∼= TAHA(P ) ∼=
⊕JTA(Ij). Since A is flat as left S-module, one has TA(Ij) ∼= IjA ⊆ Q. £

Corollary 4.3. The following are equivalent for a right non-singular ring R

without an infinite set of orthogonal idempotents:

a) R is a right Utumi p.p.-ring.
b) Let A be a right essential two-sided R-submodule of Qr. Every A-generated

S-closed submodule of A is a direct summand.

Proof. a) ⇒ b): Denote the endomorphism ring of A by S, and let Qr be the
maximal right ring of quotient of R. Let U be an S-closed A-generated submodule
of A, and consider the induced diagram

TAHA(U) −−−−→ TAHA(A) −−−−→ X −−−−→ 0




y
θU o





y
θA





yθ

U −−−−→ A −−−−→ A/U −−−−→ 0

where X is a cyclic submodule of HA(A/U). As in the proof of Theorem 4.1,
HA(Qr) is a non-singular right S-module. Hence, HA(A/U) is non-singular. By
[3], cyclic non-singular modules over right Utumi p.p.-rings without an infinite
set of orthogonal idempotents are projective. Since θ is an isomorphism by the
Snake-Lemma, U is a direct summand of A.
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b) ⇒ a): Condition b) applies in particular to the case A = R, and yields that
every S-closed right ideal of R is a direct summand of R. But a ring with this
property clearly is a right Utumi p.p.-ring. £

Corollary 4.4. Let R be a right strongly non-singular p.p.-ring without an infi-
nite set of orthogonal idempotents. The following are equivalent:

a) R is right hereditary.
b) Let A be a right essential two-sided R-submodule of Qr. Every A-generated

right R-module M of finite right Goldie dimension such that ρA(M) = 0
is A-projective.

Proof. a) ⇒ b): Let M be an A-generated right R-module with ρA(M) = 0
which has finite Goldie-dimension. There exist an index-set I and a monomor-
phism M → AI . Suppose that I cannot be chosen to be finite, and set U0 = A.
Assume that we have constructed a strictly descending chain U0 ⊇ . . . ⊇ Un of S-
closed submodules U0, . . . , Un of M such that M/Un is isomorphic to a submodule
of An. Since Un 6= 0, select 0 6= u ∈ Un, for which we can find a map αn : M → A

with αn(u) 6= 0. Setting Un+1 = Un ∩ ker αn, one obtains a monomorphism
M/Un+1 → An+1. Furthermore, 0 6= Un/Un+1

∼= [Un + ker αn]/ ker αn ⊆ A

is non-singular. Since Goldie-dimension is additive over S-closed submodules,
dimRM ≥ n for all n < ω, a contradiction. Therefore, M ⊆ An for some n.

Consider an epimorphism π : ⊕IA → M for some m < ω. As in the proof of
Theorem 4.1, A is flat as a right S = EndR(A) = Fix(A)-module, and the map
θM is an isomorphism. Arguing similar to the proof of a) ⇒ b) in Theorem 4.1,
one obtains that M is A-projective since HA(M) ⊆ HA(An) yields that HA(M)
is a projective S-module because S is right hereditary by Corollary 3.5. £

The modules A under consideration behave very much like submodules of Q(D)
for an integral domain D:

Theorem 4.5. Let R be a right strongly non-singular, right semi-hereditary ring
without an infinite family of orthogonal idempotents. If A is a right essential
two-sided R-submodule of Qr, then the following hold:

a) θM is an isomorphism for each non-singular A-generated R-module.
b) S-closed submodules of A-generated modules are A-generated.
c) If M is a finitely presented non-zero right S = Fix(A)-module, then

M ⊗S A 6= 0.
d) If M is a non-singular non-zero right S = Fix(A)-module, then M⊗SA 6=

0.
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Proof. a) As in the proof of Theorem 4.1, one obtains that A is flat as an
S-module, and that θQ is an isomorphism. In the same way, submodules of a
module M with θM an isomorphism have this property too. Since Q is a semi-
simple Artinian ring, the injective hull of a non-singular module M is a direct
summand of a module of the form ⊕IQ for some index-set I. Since A has finite
Goldie-dimension, it follows that θ⊕IQ is an isomorphism.

b) Consider an exact sequence 0 → B → C
π→ M → 0 in which C is A-

generated and M is non-singular. By a), θM is an isomorphism. With X =
im HA(π) ⊆ HA(M), we obtain the commutative diagram

0 −−−−→ TAHA(B) −−−−→ TAHA(C)
TAHA(π)−−−−−−→ TA(X) −−−−→ 0





y
θB





y
θC





yθ

0 −−−−→ B −−−−→ C
π−−−−→ M −−−−→ 0

in which θC is onto. By the Snake Lemma, the map θB will be onto provided
that θ is an isomorphism. To see this, observe that θ satisfies θMTA(ι) = θ where
ι : X → HA(M) is the inclusion map. Since A is flat, TA(ι) is one-to-one, and
the same holds for θ.

c) Suppose that M is a non-zero finitely presented right S-module such that
M⊗S A = 0, and consider a projective resolution 0 → U → F → M → 0 in which
F is a finitely generated free module. Then, U is finitely generated, and hence
projective since R is right semi-hereditary. Since A is flat as a left S-module, we
obtain the exact sequence 0 → TA(U) → TA(P ) → TA(M) = 0 which yields the
commutative diagram

0 −−−−→ HATA(U) −−−−→ HATA(F ) −−−−→ 0

o




y
θU o





y
θF

0 −−−−→ U −−−−→ F −−−−→ M −−−−→ 0
from which M = 0 follows immediately.

d) Let M be a non-singular right S-module with TA(M) = 0. Since A is S-flat,
TA(U) = 0 for all finitely generated submodules U of M . However, every finitely
generated non-singular module is projective and hence finitely presented. By c),
U = 0, and the same holds for M . £

Corollary 4.6. Let R be a right strongly non-singular semi-hereditary ring with-
out an infinite family of orthogonal idempotents such that every maximal right
ideal of R is principal. If A is a right essential two-sided R-submodule of Qr,
then M ⊗S A 6= 0 for all non-zero right S = EndR(AR)-modules.
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Proof. Since A is flat as a right S-module, it suffices to show that IA = A

yields I = S for all right ideal I of S. Suppose that I is a proper right ideal
of S with IA = A. Arguing as in the proof of Proposition 3.4, one obtains
I = JS where J = I ∩ R is a proper right ideal of R. One has A = IA =
JSA = JA. Choose a proper maximal right ideal J0 of R containing J . Then,
J0A = A, and there exists c ∈ J0 with J0 = cR. Therefore, A = c(A) where
we identify c with the endomorphism of A induced by left multiplication with c.
Now, dimR(ker c) + dimRA = dimRA < ∞ since A is non-singular as a right
and left R-module. Consequently, ker c = 0, and c is a unit of R, which is not
possible since J0 is proper. £

Corollary 4.7. Let R be a right strongly non-singular, right hereditary ring with-
out an infinite family of orthogonal idempotents. If A is an essential two-sided
R-submodule of Qr, then M ⊗S A 6= 0 for all non-zero right S = EndR(AR)-
modules.

Proof. Let M be a right S-module with M ⊗S A = 0. The ring S is right
hereditary by Corollary 3.5. Consider a projective resolution 0 → U → F →
M → 0 in which F is free, and U is projective. Now argue as in the proof of
Theorem 4.5c. £

We now turn to examples of rings which satisfy Theorem 4.1. A ring R without
zero-divisors is a right chain domain if, for all right ideals I and J of R, we have
I ⊆ J or J ⊆ I.

Example 4.8. A right and left chain domain R is right strongly non-singu-
lar and right semi-hereditary since it has right and left Goldie-dimension 1 and
every finitely generated right ideal is isomorphic to RR. Every two-sided ideal of
R, e.g. J(R), is a right essential two-sided submodule of Qr. Such rings have
been constructed by Neumann in [15] and as localizations of groups algebras over
right ordered groups in [4].

Another class of rings, to which Theorem 4.1 can be applied, arises from the
discussion of right and left Noetherian hereditary rings R. By [9, Theorem 5.4],
such a ring R is the product of prime rings and right Artinian rings. Furthermore,
every right Artinian ring in this product is also left Artinian.

If R is a right and left Artinian, hereditary ring, then R is right strongly non-
singular if and only if it is left strongly non-singular [3]. But then, R is a right
and left Utumi-ring, and all non-singular right R-modules are projective by [12,
Theorem 5.23]. Because of [12, Theorem 5.28], R is Morita equivalent to a finite



TWO-SIDED ESSENTIAL SUBMODULES OF Qr(R) 121

product of lower triangular matrix rings over division rings. On the other hand,
a prime right and left Noetherian ring has a semi-simple Artinian right and left
classical ring of quotients, and hence is strongly non-singular. We thus obtain:

Theorem 4.9. The following condition are equivalent for a right and left Noe-
therian ring R:

a) Let A be a right essential two-sided R-submodule of Qr. For all n < ω,
an S-closed submodule of An is a direct summand.

b) R is a product of prime hereditary rings and rings Morita-equivalent to
lower triangular matrix rings over division algebras.

£
Examples of right and left Noetherian hereditary primes rings include maximal

S-orders in a finite-dimensional Q-algebra K where S is a subring of Center(K)
with Q = Center(K) (e.g., see [8, Chapter 11]).

Turning to the commutative setting, observe that every commutative strongly
non-singular semi-hereditary ring without an infinite family of orthogonal idem-
potents is the finite product of Prüfer domains by [3]. In addition, every ring R

which is Morita-equivalent to a Prüfer domain is a right and left strongly non-
singular, semi-hereditary ring of finite Goldie-dimension. Hence, we shall restrict
our discussion to domains in the following.

A submodule U of an R-module M is an rd-submodule of M if rM∩U = rU for
all r ∈ R. If M is torsion-free, rd-submodules of M are S-closed and vice-versa.

Corollary 4.10. The following are equivalent for an integral domain R:
a) R is Prüfer.
b) Let A be a submodule of Q. Every rd-submodule of An for some n < ω

is a direct summand.
c) Let A be a submodule of Q. Every finitely A-generated torsion-free R-

module is A-projective.
d) Let A be a submodule of Q. Every finitely A-generated R-module M of

finite rank such that ρA(M) = 0 is A-projective.

£
In particular, an integral domain R is Dedekind if and only if, for every sub-

module A of Q, every A-generated right R-module M of finite rank such that
ρA(M) = 0 is A-projective.

Corollary 4.11. Let R be a Prüfer domain, and A a rank 1 R-module.
a) θM is an isomorphism for each torsion-free A-generated R-module.
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b) Rd-submodules of A-generated modules are A-generated.
c) If M is a right S = Fix(A)-module with M ⊗S A = 0, then M is torsion.

£

Corollary 4.12. Let R be a Prüfer domain such that R/rR is Artinian for each
non-zero r ∈ R. Then, every rank 1 torsion-free R-module is faithful.

Proof. Since R/rR is Artinian for each non-zero r, the ring R satisfies the
restricted minimum condition, and the same holds for S = EndR(A) by Corollary
3.4. Let I be an ideal of S with IA = A. Select a non-zero s ∈ I, and consider
the descending chain . . . (I/sS)n ⊇ (I/sS)n+1 . . . of ideals of the Artinian ring
R/sS. There is m < ω with (I/sS)m = (I/sS)m+1. Since each Artinian ring
is Noetherian, (I/sS)m is finitely generated. By [8, Lemma 5.8], there is y ∈ I

such that (1 + y + sS)(I/sS)m = 0. Therefore, (1 + y)Im ⊆ sS and (1 + y)(A) =
(1 + y)ImA ⊆ sA. For each a ∈ A, choose a′ ∈ A with (1 + y)(a) = sa′. Define
φ ∈ S by φ(a) = a′. Then, 1 + y = sφ ∈ sS ⊆ I yields 1 ∈ I. £

Corollary 4.13. Let R be a Prüfer domain such that every maximal ideal is
principal. If A is a non-zero submodule of Q, then M ⊗S A 6= 0 for all non-zero
right S = EndR(AR)-modules.

£
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