
A Development Environment for an Object Speci�cation LanguageMartin Gogolla, Stefan Conrad, Grit Denker, Rudolf Herzig, and Nikolaos VlachantonisAbstractTechniques for the development of reliable information systems on the basis of their formal speci-�cation are the main concern in our project. Our work focuses on the speci�cation language TROLLlight which allows to describe the part of the world to be modeled as a community of concurrentlyexisting and communicating objects. Our speci�cation language comes along with an integrated, opendevelopment environment. The task of this environment is to give support for the creation of correctinformation systems. Two important ingredients of the environment to be described here in more detailare the animator and the proof support system.Keywords: Information System Design, Semantic Data Model, Object Speci�cation, Certi�cation, Valida-tion, Veri�cation. I. IntroductionTwo important phases can be identi�ed in the information system development process [1]: The aim ofthe requirements engineering (or speci�cation) phase is to obtain a �rst formal description of the systemin mind; since this formal description should still abstract from most implementation details it is usuallycalled a conceptual schema; based on the conceptual schema and by further consideration of nonfunctionalrequirements a working system is developed in the design engineering (or implementation) phase. We willconcentrate in the following on the requirements engineering phase. This phase involves at least four im-portant tasks [2]: (1) Find the users' demands on the system in mind (elicitation), (2) describe a conceptualmodel of the system in mind (modeling), (3) test whether the conceptual model satis�es formally describedquality criteria (analysis), (4) test whether the conceptual model meets the informal user requirements(validation).As a �rst formal description of real-world entities we start with the object speci�cation language TROLL light[3, 4], a dialect of OBLOG [5] and TROLL [6]. TROLL light is especially appropriate for information systemdesign because it embodies ideas from data type speci�cation [7], semantic data models [8], and processtheory [9]. But an attractive language for information system design must be completed by speci�cationtools. Therefore the object description language TROLL light comes along with a development environmento�ering special tools for veri�cation and validation purposes in order to support the user during the designprocess according to tasks (3) and (4) from above:� For us, the analysis task (3) consists in verifying properties, i.e., tackling the formal correctnessproblem. But in contrast to program veri�cation where a program, i.e., an implementation, is provedto satisfy its speci�cation, we want to verify properties of objects at the level of speci�cation. Thisis necessary in order to check whether the speci�cation meets the intended requirements. Verifyingsuch properties directly from the speci�cation can help to avoid misdevelopments based on inadequatespeci�cations.In order to support this kind of veri�cation the TROLL light proof support system solves veri�cation1

tasks given by the user. It checks whether the desired properties are ful�lled by the speci�ed TROLLlight object descriptions.� A speci�cation of a formal conceptual schema must be validated against the informal system require-ments in order to meet task (4). This is known as the informal correctness problem. One possible wayto assure informal correctness of a conceptual schema consists in rapid prototyping which means toconstruct an experimental version of a system on a quick and cheap basis. Hence a prototype will oftenillustrate only some important aspects of a required behavior, thereby neglecting others like questionsof performance or security. Nevertheless, by observing the behavior of a prototype the clients of asystem can better judge the usefulness of a conceptual schema than by reading speci�cation texts only.Typical tools supporting prototyping may be screen painters, report generators, program generators,animation systems, etc.The TROLL light animator is designed to simulate the behavior of a speci�ed object community.By this the informal view of the real-world fragment to be modeled is validated against the currentspeci�cation.To summarize, we discuss the main motivation for our work which is without doubt improvement of softwarereliability and software quality. The way we want to achieve this is by formal speci�cation, in particularwith our speci�cation language TROLL light which adds to classical semantic data modelling techniquesways to specify behavior. But TROLL light is not a stand alone language. Instead it highly supportsthe development process with modern graphical tools tackling both the formal and informal correctnessproblem. As far as we know, there are no other systems supporting formal object-oriented speci�cationin the rigorous way as our environment does it. In the following we present our system by going intosome details concerning the concepts of TROLL light , giving comments on the idea of an open developmentsystem and presenting the two speci�c tools for animation and veri�cation. Finally we give some concludingremarks. II. The Language Troll lightTROLL light is a language for describing static and dynamic properties of objects. This is achieved byo�ering language features to specify object structure as well as object behavior. The main advantage offollowing the object paradigm is the fact that all relevant information concerning one object can be foundwithin one single unit and is not distributed over a variety of locations. As in TROLL, object descriptionsare called templates in TROLL light . Because of their pure descriptive nature, templates may roughlybe compared with the notion of class found in object-oriented programming languages. In the contextof databases however, classes are also associated with class extensions so that we used a di�erent notion.Templates show the following structure.TEMPLATE name of the templateDATA TYPES data types used in current templateTEMPLATES other used templatesSUBOBJECTS slots for subobjectsATTRIBUTES slots for attributes 2

Term evaluator

Execution module

User interface
Visualization of states

Specification of event sets

Visualization of state transitions

Computation of the state transition

Implementation of the query calculus

Databases for storing

 induced by a given event set

 templates and object states

Template dictionary Object baseFig. 1: Architecture of the TROLL light animation systemEVENTS event generatorsCONSTRAINTS restricting conditions on object statesVALUATION e�ect of event occurrences on attributesDERIVATION rules for derived attributesINTERACTION synchronization of eventsBEHAVIOR description of object behaviorEND TEMPLATERoughly speaking, the DATA TYPES and TEMPLATES sections are the interfaces to other templates, theSUBOBJECTS, ATTRIBUTES, and EVENTS sections constitute the template signature, and in the remainingsections axioms concerning static (CONSTRAINTS and DERIVATION) and dynamic (VALUATION, INTERACTION,and BEHAVIOR) properties are speci�ed. Due to space limitations we cannot explain the language features.Details concerning TROLL light can be found in [3, 4].III. The Development EnvironmentThe TROLL light development environment is an open system which allows developers to integrate newtools and to adapt and extend it to their own requirements. For preserving the openness of the environment,tools have to be as independent as possible. For this, the TROLL light development environment supports aloose coupling of tools. This is achieved on the one hand by a kind of tool communication which is based oninterchanging messages and noti�cations (HP SoftBench [10] and on the other hand by an object-orienteddocuments repository (ObjectStore [11]) The latter supports storing design documents in a structured waywhereas the former provides mechanisms for tool integration. The TROLL light development environmentcan be seen as an instantiation of the ECMA Reference Model for software development environments [12].It is built on the depicted integration frames BMS, ObjectStore, and TCL/TK user interface manager [13].A discussion of the architecture of the TROLL light development environment wrt. similar approaches canbe found in [14].A. The Animation SystemAnimating templates. A template generally describes structural and dynamic aspects of a prototypicalobject. Structural properties are centered around the speci�cation of possible attribute states, dynamicproperties around the speci�cation of possible event sequences. Looking at a template with subobject slots3

the prototypical object described by this template is in fact an object community where events in di�erentobjects may be synchronized by interaction rules.Speaking in more technical terms the model of a template is a state transition system in which a statetransition is accompanied by a �nite set of event occurrences which has to be closed against synchronization.TROLL light object descriptions abstract from the causality or initiative of event occurrences. Hence makinga state transition system to move means to indicate certain event occurrences from the outside of the system.This is what we call animation of templates.Animation of templates may help to assure that the speci�ed behavior of objects or object communitiesmatches the required behavior. Of course, animation of a conceptual model shows the same problems liketesting an implementation. From observations that the observed behavior agrees with the requirements wewould like to draw the conclusion that a conceptual schema (an implementation) is correct with respectto the requirements (the conceptual schema). This, however, cannot be done, because there still may besome traces in the animation (in an implementation) which have not been tested and which may show theopposite e�ect. Hence animation (testing) is only useful to falsify informal correctness.Requirements for a tool supporting animation. A software system with the aim to support the animation oftemplates should meet the following requirements. It should support (1) the exploration of actual states ofan object community, (2) the speci�cation of event occurrences for initiating state transitions, and (3) thevisualization of state changes.To be more precise, exploration of states should be assisted by means to illustrate the actual global structureof an object community, to show the attribute state (and optionally the behavior state) of a single object,to traverse subobject relationships or object-valued attributes, and eventually to formulate ad hoc queriesagainst object states.With respect to the speci�cation of event occurrences it must be possible to indicate event occurrences forpossibly more than one object at a time. The system should help to �nd event sets being closed againstsynchronization. Hence, when a speci�ed event occurrence provokes a second event occurrence in anotherobject, this event occurrence should be added automatically to the current event set.State changes provoked by a given closed event set, as there might be insertions and deletions of objectsor attribute updates, should be made visible to the user, for example by appropriate messages in a speci�cwindow. When a desired state transition cannot be carried out, for instance because the resulting stateviolates some integrity constraints, these conditions should also be reported to the user.Architecture of the animation system. The structure of the TROLL light animation system is depicted inFig. 1. First of all the animation system consists of a template dictionary which is a persistent store forobject descriptions. The template dictionary is not an exclusive part of the animation system but an integralpart of the whole development environment, for instance shared by the parser and the proof support system.The second basic component of the animation system is the object base which is a persistent store to holdobject states. Hence it is possible to stop a current animation session at one time and start it again lateron. Object descriptions contain terms and formulas of the TROLL light query calculus which are evaluatedby the third component of the animation system, the term evaluator . The evaluation of terms and formulasgenerally depends on the current state of an object community so that the term evaluator must be able toaccess the object base. The execution module is the heart of the animation system. For a given set of event4

Fig. 2: Object windowoccurrences, its task is to compute a successor state or to report errors if such a state cannot be determinedfor di�erent reasons. Finally the user interface establishes communication with the human operator.Implementation aspects. A prototype version of the animation system covering basic requirements has beencompleted within our project. Implementation work was mainly done on the basis of diploma thesis.The template dictionary and the object base were implemented using the OODBMS ObjectStore [11] onthe basis of C++. The object base is designed for storing values of any complexity, even a whole NF2 orcomplex object model database. The term evaluator and the execution module were implemented in C++.Term evaluation generally results in a complex value which is stored using the same structures as found inthe object base.Finally, the user interface was realized by the help of TCL/TK [13]. In the prototype version of the animationsystem object states are visualized in so called object windows (see Fig. 2 for part of a library application).Object windows resemble the representation of pointers to current subobjects, the visualization of currentattribute values as well as a depiction of the list of possible event generators. Event occurrences can bespeci�ed by marking an event generator and optionally entering required parameter values. Speci�ed eventoccurrences are collected in a separate window from which a set of event occurrences may be sent to theexecution module.B. The Proof Support SystemVeri�cation calculus. For pragmatic reasons, we only allow Gentzen-formulas with a conjunction of proposi-tions as antecedent and a disjunction of propositions as conclusion as formulas in our calculus. The decisionwas motivated by the fact that thereby we can easily adopt existing proof systems, e.g., [15].The most important concept of the veri�cation calculus is the concept of formulas. We allow only a specialform of clauses as formulas: P1; : : : ; Pn ! Q1; : : : ; Qm where Pi and Qj are so-called propositions. Such aformula must be understood as follows: in each state (of an object community) in which all the propositionsP1; : : : ; Pn are ful�lled there is at least one of the propositions Q1; : : : ; Qm which is also ful�lled in thatstate.Next, we have to introduce our notion of proposition. Propositions are mainly given by predicate expressionsp(t1; : : : ; tn) (with p a predicate symbol and ti appropriate terms). Furthermore we allow negation (i.e.,:P) and the use of positional operators (i.e., [to:te]P , where to is a term denoting an object and te a term5

describing an event for this object). A proposition [to:te]P could be read as \if the event occurring inobject to is te then P holds afterwards". We distinguish between two kinds of predicate symbols: rigid andnon-rigid ones (i.e., state-independent and state-dependent predicate symbols, resp.). For instance, rigidpredicate symbols are given by the data type speci�cation used (e.g., � for integers), whereas attributesof objects are modeled by non-rigid predicates. Furthermore we have non-rigid predicates for dealing withenabledness and occurrence of events, namely the predicates enable and occur.IV. ConclusionWe have presented a sketch of our object description language TROLL light and its accompanying envi-ronment. The environment supports the development of correct information systems in (1) validating theinformal view of the real-world fragment to be modeled against the current conceptual schema and (2) inchecking whether desired properties are ful�lled by the speci�ed object descriptions. However, the systemintegration and the implemented tools are far from being perfect. A lot of work could be done here.References[1] P. Loucopoulos. Conceptual Modeling. In P. Loucopoulos and R. Zicari, editors, Conceptual Modeling, Databas-es, and CASE: An Integrated View of Information Systems Development, pages 1{26. John Wiley & Sons, NewYork, 1992.[2] E. Dubois, P. Du Bois, and M. Petit. O-O Requirements Analysis: An Agent Perspective. In O.M. Nierstrasz,editor, Proc. European Conf. on Object-Oriented Programming (ECOOP'93), pages 458{481. Springer, Berlin,LNCS 707, 1993.[3] M. Gogolla, S. Conrad, and R. Herzig. Sketching Concepts and Computational Model of TROLL light. In A. Mi-ola, editor, Proc. 3rd Int. Conf. Design and Implementation of Symbolic Computation Systems (DISCO'93),pages 17{32. Springer, Berlin, LNCS 722, 1993.[4] M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integrating the ER Approach in an OOEnvironment. In R. Elmasri, V. Kouramajian, and B. Thalheim, editors, Proc. 12th Int. Conf. on the ERApproach (ER'93), pages 382{395. Springer, Berlin, LNCS 823, 1994.[5] A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Speci�cation of Databases: An Algebraic Ap-proach. In P.M. Stoecker and W. Kent, editors, Proc. 13th Int. Conf. on Very Large Databases VLDB'87, pages107{116. VLDB Endowment Press, Saratoga (CA), 1987.[6] G. Saake, R. Jungclaus, and T. Hartmann. Application Modelling in Heterogeneous Environments using anObject Speci�cation Language. In M. Huhns et al., editors, Int. Conf. on Intelligent & Cooperative InformationSystems (ICICIS'93), pages 309{318. IEEE Computer Society Press, 1993.[7] M. Wirsing. Algebraic Speci�cation. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science,Vol. B, pages 677{788. North-Holland, Amsterdam, 1990.[8] R. Hull and R. King. Semantic Database Modelling: Survey, Applications, and Research Issues. ACM ComputingSurveys, 19(3):201{260, 1987.[9] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666{677, 1978.[10] M.R. Cagan. The HP SoftBench Environment: An Architecture for a New Generation of Software Tools.Hewlett Packard Journal, 41, 1990.[11] C. Lamb, G. Landis, J. Orenstein, and D. Weinreib. The ObjectStore Database System. ACM Communications,34(10):50{63, 1991.[12] A. Earl. A Reference Model for Computer Assisted Software Engineering Environment Frameworks. Technicalreport, Hewlett-Packard Laboratories, Bristol, England, 1990. Version 4.0 ECMA/TC33/TGRM/90/016.[13] J.K. Ousterhout. TK: An X11 Toolkit Based on the TCL Language. Report, University of California atBerkeley, 1990.[14] N. Vlachantonis, R. Herzig, M. Gogolla, G. Denker, S. Conrad, and H.-D. Ehrich. Towards Reliable InformationSystems: The KORSO Approach. In C. Rolland, F. Bodart, and C. Cauvet, editors, Proc. 5th Int. Conf. onAdvanced Information Systems Engineering (CAiSE'93), pages 463{482. Springer, Berlin, LNCS 685, 1993.[15] L.C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Odifreddi, editor, Logic and Computer Science,pages 361{385. Academic Press, 1990. 6

