A Development Environment for an Object Specification Language

Martin Gogolla, Stefan Conrad, Grit Denker, Rudolf Herzig, and Nikolaos Vlachantonis

Abstract
Techniques for the development of reliable information systems on the basis of their formal speci-
fication are the main concern in our project. Our work focuses on the specification language TROLL
light which allows to describe the part of the world to be modeled as a community of concurrently
existing and communicating objects. Our specification language comes along with an integrated, open
development environment. The task of this environment is to give support for the creation of correct
information systems. Two important ingredients of the environment to be described here in more detail

are the animator and the proof support system.

Keywords: Information System Design, Semantic Data Model, Object Specification, Certification, Valida-

tion, Verification.

I. INTRODUCTION

Two important phases can be identified in the information system development process [1]: The aim of
the requirements engineering (or specification) phase is to obtain a first formal description of the system
in mind; since this formal description should still abstract from most implementation details it is usually
called a conceptual schema; based on the conceptual schema and by further consideration of nonfunctional
requirements a working system is developed in the design engineering (or implementation) phase. We will
concentrate in the following on the requirements engineering phase. This phase involves at least four im-
portant tasks [2]: (1) Find the users’ demands on the system in mind (elicitation), (2) describe a conceptual
model of the system in mind (modeling), (3) test whether the conceptual model satisfies formally described
quality criteria (analysis), (4) test whether the conceptual model meets the informal user requirements
(validation).

As afirst formal description of real-world entities we start with the object specification language TROLL light
[3, 4], a dialect of OBLOG [5] and TROLL [6]. TROLL light is especially appropriate for information system
design because it embodies ideas from data type specification [7], semantic data models [8], and process
theory [9]. But an attractive language for information system design must be completed by specification
tools. Therefore the object description language TROLL light comes along with a development environment
offering special tools for verification and validation purposes in order to support the user during the design

process according to tasks (3) and (4) from above:

e For us, the analysis task (3) cousists in verifying properties, i.e., tackling the formal correctness
problem. But in contrast to program verification where a program, i.e., an implementation, is proved
to satisfy its specification, we want to verify properties of objects at the level of specification. This
is necessary in order to check whether the specification meets the intended requirements. Verifying
such properties directly from the specification can help to avoid misdevelopments based on inadequate

specifications.

In order to support this kind of verification the TROLL light proof support system solves verification

tasks given by the user. It checks whether the desired properties are fulfilled by the specified TROLL

light object descriptions.

e A specification of a formal conceptual schema must be validated against the informal system require-
ments in order to meet task (4). This is known as the informal correctness problem. One possible way
to assure informal correctness of a conceptual schema consists in rapid prototyping which means to
construct an experimental version of a system on a quick and cheap basis. Hence a prototype will often
illustrate only some important aspects of a required behavior, thereby neglecting others like questions
of performance or security. Nevertheless, by observing the behavior of a prototype the clients of a
system can better judge the usefulness of a conceptual schema than by reading specification texts only.
Typical tools supporting prototyping may be screen painters, report generators, program generators,

animation systems, etc.

The TROLL light animator is designed to simulate the behavior of a specified object community.
By this the informal view of the real-world fragment to be modeled is validated against the current

specification.

To summarize, we discuss the main motivation for our work which is without doubt improvement of software
reliability and software quality. The way we want to achieve this is by formal specification, in particular
with our specification language TROLL light which adds to classical semantic data modelling techniques
ways to specify behavior. But TROLL light is not a stand alone language. Instead it highly supports
the development process with modern graphical tools tackling both the formal and informal correctness
problem. As far as we know, there are no other systems supporting formal object-oriented specification
in the rigorous way as our environment does it. In the following we present our system by going into
some details concerning the concepts of TROLL light, giving comments on the idea of an open development
system and presenting the two specific tools for animation and verification. Finally we give some concluding

remarks.

II. THE LANGUAGE TROLL LIGHT

TROLL light is a language for describing static and dynamic properties of objects. This is achieved by
offering language features to specify object structure as well as object behavior. The main advantage of
following the object paradigm is the fact that all relevant information concerning one object can be found
within one single unit and is not distributed over a variety of locations. As in TROLL, object descriptions
are called templates in TROLL light. Because of their pure descriptive nature, templates may roughly
be compared with the notion of class found in object-oriented programming languages. In the context
of databases however, classes are also associated with class extensions so that we used a different notion.
Templates show the following structure.
TEMPLATE name of the template

DATA TYPES data types used in current template

TEMPLATES other used templates

SUBOBJECTS slots for subobjects

ATTRIBUTES slots for attributes

Visualization of states
User interface Specification of event sets
Visualization of state transitions

Execution module Computation of the state transition

induced by a given event set

Term evaluator Implementation of the query calculus

o T

Databases for storing
templates and object states

Template dictionary Object base
Fig. 1: Architecture of the TROLL light animation system

EVENTS event generators

CONSTRAINTS restricting conditions on object states

VALUATION effect of event occurrences on attributes

DERIVATION rules for derived attributes

INTERACTION synchronization of events

BEHAVIOR description of object behavior
END TEMPLATE
Roughly speaking, the DATA TYPES and TEMPLATES sections are the interfaces to other templates, the
SUBOBJECTS, ATTRIBUTES, and EVENTS sections constitute the template signature, and in the remaining
sections axioms concerning static (CONSTRAINTS and DERIVATION) and dynamic (VALUATION, INTERACTION,
and BEHAVIOR) properties are specified. Due to space limitations we cannot explain the language features.

Details concerning TROLL light can be found in [3, 4].

I1I. THE DEVELOPMENT ENVIRONMENT

The TROLL [light development environment is an open system which allows developers to integrate new
tools and to adapt and extend it to their own requirements. For preserving the openness of the environment,
tools have to be as independent as possible. For this, the TROLL light development environment supports a
loose coupling of tools. This is achieved on the one hand by a kind of tool communication which is based on
interchanging messages and notifications (HP SoftBench [10] and on the other hand by an object-oriented
documents repository (ObjectStore [11]) The latter supports storing design documents in a structured way
whereas the former provides mechanisms for tool integration. The TROLL light development environment
can be seen as an instantiation of the ECMA Reference Model for software development environments [12].
It is built on the depicted integration frames BMS, ObjectStore, and TCL/TK user interface manager [13].
A discussion of the architecture of the TROLL light development environment wrt. similar approaches can

be found in [14].

A. The Animation System

Animating templates. A template generally describes structural and dynamic aspects of a prototypical
object. Structural properties are centered around the specification of possible attribute states, dynamic

properties around the specification of possible event sequences. Looking at a template with subobject slots

3

the prototypical object described by this template is in fact an object community where events in different
objects may be synchronized by interaction rules.

Speaking in more technical terms the model of a template is a state transition system in which a state
transition is accompanied by a finite set of event occurrences which has to be closed against synchronization.
TROLL light object descriptions abstract from the causality or initiative of event occurrences. Hence making
a state transition system to move means to indicate certain event occurrences from the outside of the system.
This is what we call animation of templates.

Animation of templates may help to assure that the specified behavior of objects or object communities
matches the required behavior. Of course, animation of a conceptual model shows the same problems like
testing an implementation. From observations that the observed behavior agrees with the requirements we
would like to draw the conclusion that a conceptual schema (an implementation) is correct with respect
to the requirements (the conceptual schema). This, however, cannot be done, because there still may be
some traces in the animation (in an implementation) which have not been tested and which may show the
opposite effect. Hence animation (testing) is only useful to falsify informal correctness.

Requirements for a tool supporting animation. A software system with the aim to support the animation of
templates should meet the following requirements. It should support (1) the exploration of actual states of
an object community, (2) the specification of event occurrences for initiating state transitions, and (3) the
visualization of state changes.

To be more precise, exploration of states should be assisted by means to illustrate the actual global structure
of an object community, to show the attribute state (and optionally the behavior state) of a single object,
to traverse subobject relationships or object-valued attributes, and eventually to formulate ad hoc queries
against object states.

With respect to the specification of event occurrences it must be possible to indicate event occurrences for
possibly more than one object at a time. The system should help to find event sets being closed against
synchronization. Hence, when a specified event occurrence provokes a second event occurrence in another
object, this event occurrence should be added automatically to the current event set.

State changes provoked by a given closed event set, as there might be insertions and deletions of objects
or attribute updates, should be made visible to the user, for example by appropriate messages in a specific
window. When a desired state transition cannot be carried out, for instance because the resulting state
violates some integrity constraints, these conditions should also be reported to the user.

Architecture of the animation system. The structure of the TROLL light animation system is depicted in
Fig. 1. First of all the animation system consists of a template dictionary which is a persistent store for
object descriptions. The template dictionary is not an exclusive part of the animation system but an integral
part of the whole development environment, for instance shared by the parser and the proof support system.
The second basic component of the animation system is the object base which is a persistent store to hold
object states. Hence it is possible to stop a current animation session at one time and start it again later
on. Object descriptions contain terms and formulas of the TROLL light query calculus which are evaluated
by the third component of the animation system, the term evaluator. The evaluation of terms and formulas
generally depends on the current state of an object community so that the term evaluator must be able to

access the object base. The execution module is the heart of the animation system. For a given set of event

4

[® author]

Object: /Authorindex/Authors(No: 23)
ATTRIBUTES

A Name: "J.W. Goethe"
DateOfBirth: "28.8.1749"
SoldBooks(Year: int): int

EVENTS

AIBIRTH create(Name: string, DateOfBirth: string);
changeName(NewName: string);
storeSoldBooks(Year: int, Number: int);

DEATH destroy;

Close Superobject

Fig. 2: Object window

occurrences, its task is to compute a successor state or to report errors if such a state cannot be determined
for different reasons. Finally the user interface establishes communication with the human operator.
Implementation aspects. A prototype version of the animation system covering basic requirements has been
completed within our project. Implementation work was mainly done on the basis of diploma thesis.

The template dictionary and the object base were implemented using the OODBMS ObjectStore [11] on
the basis of C++. The object base is designed for storing values of any complexity, even a whole NF? or
complex object model database. The term evaluator and the execution module were implemented in C++.
Term evaluation generally results in a complex value which is stored using the same structures as found in
the object base.

Finally, the user interface was realized by the help of TCL/TK [13]. In the prototype version of the animation
system object states are visualized in so called object windows (see Fig. 2 for part of a library application).
Object windows resemble the representation of pointers to current subobjects, the visualization of current
attribute values as well as a depiction of the list of possible event generators. Event occurrences can be
specified by marking an event generator and optionally entering required parameter values. Specified event
occurrences are collected in a separate window from which a set of event occurrences may be sent to the

execution module.

B. The Proof Support System

Verification calculus. For pragmatic reasons, we only allow Gentzen-formulas with a conjunction of proposi-
tions as antecedent and a disjunction of propositions as conclusion as formulas in our calculus. The decision
was motivated by the fact that thereby we can easily adopt existing proof systems, e.g., [15].

The most important concept of the verification calculus is the concept of formulas. We allow only a special
form of clauses as formulas: P;,..., P, = Q1,...,Qn where P; and @; are so-called propositions. Such a
formula must be understood as follows: in each state (of an object community) in which all the propositions
Py, ..., P, are fulfilled there is at least one of the propositions Q1,...,,, which is also fulfilled in that
state.

Next, we have to introduce our notion of proposition. Propositions are mainly given by predicate expressions

p(t1,...,t,) (with p a predicate symbol and ¢; appropriate terms). Furthermore we allow negation (i.e.,

— P) and the use of positional operators (i.e., [t,.t.|P, where ¢, is a term denoting an object and t. a term

describing an event for this object). A proposition [t,.t.]P could be read as “if the event occurring in
object t, is t, then P holds afterwards”. We distinguish between two kinds of predicate symbols: rigid and
non-rigid ones (i.e., state-independent and state-dependent predicate symbols, resp.). For instance, rigid
predicate symbols are given by the data type specification used (e.g., < for integers), whereas attributes
of objects are modeled by non-rigid predicates. Furthermore we have non-rigid predicates for dealing with

enabledness and occurrence of events, namely the predicates enable and occur.

IV. CONCLUSION

We have presented a sketch of our object description language TROLL light and its accompanying envi-
ronment. The environment supports the development of correct information systems in (1) validating the
informal view of the real-world fragment to be modeled against the current conceptual schema and (2) in
checking whether desired properties are fulfilled by the specified object descriptions. However, the system

integration and the implemented tools are far from being perfect. A lot of work could be done here.

References

[1] P. Loucopoulos. Conceptual Modeling. In P. Loucopoulos and R. Zicari, editors, Conceptual Modeling, Databas-
es, and CASE: An Integrated View of Information Systems Development, pages 1-26. John Wiley & Sons, New
York, 1992.

[2] E. Dubois, P. Du Bois, and M. Petit. O-O Requirements Analysis: An Agent Perspective. In O.M. Nierstrasz,
editor, Proc. European Conf. on Object-Oriented Programming (ECOOP’98), pages 458 481. Springer, Berlin,
LNCS 707, 1993.

[3] M. Gogolla, S. Conrad, and R. Herzig. Sketching Concepts and Computational Model of TROLL light. In A. Mi-
ola, editor, Proc. 3rd Int. Conf. Design and Implementation of Symbolic Computation Systems (DISCO’93),
pages 17-32. Springer, Berlin, LNCS 722, 1993.

[4] M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integrating the ER Approach in an OO
Environment. In R. Elmasri, V. Kouramajian, and B. Thalheim, editors, Proc. 12th Int. Conf. on the ER
Approach (ER’98), pages 382 395. Springer, Berlin, LNCS 823, 1994.

[6] A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Specification of Databases: An Algebraic Ap-
proach. In P.M. Stoecker and W. Kent, editors, Proc. 13th Int. Conf. on Very Large Databases VLDB’87, pages
107-116. VLDB Endowment Press, Saratoga (CA), 1987.

[6] G. Saake, R. Jungclaus, and T. Hartmann. Application Modelling in Heterogeneous Environments using an
Object Specification Language. In M. Huhns et al., editors, Int. Conf. on Intelligent € Cooperative Information
Systems (ICICIS’98), pages 309 318. IEEE Computer Society Press, 1993.

[7] M. Wirsing. Algebraic Specification. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science,
Vol. B, pages 677 788. North-Holland, Amsterdam, 1990.

[8] R.Hull and R. King. Semantic Database Modelling: Survey, Applications, and Research Issues. ACM Computing
Surveys, 19(3):201 260, 1987.

[9] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666 677, 1978.

[10] M.R. Cagan. The HP SoftBench Environment: An Architecture for a New Generation of Software Tools.
Hewlett Packard Journal, 41, 1990.

[11] C. Lamb, G. Landis, J. Orenstein, and D. Weinreib. The ObjectStore Database System. ACM Communications,
34(10):50 63, 1991.

[12] A. Earl. A Reference Model for Computer Assisted Software Engineering Environment Frameworks. Technical
report, Hewlett-Packard Laboratories, Bristol, England, 1990. Version 4.0 ECMA/TC33/TGRM/90/016.

[13] J.K. Ousterhout. TK: An X11 Toolkit Based on the TCL Language. Report, University of California at
Berkeley, 1990.

[14] N. Vlachantonis, R. Herzig, M. Gogolla, G. Denker, S. Conrad, and H.-D. Ehrich. Towards Reliable Information
Systems: The KORSO Approach. In C. Rolland, F. Bodart, and C. Cauvet, editors, Proc. 5th Int. Conf. on
Advanced Information Systems Engineering (CAiSE’93), pages 463 482. Springer, Berlin, LNCS 685, 1993.

[15] L.C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Odifreddi, editor, Logic and Computer Science,
pages 361 385. Academic Press, 1990.

