
A Fast and Robust Gesture Recognition System
for Exhibit Gaming Scenarios

Marco Roccetti
Computer Science Department

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, Italy

roccetti@cs.unibo.it

Gustavo Marfia
Computer Science Department

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, Italy

marfia@cs.unibo.it

Angelo Semeraro
Computer Science Department

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, Italy

semeraro@cs.unibo.it

ABSTRACT

With no doubt, advanced human-computer interaction
technologies represent one of the key selling points of all the most
popular new gaming consoles. Players, in fact, can now interact
realistically with their gaming environments, not suffering
anymore from that lack of authenticity that was caused by the use
of a simple joysticks or mice. Such incredible result has been
achieved by means of new advanced hardware specialized in the
recognition of players’ gestures. In this work, we show that the
same objective can be attained utilizing an off-the-shelf webcam
and a robust gesture recognition software system. In particular,
our novel gesture recognition system, which is based on artificial
vision algorithms, leads to a fast and robust interpretation of hand
gestures. This type of technology has proven to be particularly
efficient for immersive gaming experiences. The efficacy was
demonstrated through a game, which has been enjoyed by
hundreds of visitors at the 2010 Shanghai World Expo.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: Games.

General Terms
Design, Experimentation.

Keywords
Artificial Vision, Interactive Game, Hand-Free Gesture
Recognition, Shanghai World Expo 2010.

1. INTRODUCTION
All the major producers of computer games and computer

game consoles permanently engage each other at finding new
and innovative ways of entertaining their customers. Perhaps the
most important challenge of the past few years has been that of
providing players with the most exciting and realistic human-
computer interface. In fact, recent trends show that the higher the

realism a player enjoys when interacting with a game, the better
will be the game’s chances of beating its competitors in the
market share arena. This means that customers no longer feel
amused when gaming with traditional hardware as joysticks,
keyboards and mice, but rather wish to be able to perform, while
gaming, the same natural actions that would be performed for real.

The technology that first has raised the bar of customer
expectations from new gaming consoles has been the major
reason for success of the Nintendo Wii. While moving, player
movements are recognized in real-time by a combination of
infrared and accelerometer sensors and echoed in the virtual
gaming world. Although such technology does not yet enable
hands-free gaming interactions, as it still relies on the use of a
controller (i.e., the Wiimote), the Nintendo Wii has been the first
console to successfully support natural body movements while
playing a computer game. Very recently, an important step
forward has been performed with the introduction of the
Microsoft Kinect sensor, an advanced video camera that,
combined with an advanced software system, supports human
body recognition on the Xbox console. While playing with
Kinect, players can freely move without touching or holding any
controller, as their bodies are the controllers that provide
commands through natural body movements. All this has required
the use of an advanced video camera, which, combined with a
depth sensor, can estimate the distance from the objects that move
in front of it in real-time and hence aid the real-time recognition
of the position of each of the parts of a player’s body.

The main contribution of this work is to provide a description
of our new gesture recognition system that, with the sole use of
one cheap hardware component (an off-the-shelf webcam),
supports playing computer games without the aid of any
controller. The main novelty of this system lies in the use of
contextual information that can be inferred by the game setting
layout and the devise of three artificial vision algorithms capable
of recognizing a player’s inputs: (a) a hands recognition
algorithm; (b) a hands following algorithm, and; (c) an action
recognition algorithm. In brief, our gesture recognition system has
been devised assuming that a player faces a screen where a virtual
world is displayed, while a webcam captures his or her
movements from above. The hands recognition algorithm receives
the captured video stream and analyzes it, frame by frame,
identifying a sub-set of key points where a player’s hands and
forearms have been detected. After this step, the hands following
algorithm determines the exact position of both hands. Finally, the

This work has been supported by the FIRB Damasco Project.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. DISIO 2011 March 21,
Barcelona, Spain. Copyright 2011 ICST, ISBN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DISIO 2011, March 21, Barcelona, Spain
Copyright © 2011 ICST 978-1-936968-00-8
DOI 10.4108/icst.simutools.2011.245507

343

correctness of each of a player’s actions is checked in terms of
timing and trajectory by our action recognition algorithm. A
player, in the meantime, while moving, can appreciate the effects
of his or her actions on the screen. This type of technology has
proven to be particularly efficient for immersive gaming
experiences displayed in exhibit scenarios.

In fact, all the mentioned algorithms have been tested within a
computer game, the Tortellino X-Perience, recently displayed at
the 2010 Shanghai World Expo [1]-[4]. The underlying objective
of the game was that of teaching players how to prepare Tortellini
Pasta starting from its main ingredients (flour, water and eggs),
while challenging them through a sequence of stages given by its
recipe. Clearly, the preparation of a Tortellino requires stepping
through a very well defined number of stages where our gesture
recognition system played a very important role: it supported the
detection of correct movements from incorrect ones in real-time.

The rest of this paper is organized as follows. In Section II we
survey some of the approaches that have been, to this date, used in
implementing advanced human-computer interaction schemes in
commercial gaming consoles. In Section III we provide a
discussion on the use of an immersive gaming system within a
public exhibit. In Section IV we provide a succinct description of
the algorithms we developed, while Section V describes our
Shanghai test-bed and reports on its performances. We finally
conclude with Section VI.

2. RELATED WORK
A wealth of research has investigated how new and more

natural means of interaction between humans and computers
could be developed from many different standpoints [5-17], we
will here focus on the prominent approaches that have appeared in
commercial game consoles.

The most revolutionary and widespread controller that has been
to this date created is, beyond any doubt, the Nintendo Wiimote
controller. The Wiimote is equipped with an infrared camera
sensor, which combined with two light emitting sources placed
within the sensor bar positioned above or below the TV set, is
used to locate its position in real-time. Such controller, in
addition, also carries an accelerometer, used to register any
sudden acceleration that is experienced by a player’s hand while
engaged in a game. Clearly, using such technology requires
players holding a Wiimote, hence demands the use of a hardware
device that acts as a broker between the gestures a player
performs and a Wii console. This hardly suites a scenario where
hundreds or even thousands of different people can play a game
using the same console during a single day, as was the scenario
we dealt with in Shanghai.

Very recently, computer game players have been able to enjoy
body free gaming with the Microsoft Kinect sensor and the Xbox.
Kinect is a horizontal bar that is placed either above or below the
video screen, containing a depth sensor in addition to an RGB
camera, capable of recording the distance of all objects that lie in
front of it. Depth information is then processed by a software
engine that extracts, in real-time, the key human body features of
players, thus enabling the interaction between the physical world
and the virtual one. We will show that similar results can also be
achieved simply using a normal video camera.

Also Sony has supported mixed reality experiences with the

EyeToy and the Playstation Eye. Both of such products are based
on a digital camera, using a very similar hardware approach to
ours. However, our two approaches differ on the software side, as
the Playstation Eye focuses on the detecting motion patterns
above certain given areas, while our algorithms also recognize the
position and the gestures performed by both hands.

In summary, the main experiences that may be found in
commercial computer gaming consoles for implementing
advanced human-computer interaction schemes either adopt
complex hardware interfaces needed to detect and track
movements, or reduce the accuracy of the tracking and gesture
recognition processes, hence, reducing the realism with which
players are supposed to play.

3. PLAYING GESTURAL GAMES IN
EXHIBITIONS

Our new gesture recognition system is based on a set of
artificial vision algorithms tailored to suite exhibit gaming
scenarios, where a computer game is displayed and can be played
in a public area within a museum or a fair, for example.

Such types of scenarios introduce one advantage and one
disadvantage, in terms of human-computer interaction design. On
one side a clear advantage is given by the possibility of
controlling the entire setting layout, and, hence, the context within
which a player interacts with a game (e.g., the game arena area,
position, illumination level, etc.). On the other side, instead, such
scenarios pose new challenges, as no a-priori assumptions can be
made on the players that, eventually, will play a game (e.g., skill
level, physical features, etc.).

We devised a very traditional layout where a visitor plays
waving his or her hands within a restricted arena, while facing a
video screen that displays the game graphical environment (Figure
1). The only difference with other well-known commercial
gaming consoles is given by the video camera, which in our case
is placed above the game arena, while, in Microsoft Kinect or
Playstation Eye, for example, lies in front of the player. Such
choice gives us the possibility to accurately track the horizontal
movements that are performed by a player’s hands. The gaming
layout, hence, represents here a contextual piece of information
that can be tuned and put to good use to optimize the efficiency of
the gesture recognition system in identifying and interpreting a
player’s movements for a given game.

Such type of scenario, however, also represents an obstacle to
the use of off-the-shelf technologies for gesture recognition. Just
as an example, consider the case where we adopted the
Playstation Eye gesture recognition system to support our game:
before every time a new player started a game a new calibration
phase would have been needed. In fact, the Playstation Eye
requires an initial calibration phase where the body dimensions of
a player are estimated. Another popular technique in legacy
gesture recognition systems is the use of color recognizers to track
hands (also requiring an initial calibration phase). Clearly, any of
such solutions that require an initial calibration phase would result
to be unfeasible in a context where a new player can join every
few minutes.

344

Figure 1. Gaming system at an exhibit.

In summary, a gesture recognition system that can efficiently

cope with such scenario should be able to put to good use the a-
priori assumptions that can be made on its setting layout, while
being robust to its variety of users.

4. ALGORITHMS
Our gesture recognition system is based on three algorithms,

which, working in cascade, recognize the actions that are
performed by a player at each given game stage. Anticipating here
how they work, the first one recognizes any luminance change
over the game arena while someone moving his or her hands,
compared to the static scene captured before anyone plays. In this
way our algorithm distinguishes those areas that a player crosses
with his or her hands and forearms while challenged in a game.
Once those areas have been identified, the second algorithm
processes them searching for the farthest positions reached by a
player’s hands, as for the game under consideration, a hand can be
associated with such points. Finally, a third algorithm recognizes
the gestures that a player performs tracking those farthest points,
given that each movement a player performs involves moving
along a trajectory which starts from a zone and ends in another
where the hand completes its gesture. We now follow describing
each algorithm with more detail.

The first algorithm worries about efficiently tracking the
hands and the forearms of a player while they wave above the
game arena. To fulfill this aim, a player’s hands are only searched
for at specific locations (e.g., pre-defined pixels), computing the
luminance differences between the static scene before the hands
and forearms enter the arena and the scene after a player begins
playing. This approach is justified by the fact that a coarse-
grained check for the movement of an arm or hand is sufficient for
its detection, thus the game arena can be divided in an N x M grid
of blocks that are chosen sufficiently wide to provide the
granularity necessary to distinguish an average hand, whose width
is about 5 centimeters. However, before anyone plays, such
procedure requires first the performance of a unique calibration
phase, that involves the preliminary division of the underlying
surface rectangle into an N x M grid of blocks, and the saving of
the maximum and minimum RGB luminance values for a subset
the of K pre-defined pixels that have been identified within each
block. Clearly K, the number of pre-defined pixels that are
observed within each block, should be chosen considering that
higher values increase the computational effort required to
determine the presence of a hand or a forearm, but lower values
could cause inaccuracies resulting in a hand waving above the
game arena without being detected. Hence, after K, N and M have

345

been chosen and the initial calibration phase has been run
returning the minimum and maximum luminance values observed
during a sufficient time per each pixel p while no one was
playing, we can move on to how this algorithm works while the
computer game is actively running. While a player is engaged in a
game, the algorithm checks for the presence of a hand above any
of the K pixels of each block within each new frame provided by
the video camera. Per each new frame, the algorithm proceeds as
follows. First, a bi-dimensional low-pass Gaussian filter is applied
to smooth out color peak values given by small object movements
and/or brightness variations. Second, within each block, our
algorithm checks whether the luminance values of each of the K
pixels p falls within the minimum and maximum luminance
interval. If not, the pixel is changed its luminance value. Third,
the number of pixels that changed is counted for each block. If
this number exceeds a given threshold, then the luminance of the
entire block has been altered. However, to confirm that an area
composed of changed blocks contains a hand or a forearm, it is
important to also check that all those blocks are close to each
other (adjacent). To this aim, the fourth and final part of this
algorithm iteratively checks whether all the changed blocks
represent an area, termed active area, area where each block can
be reached from any other one moving along a path that lies
within it. Only after this final check, and at the end of all this
process, we can finally conclude that that active area represents a
player’s hand and forearm. In conclusion, such approach reveals
to be computationally efficient because it avoids checking all the
pixels that compose the game arena and its implementation can be
done very efficiently utilizing a multi-threaded strategy that
checks for luminance changes over different areas of the arena.

Once the hands and forearms of a player are identified, it is
now the turn of recognizing the gestures that he or she performs.
Since it is complex to follow a player’s hands with precision in
real-time, we opted for following a representative point for each
hand. Such hands representative points, in our system, coincide
with the extreme points that rest farthest away from a player and
closest to the video screen (obviously, such argument follows
from the fact that the video camera is set above a player’s head).
Not only ours, but many different immersive gaming experiences
require that a player extends his/her hands in front of him/her, and
hence an efficient way for following them and recognizing
gestures can be devised identifying those points that reach farthest
away from the player’s body. Perhaps, the most important
component of our gesture recognition system, our hand following
algorithm, works as follows. We start by applying a bi-
dimensional Cartesian coordinate system to the game arena, the
area above which players wave their hands, taking as a unit of
length the dimension of a block. The x and y axes origin at the
bottom leftmost corner of the game arena (as seen by a player
watching the video screen from the playing position), and point,
respectively, to the right and away from the player, in the
direction of the video screen. During the first step of this
algorithm, the active areas detected by the hands recognition
algorithm are mapped into bar charts as follows. Any block
correspondent to a point along the x axis is mapped into a bar
whose height y equals the distance of that point from the player’s
body (if for a given x, multiple blocks exist, all the bars of lower
heights are replaced by the longest one). In brief, we can
summarize this first step saying that at the end of it a chart is

returned where each bar represents the highest y value, for each x,
where a hand, or a part of it, was recognized. Now, the second
step of the algorithm (that is, determining the position where the
first hand lies) is simple, as the first hand simply given by
searching for that bar with the maximum y on the bar chart. More
difficult is finding the position of the second hand, as it cannot be
straightforwardly individuated as the previous hand, as other high
y values may be due to lower points of still the first hand. This
does not mean that we are not seeking for an extreme point any
more, but we should be careful in not choosing it blindly, risking
of not reliably identifying the second hand. Therefore, we are still
looking for another maximum y value, but on a bar chart where all
the bars that are due to the first hand have been excluded. The
third step of this algorithm, hence, entails constructing a new bar
chart, from the first one, as follows. Starting from the x position
where the maximum has been found, the algorithm iterates for
lower and higher values, separately. At each step of the iteration,
the height (y) of each bar of the old chart is compared with the
value stored in a variable called minimum whose value is then
updated. The value of minimum is initially set to the maximum y
value of the old chart and is updated at the end of each step of the
iteration if the current y value is smaller. Now, starting with the
next bar at the left (or at the right) of the one where the global
maximum was found, we describe what occurs at each step. A
new bar is inserted in the new chart, of height equal to the
difference between the current bar length and the value of the
minimum variable, if this value is positive. If the resulting value is
negative, instead, the bar chart will contain a bar of length zero
(hence, no bar) in that position. After the bar has been inserted in
the new chart, the minimum variable is updated, taking the current
value on the old chart if this results to be smaller than the value it
presently stores. At the end of this procedure the result is a bar
chart where bars, if present, are due to the second hand waved by
a player. The very final step, hence, is to identify the (x, y)
coordinates of the maximum of this second bar chart. Now,
knowing precisely where each hand is at any given time, it is
possible to check the correctness of the movements performed by
a player.

Finally, the action recognition algorithm kicks in. Differently
from many others algorithms designed with similar scopes in
mind, ours not only checks whether a hand reaches a certain
position, but also checks whether a hand reaches a certain position
following a given trajectory, starting from an origin and ending
into a destination zone. In this way, for example, it is possible to
define valid trajectories that the player should follow in order to
behave correctly, and invalid ones that represent mistakes.
Therefore, succinctly summarizing how this algorithm works, the
trajectory described by a point that identifies a hand is recognized
as correct if it lies within a certain distance from the ideal
trajectory (this to give a certain degree of tolerance to players).
This mechanism was devised to make our algorithm able to
consider as correct a wider set of movements with slightly
different trajectories that differentiate only for a few geometric
differences. This scheme can be applied to trajectories of either
linear or circular shape, thus an ending zone can coincide with
starting one.

346

Figure 2. Game stage of Tortellino X-Perience.

5. THE TORTELLINO X-PERIENCE
Our gesture recognition system, more than simply being

assessed in a set of experiments performed in a lab, has been
tested by several hundreds of people playing our game, the
Tortellino X-Perience, in Shanghai, at the 2010 Universal Expo.
Spending a few words on the context where this game has been
played for the first time, before moving on to its design, we here
report that it has been created with the intent of describing an
important piece of the culinary cultural heritage of Bologna, Italy,
to foreign players. For this reason we chose to challenge players
in preparing a Tortellino Pasta, as it represents on of the most
famous and traditional dishes of our city.

5.1 A Cooking Gestural Game
When designing our game we had to consider that: (a) not

many people are familiar with cooking at all; (b) many players in
China may be unaware of what a Tortellino is. Hence we designed
a game that teaches as it is played. The game is divided in stages,
where within each stage a player is taught the correct movements
he or she should perform. Hence, while a player accomplishes a
series of movements, mimicking the actions that have been
previously displayed, the gesture recognition system checks for
their correctness. If incorrect, the player is asked to retry. If
correct, instead, the game moves on to the next stage.

Figure 2 summarizes, with a flow diagram, how each stage is

organized. At first a player watches a video displaying a Sfoglina,
a traditional Bologna Tortellini chef, that explains and shows what
gestures should be performed. At this point, if, for example, the
player needs to mix the flour, water and eggs altogether, he or she
will receive points in reward and be able to proceed with the
recipe only if performing the correct operation the right number of
times.

5.2 Cooking a Tortellino
Cooking Tortellini, as cooking any type of food, follows a very

well defined recipe, recipe that can be divided into successive
phases, one per each stage of the game. In particular we
implemented the following list of phases where a player: (a) is
required to move the ingredients at the center of an empty cooking
board from the right hand side; (b) kneads the ingredients starting
from the yolks and the albumen of the opened eggs float squeezed
within the flour, adding some water, and ending up with a smooth
ball of dough; (c) rolls out the ball of dough with the rolling pin;
(d) cuts the thin foil of dough that is lying on the cooking board
into squares; (e) stuffs the squares of dough with the meat and
cheese that are sitting on the side of the cooking board; (f) closes
the first pair of opposite ends of the Tortellino, and; (g) closes the
second pair of opposite ends.

!"#$%&%'(&)

*+'(&)

+(,,-+.&-//)
0()

1-/)

2-,3(,4)%+'(&/)

5-/6$.)

0-".)-"#$%&%'(&)

5-+(7&898&7):%&;/)

<($$(=8&7):%&;/)

5-+(7&898&7)*+'(&/)

347

Figure 3. Sfoglina explaining actions.

The pictures taken from our testbed, and shown in Figures 3, 4

and 5, represent an example of the final stage of our game. In
particular, Figure 3 shows the Sfoglina explaining how to close a
Tortellino. Figure 4, instead, depicts a digital representation of
two hands trying to close a Tortellino. Once the player succeeds
performing the correct movements, a stop motion video shows the
final result (Figure 5).

5.3 Results: a Summary
Having many players assess our game at a public event has

given us the opportunity of evaluating our algorithms in terms of
recognition speed, accuracy and player satisfaction. In terms of
speed, we observed that the overhead due to the gesture
recognition algorithms never exceeds the limit of 30 milliseconds,
thus providing a convincing result considering also that our
reference implementation was written using the Java
programming language. In terms of accuracy, we observed that
false negatives (right actions not recognized as valid) were below
6%. Finally, in terms of player satisfaction, over hundreds of
interviewed players, we have found that our game has been

enjoyed by people of all ages, which gave it a score of 4.1 over a
maximum of 5 when answering to the question “Did you enjoy
the game?”. A more extensive report on all these performance
factor can be found in [18].

6. CONCLUSION
In this work, we have shown that it is possible to support a

wide class of gestural games devised for immersive environments
and displayed in public spaces utilizing an off-the-shelf webcam
and a robust gesture recognition software system. To witness the
efficiency of our approach we developed a novel gestural game,
termed the Tortellino X-Perience, that has been successfully
demonstrated at the Shanghai World Expo, where hundreds of
visitors have been challenged in preparing the best traditional
Tortellini dish.

7. ACKNOWLEDGMENTS
We express our gratitude to all our undergraduate students (CS
Class: Multimedia Systems and Applications, University of

348

Figure 4. Actions performed by a player.

Bologna).  Their names follow: Beatrice Bacelli, Cristian
Bertuccioli, Carlo Brualdi, Antonio Casamassima, Giovanni De
Marco, Andrea Di Toro, Luca Leoni, Andrea Marcomini,
Giacomo Giorgi, Mirko Pedrini, Pierluigi Rocca and Diego
Rodriguez. They took an important part in the implementation of
our hand gesture recognition system. Special thanks are devoted
to Marco Zanichelli and to Articulture, a Bologna-based media
agency, that engineered and organized the Tortellino X-Perience
event in Shanghai.

8. REFERENCES
[1] M. Roccetti, G. Marfia, “Recognizing Intuitive Pre-defined

Gestures for Cultural Specific Interactions: An Image-based
Approach,” in Proc. IEEE DENVECT'11, Las Vegas (USA),
2011.

[2] M. Roccetti, G. Marfia, M. Zanichelli, The Art and Craft of
Making the Tortellino: Playing with a Digital Gesture
Recognizer for Preparing Pasta Culinary Recipes'', ACM
Comput. Entertain., vol. 8, n. 4, 2010.

[3] Available online, accessed on the 2nd of February 2011:
http://www.cs.unibo.it/~marfia/tortellinox-perience.mov

[4] Available online, accessed on the 2nd of February 2011:
http://www.newscientist.com/blogs/onepercent/2011/01/com
puter-game-that-teaches-you.html

[5] T.B. Moeslund, A. Hilton, V. Krüger, “A Survey of
Advances in Vision-based Human Motion Capture and
Analysis,” Comput. Vis. Image Underst., Elsevier, New
York, pp. 90-126, November 2006.

[6] S. Mitra, T. Acharaya, “Gesture Recognition: a Survey,”
Trans. On Sys., Man and Cyb., IEEE, New York, pp. 311-
324, May 2007.

[7] M. Roccetti, P. Salomoni, “A Web-based Synchronized
Multimedia System for Distance Education,” in Proc. of the
2001 ACM symposium on Applied computing (SAC '01),
New York, NY, USA, pp. 94-98, 2001.

[8] D. Campbell, “Physical gaming: Out of the Lap and into the
Living Room,” in Proc. of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, Cambridge,
2008.

349

Figure 5. Result of a player’s actions.

[9] M. Pasch, N. Bianchi-Berthouze, B. Van Dijk, A. Nijholt,
“Movement-based Sports Video Games: Investigating
Motivation and Gaming Experience,” Elsevier Entertainment
Computing, vol. 1, n. 2, pp. 49-61, 2009.

[10] S. Ferretti, M. Roccetti, “Fast Delivery of Game Events with
an Optimistic Synchronization Mechanism in Massive
Multiplayer Online Games,” in Proc. of the 2005 ACM
SIGCHI International Conference on Advances in computer
entertainment technology, Valencia, pp. 405-412, 2005.

[11] T. Selker, W. Burleson, “Context-aware Design and
Interaction in Computer Systems,” IBM Systems Journal,
vol. 39, no. 3.4, pp. 880-891, 2000.

[12] R. Y. Wang, J. Popovic, “Real-time Hand-tracking with a
Color Glove,” ACM Trans. Graph., vol. 28, n. 3, pp. 1-8,
2009.

[13] A. Rhalibi, M. Merabti, P. Fergus, S. Yuanyuan, “Perceptual
User Interface as Games Controller,” in Proc. 5th IEEE
Consumer Communications and Networking Conference, Las
Vegas, pp. 1059-1064, 2008.

[14] C. Harrison, A. K. Dey, “Lean and Zoom: Proximity-Aware
User Interface and Content Magnification,” in Proc. of the

twenty-sixth annual ACM SIGCHI conference on Human
factors in computing systems, Florence, pp. 507-510, 2008.

[15] D. Bannach, O. Amft, K.S. Kunze, E.A. Heinz, G. Troster, P.
Lukowicz, “Waving Real Hand Gestures Recorded by
Wearable Motion Sensors to a Virtual Car and Driver in a
Mixed-Reality Parking Game,” in Proc. IEEE Symposium on
Computational Intelligence and Games, Hololulu, Hawaii,
USA, pp. 32-39, 2007.

[16] L. Kratz, M. Smith, F.J. Lee, “Wiizards: 3D Gesture
Recognition for Game Play Input,” in Proc. of the ACM 2007
conference on Future Play (Future Play '07), Toronto,
Ontario, Canada, pp. 209-212, 2007.

[17] E. Tse, S. Greenberg, C. Shen, C. Forlines, “Multimodal
Multiplayer Tabletop Gaming,” ACM Comput. Entertain.,
vol. 5, n. 2, 2007.

[18] M. Roccetti, G. Marfia, A. Semeraro, “An All-In-Software
Hand Gesture Recognition System for Immersive Gaming
Experiences,” submitted for publication to an international
journal, 2011.

350

