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1 IntroductionIt has been recently recognised within the Software Engineering community,most notably by Garlan and Shaw [1] and Perry and Wolf [2], that when sys-tems are constructed from many components, the organisation or architectureof the overall system presents a new set of design problems. One of the archi-tectural concerns identi�ed by Garlan and Perry [3] is the high-level descriptionof systems based on graphs of interacting components. They identify compo-nents as the primary points of computation in a system and connectors to de�nethe interactions between these components. Our work addresses this concern inthe context of distributed systems and in particular stresses the management ofsystem structure.We are concerned with the provision of sound and practical means for thedesign and construction of distributed systems. To this end we have been in-volved in the development and use of structural con�guration languages [4, 5, 6]as a means of specifying and subsequently managing system structure. The lan-guages we have developed have in common the notion of a component as thebasic element fromwhich systems are constructed. Complex components are con-structed by composing in parallel more elementary components and as a result,the overall architecture of a system is described as a hierarchical compositionof primitive components which at execution time may be located on distributedcomputers. These primitive components have a behavioural speci�cation as op-posed to a structural description. Others that have also adopted a similar useof con�guration languages for distributed systems include Polylith [7], Durra [8]and Leap [9].The version of Darwin used in this paper is the latest in a line of con�g-uration languages. Darwin is a declarative language which is intended to be ageneral purpose notation for specifying the structure of systems composed fromdiverse components using diverse interaction mechanisms. It is currently beingused in the context of the Regis system [10] which supports multiple interactionprimitives and in the Sysman project [11] with Ansaware [12] which uses remoteobject invocation for component interaction. Darwin allows the speci�cation ofboth static structures �xed during system initialisation and dynamic structureswhich evolve as execution progresses. An earlier version of Darwin was usedin conjunction with the Rex distributed systems platform [5]. The version de-scribed here di�ers in its treatment of dynamic structures and in the ability todeal with diverse interaction mechanisms.Distributed programs can be constructed directly from their Darwin speci�-cations. Darwin thus has an operational interpretation such that elaboration atruntime of the Darwin speci�cation results in a distributed set of interconnectedprimitive components. In contrast with its predecessors, Conic [4] and Rex [5]which had centralised sequential interpretations, Darwin has a distributed andconcurrent interpretation permitting the construction of large distributed sys-tems in an e�cient manner. In addition, it allows physical distribution to bespeci�ed completely orthogonally to logical structure. Darwin allows interactionwith external management agents [11] which can direct structural changes in1



response to changing system requirements whether operational or evolutionary.The aim that Darwin be general purpose requires that there should be a clearand well speci�ed division of responsibilities between Darwin and the primitivecomponents it con�gures. The requirement that Darwin should be capable ofconcurrent elaboration demands that the re must be a clear and unambiguousmodel of Darwin's operational behaviour against which implementations can bevalidated. We have attempted to satisfy both these requirements by modellingDarwin in the �-calculus [13], Robin Milner's calculus of mobile processes. Thereasons for choosing this formalismare discussed in the concluding sections of thepaper. The paper initially describes the basic features of Darwin and outlineshow these are modelled in the �-calculus. This basic model is then used toprove some properties of Darwin con�gurations. The paper demonstrates thatthe basic �-calculus model can be extended to incorporate those parts of Darwinconcerned with dynamic structures and concludes by comparing the Darwin/�-calculus approach we have adopted with related work.2 DarwinA distributed system consists of multiple concurrently executing and interact-ing computational components. Typically, a system consists of a limited setof component types with multiple instances of these types. The task of spec-ifying the system as a collection of components with complex interconnectionpatterns quickly becomes unmanageable without the help of some structuringtools. The con�guration language Darwin provides such a structuring tool. Ithas both a graphical and textual representation. Darwin allows distributed pro-grams to be constructed from hierarchically structured speci�cations of the setof component instances and their interconnections. Composite component typesare constructed from the primitive computational components and these in turncan be con�gured into more complex composite types. Components interact byaccessing services. This section gives a brief overview of Darwin before a moreprecise description using �-calculus is given in the following section.2.1 Components and ServicesDarwin views components in terms of both the services they provide to allowother components to interact with them and the services they require to inter-act with other components. For example, the component of �gure 1 is a �ltercomponent which provides a single service output and requires a single serviceinput. The diagrammatic convention used here is that �lled in circles representservices provided by a component and empty circles represent services requiredby a component. The type of the service is speci�ed in angle brackets. In the ex-ample, the communication mechanism used to implement the service is a streamand the datatype communicated is char. Darwin does not interpret service typeinformation, it is used by the underlying distributed platform. In the Regis sys-tem [10], this information is used to directly select the correct communication2



code. When used with a more conventional distributed systems platform such asAnsaware, the service type names an IDL speci�cation which is used to generatethe correct client and server stubs.
input          output

filter component �lterfprovide output<stream char>;require input<stream char>;gFig. 1. component type �lterIn general, a component may provide many services and require many ser-vices. It should be noted that the names of required and provided services are lo-cal to the component type speci�cation. A component does not need to know theglobal names of external services or where they are to be found in the distributedenvironment. Components may thus be implemented and tested independentlyof the rest of the system of which they will form a part. We call this propertycontext independence. It permits the reuse of components during construction(through multiple instantiation) and simpli�es replacement during maintenance.2.2 Composite ComponentsThe primary purpose of the Darwin con�guration language is to allow system ar-chitects to construct composite components from both basic computational com-ponents and from other composite components. The resulting system is a hier-archically structured composite component which when elaborated at executiontime results in a collection of concurrently (potentially distributed) executingcomputational component instances. Darwin is a declarative notation. Compos-ite components are de�ned by declaring both the instances of other componentsthey contain and the bindings between those components. Bindings, which as-sociate the services required by one component with the services provided byothers, can be visualised as �lling in the empty circles of a component with thesolid circles provided by other components. The example of �gure 2 de�nes avariable length pipeline of �lter instances in which the input of each instanceis bound to its predecessor's output. Bindings between requirements and provi-sions are declared by the bind statement. For example, the input of each �ltercomponent instance F [k+1] is bound to the output of its predecessor F [k] by thestatement bind F [k + 1]:input -- F [k]:output. Requirements which cannot besatis�ed inside the component can be made visible at a higher level by bindingthem to an interface requirement as has been done in the example for �lter F [0]requirement input which is bound to input. Similarly services provided internallywhich are required outside are bound to an interface service provision e.g. out-put -- F [n�1]:output. The Darwin design [14] and construction tools check that3



pipeline(n)

F[0] F[1] F[n-1]input output
...component pipeline(int n)fprovide output;require input;array F[n]: �lter;forall k:0..n-1 finst F[k] @ k+1;when k < n-1;bind F[k+1].input -- F[k].output;gbindF[0].input -- input;output -- F[n-1].output;g Fig. 2. composite component pipelinebindings are only made between required and provided services with compatibletypes. The compatibility test invoked is determined by the target distributedsystems platform. Where necessary, the Darwin tools infer the type of interfaceservices which are not explicitly typed. In general, many requirements may bebound to a single provision. A particular requirement may be bound to a singleprovision only. It should be noted that a service may transmit or receive infor-mation or do both. The many requirements to a single provision binding patternmay thus describe either one-to-many or many-to-one communication depend-ing on the interaction mechanism used to implement the service. For example,streams and events in Regis are one-to-many interaction types while ports andentries (similar to Ada entries) are many-to-one.The example of �gure 2 locates each �lter instance F [k] on a di�erent hostcomputer by means of the annotation @k+1. The integer machine identi�ers aremapped to real machine addresses by the runtime system for Darwin. This levelof indirection in mapping permits portable speci�cations. In general, instancesare located at the machine on which the enclosing component is elaborated unlessthey are annotated. The reader is referred to [10] for further (and more realistic)4



examples of Darwin con�guration programs.The �-calculus [13] is an elementary calculus for describing and analysing concur-rent systems with evolving communication structure. In this paper, we use the simplemonadic form. A system in the �-calculus is a collection of independent processes whichcommunicate via channels. Channels or links are referred to by name. Names are themost primitive entities in the calculus, they have no structure. There are an in�nitenumber of names, represented here by lowercase letters.Processes are built from names as follows:action terms ::= xz:P Output the name z along the link named x then executeprocess P .x(y):P Input a name, call it y, along the link named x and thenexecute P (binds all free occurrences of y in P ).terms ::= A1 + : : :+An Alternative action n � 0, execute one of A.When n = 0, it is written as 0 and means stop.P1 j P2 Composition P1 and P2 execute concurrently.The operation is commutative and associative.(� y)P Restriction, introduces a new name y with scopeP (binds all free occurrences of y in P ).!P Replication, provide any number of copies of P .It satis�es the equation !P � P j!P . Recursion canbe coded as replication so need not be included asa separate method for building processes. Recursion willbe used when it makes examples clearer.Computation in the �-calculus is expressed by the following reduction rule:(: : :+ x(y):P1 : : :) j (: : :+ xz:P2 + : : :)! P1fz=yg j P2:Sending z along channel x reduces the left hand side to P1 j P2 with all free occurrencesof y in P1 replaced by z. The following is a simple example of applying the reductionrule: xz:0 j x(y):y(s):0! z(s):0For reasons of conciseness, in the remainder of the paper we will omit the stop process:0 in an agent and write z(s) in place of z(s):0.Fig. 3. �-calculus3 Modelling Darwin in the �-calculusOur purpose in modelling Darwin in the �-calculus is to provide a precise se-mantics for the language. We wish to demonstrate that a Darwin con�guration5



program correctly speci�es the set of primitive component instances and set ofintercomponent bindings required at runtime. Further, we wish to demonstratethat this elaboration process is correct when executed concurrently. The modelshould de�ne precisely that which is the responsibility of the Darwin programand that which must be carried out by the components con�gured by the Darwinprogram. Darwin supports static checking to ensure only bindings between com-patible requirements and provisions are allowed. Service types can be modelledusing the concepts of sort and sorting provided by the polyadic �-calculus [15],but unavailable in the simple monadic form of the �-calculus used in this paper.For simplicity, in the following, the types of Darwin services and type disci-pline for binding are omitted. A brief overview for readers unfamiliar with the�-calculus is given in �gure 3.3.1 Provide, Require, BindIn this section, an interpretation in the �-calculus is given for each of the Darwinsyntactic constructs concerned with requiring, providing and binding services.With these, we can examine the elaboration of a simple con�guration which hasno hierarchic structure.Provide The declaration of a provided service, provide p, in Darwin is mod-elled in the �-calculus as the agent Prov(p; s) which is accessed by the Darwinname p and manages the service s as shown below:p yprovide p; Prov(p; s) def= !(p(x):xs)wheres { service referencex { location at which s is requiredp { access nameThe service s is simply the name or reference to a service which must be im-plemented by a component. Darwin is not concerned with how the service s isimplemented, it is concerned with placing s where it is required by other com-ponents which use the service. The agent Prov thus receives the location x atwhich the service is required and sends s to that location. Since there may bemore than one client of the service, the agent Prov is de�ned to be a repli-cated process (!) which will repeatedly send out the service reference each timea location is received. 6



Require The declaration of a required service, require r, is modelled by theagent Req(r; l) which is accessed by the Darwin name r and which managesthe location l at which the service is required. Again, Darwin is not concernedwith how a client component uses a service, it must ensure that a reference tothe service is placed at some location in the client component. The Req agentreceives the access name to a Prov agent and sends the location l to that agent.A requirement in Darwin may only be bound to a single service and so the agentReq sends out the location l precisely once as shown below:r irequire r; Req(r; l) def= r(y):ylwherel { location at which service is requiredy { name of service providerr { access nameBind The binding construct in Darwin is modelled by the Bind agent whichsimply sends the access name of the Prov agent to the Req agent.ri pybind r -- p; Bind(r; p) def= rpwherer { name of requirementp { name of provisionInitially, we will ignore the fact that Prov and Req agents are always containedwithin a component and examine the e�ect of binding on these agents. Firstly,the composition of Req and Bind:Substituting de�nitions: Req(r; l) j Bind(r; p) � r(y):yl j rpCommunication along r: ! pl (1)In other words, the composition of a Req agent with a Bind agent produces abinding request of the form pl, in which the location at which the service name isrequired l is sent along the access channel p of the Prov agent. When composedwith the Prov agent, the binding request results in a binding as follows:Using !P = P j!P : pl j Prov(p; s) � pl j p(x):xs j Prov(p; s)Communication along p: ! ls j Prov(p; s) (2)The result of composing a Req, Prov and Bind agent is thus the bindingin which the name of the service s is sent to the place l where it is required.The Prov agent remains to allow further bindings. The following section looksat the e�ect of these agents in the context of a simple Darwin con�guration.7



3.2 Components and non-hierarchical con�gurationsAgents or processes in the �-calculus cannot be directly named, instead agentsare accessed by named channels. Although Darwin names instances of compo-nents, these names are only used to qualify the names of the service they provideor require. This is illustrated by translating the simple non-hierarchical Darwincon�guration of �gure 4 into the �-calculus.
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Bcomponent Server f component System fprovide p; instg A:Client;B:Server;component Client f bindrequire r; A.r -- B.pg gFig. 4. Client Server con�gurationComponents Each primitive component is represented by an agent which is acomposition of the Prov and Req agents which manage its service requirementsand provisions and the agents which de�ne its behaviour. A primitive componentis simply a component which has no Darwin de�ned substructure of components.The Server component type of �gure 4 is represented by the �-calculus agent:Server(p) def= (� s)(Prov(p; s) j Server 0(s)):in which Server' represents the user implemented behaviour of the Servercomponent which realises the services s. Similarly, the Client component type isrepresented by the agent:Client(r) def= (� l)(Req(r; l) j Client 0(l)):Note that the scope of the service name s is local to the Server agent andsimilarly, the name of the place at which the service is required l is also local tothe Client. As can be seen in the following, binding extends the scope of thesenames. 8



3.3 Non-hierarchical con�gurationThe con�guration of the System component of �gure 4 is represented in �-calculus by the parallel composition of a Client, Server and Bind agent:System def= (� rA; pB)(Client(rA) j Server (pB) j Bind(rA; pB)):The instance names A and B in �gure 4 are used only to qualify and thus renamethe requirement r and provision p of the Client and Server component types.The expression above is a precise translation of the Darwin con�guration of�gure 4. To demonstrate that the model is correct, it must be shown that theclient instance A will get the service reference provided by the server B whenthe con�guration is elaborated. Substituting the de�nitions for Client and Serverand dropping the quoted user de�ned behaviour agents since they play no partin the binding process the �-calculus description of �gure 4 becomes:(� rA; pB)((� l)Req(rA; l) j (� s)Prov(pB ; s) j Bind(rA; pB))! (� pB)((� l)pB l j (� s)Prov(pB; s)) Applying (1)! (� l; s; pB)(ls j Prov(pB; s)) Applying (2)The expression describing the client server system thus reduces to an expressionwhich sends the service s to the required location l in parallel with the Provagent and of course Server' and Client0. Before the client can use the service itmust perform an input action. A possible de�nition for Client0 would be:Client 0(l) def= l(x):Client 00:The system: (� l; s; pB)(ls j Prov(pB ; s) j Client 0(l) j Server 0(s))then reduces to: ! (� s; pB)Prov(pB ; s) j Client 00(s=x) j Server 0(s)which is the desired result of an instance of the server component executing inparallel with a client component in which every occurrence of the local namex has been replaced with the name s, the reference to the required service. Inpractice, a Darwin implementation can compute the number of requirementsbound to a provision and so the number of replicas of the agent Prov is known.Consequently, the con�guration process can terminate and the resources it usescan be recovered. It should be noted the model described permits binding andinstantiation to proceed concurrently. Components which try to use a servicewill be blocked until they are bound to that service (i.e. they must input theservice reference as in Client0).3.4 Composite components and hierarchic bindingHierarchic binding occurs in a composite component to bind the interface provi-sions and requirements to the constituent component instances. These hierarchicbindings take one of the three forms depicted in �gure 5.Case (a) is the export of an internal provision to form part of the interface ofthe composite component. An interface provide may only be bound to a single9
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hprovide g;bind g -- A.p; require h[n];forall i:0..n-1bind B[i].r -- h; provide g[n];require h;forall i:0..n-1bind g[i] -- h;Fig. 5. Hierarchic bindingsinstance provide since a service can only be implemented by a single primitivecomponent instance. Case (b) is the situation where one or more internal instancerequires (of the same service type) are bound to an interface require to reectthe situation that the required service is to be provided outside the compositecomponent. The remaining case (c) is the situation where one or more interfaceprovides are not implemented inside the composite component but are bound toan interface require. These connection only components are useful for de�ningconnection patterns and in addition, they may form the base case of recursivelyde�ned structures.In case (a) and (c), the interface provide must act like a Req agent forbindings inside the composite component and as a Prov agent for externalbindings made at the next level of the con�guration. The opposite is necessaryin case (b) and (c), where the interface require must act like a Prov agentinternally and a Req agent externally [16]. Interface requires and providesare modelled in the �-calculus by the Var agent which combines the behaviourof Req and Prov as shown below.izrm pm Var(pm; rm) def= rm(x):!(pm(y):xy)whererm { access name for require side of mpm { access name for provide side of mx { name bound to rmy { location service required atWe will show in the following that the e�ect of binding a Var agent is tocreate an agent which simply passes on binding requests.Var(pm; rm) j Bind(rm; p) � rm(x):!(pm(y):xy) j rmpCommunication along rm : ! !(pm(y):py)De�ning Pass(m;n) def= !(m(y):ny): � Pass(pm; p) (3)10



Composing a binding request for mp with this Pass agent transforms it into abinding request for p as follows.Using !P = P j!P : pml j Pass(pm; p) � pml j pm(y):py j Pass(pm; p)Communication along pm: ! pl j Pass(pm; p) (4)The intuition here is that when a Var agent is bound to the access nameof a provided service (either Prov or Var) it is transformed into a Pass agentwhich forwards binding requests to that service.3.5 Correctness of Program ElaborationIn the previous subsections, �-calculus agents have been de�ned for each of theDarwin syntactic constructs for declaring components, services and bindings. Inaddition, the results of combining these agents has been determined. We can nowascertain the e�ect of elaborating complex con�guration speci�cations and checkthat the correct result is obtained. In particular, it is necessary to demonstratethat complex con�gurations reduce to a system of primitive component instancesin which service references have been correctly placed where they are required.The correctness of the elaboration process must be independent of the order ofcomponent instantiation or binding actions since elaboration of Darwin programstypically takes place in a distributed setting. For example, the system of �gure 6should reduce to a system in which the service reference s has been placed inthe required places l1 and l2.
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1l Fig. 6. System with hierarchic bindingsIn general, a Darwin con�guration program speci�es a set of tree structureddirected acyclic graphs in which the leaf vertices are requirements and the rootvertices are provisions. Vertices at intermediate levels of a tree are interface pro-visions and requirements. The arcs represent the bindings between requirements11



and provisions. Figure 7 depicts the general case for a con�guration which pro-vides a single service s. Con�gurations which provide multiple services simplyconsist of multiple trees of the form shown in �gure 7. The correctness conditionReq(rj; lj) i: : :iii: : : rjp1PPPPPq�����1�����:������*Var(p1; r1)zizi: : : PP : : :PPPPqripi+1�� : : :����1Var(pn; rn)zi: : : rnppPPPPq����1 zProv(pp; s)Fig. 7. General Con�guration Graphfor elaborating a Darwin con�guration is thus:If there is a path in the con�guration graph from the requirementReq(rj; lj)to a provision Prov(pp; s) then elaboration should result in the bindingljs.To prove this, we must demonstrate that the following system, where i : 1::n�1,produces the binding ljs:Req(rj; lj) j rjp1 j : : : j Var(pi; ri) j ripi+1 j : : : j Var(pn; rn) j rnpp j Prov(pp; s):Req(rj; lj) j rjp1 ! p1lj Using 1Var(pi; ri) j ripi+1 ! Pass(pi; pi+1) Using 3p1lj j Pass(pi; pi+1)! pnlj j Pass(pi; pi+1) Using 4Var(pn; rn) j rnpp ! Pass(pn; pp) Using 3pnljPass(pn; pp) ! ppljPass(pn; pp) Using 4Dropping the Pass processes, the system becomes:pplj j Prov(pp; s) Using 2The above �-calculus model is an abstract speci�cation of the distributed elabo-ration algorithm implemented in the Regis system. In Regis, asynchronous mes-sage passing is used to send the locations at which service references are requiredto the providers of services. These messages are forwarded by processes repre-senting interfaces. In the Regis implementation of Darwin elaboration, the Passand Prov processes are implemented by a single elaboration manager process12



per component. When component parameters are substituted and conditionalcon�guration guards evaluated, the number of bindings managed by these pro-cesses can be computed and the elaboration computation can thus be terminated.In the �-calculus model, we have chosen to ignore the detail of Pass and Varprocess termination.The Darwin compiler cannot statically detect two categories of incorrectbindings. These incorrect bindings can therefore occur during elaboration. Itis instructive to compare the behaviour we can determine from the �-calculusmodel with the behaviour we observe in the Regis implementation for thesesituations. The �rst category is simply the situation where a requirement is notbound. As noted in section 3.2, this simply causes the component containingthat requirement to be blocked. The more interesting binding error is depictedin �gure 8 in which a requirement is bound to a cycle of interface entities.r i g ihz� ��� ���Fig. 8. Cyclic binding errorWhile the simple case of cyclic binding depicted in �gure 8 can be staticallydetected, the general case cannot be statically detected when separate compi-lation, parameterisation and conditional con�guration are taken into account.The �-calculus model of the system of �gure 8 is:Req(r; l) j rpg j Var(pg ; rg) j rgph j Var(ph; rh) j rhpg! pg l j Pass(pg; ph) j Pass(ph; pg)! phl j Pass(pg; ph) j Pass(ph; pg)! pg l j Pass(pg; ph) j Pass(ph; pg)As shown above, the system reduces to a system which continuously circulatesthe binding request. The behaviour observed in early versions the Regis systemwas that elaboration manager processes continuously circulate binding messages.The current version detects the error and raises a runtime exception.4 Darwin and Dynamic ArchitecturesIn the previous section, we have described the basic features of Darwin, con-cerned with binding, instantiation and hierarchy, and their semantics in the�-calculus. These features allow the speci�cation of static structures which donot change once elaborated. Darwin also has the ability to specify architectures13



which change at runtime using lazy and direct dynamic instantiation. In thefollowing, we briey describe the direct dynamic instantiation facility and its�-calculus model.Direct dynamic instantiation permits the de�nition of structures which canevolve in an arbitrary way. In practice, we have found that dynamic instantiationcan be used in a way which balances exibility at run-time with the advantagesof retaining a structural speci�cation. Figure 9 is an example of a componentwhich creates new poller components in response to the requests of an externalmanager. The example comes from a distributed system which monitors the loca-tion of Active Badges [17]. Active Badges emit infrared signals which are pickedup by sensors distributed around a building. Each poller component monitorsa string of sensors. New poller components need to be created as the system isextended.
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component sensornet frequire sensout<port smsg>;provide newpoll<dyn int>;instM:mux;bindM.output -- sensout;poller.output -- M.input;newpoll-- dyn poller;gFig. 9. Dynamic instantiationThe provided service newpoll is bound to the service dyn poller to satisfythis need. Invoking the service creates a new poller instance and passes it asingle integer parameter. Note that in �gure 9, bindings are speci�ed for thecomponent type poller rather than for instances of this type as is usual. Thesetype speci�c bindings serve to de�ne the environment in which the dynamicallycreated instances of poller will execute. The interfaces for dynamically createdcomponents types may only usefully declare a requirement for services. Sincedynamically created instances are essentially anonymous, it would not be pos-sible within Darwin to declare bindings to services they provide, nevertheless,dynamically created components may provide services. Access to these services isachieved by passing service references in messages to form bindings dynamically.These bindings cannot be captured by the Darwin program.Dynamic instantiation is modelled in the �-calculus by a Prov agent whichsupplies the name of the instantiation service. This instantiation service triggersone of the copies of a replicated process. As an example of modelling dynamic14



instantiation, we will use the system of �gure 2 and modify it so that Clientcomponents can be created through the service d:component System fprovide d <dyn>;inst B:Server;bindd -- dyn Client;Client.r -- B.p;gThe �-calculus model for this system is shown below. The Prov agent will returnthe name m in response to a binding request. A client which performs the actionm will cause a new replica of the Client component to be instantiated togetherwith its associated bind action. In general, the action would be m !x where !xrepresents the vector of parameters for the newly instantiated component.(� pB; d;m)(Server (pB) j Prov(d;m) j!(m():(� r)(Client(r) j rpB)))Dynamic instantiation does not change the basic model of section 3. It is repre-sented by a Prov agent which is treated and bound in the same way as otherProv agents. Note that the way in which a component is instantiated, staticallyor dynamically, does not change the de�nition of that component.5 Discussion and ConclusionsDarwin has little impact on the internal structure and behaviour of the prim-itive components it con�gures. Components may be sequential, concurrent ordistributed. They are only required to supply the names or references of servicesand accept bindings. The �-calculus description of Darwin clearly illustratesthis separation between architecture and computation/communication in sys-tems constructed using Darwin. Unlike Allan and Garlan [18], we do not makeany assumptions about the way instantiated primitive components interact. Wehave deliberately not considered in any detail the modelling of component inter-action mechanisms. However, some of the communicationmechanisms supportedby the Regis system have been modelled in detail in the �-calculus [19]. Theseinteraction models do not impact the con�guration of Darwin programs butrather their runtime behaviour. We can thus modularise our reasoning aboutDarwin/Regis programs or indeed any distributed system using Darwin for con-�guration support.Section 3 described a general model of the elaboration of Darwin programs.It demonstrated that for correct con�gurations this elaboration resulted in thecorrect bindings between primitive components requiring services and those pro-viding them. In addition, the model could be used to examine the behaviour ofincorrect con�gurations. The fact that this behaviour agrees with that observedin an implementation gives some additional con�dence in the validity of the15



model. Section 4 showed that one of the Darwin features concerned with dynamiccon�guration could easily be modelled without disturbing the basic elaborationalgorithm. Further extensions can be tested against the criteria that they donot adversely a�ect or complicate elaboration. Work is currently in progress toprovide open systems binding, the ability to manage group communication ab-stractions and component migration. We are also extending the de�nition of theDarwin language together with its �-calculus semantics to capture the notion ofarchitectural styles [20].We have chosen to ignore component parameterisation in arriving at the�-calculus model. Component parameters can determine the �nal structure ofa system through the conditional and replicator constructs. While these couldbe modelled directly in �-calculus the resulting model is clumsy and obscuresthe intuitions that can be obtained from the current model. We have found itmore convenient to consider parameter substitution and the resulting conditionalguard and replicator evaluation as a phase (similar to macro expansion) whichoccurs before concurrent elaboration.One of the major bene�ts of using the �-calculus to model Darwin has beenour increased understanding of the role and nature of con�guration languages.Rice and Seidman [21] chose to use the Z speci�cation language [22] as a meansfor modelling component instantiation, interconnection, and hierarchical com-position for con�guration languages such as Conic. We felt that the processalgebras might be more appropriate to model component interaction and elab-oration. Initially, we attempted to de�ne the semantics of Conic using theCCS [23] and CSP [24] formalisms. While it was possible to reason about thebehaviour of the set of communicating processes resulting from the elaborationof a con�guration program, we were unable to develop a satisfactory model forthe elaboration process itself. It now seems clear that this was due to the inabil-ity in these formalisms to describe evolving or dynamic structures. However, atthe time, Conic supported only the de�nition of static structures and it did notoccur to us to consider elaboration as a computation requiring the mobility ofprocesses or channels. In fact, the Conic system did not treat channels as �rstclass objects which could be transmitted in messages and the elaboration processwas sequential. The requirement that Darwin be a general purpose con�gurationlanguage led us to develop a more general model for binding which involved themanagement of service references. The requirement that the elaboration processbe distributed meant that these service references must be freely transmittedbetween processes in messages. Milner [25] stresses the fundamental importanceof naming or reference in concurrent computation and considers the �-calculusas the beginnings of a tractable theory for reference. It is consequently not sur-prising that Darwin, a language primarily concerned with reference and binding,can be elegantly modelled in the �-calculus.Finally, we would like to emphasise that, together with others, we have ac-cumulated extensive experience in using Darwin for constructing distributedsystems [10, 11]. We are therefore con�dent in proposing Darwin as both a prac-tical and sound means for specifying and manipulating the software architecture16
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