Specifying Distributed Software Architectures

Jeff Magee, Naranker Dulay, Susan Eisenbach and Jeff Kramer

Department of Computing
Imperial College
London SW7 2BZ, United Kingdom

jnm, nd, se, jk@doc.ic.ac.uk

Abstract. There is a real need for clear and sound design specifica-
tions of distributed systems at the architectural level. This is the level
of the design which deals with the high-level organisation of computa-
tional elements and the interactions between those elements. The paper
presents the Darwin notation for specifying this high-level organisation.
Darwin 1s in essence a declarative binding language which can be used to
define hierarchic compositions of interconnected components. Distribu-
tion is dealt with orthogonally to system structuring. The language sup-
ports the specification of both static structures and dynamic structures
which may evolve during execution. The central abstractions managed
by Darwin are components and services. Services are the means by which
components interact.

In addition to its use in specifying the architecture of a distributed sys-
tem, Darwin has an operational semantics for the elaboration of specifi-
cations such that they may be used at runtime to direct the construction
of the desired system. The paper describes the operational semantics of
Darwin in terms of the w-calculus, Milner’s calculus of mobile processes.
The correspondence between the treatment of names in the w-calculus
and the management of services in Darwin leads to an elegant and con-
cise w-calculus model of Darwin’s operational semantics. The model is
used to argue the correctness of the Darwin elaboration process. The
overall objective is to provide a soundly based notation for specifying
and constructing distributed software architectures.

This paper will appear in the Fifth European Software Engineering Conference,
ESEC ’95 on 26 September 1995 in Barcelona.

1 Introduction

It has been recently recognised within the Software Engineering community,
most notably by Garlan and Shaw [1] and Perry and Wolf [2], that when sys-
tems are constructed from many components, the organisation or architecture
of the overall system presents a new set of design problems. One of the archi-
tectural concerns identified by Garlan and Perry [3] is the high-level description
of systems based on graphs of interacting components. They identify compo-
nents as the primary points of computation in a system and connectors to define
the interactions between these components. Our work addresses this concern in
the context of distributed systems and in particular stresses the management of
system structure.

We are concerned with the provision of sound and practical means for the
design and construction of distributed systems. To this end we have been in-
volved in the development and use of structural configuration languages [4, 5, 6]
as a means of specifying and subsequently managing system structure. The lan-
guages we have developed have in common the notion of a component as the
basic element from which systems are constructed. Complex components are con-
structed by composing in parallel more elementary components and as a result,
the overall architecture of a system is described as a hierarchical composition
of primitive components which at execution time may be located on distributed
computers. These primitive components have a behavioural specification as op-
posed to a structural description. Others that have also adopted a similar use
of configuration languages for distributed systems include Polylith [7], Durra [8]
and LEAP [9].

The version of Darwin used in this paper is the latest in a line of config-
uration languages. Darwin 1s a declarative language which is intended to be a
general purpose notation for specifying the structure of systems composed from
diverse components using diverse interaction mechanisms. It is currently being
used in the context of the Regis system [10] which supports multiple interaction
primitives and in the Sysman project [11] with ANsaware [12] which uses remote
object invocation for component interaction. Darwin allows the specification of
both static structures fixed during system initialisation and dynamic structures
which evolve as execution progresses. An earlier version of Darwin was used
in conjunction with the REX distributed systems platform [5]. The version de-
scribed here differs in 1ts treatment of dynamic structures and in the ability to
deal with diverse interaction mechanisms.

Distributed programs can be constructed directly from their Darwin specifi-
cations. Darwin thus has an operational interpretation such that elaboration at
runtime of the Darwin specification results in a distributed set of interconnected
primitive components. In contrast with its predecessors, ConIc [4] and REX [5]
which had centralised sequential interpretations, Darwin has a distributed and
concurrent interpretation permitting the construction of large distributed sys-
tems in an efficient manner. In addition, it allows physical distribution to be
specified completely orthogonally to logical structure. Darwin allows interaction
with external management agents [11] which can direct structural changes in

response to changing system requirements whether operational or evolutionary.

The aim that Darwin be general purpose requires that there should be a clear
and well specified division of responsibilities between Darwin and the primitive
components it configures. The requirement that Darwin should be capable of
concurrent elaboration demands that the re must be a clear and unambiguous
model of Darwin’s operational behaviour against which implementations can be
validated. We have attempted to satisfy both these requirements by modelling
Darwin in the w-calculus [13], Robin Milner’s calculus of mobile processes. The
reasons for choosing this formalism are discussed in the concluding sections of the
paper. The paper initially describes the basic features of Darwin and outlines
how these are modelled in the m-calculus. This basic model is then used to
prove some properties of Darwin configurations. The paper demonstrates that
the basic w-calculus model can be extended to incorporate those parts of Darwin
concerned with dynamic structures and concludes by comparing the Darwin/z-
calculus approach we have adopted with related work.

2 Darwin

A distributed system consists of multiple concurrently executing and interact-
ing computational components. Typically, a system consists of a limited set
of component types with multiple instances of these types. The task of spec-
ifying the system as a collection of components with complex interconnection
patterns quickly becomes unmanageable without the help of some structuring
tools. The configuration language Darwin provides such a structuring tool. It
has both a graphical and textual representation. Darwin allows distributed pro-
grams to be constructed from hierarchically structured specifications of the set
of component instances and their interconnections. Composite component types
are constructed from the primitive computational components and these in turn
can be configured into more complex composite types. Components interact by
accessing services. This section gives a brief overview of Darwin before a more
precise description using w-calculus 1s given in the following section.

2.1 Components and Services

Darwin views components in terms of both the services they provide to allow
other components to interact with them and the services they require to inter-
act with other components. For example, the component of figure 1 is a filter
component which provides a single service output and requires a single service
wmput. The diagrammatic convention used here is that filled in circles represent
services provided by a component and empty circles represent services required
by a component. The type of the service is specified in angle brackets. In the ex-
ample, the communication mechanism used to implement the service is a stream
and the datatype communicated is char. Darwin does not interpret service type
information, 1t is used by the underlying distributed platform. In the Regis sys-
tem [10], this information is used to directly select the correct communication

code. When used with a more conventional distributed systems platform such as
ANsaware, the service type names an IDL specification which is used to generate
the correct client and server stubs.

filter
) component filter{
Input output provide output<stream char>;
require input<stream char>;

}

Fig. 1. component type filter

In general, a component may provide many services and require many ser-
vices. It should be noted that the names of required and provided services are lo-
cal to the component type specification. A component does not need to know the
global names of external services or where they are to be found in the distributed
environment. Components may thus be implemented and tested independently
of the rest of the system of which they will form a part. We call this property
context independence. It permits the reuse of components during construction
(through multiple instantiation) and simplifies replacement during maintenance.

2.2 Composite Components

The primary purpose of the Darwin configuration language is to allow system ar-
chitects to construct composite components from both basic computational com-
ponents and from other composite components. The resulting system 1s a hier-
archically structured composite component which when elaborated at execution
time results in a collection of concurrently (potentially distributed) executing
computational component instances. Darwin is a declarative notation. Compos-
ite components are defined by declaring both the instances of other components
they contain and the bindings between those components. Bindings, which as-
sociate the services required by one component with the services provided by
others, can be visualised as filling in the empty circles of a component with the
solid circles provided by other components. The example of figure 2 defines a
variable length pipeline of filter instances in which the input of each instance
is bound to its predecessor’s output. Bindings between requirements and provi-
sions are declared by the bind statement. For example, the input of each filter
component instance F[k+1]is bound to the output of its predecessor F[k] by the
statement bind F[k + 1].input -- F[k].output. Requirements which cannot be
satisfied inside the component can be made visible at a higher level by binding
them to an interface requirement as has been done in the example for filter F/[0]
requirement input which is bound to input. Similarly services provided internally
which are required outside are bound to an interface service provision e.g. out-
put == F[n—1].output. The Darwin design [14] and construction tools check that

pipeling(n)

Fn-1] output

component pipeline(int n){
provide output;
require input;

array F[n]: filter;
forall k:0..n-1 {
inst F[k] @ k+1;
when k < n-1;
bind F[k+1].input -- F[k].output;
}

bind
F[0].input -- input;
output -- F[n-1].output;

}

Fig. 2. composite component pipeline

bindings are only made between required and provided services with compatible
types. The compatibility test invoked is determined by the target distributed
systems platform. Where necessary, the Darwin tools infer the type of interface
services which are not explicitly typed. In general, many requirements may be
bound to a single provision. A particular requirement may be bound to a single
provision only. It should be noted that a service may transmit or receive infor-
mation or do both. The many requirements to a single provision binding pattern
may thus describe either one-to-many or many-to-one communication depend-
ing on the interaction mechanism used to implement the service. For example,
streams and events in Regis are one-to-many interaction types while ports and
entries (similar to Ada entries) are many-to-one.

The example of figure 2 locates each filter instance F'[k] on a different host
computer by means of the annotation @k + 1. The integer machine identifiers are
mapped to real machine addresses by the runtime system for Darwin. This level
of indirection in mapping permits portable specifications. In general, instances
are located at the machine on which the enclosing component is elaborated unless
they are annotated. The reader is referred to [10] for further (and more realistic)

examples of Darwin configuration programs.

The w-calculus [13] is an elementary calculus for describing and analysing concur-
rent systems with evolving communication structure. In this paper, we use the simple
monadic form. A system in the w-calculus is a collection of independent processes which
communicate via channels. Channels or links are referred to by name. Names are the
most primitive entities in the calculus, they have no structure. There are an infinite
number of names, represented here by lowercase letters.

Processes are built from names as follows:

action terms ::= Tz.P Output the name z along the link named « then execute
process P.
#(y).P Input a name, call it y, along the link named = and then
execute P (binds all free occurrences of y in P).

terms i:= A; + ...+ A,, Alternative action n > 0, execute one of A.
When n = 0, it is written as 0 and means stop.
P | P Composition P, and P> execute concurrently.
The operation is commutative and associative.
(v y)P Restriction, introduces a new name y with scope

P (binds all free occurrences of y in P).
'P Replication, provide any number of copies of P.
It satisfies the equation !P = P |!P. Recursion can
be coded as replication so need not be included as
a separate method for building processes. Recursion will
be used when it makes examples clearer.

Computation in the w-calculus is expressed by the following reduction rule:
(cotz(y).Pr.)| (. 4Tz Pa+) — Pi{z/y} | P..

Sending z along channel z reduces the left hand side to P; | P> with all free occurrences
of y in P; replaced by z. The following is a simple example of applying the reduction
rule:

72.0 | z(y).y(s).0 — 2(s).0

For reasons of conciseness, in the remainder of the paper we will omit the stop process
.0 in an agent and write z(s) in place of z(s).0.

Fig. 3. w-calculus

3 Modelling Darwin in the w-calculus

Our purpose in modelling Darwin in the #-calculus is to provide a precise se-
mantics for the language. We wish to demonstrate that a Darwin configuration

program correctly specifies the set of primitive component instances and set of
intercomponent bindings required at runtime. Further, we wish to demonstrate
that this elaboration process is correct when executed concurrently. The model
should define precisely that which is the responsibility of the Darwin program
and that which must be carried out by the components configured by the Darwin
program. Darwin supports static checking to ensure only bindings between com-
patible requirements and provisions are allowed. Service types can be modelled
using the concepts of sort and sorting provided by the polyadic m-calculus [15],
but unavailable in the simple monadic form of the #-calculus used in this paper.
For simplicity, in the following, the types of Darwin services and type disci-
pline for binding are omitted. A brief overview for readers unfamiliar with the
m-calculus is given in figure 3.

3.1 Provide, Require, Bind

In this section, an interpretation in the 7-calculus is given for each of the Darwin
syntactic constructs concerned with requiring, providing and binding services.
With these, we can examine the elaboration of a simple configuration which has
no hierarchic structure.

Provide The declaration of a provided service, provide p, in Darwin is mod-
elled in the m-calculus as the agent PrRoV(p, s) which is accessed by the Darwin
name p and manages the service s as shown below:

ProV(p,s) = I(p(z).7s)

p where

s — service reference

x — location at which s is required
provide p; p — access name

The service s is simply the name or reference to a service which must be im-
plemented by a component. Darwin is not concerned with how the service s is
implemented, it is concerned with placing s where it is required by other com-
ponents which use the service. The agent PROV thus receives the location z at
which the service is required and sends s to that location. Since there may be
more than one client of the service, the agent PROV is defined to be a repli-
cated process (1) which will repeatedly send out the service reference each time
a location is received.

Require The declaration of a required service, require r, is modelled by the
agent REQ(r,!) which is accessed by the Darwin name r and which manages
the location [at which the service is required. Again, Darwin is not concerned
with how a client component uses a service, it must ensure that a reference to
the service is placed at some location in the client component. The REQ agent
receives the access name to a PROV agent and sends the location [to that agent.
A requirement in Darwin may only be bound to a single service and so the agent
REQ sends out the location [precisely once as shown below:

Req(r,l) < r(y)7l

r where

[— location at which service is required
y — name of service provider

I‘equire I 7 — access name

Bind The binding construct in Darwin is modelled by the BIND agent which
simply sends the access name of the PROV agent to the REQ agent.

r p |BIND(r,p) = Tp
O——@ |where
r — name of requirement

bind r -- p; p — name of provision

Initially, we will ignore the fact that PROvV and REQ agents are always contained
within a component and examine the effect of binding on these agents. Firstly,
the composition of REQ and BIND:

Substituting definitions: REQ(r, 1) | BIND(r, p) = r(y).9l | Fp
Communication along r: — pl

(1)

In other words, the composition of a REQ agent with a BIND agent produces a
binding request of the form pl, in which the location at which the service name is
required [is sent along the access channel p of the PrROV agent. When composed
with the PROV agent, the binding request results in a binding as follows:

Using !P = P |!P: pl | Prov(p,s) = pl | p(x).Ts | PROV(p, s)
Communication along p: — [s | PrROV(p, 5)

(2)

The result of composing a REQ, PROV and BIND agent is thus the binding
in which the name of the service s is sent to the place [where it is required.
The PrROV agent remains to allow further bindings. The following section looks
at the effect of these agents in the context of a simple Darwin configuration.

3.2 Components and non-hierarchical configurations

Agents or processes in the w-calculus cannot be directly named, instead agents
are accessed by named channels. Although Darwin names instances of compo-
nents, these names are only used to qualify the names of the service they provide
or require. This is illustrated by translating the simple non-hierarchical Darwin
configuration of figure 4 into the m-calculus.

component Server { | component System {
provide p; inst
} A:Client;
B:Server;
component Client { | bind
require r; Ar--Bp
} }

Fig.4. Client Server configuration

Components Each primitive component is represented by an agent which is a
composition of the PRov and REQ agents which manage its service requirements
and provisions and the agents which define its behaviour. A primitive component
is simply a component which has no Darwin defined substructure of components.
The Server component type of figure 4 is represented by the m-calculus agent:

Server(p) def (v s)(PrROV(p, 5) | Server’(s)).

in which Server’ represents the user implemented behaviour of the Server
component which realises the services s. Similarly, the Client component type is
represented by the agent:

Client(r) = (v)(Req(r,1) | Client'(1)).

Note that the scope of the service name s is local to the Server agent and
similarly, the name of the place at which the service is required [is also local to

the Client. As can be seen in the following, binding extends the scope of these
names.

3.3 Non-hierarchical configuration

The configuration of the System component of figure 4 is represented in #-
calculus by the parallel composition of a Client, Server and BIND agent:

System def (v ra,pp)(Client(ra) | Server(pp) | BIND(ra,pB)).

The instance names A and B in figure 4 are used only to qualify and thus rename
the requirement r and provision p of the Client and Server component types.
The expression above i1s a precise translation of the Darwin configuration of
figure 4. To demonstrate that the model is correct, it must be shown that the
client instance A will get the service reference provided by the server B when
the configuration is elaborated. Substituting the definitions for Client and Server
and dropping the quoted user defined behaviour agents since they play no part
in the binding process the w-calculus description of figure 4 becomes:

(v ra,p)(v hUREQ(ra,) | (v s)PROV(ppB, s) | BIND(r4,pB))
— (v pp)((v)PBL| (v s)PROV(pE, 5)) Applying (1)
— (v 1,5,pp)(ls | PROV(pB, 5)) Applying (2)

The expression describing the client server system thus reduces to an expression
which sends the service s to the required location [in parallel with the Prov
agent and of course Server’ and Client'. Before the client can use the service it
must perform an input action. A possible definition for Client’ would be:

def

Client'(l) = l(x).Client”.
The system: (v 1,5,pB)(Is | PROV(pB, s) | Client'(1) | Server'(s))
then reduces to: — (v s,pp)PROV(pp, s) | Client”(s/x) | Server'(s)

which is the desired result of an instance of the server component executing in
parallel with a client component in which every occurrence of the local name
x has been replaced with the name s, the reference to the required service. In
practice, a Darwin implementation can compute the number of requirements
bound to a provision and so the number of replicas of the agent PROV is known.
Consequently, the configuration process can terminate and the resources it uses
can be recovered. It should be noted the model described permits binding and
instantiation to proceed concurrently. Components which try to use a service
will be blocked until they are bound to that service (i.e. they must input the
service reference as in Client’).

3.4 Composite components and hierarchic binding

Hierarchic binding occurs in a composite component to bind the interface provi-
sions and requirements to the constituent component instances. These hierarchic
bindings take one of the three forms depicted in figure 5.

Case (a) is the export of an internal provision to form part of the interface of
the composite component. An interface provide may only be bound to a single

(a) (b) (c)

: h gli]
A B !
9 h
provide g; require h[n]; provide g[n];
bind g -- A.p; forall i:0..n-1 require h;
bind B[i].r -- h; forall i:0..n-1
bind g[i] -- h;

Fig. 5. Hierarchic bindings

instance provide since a service can only be implemented by a single primitive
component instance. Case (b) is the situation where one or more internal instance
requires (of the same service type) are bound to an interface require to reflect
the situation that the required service is to be provided outside the composite
component. The remaining case (c) is the situation where one or more interface
provides are not implemented inside the composite component but are bound to
an interface require. These connection only components are useful for defining
connection patterns and in addition, they may form the base case of recursively
defined structures.

In case (a) and (c), the interface provide must act like a REQ agent for
bindings inside the composite component and as a PROV agent for external
bindings made at the next level of the configuration. The opposite is necessary
in case (b) and (c), where the interface require must act like a PROV agent
internally and a REQ agent externally [16]. Interface requires and provides
are modelled in the w-calculus by the VAR agent which combines the behaviour
of REQ and Prov as shown below.

VAR(Ps 'm) = (). (P () Ty)
where
rm — access name for require side of m
Pm — access name for provide side of m
z — name bound to r,,
y — location service required at

'm| Pm

We will show in the following that the effect of binding a VAR agent is to
create an agent which simply passes on binding requests.

VAR(Pm, m) | BIND(rm, p) = 7m(2) N om (v).TY) | Tmp

Communication along 7, : — pm(y).PY)

Defining Pass(m, n) Lef (m(y).my): = Pass(pm,p)

(3)

10

Composing a binding request for m, with this Pass agent transforms it into a
binding request for p as follows.

Using !P = P |IP: Pml | PASS(pm,) = Pl | Pm(y) Py | PASS(pm, p)
Communication along py,: — pl | PASS(pm, p)
(4)

The intuition here is that when a VAR agent is bound to the access name
of a provided service (either PROV or VAR) it is transformed into a PAss agent
which forwards binding requests to that service.

3.5 Correctness of Program Elaboration

In the previous subsections, w-calculus agents have been defined for each of the
Darwin syntactic constructs for declaring components, services and bindings. In
addition, the results of combining these agents has been determined. We can now
ascertain the effect of elaborating complex configuration specifications and check
that the correct result is obtained. In particular, it is necessary to demonstrate
that complex configurations reduce to a system of primitive component instances
in which service references have been correctly placed where they are required.
The correctness of the elaboration process must be independent of the order of
component instantiation or binding actions since elaboration of Darwin programs
typically takes place in a distributed setting. For example, the system of figure 6
should reduce to a system in which the service reference s has been placed in
the required places {; and [5.

Fig. 6. System with hierarchic bindings

In general, a Darwin configuration program specifies a set of tree structured
directed acyclic graphs in which the leaf vertices are requirements and the root
vertices are provisions. Vertices at intermediate levels of a tree are interface pro-
visions and requirements. The arcs represent the bindings between requirements

11

and provisions. Figure 7 depicts the general case for a configuration which pro-
vides a single service s. Configurations which provide multiple services simply
consist of multiple trees of the form shown in figure 7. The correctness condition

REQ(r;, 1) O

VAR(p1 , T)

e YaRn,7a)

O/'.O/ @. PROV(py, $)

Fig.7. General Configuration Graph

for elaborating a Darwin configuration is thus:

If there is a path in the configuration graph from the requirement REQ(r;, ;)
to a provision PROV(pp, s) then elaboration should result in the binding
Is.

To prove this, we must demonstrate that the following system, where i : 1..n—1,
produces the binding ; s:

REQ(rj, ;) | 7py |- | VAR(p:, 76) | Fipiyq | - | VAR(pn,70) | [y | PROV(pp, 5).
REQ(r;,) [7p, — D1l Using 1
VAR(p;, 7:) | Fips 1 — PAsS(ps, pit1) Using 3
pil; | Pass(pi, pit1) — Pnl; | PASS(pi, pit1) Using 4
VAR(pn, 7n) | Tap, — PASS(pn,pp) Using 3
Pnl;PasS(pn,pp) — p_plj Pass(pn, pp) Using 4

Dropping the Pass processes, the system becomes:
p_plj | PrROV(pp, s) Using 2

The above w-calculus model is an abstract specification of the distributed elabo-
ration algorithm implemented in the Regis system. In Regis, asynchronous mes-
sage passing is used to send the locations at which service references are required
to the providers of services. These messages are forwarded by processes repre-
senting interfaces. In the Regis implementation of Darwin elaboration, the Pass
and PROV processes are implemented by a single elaboration manager process

12

per component. When component parameters are substituted and conditional
configuration guards evaluated, the number of bindings managed by these pro-
cesses can be computed and the elaboration computation can thus be terminated.
In the m-calculus model, we have chosen to ignore the detail of PAss and Var
process termination.

The Darwin compiler cannot statically detect two categories of incorrect
bindings. These incorrect bindings can therefore occur during elaboration. It
is instructive to compare the behaviour we can determine from the w-calculus
model with the behaviour we observe in the Regis implementation for these
situations. The first category is simply the situation where a requirement is not
bound. As noted in section 3.2, this simply causes the component containing
that requirement to be blocked. The more interesting binding error is depicted
in figure 8 in which a requirement is bound to a cycle of interface entities.

=

Fig. 8. Cyclic binding error

While the simple case of cyclic binding depicted in figure 8 can be statically
detected, the general case cannot be statically detected when separate compi-
lation, parameterisation and conditional configuration are taken into account.
The m-calculus model of the system of figure 8 is:

REQ(r, 1) | T, | VAR(py,74) | Tgpy, | VAR(pR, 70) | ThD,
— Dl | Pass(pg, pr) | Pass(pn, py)
— Tl | Pass(pg, pn) | PASS(ph, pyg)
— Dl | Pass(pg, pr) | Pass(pn, py)

As shown above, the system reduces to a system which continuously circulates
the binding request. The behaviour observed in early versions the Regis system
was that elaboration manager processes continuously circulate binding messages.
The current version detects the error and raises a runtime exception.

4 Darwin and Dynamic Architectures

In the previous section, we have described the basic features of Darwin, con-
cerned with binding, instantiation and hierarchy, and their semantics in the
m-calculus. These features allow the specification of static structures which do
not change once elaborated. Darwin also has the ability to specify architectures

13

which change at runtime using lazy and direct dynamic instantiation. In the
following, we briefly describe the direct dynamic instantiation facility and its
m-calculus model.

Direct dynamic instantiation permits the definition of structures which can
evolve in an arbitrary way. In practice, we have found that dynamic instantiation
can be used in a way which balances flexibility at run-time with the advantages
of retaining a structural specification. Figure 9 is an example of a component
which creates new poller components in response to the requests of an external
manager. The example comes from a distributed system which monitors the loca-
tion of Active Badges [17]. Active Badges emit infrared signals which are picked
up by sensors distributed around a building. Each poller component monitors
a string of sensors. New poller components need to be created as the system is
extended.

component sensornet {
newpoll sensor net require sensout<port smsg>;
provide newpoll<dyn int>;
poller M inst
input output M:mux;
output :
p MUX | sendout Pind
M.output -- sensout;

poller.output -- M.input;
newpoll-- dyn poller;

}

Fig. 9. Dynamic instantiation

The provided service newpoll is bound to the service dyn poller to satisfy
this need. Invoking the service creates a new poller instance and passes it a
single integer parameter. Note that in figure 9, bindings are specified for the
component type poller rather than for instances of this type as is usual. These
type specific bindings serve to define the environment in which the dynamically
created instances of poller will execute. The interfaces for dynamically created
components types may only usefully declare a requirement for services. Since
dynamically created instances are essentially anonymous, it would not be pos-
sible within Darwin to declare bindings to services they provide, nevertheless,
dynamically created components may provide services. Access to these services is
achieved by passing service references in messages to form bindings dynamically.
These bindings cannot be captured by the Darwin program.

Dynamic instantiation is modelled in the #-calculus by a PRov agent which
supplies the name of the instantiation service. This instantiation service triggers
one of the copies of a replicated process. As an example of modelling dynamic

14

instantiation, we will use the system of figure 2 and modify it so that Client
components can be created through the service d:

component System {
provide d <dyn>;
inst B:Server;

bind
d == dyn Client;
Client.r -- B.p;

1

The 7-calculus model for this system is shown below. The PrROV agent will return
the name m in response to a binding request. A client which performs the action
m will cause a new replica of the Client component to be instantiated together
with its associated bind action. In general, the action would be m 7 where «
represents the vector of parameters for the newly instantiated component.

(v pp,d, m)(Server(pp) | PrROV(d, m) |{(m().(v v)(Client(r) | Tpp)))

Dynamic instantiation does not change the basic model of section 3. It is repre-
sented by a PROV agent which is treated and bound in the same way as other
ProOV agents. Note that the way in which a component is instantiated, statically
or dynamically, does not change the definition of that component.

5 Discussion and Conclusions

Darwin has little impact on the internal structure and behaviour of the prim-
itive components it configures. Components may be sequential, concurrent or
distributed. They are only required to supply the names or references of services
and accept bindings. The 7w-calculus description of Darwin clearly illustrates
this separation between architecture and computation/communication in sys-
tems constructed using Darwin. Unlike Allan and Garlan [18], we do not make
any assumptions about the way instantiated primitive components interact. We
have deliberately not considered in any detail the modelling of component inter-
action mechanisms. However, some of the communication mechanisms supported
by the Regis system have been modelled in detail in the w-calculus [19]. These
interaction models do not impact the configuration of Darwin programs but
rather their runtime behaviour. We can thus modularise our reasoning about
Darwin/Regis programs or indeed any distributed system using Darwin for con-
figuration support.

Section 3 described a general model of the elaboration of Darwin programs.
It demonstrated that for correct configurations this elaboration resulted in the
correct bindings between primitive components requiring services and those pro-
viding them. In addition, the model could be used to examine the behaviour of
incorrect configurations. The fact that this behaviour agrees with that observed
in an implementation gives some additional confidence in the validity of the

15

model. Section 4 showed that one of the Darwin features concerned with dynamic
configuration could easily be modelled without disturbing the basic elaboration
algorithm. Further extensions can be tested against the criteria that they do
not adversely affect or complicate elaboration. Work 1s currently in progress to
provide open systems binding, the ability to manage group communication ab-
stractions and component migration. We are also extending the definition of the
Darwin language together with its m-calculus semantics to capture the notion of
architectural styles [20].

We have chosen to ignore component parameterisation in arriving at the
m-calculus model. Component parameters can determine the final structure of
a system through the conditional and replicator constructs. While these could
be modelled directly in @-calculus the resulting model i1s clumsy and obscures
the intuitions that can be obtained from the current model. We have found it
more convenient to consider parameter substitution and the resulting conditional
guard and replicator evaluation as a phase (similar to macro expansion) which
occurs before concurrent elaboration.

One of the major benefits of using the w-calculus to model Darwin has been
our increased understanding of the role and nature of configuration languages.
Rice and Seidman [21] chose to use the Z specification language [22] as a means
for modelling component instantiation, interconnection, and hierarchical com-
position for configuration languages such as ConNic. We felt that the process
algebras might be more appropriate to model component interaction and elab-
oration. Initially, we attempted to define the semantics of CoNIC using the
CCS [23] and CSP [24] formalisms. While it was possible to reason about the
behaviour of the set of communicating processes resulting from the elaboration
of a configuration program, we were unable to develop a satisfactory model for
the elaboration process itself. It now seems clear that this was due to the inabil-
ity in these formalisms to describe evolving or dynamic structures. However, at
the time, CONIC supported only the definition of static structures and it did not
occur to us to consider elaboration as a computation requiring the mobility of
processes or channels. In fact, the CONIC system did not treat channels as first
class objects which could be transmitted in messages and the elaboration process
was sequential. The requirement that Darwin be a general purpose configuration
language led us to develop a more general model for binding which involved the
management of service references. The requirement that the elaboration process
be distributed meant that these service references must be freely transmitted
between processes in messages. Milner [25] stresses the fundamental importance
of naming or reference in concurrent computation and considers the w-calculus
as the beginnings of a tractable theory for reference. It is consequently not sur-
prising that Darwin, a language primarily concerned with reference and binding,
can be elegantly modelled in the w-calculus.

Finally, we would like to emphasise that, together with others, we have ac-
cumulated extensive experience in using Darwin for constructing distributed
systems [10, 11]. We are therefore confident in proposing Darwin as both a prac-
tical and sound means for specifying and manipulating the software architecture

16

of distributed systems.

The authors would like to acknowledge discussions with our colleagues in the
Distributed Software Engineering Section Group during the formulation of these
ideas. We gratefully acknowledge the DTT (Grant Ref: TED 410/36/2) and the
EPSRC (Grant Ref: GR/J52693) for their financial support.

References

1. D. Garlan and M Shaw, An Introduction to Software Architecture, in Advances in
Software Engineering and Knowledge Engineering, Vol. 1, ed. Ambriola and Tortora,
World Scientific Publishing Co., 1993.

2. D.E. Perry and A.L. Wolf, Foundations for the study of Software Architectures,
ACM SIGSOFT, Software Engineering Notes, 17 (4), 1992, pp 40-52.

3. D. Garlan and D. Perry, Software Architecture: Practice, Potential and Pitfalls
(Panel Introduction), Proc. of 16th Intl. Conf. on Software Engineering, S orrento,
May 1994.

4. J. Magee, J. Kramer, and M. Sloman, Constructing Distributed Systems in Conic,
IEEE Transactions on Software Engineering, SE-15 (6), 1989.

5. J. Kramer, J. Magee, M. Sloman and N. Dulay, Configuring Object- Based Distributed
Programs in REX, IEE Software Engineering Journal, Vol. 7, 2, March 1992, pp139-
149.

6. J. Magee, N. Dulay and J. Kramer, Structuring Parallel and Distributed Programs,
IEE Software Engineering Journal, Vol. 8 No. 2, March 1993, pp73-82.

7. J.M. Purtilo, The POLYLITH Software Bus, ACM Transactions on Programming
Languages, 16(1), January 1994, pp 151-174.

8. M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner and R. Lichota, Durra: a
structure description language for developing distributed applications, IEE Software
Engineering Journal, Vol. 8, No. 2, March 1993, pp83-94.

9. H. Graves, Lockheed Environment for Automatic Programming, Proc. of KBSE 91,
6th IEEE Knowledge Based Software Engineering Conference, 1991, pp 68-76.

10. J.Magee, N. Dulay and J. Kramer, Regis: A Constructive Development Environ-
ment for Distributed Programs, Distributed Systems Engineering Journal, to appear.

11. S. Crane, N. Dulay, H. Fossa, J. Kramer, J. Magee, M. Sloman and K. Twidle,
Configuration Management for Distributed Systems, to be presented at ISINM 95.

12. ANsAware 4.1: Application Programming in ANSAware, Document RM.102.02, Ar-
chitecture Projects Management Agency, Poseidon House, Cambridge Feb. 1993.

13. R.Milner, J. Parrow, and D.Walker, A calculus of mobile processes, Parts I and I1,
Journal of Information and Computation, Vol. 100, pp 1-40 and pp 41-77, 1992.

14. K. Ng, J. Kramer, J. Magee and N. Dulay, The Software Architect’s Assistant - A
Visual Fnvironment for Distributed Programming, HICSS-28, January 1995.

15. R. Milner, The polyadic w-calculus: a tutorial in Logic and Algebra of Specification,
ed. F.L. Bauer, W. Brauer and H. Schwichttenberg, Springer Verlag, 1993, pp203-
246.

16. S. Eisenbach and R. Paterson, w-Calculus Semantics for the Concurrent Configu-
ration Language Darwin, HICSS-26, January 1993.

17. A. Harter and A. Hopper, A Distributed Location System for the Active Office,
IEEE Network, Jan./Feb. 1994, pp. 62-70.

18. R. Allan and D. Garlan, Formalizing Architectural Connection, Proc. of 16th In-
ternational Conference on Software Engineering, Sorrento, May 1994.

17

19. M. Radestock and S. Eisenbach, What Do You Get From a w-calculus Semantics?,
PARLE 94, Springer-Verlag, LNCS No. 817, pp635-647, 1994.

20. G. Abowd, R. Allen and D. Garlan, Using style to give meaning to software archi-
tecture, In Proceedings of the SIGSOFT?93: Foundations of Software Engineering,
Software Engineering Notes 118(3), pp.9-20, ACM Press, Dec. 1993.

21. M.D. Rice and S.B. Seidman, A Formal Model for Module Interconnection Lan-
guages, IEEE Transactions on Software Engineering, 20 (1), 1994, 88-101.

22. J.M. Spivey, The Z Notation, a Reference Manual, Prentice Hall, Englewood Cliffs,
N.J., 1989.

23. R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, N.J.,
1989.

24. C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, Englewood
Cliffs, N.J., 1985.

25. R. Milner, Flements of Interaction - Turing Award Lecture, CACM, Vol 36, No. 1,
January 1993, pp78-79.

This article was processed using the ETEX macro package with LLNCS style

18

