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Background

Exposure misclassification is a serious concern in envi-
ronmental epidemiology, as errors in the dependent
variable (exposure) may dilute or magnify the effect size.
Exposure biomarkers overcome many sources of bias in
exposure assessment, but they have limitations that are
often overlooked. One such factor is pharmacokinetic
variability: It is much neglected, but is not easy to
incorporate into epidemiology research. A single bio-
marker measurement has been considered robust for
agents such as dichlorodiphenyltrichloroethane (DDT),
because it accumulates in the body and levels change
only slowly. Other carcinogenic halogenated hydrocar-
bon compounds (HHC), including dichlorodiphenyl
dichloroethene (DDE), 2,3,7,8-tetrachlorodibenzo-p-diox-
in, polychlorobiphenyls (PCB), polybrominated biphen-
yls, hexachlorobenzene, hexachlorocyclohexane, and
chlordane, behave the same. These lipophilic compounds
or their residues are neutral, poorly metabolized, and
have long elimination half-lives (f10 years). Because
HHC biomarkers reflect long-term cumulative exposure,
they logically fit an etiologic model for cancer and other
chronic diseases hypothesized to have causal exposures
that precede diagnosis (and sample collection) by a long
latency period. In fact, >90 original investigations have
been published on HHC as a factor in etiology and
prognosis of cancer since 1976. Breast cancer has been
mostwidely investigated, but research has also implicated
HHCs in non–Hodkin’s lymphoma (1) and testicular
cancer (2), among others. HHC have also been studied in
relation to noncancer effects, including fertility, fecundity,
pregnancy outcomes, child growth, sexual maturation,
neurologic development, diabetes, cardiovascular dis-
ease, and degenerative neurologic diseases (3-6).

In this commentary, we summarize recent evidence
suggesting that pharmacokinetic variability may cause

exposure misclassification when using a single HHC
measurement. A few reports have addressed specific
pharmacokinetic issues, signaling their importance, in-
cluding windows of exposure, adiposity, race, and
genetics. Pharmacokinetic variability deserves our atten-
tion for several reasons, among them the need to promote
recognition of pharmacokinetic variability in biomarkers,
the desire to understand its effect on disease models, and
an appeal to consider ways to incorporate this knowledge
into epidemiology. Cancer Epidemiology Biomarkers &
Prevention has been an active forum for such exchanges,
including many methodologic and etiologic reports on
HHC measurements. We discussed pharmacokinetic var-
iability in a letter to the journal in 1999 (7),which stimulated
our further detailed investigation of HHC and body mass
index (BMI; ref. 8). The 1999 letterwas also generously cited
in another Cancer Epidemiology Biomarkers & Prevention
article (9), the report that prompts the current comment.

Assessing Pharmacokinetic Variability in Statistical
Models

Associations of BMI with HHC Levels. Our foray into
this arena began with an attempt to explain reported
disparate correlations between DDE and BMI (7), and in
particular the positive association seen by Schildkraut
et al. (10). As noted (7), a positive correlation seemed
intuitively correct, but in fact a negative correlation
between DDE and BMI is dictated by simple pharmaco-
kinetics. To recap this argument briefly, during uptake
or absorption of DDT the pharmacokinetic model
predicts an inverse relationship because DDT concen-
trations in low-BMI persons will be greater than in those
with a high BMI (Figs. 1 and 2). For example, a low-BMI
person with intake of 20 Ag of DDT and 10 kg of adipose
would have a DDE level of 2 Ag/kg lipid, whereas
someone with the same exposure and 20 kg adipose
(high-BMI) would have 1 Ag/kg DDE-lipid.5 Thus,

5 This example assumes similar uptake regardless of BMI; the main DDT
dietary sources are unlikely to be disproportionately consumed by high
BMI persons enough to equalize the lipid-based concentration for lean
and obese body sizes. In other words, even if caloric intake were entirely
responsible for higher BMI, it would not be directly proportional to DDT
intake (34, 35). If a high-BMI person in the example ingests twice as much
of a single DDT source (e.g., milk), the net adipose concentration would
still be the same or lower than in the low-BMI person.
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because of the greater lipid denominator in obese
persons, with comparable uptake their concentrations
should be lower than those of lean individuals. Hence,
correlations of DDE with BMI would be negative (like
those in ref. 9). This is shown in Fig. 2A, which is a
vertical slice of Fig. 2B at one time point (e.g., 1962),
simulating cross-sectional data collected in that year.
The ‘‘plot’’ of 1962 cross-sectional data in Fig. 2A shows

an inverse relationship between lipid concentrations
of DDTadipose and BMI because DDTadipose decreases
as BMI increases from low to high; the slope of the
DDTadipose-BMI relationship is �258 as estimated from
D(DDTadipose) / DBMI = (5,160 � 2,060 ng/g) / (23 � 35
kg/m2). If measurements were made in blood on a
volume (wet) basis as in ref. 9, the slope would be
�1.8(DDTblood), assuming that blood serum is 0.7% lipid

Figure 2. A. Left, the expected relationship between DDT and BMI in a cross-section of Fig. 1B at 1962 (slope = �1.8) B. Right,
single birth-cohort model of DDTwith two extremes of BMI where first exposure starts in 1962 (modified from ref. 8). DDT levels in
adipose lipids for a lean BMI (f23 kg/m2) are in the upper DDT curve. Levels for an obese BMI (f35 kg/m2) are in the lower curve.

Figure 1. Summary of body size
effects on DDT levels in lipids.
Early effect is dilution (Biomark-
er levels during uptake). Subse-
quent postexposure effects on
DDT levels decades later result
from DDT half-life, including
weight change alteration of elim-
ination rate (Biomarker levels
decades later); half-life esti-
mates are based on those from
Thomaseth and Salvan (12).

Biomarker Variability, BMI, and Birth Cohort
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(blood, milk, and adipose concentrations are identical if
based on lipid content).

This reasoning is at odds with the reported positive
correlation between HHC and BMI such as those in
ref. 10. We proposed an explanation—that BMI altered
HHC pharmacokinetics during the elimination phase
after a cessation of substantial exposure (7). In North
America, this phase began around 1970 for DDT as
HHCs were removed from the diet and the physical
environment. A marked secular decline was seen in
blood, milk, and adipose HHC concentrations in North
America and elsewhere at a rate almost exactly the
average elimination HHC half-life of f10 years (11).
However, the average clearance rate encompasses
extremes that depend on total body fat depot. The
HHC half-life is longer in obese than in lean individuals,
so that obese persons were predicted to eliminate DDE
more slowly as shown by longitudinal data (7, 12, 13). As
a result, after two or more half-lives, DDT levels among
lean and obese persons converge (post-1982; Fig. 2B).
After this crossover point, the body burden becomes
greater in high- versus low-BMI individuals, and the
DDT-BMI correlation flips from negative to positive. As
seen in Fig. 2B, correlations between BMI and DDT
would become positive after 1982; for example, in 1996,
DDDT/DBMI = (1,060 � 575 ng/g) / (35 � 23 kg/m2) =
+40 for adipose-lipid basis and +0.3 for blood-wet basis.
More recently, we recognized that weight change (or BMI
change) profoundly alters these relationships, as elegant-
ly shown using longitudinal data of tetrachlorodibenzo-
p-dioxin and body size measurements (12). Weight gain
subsequent to exposure shortens the HCC half-life by
diluting the body burden (yielding an inverse HHC–
weight gain correlation), whereas BMI lengthens elimi-
nation time and increases half-life (Fig. 1, right side;
ref. 8). Weight gain is not included in the Fig. 2 models;
during elimination, weight gain would lower the curve
whereas weight loss would increase it (see Fig. 6 in
ref. 12). As cohorts age, especially cohorts of children and
older women, weight gain or BMI increase is likely to be
a significant determinant of HHC concentrations. Weight
gain during growth accounts for inverse correlations of
age with HHC and shorter half-life among children (14).

Therefore, BMI, weight change, and time since peak
exposure are key factors in pharmacokinetic variability of
a single HHC biomarker. For a single measurement,
some idea of how pharmacokinetic variability may
affect accuracy can be gathered from crude and adjusted
associations of HHC with BMI and weight gain. For
example, in two breast cancer cohorts of older women
(ref. 8 and unpublished data from ref. 15), both DDE and
PCB were positively associated with BMI, but negatively
associated with weight gain in multivariate linear
regression models. However, crude correlations of DDE
with both BMI and weight gain were positive, whereas
PCB was negatively correlated with both. Of the 16
studies listed in Table 1 of ref. 8, 10 had positive DDE-
BMI correlations, 3 had essentially zero correlations, and
3 had negative correlations. The mean interval between
DDT ban (1972) and blood collection was 17 years
(median 21 years), 15 years (median 15 years), and 1.7
years (median 4 years), respectively. For PCBs (8), 10 of
the 16 cohorts had negative correlations with BMI,
suggesting ongoing or recent exposure. Presumably, the

direction of these correlations would be reconciled if
estimates were adjusted for both BMI and weight gain
and other characteristics such as age and lactation.

Timing of Exposure and HHC Levels—Onset of
Exposure. A new wrinkle arose in this argument with the
noteworthy report from Perry et al. (9), which found that
the magnitude of the negative slope for DDT versus BMI
varied by year of birth independent of age. First, the
strong negative association between DDT residues and
BMI indicates that exposure was recent and/or ongoing.
Second, the negative correlation was larger with earlier
birth year (older cohorts had a greater negative DDT-BMI
slope, age-adjusted). These novel findings provide an
opportunity to revisit HHC pharmacokinetic variability.
Our original model can be said to predict DDT body
burden for a single birth cohort (i.e., 1962 in Fig. 2). When
this model is adapted to depict DDT levels in sequential
birth cohorts (Fig. 3), the observed DDT-BMI relation-
ships in successive cohorts behave just like those
reported by Perry et al. (9). That is, later birth cohorts
(i.e., younger individuals) have smaller negative slopes
(DDDT/DBMI) in their first 10 to 20 years of exposure.
Younger cohorts have lower DDT concentrations during
peak exposure periods because their accumulation time
(duration) is shorter (Fig. 3B). During the exposure
period, distances between DDT curves for lean and obese
persons are smaller for later birth cohorts (equivalent
to smaller negative slopes, Fig. 3A). In Perry et al., the
largest negative DDT-BMI slope was observed for the
oldest cohort (�2.82); it became successively smaller in
younger cohorts (�1.24, �1.16, and �1.03 for DDT in
ng/g lipid versus BMI in kg/m2). In Fig. 3A, for the first
year of DDT exposure for the 1962, 1965, and 1967
cohorts, the model-estimated slopes for blood are �1.8,
�1.5, �0.8, respectively (using 0.7% serum lipid to
extrapolate to serum wet basis, which is the unit reported
in ref. 9).

Therefore, an important implication of Perry et al. (9)
is that birth cohort can be a surrogate for onset of
exposure. Within a population, the resulting correlation
between HHC and BMI differs by exposure onset, which
reflects both intensity and duration. Duration of expo-
sure may be captured by ‘‘birth cohort’’; in Fig. 3B, it is
the window between birth date (or onset date if exposure
begins after birth) and sample donation. Intensity
(concentration) is cumulative exposure during the
window; that is, ADtuptake � ADtelimination. In Fig. 2,
intensity was derived from reported levels of dietary and
ambient DDT contamination in the United States, which
peaked around 1965 (8). During a long interval of
exposure involving uptake and elimination, weight gain
will differ for each birth cohort, and this will alter
correlations of HHC with BMI at the time of HHC
measurement for different cohorts. Weight gain surely
would be greatest for the oldest cohort. Although weight
loss reduces HHC levels and shortens half-life, only a
small proportion of individuals lose weight over time
(8, 12). However, weight loss may pose a serious problem
for HHC measurement near the time of diagnosis for
some cancers (16, 17). In the Fig. 2 models, environmental
DDT contamination was known to change over time. A
likely peak occurred around 1965 to 1970 (8), because
DDT use had declined before it was banned in 1972.
Because the model in Fig. 2 fits the Perry et al. (9)
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findings, it suggests that some similarities exist for
historical patterns of DDT contamination in China.
DDT use was banned in China in 1983 (18) or 1984 (9),
and the Perry et al. birth cohorts were measured
13 to 14 years afterward (9). A model like Fig. 2 for
PCBs is more uncertain because of continuing exposures,
but it is similar, with lower PCBadipose concentrations and
later crossover. Other exposure scenarios, such as
sporadic or steady environmental contamination, would
require a different model; the basis for such models can
be found in examples in ref. 19.

The birth cohort models provide other interesting
dimensions of pharmacokinetic variability. First, the
crossover point for high- versus low-BMI curves is later
for cohorts who are younger or who have lower
exposure. In Fig. 3B, obese and lean pharmacokinetic
curves from younger birth cohorts converge at later
points in time compared with older cohorts. Here, the
DDT curves for obese and lean in the 1962 cohort
crossover in 1982. Successive cohorts (1965, 1967)
crossover in 1984 and 1990. In general, low- and high-
BMI DDT curves converge f20 years after birth for the
three cohorts; this is also 17 to 25 years after DDT dietary
contamination peaked in 1965 (Fig. 3B). Decades later, in
the 1990 cross-section (Fig. 3A, bottom), DDT-BMI slopes
are +0.2, +0.1, and �0.005 for the three sample cohorts,
respectively (blood serum wet basis). Second, relative to
our Figs. 2 and 3, the crossovers in the Perry cohorts are
likely to occur earlier than 20 years postexposure because
of the relatively low BMI of their women (mean BMI 20
kg/m2, mean age 25 years, mean DDE 28 ng/g; ref. 9)
compared with those used in Figs. 2 and 3 (23 kg/m2 for

low BMI; 35 kg/m2 for high BMI). If the model in Fig. 2B
is modified to depict lower BMIs (26 and 30 kg/m2),
these DDT curves cross the low-BMI (23 kg/m2) curve
earlier than the transition shown at 1982 for BMI 35 kg/
m2 (not shown). The DDT graphs for BMIs of 26 and 30
kg/m2 cross that for BMI 23 kg/m2 in 1968 and 1976,
respectively (not shown). Indeed, this observation
explains the strong positive correlation of DDE with
BMI found in an older Shanghai cohort (mean BMI 23,
mean age 49 years, mean DDE 34 ng/g). They were
recruited at the same time as the Perry cohorts (1996-
1998; ref. 18), but their exposure duration was longer.
Which specific variables are most important and their
relative contribution to variance might be further
clarified by constructing models for these two popula-
tions (9, 18) that included BMI, weight gain, age, birth
cohort, and possibly historical DDT levels in China. In
summary, a cohort effect on crossover is partly respon-
sible for the large variance (and small correlation
coefficients) seen for DDT-BMI relationships in cross-
sectional studies where birth dates vary and where great
heterogeneity exists in BMI and weight gain over time
among cohorts (see examples in Table 1 of ref. 8).

Future Directions

Is it possible to reduce misclassification by incorporating
appropriate covariates into statistical analyses? For cross-
sectional studies with a single biomarker of exposure,
risk models might be improved by including known and
suspected pharmacokinetic factors and environmental

Figure 3. A. Left bottom, expected relationships between DDT and BMI in the 1962, 1965, and 1967 birth cohorts shown in Fig. 2B.
Left top, in 1970, before crossover, the graphs all have negative slopes (�1.8, �1.5, �0.8). Left bottom, in 1990, after crossover, the
same three cohorts in the DDT-BMI graphs have zero or positive slopes (+0.2, +0.1, �0.005). Models assume no weight change. B.
Right, models for DDT levels in six cohorts, 1962, 1965, 1967, each with a low- and high-BMI DDT curve.
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exposure information. Longitudinal data on both bio-
markers and covariates would be ideal, even if only
available for a subset. Misclassification from neglecting
pharmacokinetics may be less important for cancers with
shorter latency such as lymphoma (1).

For a single HHC measurement, joint consideration of
the effects of birth cohort (or other quantifiable exposure
source and timing), weight gain, and BMI within a study
population is a start. Birth cohort, independent of weight
gain and BMI, is possibly a surrogate for onset of
exposure, which can then be used to compute exposure
duration and intensity. Weight change and BMI are
possible surrogates for individual differences in absorp-
tion and excretion. Additional information on diet,
residence, metabolizing enzymes, lactation history, oc-
cupation, disease states such as thyroid disease or
diabetes, or medication use may further sharpen the
exposure estimates. Medications that alter lipid metab-
olism or their uptake might also affect HHC levels.
Statistical methods would also benefit from more precise
pharmacokinetics; these might be improvements on the
simple first-order kinetics used in Fig. 2 such as
nonlinear models having time-transfer functions to
accommodate temporal changes (12). The utility of such
an approach could be evaluated from existing studies; at
least 90 investigations of HHC in relation to breast cancer
and other cancers exist. Most of these studies were
undertaken after 1995 and in developed countries, where
use of many HHC had been banned decades earlier:
Much of the interindividual differences could be due to
pharmacokinetic variability. Some study populations,
such as breast cancer, could be most useful as they are
limited to one sex, older age, etc. These uniform
characteristics make them amenable to pooling data,
which might provide more power to examine effects and
interactions among birth date, BMI, and weight gain.
Additional insight can be drawn from data on HHC and
body size among women who have been studied at other
ages where effects of BMI on HHC are strong (20-24) but
often neglected (23, 25). To some extent, proper adjust-
ments for BMI may mitigate differences in HHC levels
seen by sex in various populations. It might be helpful to
know which factors have the greatest effect within a
cohort. For example, age is less important than duration
of exposure as an HHC predictor in occupational cohorts.
BMImay bemore important during absorption phase, and
weight gain during the elimination phase, of exposure.
There may be a need to look for ways to handle HHCs,
such as PCBs, where there are both ongoing and long past
exposure- and congener-specific half-lives.

Even better, sequential biological measures and other
key information could be obtained longitudinally to
capture important secular trends that contribute to
pharmacokinetic variability in biomarkers. Several pub-
lished studies on breast cancer have measurements of
HHC at more than one time point (13, 26), which could
be used to test models constructed with a single HHC
measurement in blood or other tissue (or vice versa).

In future studies that use a single blood draw, models
for past and future HHC levels could be constructed to
inform the accuracy and precision of single HHC
measurements. A second biological specimen, some
distance in time apart from first, would be a useful even
if it were obtained only in a representative subset. In
chronic disease research, repeat samples on a small

subgroup of a cohort over multiple years could be used
to examine trends in a number of biomarkers over time,
such as markers of susceptibility, biological effect,
nutrients, and lipids. A repeat questionnaire could collect
additional relevant data such as lifetime BMI, lactation,
specific determinants of exposure, and temporal trends
of the organochlorine exposure sources. The ideal timing
of repeat biospecimens would be a key consideration; for
example, to assess half-life, the optimal interval between
measurements is one half-life (27). Thus, for HHC, an
interval of at least 5 years might be required to evaluate
half-life, whereas shorter intervals may be useful for
effects of chemotherapy or weight loss (28-30). Inves-
tigations of pregnancy involve a shorter exposure
interval than chronic disease research, requiring some-
what different pharmacokinetic considerations. For
example, weight gain is strongly related to birth out-
comes and to HCC levels (20) as well as to serum
lipids (31).

Meanwhile, there is no better way to estimate HHC
exposures from environmental (nonpoint) sources than
to measure residues in biological samples. It is key to
understand limitations and how best to use the data and
what covariates must be considered. At the same time,
similar approaches can be taken to consider limitations
in other types of exposure data. Examples abound in
nutritional epidemiology, where much research is done
to supplement or validate misclassification of standard
food-frequency questionnaires. Moreover, the basic
pharmacokinetic principles are identical for other expo-
sure biomarkers that have a significant body compart-
ment, including lead (bone mineral) or dilution effect
(urinary creatinine). With these measurements, there is
acknowledged variability arising from genetic differ-
ences, sex, age, race, bone density, and BMI among other
factors (32). Finally, a more critical problem arises when
there is mutual confounding, such as where BMI is
related both to HHC level and outcome (cancer,
diabetes, birthweight, child growth, endometriosis) or
diet (animal fat intake). Here, even if the confounding
cannot be resolved, the limitations can be understood
and design changes can be made to improve later
studies. Thus, at the very least, pharmacokinetic vari-
ability issues should be appreciated even if they cannot
be resolved (33).
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