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Simulation of Ultrasound Pulse Propagation in
Lossy Media Obeying a Frequency Power Law

Ping He, Member, IEEE

Abstract—A method is proposed to simulate the propa-
gation of a broadband ultrasound pulse in a lossy medium
whose attenuation exhibits a power law frequency depen-
dence. Using a bank of Gaussian filters, the broadband pulse
is first decomposed into narrowband components. The ef-
fects of the attenuation and dispersion are then applied
to each component based on the superposition principle.
When the bandwidth of each component is narrow enough,
these effects can be evaluated at the center frequency of
the component, resulting in a magnitude reduction, a con-
stant phase angle lag, and a relative time delay. The accu-
racy of the proposed method is tested by comparing the
model-produced pulses with the experimentally measured
pulses using two different phantoms. The first phantom has
an attenuation function which exhibits a nearly linear fre-
quency dependence. The second phantom has an attenua-
tion function which exhibits a nearly quadratic frequency
dependence. In deriving the dispersion from the measured
attenuation, a nearly local model and a time causal model
are used. For linear attenuation, the two models converge
and both predict accurately the waveform of the transmit-
ted pulse. For nonlinear attenuation, the time causal model
is found more accurate than the nearly local model in pre-
dicting the waveform of the transmitted pulse.

I. Introduction

When a broadband ultrasound pulse passes through a
layer of medium, the waveform of the pulse changes

as a result of the attenuation and dispersion of the
medium. Many media, including soft tissues, have been
observed to have an attenuation function which increases
with frequency. As a result, the higher frequency compo-
nents of the pulse are attenuated more than the lower fre-
quency components. After passing through the layer, the
transmitted pulse is not just a scaled down version of the
incident pulse, but will have a different shape. Dispersion
refers to the phenomenon that the phase velocity of a prop-
agating wave also changes with frequency [1]. Dispersion
causes additional change in the waveform of the propa-
gating pulse because the wave components with different
frequencies travel at different speeds. An understanding of
the interaction of ultrasound with tissue medium in both
the time and frequency domains and the ability to de-
termine the waveform change of propagating ultrasound
pulses should be valuable in the design of array trans-
ducer and in quantitative ultrasound tissue characteriza-
tion [2], [3].
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The classical method for predicting the waveform
change of a signal passing through a medium relies on the
impulse response of the system. According to the theory
of linear systems, the output signal is the convolution of
the input signal and the system’s impulse response. The
impulse response can be obtained by taking the inverse
Fourier transform of the frequency response of the system
which generally takes the following form:

H(ω) = A(ω)e−jθ(ω)x = e−α(ω)xe−jxω/Vp(ω) (1)

where H(ω) is the frequency response, A(ω) is the magni-
tude function, θ(ω) is the phase angle per unit distance,
α(ω) is the attenuation function, Vp(ω) is the phase veloc-
ity, and x is the thickness of the layer. If α(ω) and Vp(ω)
are both known, the impulse response of the medium can
first be synthesized and the output signal can then be de-
termined.

The attenuation function of many soft tissues have been
extensively measured and tabled [4]. In general, tissue at-
tenuation can be expressed by a power law function [5], [6]:

α(ω) = α0ω
y (2)

where α0 and y are tissue-dependent attenuation parame-
ters. On the other hand, the dispersion has been found
very small and difficult to measure directly [5]. As a
first approximation, one may ignore the dispersion and
assume a linear-with-frequency phase term [7]. Unfortu-
nately, the impulse response of such a system is not causal
[2]. To ensure the causality while avoiding a direct mea-
surement of the dispersion, Gurumurthy and Arthur [2]
proposed a minimum-phase model for a layer of tissue.
For a minimum-phase system, the attenuation and phase
of its frequency response are related to each other by a pair
of Hilbert transforms [8]. Because of this property, the en-
tire frequency response, and the impulse response as well,
of the layer can be obtained based on the knowledge of
the medium’s attenuation only. When such an approach is
used to model a layer of tissue, two problems arise. First
of all, the Hilbert transform relations between the atten-
uation and dispersion are defined in such a way that, in
order to obtain the value of one of them at any single fre-
quency, it is necessary to know the values of the other at
all frequencies [2], [8]. Tissue attenuation, however, is usu-
ally measured over a limited frequency range, e.g. from 1
to 10 MHz. The first problem, therefore, is to validate the
assumption that the values of α at all other frequencies
can be correctly extrapolated from the measured values.
The second problem is related to a so-called Paley-Wiener
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condition which states that for A(ω) to be the Fourier
spectrum of a causal function, a necessary and sufficient
condition is that the following inequality is satisfied [8]:

∞∫
−∞

| lnA(ω)|
1 + ω2 dw <∞ (3)

For most soft tissues, the attenuation function α defined in
(2) is approximately a linear function of frequency (y = 1)
[5]. Some tissues, however, have been observed to exhibit
a nonlinear frequency dependence [9], [10]. In general, the
exponent y for soft tissues is in the range 1 ≤ y ≤ 2.
For such an attenuation function, the Paley-Wiener con-
dition is not satisfied. To overcome this problem, Guru-
murthy and Arthur [2] modified the high frequency be-
havior of the attenuation function by imposing a high-
frequency limit that beyond which the magnitude function
does not go to zero faster than an exponential. Kuc [3] cir-
cumvented the problem associated with the Paley-Wiener
condition by implementing the minimum phase model in
the discrete-time domain. In such a case, the folding fre-
quency (1/2 of the sampling frequency) becomes the nat-
ural high-frequency limit. The phase function between the
zero and folding frequencies is derived from the attenua-
tion function within the same frequency range by employ-
ing the Hilbert transform in the discrete-time domain. Be-
yond the folding frequency, however, it is assumed that
the magnitude function is mirror symmetric with respect
to the folding frequency (i.e., the attenuation function de-
creases with frequency and reaches zero at the sampling
frequency) so that the impulse response is a real function.
While both approaches avoid the problem associated with
the Paley-Wiener condition, the assumption made on the
attenuation function in a certain frequency range remains
to be validated.

In this paper, we present an alternative method for
determining the output signal that does not invoke the
impulse response of the system and does not need the
assumption about the attenuation beyond a certain fre-
quency. The method is based on the superposition prin-
ciple for a linear system: if we consider the input signal
as a combination of many narrowband components, each
propagating in the medium at a certain speed (dispersion)
and subjecting to a frequency-dependent attenuation, the
output signal can then be obtained by regrouping the in-
dividually transmitted components. In implementing the
method, the attenuation is measured over the frequency
range of the input signal, and the dispersion is derived
from the measured attenuation over the same frequency
range. In determining the dispersion from the attenua-
tion, two models are used. The first model, which was
derived by O’Donnell et al. [11], does not explicitly em-
phasize the dependence of the degree of dispersion on the
exponent y in (2). The second model was proposed by Sz-
abo [12], [13] more recently. According to Szabo’s model,
the degree of dispersion is strongly dependent upon the
exponent y: when y = 1, the dispersion is maximized;
when y approaches 2, the dispersion vanishes. The accu-

racy of the proposed method will be tested by comparing
the model-produced pulses with the experimentally mea-
sured pulses using two different phantoms. The first phan-
tom has an attenuation function which exhibits a nearly
linear frequency dependence. The second phantom has an
attenuation function which exhibits a nearly quadratic fre-
quency dependence. Because the two models used to derive
the dispersion from attenuation deviate from each other
when y > 1, the transmitted waveforms predicted by the
two models are expected to show noticeable difference for
the second phantom. By comparing the measured and pre-
dicted waveforms, the relative accuracy of the two models
also can be tested.

II. Method

A. Decomposition of a Broadband Pulse

Biological tissues appear to respond linearly to diag-
nostic ultrasound [2]. For such a linear system, the su-
perposition principle holds. Consequently, the propagation
of a broadband ultrasound pulse can be studied by first
decomposing the pulse into many wave components, and
then analyzing the propagation of each wave component.
There are different ways to decompose a signal. Classi-
cal Fourier transform decomposes a signal into sinusoidal
waveforms, each having a single frequency and oscillating
forever. Modern wavelet analysis decomposes a signal into
a set of wavelet components by dilating and translating
a mother wavelet. Wavelet analysis is more efficient than
Fourier analysis when the signal is dominated by transient
behavior or discontinuities. Because the ultrasound pulses
typically used in B-scan imaging are relatively smooth, we
choose to use a simpler time-frequency representation in
that each wave component will have a finite constant band-
width which is narrow enough so that the attenuation and
dispersion can be evaluated at a single frequency.

Fig. 1 shows the method of pulse decomposition. In
Fig. 1(a), r(t) is a band-limited incident pulse whose
Fourier spectrum vanishes below a lower frequency limit
fL as well as above an upper frequency limit fH . H(ω)
represents the frequency response of the system and g(t)
is the transmitted pulse. In Fig. 1(b), r(t) is filtered by n
bandpass filters. Bi(ω) represents the frequency response
of ith bandpass filter, and ri(t), i = 1, 2, . . . , n, are the re-
sulted narrowband components. The two processes shown
in Fig. 1(a) and (b) are equivalent if the following equation
holds:

r(t) =
n∑
i=1

ri(t). (4)

To minimize the reconstruction error produced by the pro-
cess of wave decomposition, we let each bandpass filter
have a Gaussian magnitude function:

Bi(f) =
1√
π
e
−
(
f−fL−(i−1)B

B

)2

, i = 1, 2, . . . , n
(5)
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Fig. 1. (a) A broadband pulse r(t) passes through a layer of medium
having a frequency response of H(ω) and produces a transmitted
pulse g(t). (b) Based on the superposition principle, r(t) is first de-
composed into n narrowband components by a bank of bandpass
filters. Each component ri(t) then passes through the same medium
and the transmitted signals are added together to produce g(t).

where B = (fH − fL)/(n− 1). Fig. 2 shows the individual
Bi(f) of the bandpass filters which are actually used in
this study. In Fig. 2, fL = 0.5 MHz, fH = 5.5 MHz, n =
11, and B = 0.5 MHz (the choice of n and B will be
discussed later). Fig. 2 also shows that the combined filter
response

∑
iBi(f) which is very close to a constant one

in the midband (from 1.5 MHz to 4.5 MHz, it is within
1±0.00011) and drops 2.1 dB at fL and fH . We will show
later (in Fig. 5) that by using these Gaussian filters, the
reconstruction error associated with the process of wave
decomposition is negligible.

B. Transformation of the System Response

In Fig. 1, the study of the propagation of a broadband
pulse through the medium is transformed into the study of
the propagation of many narrowband signals through the
same medium. We now use Fig. 3 to study the propagation
of a particular signal, ri(t), through the medium. In Fig. 3,
the narrowband signal ri(t) is represented by a modulated
signal which has an envelope function xl(t) and a carrier
cos(ωit), where ωi is the center frequency of Bi(ω). In ad-
dition, to concentrate on the effects of the phase term of
H(ω), we temporarily drop its magnitude function (i.e.,
let A(ω) = 1). The effects of such an H(ω) on the incident
modulated signal are to impose a group delay tg on the
envelope function and a phase delay tp on the carrier [8],
where these two delays are defined as:

tg =
x

Vg(ωi)
and tp =

x

Vp(ωi)
(6)

Fig. 2. Amplitude responses of the 11 bandpass filters and the com-
bined filter response which is the summation of the 11 individual filter
responses. The combined filter response has a nearly constant value
of one in the midband and drops to 0.78 at 0.5 MHz and 5.5 MHz.

Fig. 3. (a) A modulated signal passes through a system having a unit
magnitude and a phase angle of −θ(ω)x. The envelope function is
delayed by a group delay tg and the carrier is delayed by a phase
delay tp. (b) A transformed process of (a). The modulated signal
now first passes through a system having a unit magnitude and a
constant phase angle−ϕi. The entire waveform is then delayed by tg.
If ϕi = ωi(tp−tg), the processes shown in (a) and (b) are equivalent.

where x is the travel distance. Vg(ωi) and Vp(ωi) are the
group and phase velocities at ωi, respectively, which are
defined as:

Vg(ωi) =
dω

dθ(ω)

∣∣∣∣
ωi

and Vp(ωi) =
ω

θ(ω)

∣∣∣∣
ωi

. (7)

To remove the inconvenience of imposing different delays
on the envelope function and the carrier, we further trans-
form the process shown in Fig. 3(a) to the one shown in
Fig. 3(b). The modulated input signal now first passes
through a filter which has a constant phase angle ϕi. The
effect of this filter is to impose a phase lag ϕi on the car-
rier [8]. The entire waveform is then delayed by a group
delay tg. When ϕi = ωi(tp − tg), the two processes shown
in Figs. 3(a) and (b) are equivalent.

By incorporating the transforms shown in Fig. 3, the
processes in Fig. 1 can then be transformed to the pro-
cesses shown in Fig. 4. The constant phase delay is now
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Fig. 4. The processes used to simulate the transmitted pulse g(t).
The incident pulse r(t) first passes through n bandpass filters having
a Gaussian magnitude function Bi(ω) and a constant phase angle
−ϕi. Each component signal is then scaled down by an exponential
factor exp(−αix) and delayed by ti. All component signals are then
added together to produce the transmitted pulse g(t).

implemented by the bandpass filter which has the same
Gaussian magnitude function Bi(ω) as shown in Fig. 2,
and a new phase term e−jϕi . In addition, the magnitude
function, e−αix, of H(ω) is reinstalled, where:

αi = α0ω
y
i . (8)

In implementing the processes shown in Fig. 4, the at-
tenuation of the medium is actually measured. The phase
delay and group delay are calculated from the measured
attenuation using the two models which will be discussed
in the next section.

C. Determine Phase Delay and
Group Delay from Attenuation

The Hilbert transform relations between ultrasound at-
tenuation and dispersion used by Gurumurthy and Arthur
[2] and Kuc [3] can be considered as the generalized
Kramers-Kronig relations which were originally derived
to link the absorption and dispersion of electromagnetic
waves [14]. If we use ej(ωt−Kx) to represent a plane wave
propagating in the x direction, where K = θ(ω) − jα(ω)
is the complex wave number, the Kramers-Kronig rela-
tions state that the real part, θ(ω) = ω/Vp(ω), and the
imaginary part, α(ω), of K are related to each other by
a pair of Hilbert transforms. Because the validity of these
relations only requires that the supporting medium is pas-
sive, linear, and casual, the Kramers-Kronig relations can
be applied to a wide class of homogeneous and inhomoge-
neous media as well as to various waves including elastic,
acoustic and electromagnetic waves [15].

The literature on causality and dispersion relations is
extensive [16], [17]. In this paper we will use two spe-
cific models, both enabling calculation of the dispersion
from the local attenuation, that are particularly suitable
to the proposed method. The first model was derived by
O’Donnell et al. [11] and will be referred as the nearly lo-
cal model. The second model was proposed by Szabo and
will be referred as the time causal model [13]. Using each
model, the phase delay tp, group delay tg, and the phase
angle ϕi will be derived.

Nearly local model: By applying the Kramers-Kronig
relations to a linear and causal acoustic system, and as-
suming that the attenuation function and phase velocity
do not change rapidly over the frequency range of inter-
est, O’Donnell et al. [11] derived a useful equation which
enables one to calculate the phase velocity using the knowl-
edge of local attenuation:

1
Vp(ω)

=
1

Vp(ω0)
− 2
π

ω∫
ω0

α(s)
s2 ds (9)

where ω0 is a reference frequency; Vp(ω) and Vp(ω0) are
the phase velocities at an arbitrary frequency ω and at ω0,
respectively, and α is the attenuation function. For the
attenuation function obeying a power law as shown in (2),
the integration in (9) needs to be evaluated separately for
y = 1 and y > 1:

1
Vp(ω)

=
1

Vp(ω0)
− 2α0

π
ln

ω

ω0
for y = 1 (10)

and

1
Vp(ω)

=
1

Vp(ω0)
− 2α0

π(y − 1)
(ωy−1 − ωy−1

0 ) for y > 1. (11)

To find Vg(ω), we use the relations θ(ω) = ω/Vp(ω), to-
gether with (10) and (11):

1
Vg(ω)

=
dθ

dω
=

1
Vp(ω0)

− 2α0

π

(
ln

ω

ω0
+ 1
)

for y = 1 (12)

and

1
Vg(ω)

=
1

Vp(ω0)
− 2α0

π(y − 1)
(yωy−1−ωy−1

0 ) for y > 1. (13)

The group delay, ti in Fig. 4 can then be obtained:

ti =
x

Vg(ωi)
=

x

Vp(ω0)
− 2α0x

π

(
ln
ωi
ω0

+ 1
)

for y = 1 (14)

and

ti =
x

Vp(ω0)
− 2α0x

π(y − 1)
(yωy−1

i − ωy−1
0 ) for y > 1 (15)

where x is the thickness of the layer. Finally, based on
Fig. 3, the phase angle ϕi can be obtained from (6) and
(10)–(13):

ϕi = ωi(tp − tg)

= ωi

(
x

Vp(ωi)
− x

Vg(ωi)

)
=

2ωiα0x

π
for y = 1 (16)

and

ϕi =
2ωyi α0x

π
for y > 1. (17)
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Time causal model: Szabo [12] derived a time do-
main expression of causality analogous in function to the
Kramers-Kronig relations in the frequency domain. Based
on this new time casual model, an equation similar to (11)
was derived which enables one to calculate the phase veloc-
ity from the attenuation values near a reference frequency
ω0 [13]. The original form of equation 27 shown in Szabo’s
paper [13] is recasted here as:

1
Vp(ω)

=
1

Vp(ω0)
+ α0 tan

(
yπ

2

)
(ωy−1 − ωy−1

0 ).
(18)

By comparing (11) and (18), one finds a simple procedure
to transform the results obtained by the nearly local model
to the corresponding results predicted by the time casual
model. That is to perform the following conversion:

2
π(y − 1)

−→ − tan
(
yπ

2

)
. (19)

When y approaches 1 from the right side (y > 1),

2
π(y − 1)

∼= − tan
(
yπ

2

)
. (20)

As a result, when y = 1, the two models converge and the
time causal model will predict the same results as shown in
(12), (14), and (16). When y > 1, the two models deviate
from each other, and the time causal model predicts the
following results:

1
Vg(ω)

=
1

Vp(ω0)
+ α0 tan

(
yπ

2

)
(yωy−1 − ωy−1

0 )
(21)

ti =
x

Vp(ω0)
+ α0x tan

(
yπ

2

)
(yωy−1

i − ωy−1
0 )

(22)

ϕi = −(y − 1)ωyi α0x tan
(
yπ

2

)
. (23)

III. Measurement and Simulation Results

To test the processes shown in Fig. 4 for predicting the
waveform of the transmitted pulse, two phantoms are used
in through-transmission measurements. The first phan-
tom is a Plexiglas block, which has an almost linear-with-
frequency attenuation. The speed of sound of the material
is measured as 2736 m/s. The second phantom, which is
manufactured by ATS Laboratories (Bridgeport, CT), is
made of a special rubber material having a speed of sound
of 1465 m/s. The ATS phantom material has an attenua-
tion function which exhibits a highly nonlinear frequency
dependence. The thickness of both phantoms is 8.0 cm.

Two transducers are situated 25 cm apart in a water
tank and are aligned properly. The transmitting trans-
ducer (Panametrics V309, 13-mm aperture) has a nom-
inal center frequency of 5.0 MHz and a focal length of
89 mm. The receiving transducer (Panametrics V382, 13-
mm aperture) has a nominal center frequency of 3.5 MHz

Fig. 5. The original pulse r(t) and the reconstructed pulse by added
together the filter-produced signals ri(t) shown in Fig. 1. Using r(t)
as the reference, the normalized rms error of the reconstructed pulse
is 4.5%.
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and a focal length of 76 mm. The pulser/receiver used in
the study is Panametrics 5052PR. The RF data ampli-
fied by the receiver are digitized by a SONY/TEK 390AD
programmable digitizer which has a 10-bit resolution and
a sampling frequency of 60 MHz. With only a water path
between the two transducers, the pulse waveform received
by the receiving transducer is recorded which will be used
as the incident pulse, r(t), in the following processes.

By taking the Fourier transform, r(t) is found to
be band limited in the frequency range of 0.5 MHz to
5.5 MHz. Based on this frequency range, 11 bandpass fil-
ters are used to decompose r(t) into its components (the
choice of the number of bands will be discussed later). The
magnitude transfer functions of these filters are expressed
by (5) and plotted in Fig. 2. As a first test, we use the
11 bandpass filters as shown in Fig. 1 to decompose the
incident pulse r(t) and then reconstruct a pulse by adding
the resulted components together according to (4). Fig. 5
compares the waveforms of the original pulse r(t) and the
reconstructed pulse. In these plots, as well as in the rest
waveform plots, the ordinate shows only the relative mag-
nitude without a specific unit. We now define a normalized
root-mean-square (rms) error which will be used through-
out this paper for pulse comparisons:

ε =

√
N∑
i=1

[x(i)− xo(i)]2/N√
N∑
i=1

[xo(i)]2/N

=

√√√√√√√√
N∑
i=1

[x(i)− xo(i)]2

N∑
i=1

[xo(i)]2 (24)

where x(i) is a sample of the signal to be tested, x0(i) is
the corresponding sample of the reference signal, and N
is the total number of samples. Using the original pulse
r(t) as the reference, the normalized rms error of the re-
constructed pulse shown in Fig. 5 is 4.5%.

Fig. 6 shows the waveforms of three components which
are produced by the bandpass filters with the center fre-
quencies of 1 MHz, 3 MHz, and 5 MHz, respectively.

A. Measurement and Simulation with
the Plexiglas Phantom

We then insert the Plexiglas phantom in between
the transmitting and receiving transducers. The received
pulse, g0(t), will be used as the reference signal against
which the model-predicated pulses g(t) will be compared.

If we use R(ω) and G0(ω) to represent the ampli-
tude spectral functions of r(t) and g0(t), respectively, and
assuming the attenuation of water is negligible, we ob-
tain [18]:

Go(ω) = R(ω)T1T2e
−α(ω)x (25)

where T1 and T2 are the transmission coefficients at
the water-Plexiglas interface (incident side) and at the
Plexiglas-water interface (exit side), respectively, and x is
the thickness of the Plexiglas block. By taking logarithm

on the both sides of (25), we obtain:

1
x

[lnR(ω)− lnG0(ω)] =
1
x

ln
(

1
T1T2

)
+ α0ω

y.
(26)

If we fit the function shown on the left side of (26) with
an exponential function

αa(f) = b0 + βfy. (27)

where αa(f) is the apparent attenuation function, we ob-
tain:

T1T2 = e−xb0 , and α0 = β(2π)−y (28)

α0 and y determine the frequency-dependent attenuation
and will be used to calculate the dispersion. The factor
T1T2 is not a part of the tissue model discussed so far. This
frequency-independent factor, however, causes a scaled-
down of the amplitude of the transmitted pulse. In order to
maintain a faithful comparison between the simulated and
experimentally recorded pulses, all the simulated pulses
obtained by the processes shown in Fig. 4 (i.e., g(t)) will
be multiplied by a factor T1T2 before being compared with
the experimental results.

The attenuation function of the Plexiglas phantom is
plotted in Fig. 7. Over the frequency range of r(t), the
apparent attenuation is approximately a linear function
of frequency (y = 1) with b0 = 0.96 dB/cm and β =
0.89 dB/(MHz cm). T1T2 and α0 can then be calculated
according to (28). In implementing the processes shown
in Fig. 4, 11 bandpass filters are used with center fre-
quencies of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
and 5.5 MHz, respectively. αi are determined by (8) and
ϕi are determined by (16). To calculate ti using (14), we
choose the midband frequency, (fL + fH)/2 = 3.0 MHz,
as the reference frequency (i.e., ω0/2π), and let Vp(ω0) =
2736 m/s. Because we are only interested in the relative
delays among the component signals, we let the midband
(i = 6, fc = 3.0 MHz) have zero delay and express the de-
lays of all other bands as the relative delays with respect
to the midband. Table I lists the calculated phase angles
and relative time delays based on the measured attenua-
tion of the Plexiglas phantom. A positive delay means that
the component signal of the particular band travels slower
than that of the reference band (midband) and a negative
delay means a faster traveling speed. As indicated by Ta-
ble I, the Plexiglas has an anomalous dispersion [2]: the
signal having a higher center frequency travels faster than
the one having a lower center frequency. To reconstruct
the transmitted pulse g(t), the signal of the midband is
not changed, while the signals of all other bands are either
shifted backward (for positive delay) or forward (for nega-
tive delay) with respect to the reference signal, according
to the calculated relative delays. The shifted signals are
then added together to produce the transmitted pulse g(t).

Fig. 8 compares the simulated pulses with the measured
one. The pulse shown in Fig. 8(a) is the transmitted pulse
g0(t) which is experimentally measured. Fig. 8(b) shows
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Fig. 6. Waveforms of three component signals produced by the bandpass filters having center frequencies of (a) 1 MHz, (b) 3 MHz, and
(c) 5 MHz.

TABLE I
Phase Angles and Relative Time Delays of the 11 Bands

Used to Produce the Transmitted Pulse Shown in Fig. 8(b).

These Parameters are Derived From the Attenuation

Function of the Plexiglas Phantom Shown in Fig. 7.

Band ϕ Delay
number (radians) (×10−7 s)

1 0.261 1.489
2 0.522 0.912
3 0.783 0.576
4 1.044 0.337
5 1.305 0.151
6 1.566 0.000
7 1.827 −0.128
8 2.087 −0.239
9 2.347 −0.337
10 2.609 −0.424
11 2.870 −0.503

the transmitted pulse g(t) simulated using the processes
shown in Fig. 4 and the parameters listed in Table I. The
pulse shown in Fig. 8(c) is produced by a nondispersive
model, i.e., by a filter with linear-phase or zero-phase [7].
This pulse is obtained by letting all ϕi and ti in Fig. 4
be zero. As indicated by Fig. 8, the simulated pulse in
Fig. 8(b) bears a closer resemblance to the measured pulse
in Fig. 8(a) than the pulse in Fig. 8(c) does. Using the
pulse in Fig. 8(a) as the reference, the normalized rms
error of the pulse in Fig. 8(b) is 6.8% and the normalized
rms error of the pulse in Fig. 8(c) is 35.7%. To minimize
the rms error, the pulses in Figs. 8(b) and (c) are allowed

Fig. 7. Attenuation function of the Plexiglas phantom. Over the fre-
quency range of 0.5 to 5.5 MHz, the attenuation function is fitted by
a straight line α = 0.96 + 0.89 f.

to be shifted left and right to achieve a best alignment with
the pulse in Fig. 8(a). On the other hand, no adjustment
has been made to the magnitude of each pulse.

B. Measurement and Simulation with the ATS Phantom

Fig. 9 shows the attenuation function obtained from
the ATS phantom. Because the fitted curve shows a value
of y = 1.98, we shall expect a difference between the re-
sults predicted by the nearly local model and the time
causal model. From the attenuation parameters obtained
from the fitted curve, T1T2, α0, and y are first deter-
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Fig. 8. (a) Experimentally measured pulse by passing r(t) through the Plexiglas phantom. (b) Simulated pulse using the processes shown
in Fig. 4. The normalized rms error is 6.8%. (c) Simulated pulse using a zero-phase filter. The normalized rms error is 35.7%.

Fig. 9. Attenuation function of the ATS phantom. Over the frequency
range of 0.5 to 5.5 MHz, the attenuation function is fitted by a curve
α = 0.21 + 0.20 f1.98.

mined using (27) and (28), and αi for the 11 bands are
then determined by (8). For the nearly local model, ϕi
are calculated by (17), and ti are determined by (15) with
Vp(ω0) = 1465 m/s. For the time causal model, ϕi are
calculated by (23), and ti are determined by (22). The re-
sulted phase angles and relative time delays for the two
models are listed in Table II. As one would expect, the
values of both parameters of the time casual model are
much smaller than that of the nearly local model.

Fig. 10 compares the simulated transmitted pulses using
the two models with the measured pulse. The pulse shown

TABLE II
Phase Angles and Relative Time Delays of the 11 Bands

Used to Produce the Transmitted Pulses Shown in

Fig. 10(b) and (c). These Parameters are Derived From the

Attenuation Function of the ATS Phantom Shown in Fig. 9

Based on the Time Casual Model and the Nearly Local

Model, Respectively.

Time-causal model Nearly-local model
Band ϕ Delay ϕ Delay

number (radians) (×10−7 s) (radians) (×10−7 s)

1 0.001 0.044 0.030 0.915
2 0.006 0.035 0.117 0.730
3 0.013 0.026 0.262 0.546
4 0.022 0.018 0.463 0.363
5 0.035 0.009 0.720 0.181
6 0.050 0.000 1.033 0.000
7 0.068 −0.009 1.401 −0.180
8 0.088 −0.017 1.825 −0.360
9 0.112 −0.026 2.304 −0.540
10 0.137 −0.035 2.839 −0.719
11 0.166 −0.043 3.429 −0.898

in Fig. 10(a) is the transmitted pulse measured experimen-
tally. The pulse shown in Fig. 10(b) is the simulated pulse
using the time casual model. Using the pulse in Fig. 10(a)
as the reference, the normalized rms error of the pulse in
Fig. 10(b) is 6.2%. The pulse shown in Fig. 10(c) is the
simulated pulse using the nearly local model. The normal-
ized rms error of this pulse is 30.9%.
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Fig. 10. (a) Experimentally measured pulse by passing r(t) through the ATS phantom. (b) Simulated pulse using the time causal model.
The normalized rms error is 6.2%. (c) Simulated pulse using the nearly local model. The normalized rms error is 30.9%.

C. Measurement and Simulation
Using a Narrowband Transducer

The same experiments and simulations are repeated by
replacing the transmitting transducer (Panametrics V309)
with another transducer (Panametrics A382, 13-mm aper-
ture, 76 mm focal length) which has a narrower bandwidth.
For the new incident pulse r(t), we choose fL = 1.5 MHz,
fH = 4.5 MHz, and a total of 7 frequency bands with
the following center frequencies: 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
and 4.5 MHz.

Fig. 11 compares the simulated pulses with the mea-
sured one using the Plexiglas phantom. Again, the pulse
shown in Fig. 11(a) is the experimentally recorded one.
The pulse shown in Fig. 11(b) is predicted by the disper-
sive model using (8), (14), and (16). Using the pulse in
Fig. 11(a) as the reference, the normalized rms error of
the pulse in Fig. 11(b) is 5.7%. The pulse in Fig. 11(c) is
predicted by a nondispersive model. The normalized rms
error is 20.3%.

Fig. 12 compares the simulated pulses with the mea-
sured one using the ATS phantom. The pulse in Fig. 12(a)
is the measured transmitted pulse. The pulse shown in
Fig. 12(b) is predicted by the time causal model. Using
the pulse in Fig. 12(a) as the reference, the normalized
rms error of the pulse in Fig. 12(b) is 8.8%. The pulse
in Fig. 12(c) is predicted by the nearly local model. The
normalized rms error of the pulse in Fig. 12(c) is 21.1%.

IV. Discussion

A method to simulate the propagation of a broadband
ultrasound pulse in a lossy and dispersive medium is pre-

sented. The method uses a time-frequency representation
in that the original broadband pulse is decomposed into
narrowband components which are localized in both the
time and frequency domains. This approach is similar to
the one used by Önsay and Haddow [19] who studied
the propagation of impact-induced bending waves along
a uniform beam using the wavelet transform analysis. The
method used in this paper is different from the typical
wavelet analysis in that the components are produced by a
set of bandpass filters having a constant bandwidth, rather
than by dilating and translating a mother wavelet [19]. In
addition, the inverse transform is not needed in the pro-
posed method. This simplification is achieved by choosing
a bank of special Gaussian filters as shown in Fig. 2. As
a result, the original pulse is a direct summation of the
narrowband components as indicated by (4).

In addition to satisfying (4), the validity of the proposed
method requires that the bandwidth of each component
is narrow enough so that the effects of the attenuation
and dispersion can be evaluated at a single frequency—
the center frequency of the component signal, as indicated
in Fig. 4. We now determine the criterion for the band-
width of each component to be narrow enough, i.e., to
determine an upper limit for B in (5). It is well-known
that, when a pulse with a finite bandwidth propagating in
a lossy medium, its mean frequency will be shifted down
and, therefore, deviate from the original mean frequency.
The amount of downshift is related to the bandwidth of the
pulse: a wider bandwidth will produce a more significant
downshift in the mean frequency. Based on this consider-
ation, the narrowband criterion may be defined as to find
an upper limit for B so that the resulted downshift in the
mean frequency will be negligible.
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Fig. 11. (a) Experimentally measured pulse by passing a narrowband pulse through the Plexiglas phantom. (b) Simulated pulse using the
processes shown in Fig. 4. The normalized rms error is 5.7%. (c) Simulated pulse using a zero-phase filter. The normalized rms error is 20.3%.

Fig. 12. (a) Experimentally measured pulse by passing the same pulse used in Fig. 11 through the ATS phantom. (b) Simulated pulse
using the time causal model. The normalized rms error is 8.8%. (c) Simulated pulse using the nearly local model. The normalized rms error
is 21.1%.
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Let us consider a particular component in Fig. 4 which
has a center frequency of fc. Because the component is
produced by passing a broadband r(t) through a narrow
bandpass filter having a Gaussian spectrum, the spectrum
of the resulted component is also approximately a Gaus-
sian function:

S0(f) = Ae−
(f−fc)2

B2 (29)

where A is the amplitude of S0(f) at the center frequency
fc, and B is the same bandwidth parameter ofBi(f) in (5).
After passing through a tissue layer having an attenuation
function α(f) = βfy and a thickness x, the spectrum of
the attenuated pulse becomes:

S1(f) = Ae−
(f−fc)2

B2 e−βf
yx. (30)

We now consider the two extreme cases: y = 1 and y = 2.
For y = 1, it can be shown that:

S1(f) = Ae−
(f−fc)2

B2 (31)

where A is the new amplitude which is independent of
frequency, and fc is the down-shifted new center frequency:

fc = fc −
βB2x

2
. (32)

We may then require that the relative down-shift of the
center frequency is less than a predetermined threshold δ:

fc − fc
fc

=
βB2x

2fc
< δ (33)

which leads to the following limitation for B:

B <

√
2fcδ
βx

. (34)

For y = 2, it can be shown that the new spectrum of the
attenuated pulse becomes:

S1(f) = Ae
− (f−fc)2

(B/
√

1+βB2x)2 (35)

where A is another new amplitude independent of fre-
quency, and fc is the new down-shifted center frequency:

fc =
fc

1 + βB2x
. (36)

In this case, the narrowband conditions become:

fc − fc
fc

= 1− 1
1 + βB2x

< δ (37)

and

B <

√
δ

(1− δ)βx. (38)

When 1 < y < 2, the down-shift in the center frequency
is more difficult to formulate. Because we only need to
know the upper limit rather than a precise value for B, the
following simplified procedure may be used to determine
a suitable upper limit for B. If y < 1.5, one may fit the
attenuation function with a straight line and then use the
resulted β value and (34) to determine the upper limit of
B. If y ≥ 1.5, one may fit the attenuation function with
a quadratic function and then use the resulted β value
and (38) to determine the upper limit for B. Finally, from
the values of B, fL and fH , the number of band can be
determined:

n ≥ 1 +
fH − fL

B
. (39)

As an example, we will choose the parameter B for the
bandpass filters used in this study. We first set the thresh-
old as δ = 5%. For the Plexiglas phantom, y = 1 and
β = 0.9/8.686 = 0.104 Np/(MHz cm), and x = 8.0 cm.
If we let fc = 3.0 MHz, the narrowband criterion based
on (34) is B < 0.6 MHz. For the ATS phantom, y ∼= 2,
β = 0.2/8.686 = 0.023 Np/(MHzycm), and x = 8.0 cm.
The narrowband criterion based on (38) is B < 0.53 MHz.
To meet both conditions, a B = 0.5 MHz is used in this
study. For the wideband transducer (Panametrics V309),
fL = 0.5 MHz and fH = 5.5 MHz. The total number of the
bandpass filters is 11, according to (39). For the narrow-
band transducer (Panametrics A382), fL = 1.5 MHz and
fH = 4.5 MHz. The total number of the bandpass filters
is 7.

Despite the conceptual simplicity, the proposed method
accurately predicts the change in the waveform of a pulse
transmitting through a layer of lossy medium. When the
medium (Plexiglas) has a linear-with-frequency attenua-
tion, Table I indicates that the effects of dispersion, in
terms of phase lag and relative time delay, are significant.
Fig. 8 shows that the transmitted pulse predicted by the
model [Fig. 8(b)] accurately resembles the actually mea-
sured pulse [Fig. 8(a)] with a normalized rms error of 6.8%.
On the other hand, if the dispersion is ignored, the error is
increased to 35.7% [Fig. 8(c)]. Similar results also are ob-
tained when a narrowband transducer is used (Fig. 11): a
normalized rms error of 5.7% for the dispersive model and
an error of 20.3% for the nondispersive model. These ob-
servations, which are consistent with the results reported
by Kuc [3], indicate that, although the magnitude of dis-
persion is very small, its effect in changing the waveform
of a propagating pulse is significant.

The ATS phantom has an attenuation which is nearly
a quadratic function of frequency (y = 1.98). As shown in
Table II, the time causal model predicts negligible effects
of dispersion while the nearly local model predicts signifi-
cant effects of dispersion. Because the two models predict
significantly different dispersion effects, the transmitted
pulses simulated by the two models are expected to have
significantly different waveforms. Figs. 10 and 12 indeed
show these differences. When compared with the measured
pulses, the normalized rms errors of the pulses predicted
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by the time causal model are 6.2% for the wideband trans-
ducer and 8.8% for the narrowband transducer, respec-
tively. The corresponding errors produced by the nearly
local modes are 30.9% and 21.1%, respectively. These re-
sults suggest that the time casual model is more accurate
than the nearly local model in predicting dispersion when
the attenuation function is nearly a quadratic function of
frequency.

In the literature, experimental verification of the nearly
local model has been reported by two groups. O’Donnell
et al. [11] measured the attenuation and sound velocities
of a solution of CoSO4 (1 Mole/L) as well as of polyethy-
lene over the frequency range of 1 to 10 MHz and showed
excellent agreement between the measured and predicted
dispersion. In these experiments, the attenuation of the
tested materials was found to have a nearly linear fre-
quency dependence. More recently, Lee et al. [18] used an
improved method to measure the attenuation and used a
method developed by Sachse and Pao to measure the dis-
persion. They then used a pair of equations derived from
the nearly local model to predict the dispersion from the
measured attenuation, and vice versa. Although the speci-
mens they used (loaded and unloaded polyurethane) have
an attenuation which is significantly nonlinear with fre-
quency (y ∼= 1.7), their results showed a good agreement
between the measured and the predicted values over the
frequency range of 0.5 to 5.0 MHz. On the other hand,
based on the data reported by Zeqiri for the measurements
of the attenuation and dispersion of castor oil (y = 1.66)
and Dow Corning 710 silicone fluid (y = 1.79), Szabo [13]
showed that the predicted dispersions using the time ca-
sual model are closer to the measured values than that
predicted by the nearly local model. The discrepancy be-
tween the results reported by Lee et al. [18] and Szabo [13]
may originate from the fact that the magnitude of disper-
sion is very small and, therefore, is difficult to measure
precisely. Consequently, it may be difficult to examine the
accuracy of the model by directly measuring the disper-
sion. On the other hand, the method presented in this pa-
per only requires the measurements of two pulses: a pulse
transmitted through a water path and a pulse transmitted
through a specimen. From the two pulses, the attenuation
of the specimen can be determined accurately [18]. The
same pulses also are used to examine the accuracy of the
model prediction. Because no separate measurement of dis-
persion is needed, the associated uncertainty is eliminated.
Consequently, the proposed method may provide a more
sensitive means for the comparison of different models.
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