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Abstract—Web caching technology has been widely used to im-
prove the performance of the Web infrastructure and reduce user-
perceived network latencies. Proxy caching is a major Web caching
technique that attempts to serve user Web requests from one or a
network of proxies located between the end user and Web servers
hosting the original copies of the requested objects. This paper
surveys the main technical aspects of proxy caching and discusses
recent developments in proxy caching research including caching
the “uncacheable” and multimedia streaming objects, and various
adaptive and integrated caching approaches.

Index Terms—Caching performance evaluation, dynamic con-
tent caching, proxy caching, Web caching.

I. INTRODUCTION

THE AMOUNT of traffic over the Internet has experienced
tremendous growth in recent years largely due to the wide

adoption of the World Wide Web technologies and the resulting
explosion of Web-based content development and dissemination
[1]–[3]. The Internet bandwidth capacity expansion, on the other
hand, is lagging behind, making the Web a major performance
bottleneck. The gap between the Web infrastructure capacity and
demandwillcontinuetoexist, ifnotexpand,as informationsearch
and business transactions are being increasingly conducted over
the Web. Another compounding factor is related to the recent de-
velopments in the Web technologies such as Web services, which
will potentially bring in new classes of distributed applications in
large numbers that will communicate among one another over the
Internet, consuming network bandwidth [4].

Web caching is an established approach to meet the impor-
tant Web capacity challenge and address related issues such as
user-perceived network latencies. Broadly speaking, caching
can be defined as serving user Web requests from places other
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than the Web servers that publish the original copies of the
requested objects [5]. Recent years have seen significant growth
in the Web caching literature and a large number of commercial
offerings from both established network vendors and startup
companies that exclusively focus on caching-related hardware
and software solutions (see http://www.web-caching.com/ for
a partial list of Web caching products). In effect, caching is
ubiquitous in today’s computing environment. All of the major
Internet backbone providers and Internet service providers
(ISPs) now implement Web caching as part of their infrastruc-
ture, often transparent to end users and service subscribers
[5]. Many medium-to-large enterprises are using a variety
of caching products and services to improve the network
performance and reduce networking connection costs. Many
end-user programs, including Web browsers, also maintain
their local caches to reduce user-perceived network latencies.

According to the location of caches, Web caching systems
can be classified into three types: browser caches, proxy caches,
and surrogate caches. Browser caches are located within user
browser programs. Surrogate caches are typically located near
the Web servers and are owned and operated by the Web content
providers [6]. Proxy caches are located between end-user client
sites and original Web servers, typically closer to the clients than
to the servers. Proxy caches are typically configured and oper-
ated by ISPs and enterprises operating internal networks that are
connected to the Internet. This paper mainly focuses on proxy
caching for the following four reasons. First, a dominant por-
tion of the current caching literature is directly related to various
technical aspects of proxy caches. Although surveys on Web
caching technology exist in the literature (e.g., [5], [7]–[9]),
new developments in proxy caching and its extended applica-
tions in areas such as caching “uncacheable” Web objects (e.g.,
[4], [10]) and differentiated services (e.g., [11]) are of impor-
tant practical significance, calling for a new updated survey.
Second, from the point of view of system deployment, proxy
caching does not require major changes in the networking en-
vironment and can achieve the economy of scale because mul-
tiple users are served. In addition, proxy caching does not rely
on any major changes (e.g., with respect to protocols) to original
Web servers and, in most cases, does not require much end-user
configuration efforts. As a result, proxy caching can be imple-
mented in a relatively transparent manner, making it easy to
adopt and upgrade in practical settings. Third, there are several
new streams of proxy caching research that have emerged in re-
cent years. For instance, analytical models have been developed
to characterize various decisions that proxy caching systems
have to make (e.g., [12], [13]). Such models are capable of pre-
dicting the performance of caching systems under different op-
erating environments and establishing the applicability of some
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of the widely used caching decisions or policies. Another in-
teresting trend is to develop integrated and adaptive caching
approaches that treat several aspects of caching, which have
traditionally been studied in isolation, in an integrated manner
(e.g., [14], [15]). One of the main purposes of this paper is
to summarize the key results and point out future directions
in these new research areas. Fourth, the distinction between
browser caches, proxy caches, and surrogate caches is some-
what artificial. From a system implementation and deployment
standpoint, such distinction is useful and easy to make. How-
ever, from a research perspective, these caches share many sim-
ilar technical challenges and many techniques developed for one
cache type are directly applicable to others. For instance, most
of the caching techniques developed for single proxy caches (see
Section III) can be readily applied to browser caches. As such,
although in this paper we frame all of the issues in the context
of proxy caching, a majority of them are also applicable to other
types of caches.

The rest of the paper is structured as follows. Section II
discusses the intended impacts of Web caching and related
performance measures. Section III focuses on proxy caching
approaches that use a single cache to serve multiple users. This
section summarizes research results on all classical single cache
topics including replacement, consistency, and prefetching, with
the emphasis on new developments such as using analytical
modeling as an evaluation methodology and applying data
mining and machine learning techniques to predict user future
Web-access patterns. In Section IV, we present research issues
related to the development of cooperative proxy caches where
a network of caches works together to serve user Web requests.
Our main focus is on the design of intercache cooperation and
routing protocols and the resulting performance implications.
Section V provides an overview of several emerging topics in
proxy caching. We believe that these topics are of significant
practical relevance and the related technical solutions can poten-
tially become a core component of the next-generation caching
technology. Weconclude the paper in Section VI by summarizing
the paper and pointing out future research directions.

II. BENEFITS OF WEB CACHING AND

PERFORMANCE MEASURES

The potential benefits of Web caching are multifold. From the
end user’s standpoint, caching can significantly reduce the user
perceived network latency and improve their Web experience.
From the perspective of the Internet infrastructure, caching can
reduce the amount of the Web traffic. As a result, the overall per-
formance of the Internet can be improved and network conges-
tion minimized. In addition, for enterprises that pay the ISPs for
wide-area network bandwidth based on the amount of network
traffic, reduced traffic means lowered costs. From the point of
view of the Web server, caching can significantly reduce the
server loads and improve the system responsiveness. In addi-
tion, because copies of Web objects are maintained throughout
the network, the user can access them even when the original
servers hosting them are down. Caching servers have been used
in recent years to host value-added services such as security,
content filtering, and advertisement that are not directly related
to caching [16].

Before presenting various performance measures that have
been developed to evaluate the effectiveness of caching sys-
tems, we briefly describe how proxy caches work. Conceptu-
ally, proxy caches can be viewed as a middleware connecting
end-user Web programs and Web servers through Web proto-
cols. Such caches function as servers to client programs and as
clients to Web servers. When a user requests a Web object, the
proxy cache processes the request first. If the object has a valid
cached copy stored in the cache, this copy is immediately re-
turned to the user and the request is not forwarded to the Web
server hosting the requested object. If a cached copy is not lo-
cated in the cache, then we say that a cache miss occurs. In a
single proxy cache configuration, when a miss occurs, the orig-
inal Web server is contacted and the returned Web object is for-
warded to the client program. In a configuration that consists
of a network of proxy caches, before connecting to the original
Web server, the proxy cache follows certain established proto-
cols to route the request to other participating caches in an at-
tempt to locate a cached copy.

In the caching literature, two main performance mea-
sures–cache hit rate and cache byte hit rate–have been used
to evaluate Web caching systems [5], [9]. Cache hit rate is
calculated as the number of the user-requested Web objects
that are answered by the cache divided by the total number
of the requested objects. Cache byte hit rate is defined as the
number of bytes served from cached content divided by the
total number of bytes served. Achieving the highest hit rate
and byte hit rate under given resource constraints is one of the
primary goals of Web caching.

Several additional measures have also been used by caching
researchers to evaluate the impact of Web caching on the
end-user Web experience and network performance, although
they are not as widely accepted as hit rate and byte hit rate
and their definitions can be somewhat vague. User-perceived
network latency measures, from an end user’s perspective, are
the actual delay between the time a Web request is issued and
the time the Web object is returned to the Web browser for
rendering [17]. Statistics regarding network utilization, such
as average and maximum bandwidth consumption rates, can
help determine the impact of caching on networking resources.
In particular, researchers often resort to the following two
measures [18]: the percentage saving of the amount of network
traffic because of the use of locally cached contents, and the
amount of network traffic that can be attributed to maintaining
and using caches. The latter measure provides an indication of
the overhead associated with a caching approach.

III. SINGLE PROXY CACHE—REPLACEMENT, CONSISTENCY,
AND PREFETCHING

In this section, we focus on Web caching systems that are
based on a single proxy cache. We discuss three key operational
decisions that the proxy has to make. The first decision, called
replacement, is concerned with how to utilize the limited cache
storage capacity to achieve the best caching performance. Al-
though the cost of disk storage has dropped dramatically in re-
cent years, storage capacity is still a limiting factor, especially
for proxy caches that may serve a large number of users. The
second decision, called consistency, is motivated to deal with a
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fundamental dilemma in caching: How to ensure that the cached
Web objects are “fresh” while the original copies may change
over time? The third decision, called prefetching, attempts to
further improve the performance of proxy caching systems by
proactively fetching certain Web objects that have not yet been
accessed by the users but may be requested in the future with
high probability.

A. Replacement

There are two major issues concerning storage management
in a proxy cache. First, the proxy needs to decide which Web
objects should be stored in the cache. Second, it needs to decide
which Web objects should be evicted from the cache in case
storage is needed for new incoming objects.

Most caching systems use simple heuristics to resolve the first
issue, often referred to as the admission control problem. For in-
stance, many proxies try to store a copy of new cacheable objects
as they are accessed by the user. Prefetching techniques (see Sec-
tion III-C) may also generate lists of Web objects that need to
be fetched and stored in the cache. In traditional approaches, the
second issue concerning the eviction of objects is treated sepa-
rately from the first issue. In this section, we survey these tradi-
tional approaches and then discuss the basic ideas behind several
new replacement policies. Some of these new policies make ad-
mission control and eviction decisions in an integrated manner.

Traditional replacement approaches or policies can be
divided into three groups [2]. The first group includes the
classic replacement policies originally developed in the context
of computer memory and disk caching system such as least
recently used (LRU) [19], [20] and least frequently used (LFU)
[21]. Whenever storage space is needed, LRU evicts the object
that was used least recently and LFU evicts the object that
was used least frequently. The second group makes eviction
decisions based on other attributes of the object such as size
or the retrieval speed. For instance, one such policy evicts the
largest object [22] and another evicts the object that can be
retrieved fastest from its original Web server [23]. The third
group of replacement policies tries to make eviction decisions
by considering a number of relevant factors simultaneously
using a cost function [24], [25]. One representative policy in
this group considers size, retrieval speed, and time last used
based on the greedy-dual-size algorithm [26]. In this approach,
a Web object is given an initial value based on its size when
it enters the cache or is accessed by a user. Then, its value
decreases gradually over time unless it is accessed again. The
object with the least value is then evicted if necessary.

Caching researchers typically use two kinds of simulation
methods to evaluate and compare the performance of various
replacement policies. The first kind uses event-based simulation
where various characteristics of Web objects (such as size),
network speed and connection delays, and user Web requests
are artificially simulated based on some commonly accepted
statistical models using a limited number of parameters (e.g.,
Zipf distributions are frequently used to generate Web object
sizes [27]). The second kind of simulation is called trace-based
simulation and uses the actual logs from Web servers or proxy
servers, providing realistic Web environments for testing pur-
poses. A predominant performance measure used in these studies
is hit rate.

More recent research in replacement starts to use analytical
methods to augment simulation-based evaluation. For instance,
in [12], a precise analytical model is developed to evaluate the
LRU policy and its variations. The user Web access behavior is
modeled using a system of differential equations which explicitly
take into consideration the ages of documents (the time elapsed
since these documents were last accessed). The exact expressions
for the hit rate and expected network latency can then be derived.
The benefits of this kind of analytical work are twofold. First,
it provides a theoretical framework to evaluate known policies
and can generate technical insights as to why certain policies
are effective in practice and outperform others. Second, it can
lead to the development of new policies based on the deepened
understanding of the structure of the caching problems and the
interactions among various components of the caching system.

We conclude this section by summarizing several new trends
in research aimed at developing effective replacement policies.
First, recent studies start to focus on more realistic performance
measures such as user-perceived latencies as opposed to simple
criteria such as hit rate and byte hit rate which are easy to define
and determine but do not directly measure the impact of caching
either on end users or the network performance. Researchers are
also examining performance measures combining hit rate and
byte hit rate when measures such as user perceived latencies
are difficult to obtain [28]. Second, many refinements to tra-
ditional replacement approaches have been proposed and eval-
uated, taking into account the specific characteristics of Web
caching. For instance, LRU has been extended to be adjustable
according to the size of Web objects [2]. Third, recent work em-
phasizes the importance of admission control. Various effective
admission control policies have been developed and their per-
formance studied along with replacement policies. [2], [12]. For
instance, in one approach, before a new object is cached, its ex-
pected contribution to the hit rate is compared with that of one or
more cached objects that will need to be evicted to make storage
space available for the new object [2]. This new object will be
cached (and some other objects evicted) only if its expected con-
tribution outweighs the loss as a result of necessary evictions.

B. Caching Consistency

If the Web objects cached in the proxy cache are never up-
dated on their original Web servers, these cached objects will al-
ways be fresh and the user will never be given outdated contents.
However, in real-world applications, most of the Web servers
update their published contents dynamically. Some Web objects
or servers may even become unavailable. As a result, the cached
objects may be stale or invalid. Caching consistency (also re-
ferred to as coherency) research is aimed at developing various
protocols between proxies and Web servers and related opera-
tional polices to address such staleness problems. This section
surveys major types of caching consistency techniques. Before
presenting the basic ideas behind these techniques, we first dis-
cuss the caching performance measures relevant to consistency
and the technical constraints under which caching consistency
techniques operate.

Two measures of staleness–worse-case staleness and average
staleness–are commonly used to evaluate the effectiveness of a
consistency approach [29]. An upper bound on worst-case stale-
ness ensures that objects returned by the cache are never stale by
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more than the given bound. Average staleness is defined as the
product of two terms: the percentage of Web objects returned
by the cache that are stale, and the average amount of time for
which the returned object has been stale relative to the update
that occurred on the server.

Another important performance measure is the network band-
width overhead associated with consistency approaches. Such
overload includes the bandwidth consumed by consistency-re-
lated communications between the proxy and the Web servers
and by re-downloading the cached objects. The main technical
objective of all consistency techniques is to achieve the de-
sired staleness bounds with the minimal network bandwidth
overhead.

Caching consistency poses several unique technical chal-
lenges. Unlike caching replacement, where the related decisions
are made by the proxy based on local information, consistency
inherently involves both the proxy and the Web servers. Thus,
when designing a consistency approach, one needs to consider
issues such as what can be expected of Web servers in terms
of protocol support and the amount and quality of information
available on the Web objects. In addition, scalability issues
play a significant role as the proxy may need to maintain state
information for a large number of Web servers and a Web
server may need to maintain state information for a typically
even larger number of clients including proxies.

Caching consistency approaches can be grouped into three
types: client-driven, server-driven, and hybrid. In a client-driven
approach, the proxy is responsible for verifying the validity of
its cached objects. In server-driven and hybrid approaches, the
Web servers also actively participate in the validation process by
notifying proxies updates. Current real-world caching applica-
tions predominantly use client-driven consistency methods due
to their simplicity [5]. However, recent research has shown that
other two approaches have the potential to significantly reduce
the network bandwidth overhead while maintaining the similar
staleness guarantees [18]. We project that these approaches in-
volving servers will become more popular in practice. In effect,
this is already the case for surrogate proxies.

In the remainder of this subsection, we present the basic ideas
behind representative protocols for each of the above three con-
sistency approach types. Note that due to the large number of
consistency approaches that have been developed, it is not our
intention to provide a comprehensive survey. Rather, we aim to
illustrate the key tradeoffs and the basic engineering ideas re-
lated to maintaining caching consistency.

We first discuss client-driven approaches. All of these ap-
proaches make use of the time-to-live (TTL) information. The
HTTP protocol allows the Web server to specify the expires
or max-age header fields for all cacheable objects. The proxy
can then use TTL information to decide whether a cached ob-
ject needs to be validated with the Web server. Such validations
can be done either reactively or proactively [29]. In a reactive
approach, a validation message is sent to the server only when
the cached object is requested by the user and the associated
TTL indicates that it is stale. In a proactive approach, validation
messages are sent periodically to the Web servers for objects
that have expired regardless whether they are being requested
by the user. The basic tradeoffs between these two approaches
are clear: The reactive approach can guarantee the strong consis-

tency (assuming that the TTL provided by the server is valid) but
at the cost of increased user-perceived latency, network traffic,
and server load. The periodic proactive approach may reduce
user-perceived latency. However, it can result in significant net-
work and server overhead.

In cases where the Web server does not supply (accurate) TTL
information, the adaptive TTL approach is shown to be useful
[10]. This approach estimates an object’s TTL based on the ob-
servations of its lifetime in both the proxy and the server. In its
simplest form, an object’s TTL is set to equal a fixed percent of
the document’s current age, defined as the difference between
the current time and the last modified time of the object. This
estimation reflects the intuition that an object that remains un-
changed for a relatively long period of time is unlikely to be
changed quickly.

A useful technique in implementing caching consistency pro-
tocols is piggybacking. Whenever the proxy needs to commu-
nicate with a server (not necessarily for consistency reasons), it
piggybacks a list of cached objects from that server that need
to be validated. The server handles the primary request first and
then indicates which cached objects are now expired. The piggy-
backing technique can reduce the network bandwidth overhead
and, to a lesser degree, Web server load. This technique applies
to all consistency methods, not limited to client-driven ones.

We now turn our attention to server-driven consistency
approaches. The basic version is called the Callback protocol
[10], [30]. In this approach, the Web server keeps track of which
proxies are caching which objects. Whenever an object needs
to be modified, the server notifies the corresponding proxies by
sending them invalidation messages. Obviously, the Callback
approach can be improved by using piggybacking approaches
to reduce network bandwidth consumption. Server-driven
approaches have several advantages. They help reduce the
messaging overhead since consistency-related messages are
sent only when objects are actually updated on the server.
They also help maintain strong consistency since the server
has immediate knowledge of which Web objects are updated.
However, server-driven approaches make important assump-
tions about the server behavior and functionality, which in
real-world applications, are often not met. In these approaches,
the server needs to dynamically keep track of proxies on a
per-object basis. It may also cause communication “bursts”
when objects are being updated. Before the consensus has been
reached among the Web content providers and server devel-
opers regarding servers’ responsibilities with respect to caching
consistency, it seems that the applicability of server-driven (and
hybrid) approaches is limited with the exception of surrogate
caching where servers and caches are closely tied together and
designed in an integrated manner.

The last type of consistency approach, the hybrid approach,
requires close collaboration between servers and proxies
through the use of leases [18], [29], [31]. Two types of leases
have been proposed and studied in the literature. The first type,
object lease, is a promise by the Web server to a proxy that
the proxy will receive an invalidation message if the leased
object is modified during the time period specified in the
lease. The second type, volume lease, is referred to the leases
involving a collection of Web objects, called a volume, instead
of individual Web objects.
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Object leases can be used to maintain strong consistency of
the cached Web objects, especially in implementations where
the Web server commits the updates to an object only after all
of the proxies with valid leases acknowledging the invalida-
tion message or their leases expire. In this case, strong consis-
tency is achieved without significant overhead for two reasons.
First, the server only needs to maintain a relatively short list of
proxies that explicitly express an interest in the object. Second,
the volume protocol provides an important fault tolerance fea-
ture through a “time-out” mechanism. Consider, for example,
that the server sends out an invalidation message to a proxy
which is not reachable because of network problems. The server
will then automatically assume that the proxy is no longer in-
terested in the object (after its lease expires) and commit the
change without further delay. Volume leases may further re-
duce the server and communication overhead by aggregating the
proxy lists and invalidation messages. In certain protocols, ob-
ject and volume leases are used together to provide guarantees
for both average staleness and worse-case staleness measures
[32].

Two decisions that have important performance implications
need to be made when applying a lease-based approach. The first
one is concerned with the determination of the lease duration.
The second one, applicable to volume leases, is concerned with
the granularity problem: How to group objects into volumes? The
basic tradeoffs are clear [32], [33]: Longer leases may reduce
messaging overhead but increase the length of the proxy lists and
may lead to extended delay in object updates; larger volumes
reduce the proxy lists but may lead to unnecessary invalidations
to the Web objects in the volume. How to make effective deci-
sions, however, remains open. Empirical studies indicate that the
specific characteristics of Web sites and applications need to be
carefully considered when making these decisions [5].

Recent work has also explored the use of multicasting and
hierarchical networks to further reduce the communication
overhead associated with various lease-based consistency
approaches [29]. Although promising results have been shown,
this line of research cannot be immediately applied because
of lack of support for the needed protocols in the present
networking environment.

C. Prefetching

Caching objects that have already been accessed by the user is
of limited use in an environment where the user frequently needs
to explore new information. Prefetching is a Web caching tech-
nique that caches Web objects in anticipation of the user’s future
needs [34]–[37]. A central issue in prefetching is how to predict
user future Web-access patterns. Depending on where the in-
formation used for prediction is collected, prefetching methods
can be divided into three groups: proxy based, server based, and
hybrid where proxies and servers jointly decide what should be
prefetched. In this subsection, we first focus on learning mech-
anisms that can predict user future-access patterns regardless of
the source of the data used for prediction. We then discuss how
such predictions can be used by a caching system and summa-
rize the related operational issues.

Many factors influence user Web usage. To achieve high
predictive performance, a prediction approach needs in-depth

knowledge about the user’s information needs as well as the
contents of potentially relevant Web pages. In the context of
caching, however, developing such a high-performance ap-
proach which necessarily entails costly information collection
and computational overhead is typically unnecessary. Instead,
caching-related prediction approaches typically aim to provide
reasonable Web usage prediction based on a limited set of
information that can be easily acquired. One commonly used
information source is past Web-access information either at
the individual user level or at the aggregated level based on
user groups. Such historical access data are typically recorded
at various points of Web-based systems including browsers,
proxy caches, and Web servers. Another common information
source that can be easily tapped into is the hyperlink structure
of given Web pages. We call the approaches that mainly make
use of historical access data history-based approaches. The
approaches that primarily use Web page structural information
are referred to as structure-based approaches.

The simplest structure-based approach is the one that
prefetches all of the embedded links of the Web page that
is being currently accessed by the user. More sophisticated
approaches take into consideration factors such as the type
of the Web object referred to by the embedded hyperlink
and the past latency statistics of the Web server hosting
the object [38].

The simplest history-based approach is the “Top-10” algo-
rithm [37]. In this approach, the number of past access requests
is maintained for each Web object residing on the Web server
or the proxy. A list of the most popular (i.e., with the largest
number of requests) documents is then periodically compiled
and used as predictions for future Web accesses. The Top-10
algorithm is based on highly aggregated information and is
essentially stateless in that the predication is made regardless
of the user or which Web pages he or she is currently visiting. A
large number of state-conscious prediction methods have been
developed that explicitly consider the user’s current browsing
activities when making predictions [39], [40]. Most of these
methods fall under the general umbrella of Markov-based
methods. Simply put, a Markov model of Web-access patterns
has three components: a set of all possible Web objects that may
be accessed by the user, a set of all possible states characterizing
the user’s current browsing activities that are believed to be
predictive of future accesses, and a transition probability matrix
recording the probabilities of accessing a given Web object
when the user is in a particular state. The main differentiator
for these Markov-based methods is the way in which the state
is defined. The first-order models typically define the state as
the Web object most recently accessed by the user, whereas the
second-order models use the most recent (ordered) pair of Web
objects. Higher-order Markov approaches relying on longer
user access paths have also been explored in various forms
[39], [41]. The key algorithmic aspect of these Markov-based
methods is how to construct the transition probability matrix
efficiently both in computing time and memory space using
historical access logs.

Another class of history-based methods based on associa-
tion rule learning have been developed in parallel with Markov-
based approaches [42]–[44]. The basic intuition is that if a group
of Web objects has been frequently visited together in the past,
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it is very likely that they will be visited again as a group in fu-
ture accesses. The association rule learning algorithms provide
an efficient computational mechanism to identify such highly
correlated groups from historical data. These algorithms also
allow the caching system designer to specify the desired degree
of correlation or association to tradeoff between the coverage
and reliability of the learned rules.

A challenging technical issue relevant to both association
rule-based and Markov approaches is how to define opera-
tionally a transaction—a sequence of user Web accesses that
are closely related to each other in the context of a concrete
user task [5]. If these transactions are defined in such a way that
unrelated Web accesses are grouped together, false associations
or links will then be introduced into the Markov model building
or association rule learning. Conversely, if these transactions
are constructed such that related accesses are separated into
different transactions, valuable association or linkage informa-
tion will be lost. In both cases, the overall predictive power of
these history-based approaches may be reduced significantly.
Another challenging issue with history-based approaches
is that they are relatively slow to respond to changing Web
behavior and can be completely useless when confronted with
a document not requested before [45], [46]. Recent research
has explored the possibility of combining structure-based and
history-based approaches to deal with these challenges with
limited success [39], [47].

We now turn our attention to caching-specific operational
issues, assuming that good-quality predictions on user future-
access patterns are available. From the system perspective, the
basic tradeoff in prefetching is between potential reduction in
user-perceived Web latency and increase in network traffic and
server loads as a result of fetching Web objects that may never
be accessed by the user [46], [48]. This tradeoff governs the
design of prefetching operations which have two key elements:
when to fetch and which Web objects to fetch. In terms of the
timing of fetching activities (after predictions are completed),
the following two main approaches have been developed [45]:
The online approach fetches Web objects during pauses while
the user reads the displayed material on the computer screen;
the offline approach fetches Web objects during the off-peak
periods or after the user becomes idle for a certain period
of time. As for deciding which Web objects to be fetched, a
number of heuristic filtering mechanisms have been developed
in both commercial products and caching research [39], [45].
For instance, some mechanisms do not fetch Web objects that
can be quickly retrieved even if they are very likely to be
visited in the future. Other mechanisms apply a threshold to
filter out Web objects with relatively low access probability.

Recent studies start to examine the interaction between
prefetching decisions and other types of caching decisions. For
instance, storage allocation has been studied in the prefetching
context. Several analytical models have been formulated to
achieve the maximum (expected) hit rate, the maximum byte
hit rate, and the minimum user-perceived network latency
[17]. These models also lead to a precise understanding of
the widely-used Top-10 policy and its applicability and ef-
fectiveness. In another example, researchers have proposed a
model treating prefetching aggressiveness, replacement, and
network bandwidth overhead in an integrated framework [49].

IV. CACHE NETWORKS: COOPERATION AND ROUTING

The previous section focuses on key operational decisions
that govern the behavior of a single proxy cache. The benefit of
a single cache is limited by its inherent computational resource
constraints (e.g., storage and CPU cycles) and the size of the
user/client population it serves. Cooperative proxy caching (i.e.,
using a distributed network of proxy caches to satisfy user Web
requests), has been developed to address these scalability issues
associated with single caches [50]–[52].

Cache networks bring about several advantages. First,
through sharing caches among a large number of users, more
efficient utilization of caching resources can be realized when
compared with a single cache approach. In addition, the po-
tential savings in network bandwidth can also be significantly
higher than those in the single cache case. Second, caching
networks provide a natural solution to applications that involve
serving a large, geographically dispersed user population in
support of their diverse Web requests, since multiple caches
can be strategically located between the users and original
Web servers. Third, cache networks help improve the overall
performance of the caching system by balancing loads between
proxies. Furthermore, they improve the network fault tolerance
and robustness by removing the single point of failure. Large
organizations and ISPs, including those operating the Internet
backbones, have been the main adopters of cache networks [5].

From a design perspective, each participating proxy in the
cache network is a full, independently-run proxy cache. As
a result, all of the single cache operational issues discussed
in Section III need to be resolved. Often these issues need to
be re-examined in the cooperative caching context. We use
two examples to illustrate the need for such re-examinations.
The first example is concerned with the choice of replacement
strategies in a hierarchically organized cache network [53].
Since the workload characteristics differ across the levels of
the caching hierarchy due to the filtering effects at lower-level
caches, it is optimal to adopt different replacement policies
depending on which level a cache is situated in the entire
hierarchy. The second example involves subtle difficulties
of maintaining caching consistency in a cooperative caching
environment [54]. With a single cache approach, the user may
receive a stale object but future revisits will always guarantee
the same or fresher copy of the object. In cooperative caching,
however, repeated access to the object may return versions
older than the one previously received.

In addition to these single cache issues, coordination among
participating caches has to be carefully designed. This section
mainly focuses on two groups of approaches dealing with these
coordination issues. The first group includes organizational ap-
proaches, which assign a fixed role to each participating proxy.
Whenever a miss occurs at a proxy, a fixed sequence of partici-
pating caches will be contacted regardless of which Web object
is being requested. The second group includes hashing-based
approaches that do not rely on fixed roles. Instead, they directly
map the URL of the requested object to the participating proxies
that may have a cached copy of the object when a miss occurs.

Before discussing these two groups of approaches in detail,
we briefly review two performance issues unique to cooper-
ative caching approaches [13], [55]. First, in the single cache
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case, a cache miss can be easily determined and does not add
much delay when it occurs. In cooperative caching, however,
determining whether a requested object can be served by one of
the participating caches can be time- and resource-consuming.
Sometimes, it is more efficient to retrieve the object from the
original Web server than to locate it from the cache network.
Second, the communication overhead and the resulting network
bandwidth consumption relating to inter-cache coordination
and synchronization can be significant. Such costs have to be
factored into consideration when selecting a cooperative caching
approach.

A. Organizational Approaches

Organizational approaches link participating proxy caches to-
gether statically. These links essentially establish routes for Web
requests to be forwarded among proxies until a cached copy is
found. Depending on the topology of the cache network, the or-
ganizational approaches can be further divided into three cate-
gories: hierarchical, distributed, and hybrid caching.

In hierarchical caching, proxy caches are organized as a tree
[52]. If a cache miss occurs at a proxy, it will forward the Web re-
quest to its parent proxy. This forwarding process continues until
either a cached copy of the requested object is foundornone of the
proxies along the forwarding path including the root cache has a
copy. In the latter case, the original Web server will be contacted.
The retrieved object then travels in the opposite direction to reach
the user, leaving a copy at all intermediate caches.

Hierarchical caching has been heavily used by the ISPs,
partly because access to the Internet is provided through simi-
larly structured hierarchical layers [56]. It is relatively simple
to maintain and does not incur much coordination overhead.
The main problems associated with hierarchical caching are as
follows. (a) Each cache level introduces additional delays. (b)
The degree of sharing of cached objects across proxy caches is
low. (c) Multiple copies of the same Web object are maintained
at different levels of the hierarchy. (d) Caches close to the root
may easily become processing bottlenecks and may require
huge storage space.

In distributed caching, proxy caches operate at the same level
of the network, typically close to the clients. In the simplest
case, topologically, these caches are organized as a fully con-
nected graph. Whenever a miss occurs, the proxy cache for-
wards the request to sibling caches for possible matches. In this
approach, there is no need to keep multiple copies of the Web
objects at various network levels. Also, most of the coordina-
tion-related traffic flows through local networks, reducing con-
gestions at higher network levels. In a relatively small environ-
ment with high local network bandwidth, distributed caching
can be very effective [13]. The main problem with distributed
caching is that it does not scale. In a large environment, dis-
tribute caching suffers several deficiencies, such as high coordi-
nation overhead and long connection time. Various approaches
have been developed to improve the performance of distributed
caching [57]–[60]. The key idea behind these approaches is to
efficiently identify the set of sibling caches that are likely to
hold the requested object through metadata which summarizes
which Web objects are cached in each sibling proxy cache. Such
metadata are typically duplicated at each participating cache and
updated frequently. (There is significant overlap between these

metadata-based approaches and hashing-based methods to be
discussed in the next subsection).

In hybrid caching, caches cooperate with one another at all
levels of the network [13], [51]. The Web object can be fetched
either from parent or sibling caches if a miss occurs. The key
issue with a hybrid approach is to decide where to retrieve the
object, either from one of the caches or the original Web server,
to minimize latency. For instance, one technique limits the co-
operation between sibling caches to reduce the network latency
and caching-related communication overhead [13].

B. Hashing-Based Approaches

In contrast to organizational approaches, hashing-based ap-
proaches do not enforce static, role-based routing for unfulfilled
Web requests. Instead, hashing-based approaches try to map di-
rectly from the Web request to one or a small set of cooperating
caches that may keep a cached copy of the requested object. Two
methods have been used to implement this mapping idea: direc-
tory based and hash function.

Using the directory-based method, the location of cached ob-
jects is maintained explicitly by a directory service running on
a separate directory server [57]. Whenever the cached contents
of a participating proxy change, the proxy will send a notifica-
tion to the directory server. When a miss occurs, the proxy first
queries the directory service, which responds with either the lo-
cation of one or several proxies that keep copies of the requested
object,oraglobalmissmessage.In thelattercase, theWebrequest
will be immediately rerouted to the original Web server. The di-
rectory-based method does not incur much communication over-
head and enables loosely coupled cache networks in which indi-
vidual proxies can be added and removed easily without coordi-
nating with other participating proxies. A major disadvantage of
this method is that the directory server may become a single point
of failure and a performance bottleneck.

The hash function-based method uses a hash function shared
by all clients and proxies to directly map the requested URL
to one or several participating proxy caches [58], [61]. When
a client or a proxy needs to locate a copy of the requested Web
object, it applies this shared hash function to the requested URL
and then contacts the proxies identified by the returned hash
value. Similar to the directory-based method, the hash func-
tion-based method does not incur much communication over-
head and utilizes cache space efficiently because no multiple
copies of the Web objects need to be maintained. The main dis-
advantage of this method is the need for all clients and proxies
to use the same global hash function. The coordination overhead
is nontrivial when this global function needs to be updated be-
cause of the changes in the cache network.

V. RECENT DEVELOPMENTS IN PROXY CACHING

The past decade has witnessed the rapid growth of the Web
caching literature and the emergence and wide adoption of re-
lated technology and products in commercial settings. Despite
its relative maturity, Web caching remains an active field of
study and technology development because of the ever-present
need for improving Web performance, and the dynamic nature
of the Web infrastructure and Web-based applications.
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This section surveys proxy caching research in three
emerging areas: a) caching various types of “uncacheable”
Web objects, b) adaptive cooperative Web caches, and c)
quality-of-service (QoS)-aware differentiated caching services.
Although research in these areas is still in its initial stage
of development and the effectiveness of some of the related
approaches has yet to be established, we argue that these areas
are of significant practical relevance and representative of the
ongoing and emerging Web caching research that may lead to
the next-generation Web caching technology.

A. Caching the “Uncacheable”

One major factor limiting the usefulness of Web caching is
that a large portion (up to 40%) of Web content is “uncacheable”
[62]. Existing caching approaches typically treat static Web ob-
jects such as static HTML and picture files as cacheable and
ignore nonstatic objects that contain material dynamically gen-
erated by Web servers or multimedia streaming objects. Given
the maturity of Web technology, it is not unreasonable to as-
sume that the portion of such uncacheable objects will increase.
Another compounding factor is related to the recent emergence
of Web services which have the potential to become a signifi-
cant part of the Web. It is clear that in order to stay relevant and
achieve further performance improvements, Web caching has to
explore ways to cache these traditionally uncacheable objects.

This subsection focuses on caching the following types of
nonstatic objects: a) Web objects that contain a mixture of static
and dynamic contents, b) streaming objects, and c) Web trans-
actions. We lay out the key technical issues and present several
solution concepts that have been proposed in the literature. We
end this subsection by briefly discussing techniques that have
shown promise in implementing these solution concepts.

1) Caching Mixed Objects: Most existing caching ap-
proaches treat each Web object as an atomic structure. Any
object that is not fully static (usually inferred by the file exten-
sion in the URL) is viewed as uncacheable. However, a large
portion of dynamic Web objects have both static and dynamic
parts. In fact, in many cases, the static part dominates the
dynamic part in size. Several approaches have been developed
to take advantage of this observation (e.g., [63], [64]). The
basic idea is to separate dynamic and static parts either based
on server-provided cues or templates. The static part is then
cached on the proxy. When the user requests the mixed object
with the required parameters, the proxy queries the original
server with the given parameters, retrieves only the dynamically
generated portion, and then merges the returned dynamic part
with the locally stored static part before sending the page to the
client for rendering.

2) Caching Streaming Data: The emergence of streaming
multimedia applications on the Internet has posed new chal-
lenges to caching. Theoretically, streaming objects can be
viewed by proxy caches as regular static objects. However,
since these objects are typically very large, this simple approach
does not work well in practice due to the cache space constraint.
Another complicating factor is that multimedia object playback
typically requires relatively high network bandwidth. As such,
besides reducing access latency and network congestion,
caching is charged with an additional technical objective to
improve the quality of content delivery.

Various caching decisions have been re-examined to ac-
commodate the unique characteristics of streaming objects
[65]–[68]. For instance, several customized replacement
policies have been developed to take into consideration the
large size of streaming data. In another example, the large,
aggregated storage capacity from cache networks is used
to store streaming objects. Researchers have also explored
the specific characteristics of multimedia data to facilitate
caching. A prominent example is the prefix caching technique
[69]. Using this technique, the proxy only caches the initial
frames of multimedia streams and use work-ahead smoothing
techniques to ensure the high-quality playback. This technique
can significantly reduce user-perceived latency without much
cache space overhead.

3) Caching Transactions: Web-based transactions encom-
pass not only content delivery but also other more complex Web
server/client interactions driven by various contingent business
rules. Caching has the potential to improve the performance of
such transactions which, in turn, may result in significant busi-
ness value.

In most existing web caching systems, proxies are simple
Web object repositories that do not provide any transaction pro-
cessing capabilities. To deal with the demanding requirements
of Web transaction caching, we posit that some transaction
processing capabilities at the proxy level will be beneficial
[70]. Many important design issues have to be tackled when de-
veloping a Web transaction caching system. Depending on the
specifics of a transaction that is being cached, certain portions
of the transaction can be pushed to proxies close to the user for
quick responsiveness, while others still need to be processed
on the Web server. Maintaining data consistency and integrity
is particularly important for transaction caching. Existing Web
caching systems deal with “read-only” operations, while Web
transaction caching systems may need to perform both “read”
and “write” operations. Research from real-time database
management (DBMS) and concurrent transaction processing
may provide important insights to deal with these issues.

4) Implementation Issues: There exist several standards to
support caching of Web objects that have both static and dy-
namic elements (e.g., HPP [64]). The Web content provider
needs to follow these standards to publish mixed Web objects to
make them cache-friendly. Another useful and versatile imple-
mentation technique is active caches [10]. In this approach, the
Web server supplies cache applets which are attached to Web
documents. The proxy is required to execute these cache ap-
plets upon a cache hit to prepare the document to be returned
to the client for rendering without explicitly accessing the orig-
inal Web server. It has been shown that the active cache tech-
nique can be effectively used to turn many types of uncacheable
contents cacheable at the expense of increased CPU loads on
proxies.

B. Adaptive Cooperative Web Caches

Web-access patterns can change rapidly over time. For in-
stance, the “hot spot” phenomenon is not uncommon in real-
world applications: Certain Web contents are in high demand
during a short period of time and then after a while, user inter-
ests decline. Such a dynamic and rapidly changing nature of the
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Web suggests the usefulness of highly adaptive caching archi-
tectures.

In an example of such adaptive architectures [71], [72],
the Web caching function is provided by multiple, distributed
caches which dynamically join and leave cache groups based
on the Web-access patterns. More specifically, each individual
proxy is implemented as a software agent. The Web caching
service is provided through a distributed collection of such
proxy agents that act autonomously but also collaboratively to
serve user needs. These proxy agents form dynamic “virtual”
teams based on content demand. A proxy agent can join or
leave a particular cache group depending on the user-access
patterns and the updating rates of the Web sources covered
by this agent. Proxy agents can also clone themselves in case
of heavy user traffic, remove themselves in case of idleness
to release resources, migrate on the network to “follow” user
requests, and exchange capabilities among themselves to better
serve changing needs.

C. Differentiated Services

Efficient QoS provisioning mechanisms have been developed
at different levels of the network infrastructure to respond to
the heterogeneity of network applications and clients in latency
requirement, bandwidth consumption, among others.

Caching, as part of the network infrastructure, also needs to
consider such QoS requirements. For instance, when making re-
placement decisions, most proxies only consider object size, ac-
cess frequency, and retrieval latency, among others. They do not
differentiate objects based on their original Web servers. How-
ever, in a QoS-aware application, for instance, such location in-
formation may play a central role because the QoS provision
may provide preferential status to certain servers in the form of
guaranteed hit rate.

Recent research has started to develop QoS-aware caching
approaches. For instance, a weighted replacement policy has
been proposed which provides differential QoS [73]. In more
recent work, researchers have applied adaptive control to design
differentiated caching services (e.g., [11]). The main advantage
of an adaptive control-based approach is that control parameters
can be automatically adjusted to achieve the desired quality dif-
ferentiation without any manual tuning.

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS

This paper presents a survey of major technical approaches
related to the design and operation of both single Web proxy
caches and proxy cache networks. It also discusses several
emerging areas of proxy caching that are of practical im-
portance. We conclude this paper by summarizing a number
of potentially fruitful areas of study for future Web caching
research. These areas are grouped into three themes: integrated
modeling, evaluation, and nontechnical issues.

1) Integrated Modeling: There is a clear trend in Web
caching research to develop integrated models and operational
guidance that combine two or more traditionally separate
caching areas. Examples include the integration of prefetching
and replacement [17], consistency and replacement [14], [74],
and replacement and admission control [2]. We believe that
research considering all of the major caching-related decisions

in an integrated manner will provide important insights and
concrete guidelines to Web cache design and operation.

Recent caching research has also gone beyond traditional
caching topics to explore ways to further improve the Web
performance. For instance, some caching systems employ
intelligent sensing mechanisms to monitor network traffic to
decide when to prefetch or perform consistency-related activi-
ties [35], [71]. Researchers have also started to explore how to
best coordinate proxy caches and server-side solutions, such as
surrogate proxies and content distribution internetworking, to
improve the overall Web performance [5].

2) Evaluation: Evaluating a Web caching system in a com-
prehensive and objective manner is difficult. Complex tradeoffs
often exist between different and often conflicting objectives.
Future research is needed to investigate such complexities in a
rigorous framework.

From the viewpoint of evaluation methodology, two lines of
approaches are worth mentioning. The first line concerns analyt-
ically-driven evaluation. Such formal evaluation, albeit directly
useful in only very restrictive settings, can provide important in-
sights into the structure of the problem and often point to effec-
tive operational policies (e.g., [12], [13], [17]). A related formal
framework is competitive analysis [75]. Competitive analysis
techniques have been successfully applied to analyze computer
memory paging systems and have the potential to be used to an-
alyze Web caching approaches.

The second line is mainly concerned with empirical eval-
uation of caching systems. Both event-based simulation and
trace-based evaluation have been extensively used in the current
Web caching research [76]. Nonetheless, much of the empirical
evaluation process is ad-hoc and lacks cohesion. Individual re-
searchers often use simulation models and traces that are not
publicly available, making comparisons between different ap-
proaches unnecessarily hard and unreliable. A common, pub-
licly accessible set of benchmark simulated and real traces is
urgently called for. In particular, experience has shown that an
“one-size-fits-all” approach that works uniformly well across
applications is almost impossible. Therefore, traces organized
according to different application-motivated workload charac-
teristics will provide a useful research platform.

3) Nontechnical Issues: Research focusing on nontechnical
aspects of caching has started to emerge. For instance, cost-
based models have been developed that go beyond operational
aspects of caching and explore caching capacity planning issues
[12], [77]. We expect continued research activities in this im-
portant area of study. Research exploring issues related to pro-
tocol adoption and data ownership and security in the context of
caching, may also yield fruitful results.
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