
0018-9162/03/$17.00 © 2003 IEEE60 Computer

A Formal Approach
to MpSoC
Performance
Verification

M ultiprocessor system on chip designs
use complex on-chip networks to inte-
grate multiple programmable proces-
sor cores, specialized memories, and
other intellectual property (IP) com-

ponents on a single chip. MpSoCs have become the
architecture of choice in industries such as network
processing, consumer electronics, and automotive
systems. Their heterogeneity inevitably increases
with IP integration and component specialization,
which designers use to optimize performance at low
power consumption and competitive cost.

Figure 1 shows an example MpSoC, the Viper
processor for multimedia applications.1 Based on
the Philips Nexperia platform, it includes many key
components that are either reused or supplied exter-
nally, such as the MIPS and TriMedia processor cores.
Tomorrow’s MpSoCs will be even more complex,
and using such IP library elements in a “cut-and-
paste” design style is the only way to reach the nec-
essary design productivity.

Systems integration is becoming the major chal-
lenge in MpSoC design. Complex hardware and soft-
ware component interactions pose a serious threat
to all kinds of performance pitfalls, including tran-
sient overloads, memory overflow, data loss, and
missed deadlines. The International Technology
Roadmap for Semiconductors, 2001 Edition, (http://
public.itrs.net/files/2001itrs/design.pdf) names sys-

tem-level performance verification as one of the top
three codesign issues.

PERFORMANCE SIMULATION:
CAN IT GET THE JOB DONE?

Simulation is state of the art in MpSoC perfor-
mance verification. Tools such as Mentor Graphics’
Seamless-CVE or Axys Design Automation’s Max-
Sim support cycle-accurate cosimulation of a
complete hardware and software system. The cosim-
ulation times are extensive, but developers can use
the same simulation environment, simulation pat-
terns, and benchmarks in both function and perfor-
mance verification. Simulation-based performance
verification, however, has conceptual disadvantages
that become disabling as complexity increases.

MpSoC hardware and software component inte-
gration involves resource sharing that is based on
operating systems and network protocols. Resource
sharing results in a confusing variety of performance
runtime dependencies. For example, Figure 2 shows
a CPU subsystem executing three processes. Al-
though the operating system activates P1, P2, and P3

strictly periodically (with periods T1, T2, and T3,
respectively), the resulting execution sequence is
complex and leads to output bursts.

As Figure 2 shows, P1 can delay several executions
of P3. After P1 completes, P3—with its input buffers
filled—temporarily runs in burst mode with the exe-

A new technology uses event model interfaces and a novel event flow
mechanism that extends formal analysis approaches from real-time
system design into the multiprocessor system on chip domain.

Kai Richter
Marek Jersak
Rolf Ernst
Technical University
of Braunschweig

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

cution frequency limited only by the available
processor performance. This leads to transient P3

output burst, which is modulated by P1’s execution.
Figure 2 does not even include data-dependent

process execution times, which are typical for soft-
ware systems, and operating system overhead is
neglected. Both effects further complicate the prob-
lem. Yet finding simulation patterns—or use
cases—that lead to worst-case situations as high-
lighted in Figure 2 is already challenging.

Network arbitration introduces additional per-
formance dependencies. Figure 3 shows an exam-

ple. The green arrows indicate performance
dependencies between the CPU and DSP subsys-
tems that the system function does not reflect.
These dependencies can turn component or
subsystem best-case performance into system
worst-case performance—a so-called scheduling
anomaly. Recall the P3 bursts from Figure 2 and
consider that P3’s execution time can vary from
one execution to the next. There are two critical
execution scenarios, called corner cases: The min-
imum execution time for P3 corresponds to the
maximum transient bus load, slowing down other

April 2003 61

External SDRAM

Interrupt controller

MIPS
(PR3940)

CPU Memory
management
interface busFa

st
PI

 b
us

M
IP

S
PI

 b
us

TriMedia
(TM32)

CPU
TriMedia
PI bus

Enhanced JTAG

Clocks

IC debug

CPU debug

Universal serial bus

Universal asynchronous
receiver/transmitter

(UART)

ISO UART

Reset

Inter-integrated circuit

IEEE 1394
link-layer controller

Cyclic redundancy
check DMA

Interrupt controller

Audio I/O

Transport stream
DMA

Sony Philips
digital I/O

General-purpose
I/O

Synchronous
serial interface

MIPS bridge

MIPS C-Bridge

High-performance
2D-rendering engine

Expansion bus
interface unit PCI/XIO

Fast C-Bridge

Memory controller

MPEG-2
video decoder

TriMedia
C-Bridge

Advanced image
composition
processor

Video input
processor

Memory-based
scaler

MPEG system
processor

C-Bridge

Figure 1. The Viper processor combines a MIPS RISC processor, a TriMedia TM32 VLIW DSP, weakly programmable coprocessors, and fixed
function coprocessors, as well as various memories and caches omitted in the figure. A complex network of bridged high-speed and
peripheral buses connects these components.

Jitter

Output eventsInput events

T1 T1

t t = t worst case

Hardware

P3

P2

P1

M1CPUSensor

Burst Burst
Worst-case

situation

P3

P2

P1

Pr
io

rit
y

T3

T2 T2T2

Buffering Buffering

Figure 2. CPU subsystem with three tasks that are scheduled periodically. Scheduling is preemptive and follows static priorities. The highest-
priority process P1 preempts P2 and P3, resulting in a complex execution scenario exhibiting jitter and burst process outputs.

62 Computer

components’ communication, and vice versa.
The transient runtime effects shown in Figures 2

and 3 lead to complex system-level corner cases.
The designer must provide a simulation pattern that
reaches each corner case during simulation. Essen-
tially, if all corner cases satisfy the given perfor-
mance constraints, then the system is guaranteed to
satisfy its constraints under all possible operation
conditions. However, such corner cases are
extremely difficult to find and debug, and it is even
more difficult to find simulation patterns to cover
them all.

Abstract and scheduling-aware performance sim-
ulation tools, such as Cadence VCC, can provide
quick, rough estimates of average system perfor-
mance but do not help in reliably covering system-
level corner cases. The core problem is that VCC
only uses typical execution times rather than con-
sidering intervals defined by the best-case and worst-
case bounds.

Simulation-pattern generation
Where do we get the stimuli to cover system-level

corner cases like those in Figure 3? Reusing func-
tion verification patterns is not sufficient because
they do not cover the complex nonfunctional per-
formance dependencies that resource sharing intro-
duces. Reusing component and subsystem
verification patterns is not sufficient because they
do not consider the complex component and sub-
system interactions.

The system integrator might be able to develop
additional simulation patterns, but only for simple
systems in which the component behavior is well
understood. Manual corner case identification and
pattern selection is not practical for complex
MpSoCs with layered software architectures,
dynamic bus protocols, and operating systems.

In short, it is becoming quite clear that today’s
simulation-based approaches to MpSoC perfor-
mance verification will run out of steam soon.

Industrial consequences
As embedded system design style gradually

moves from core-centric SoCs to communication-
centric MpSoCs, the demands for flexibility and
on-chip interconnect reactivity also increase. To
meet these requirements at acceptable cost, some
researchers have proposed sophisticated multihop
dynamic communication network protocols, opti-
mized using communication statistics.2

In practice, an opposite development has
emerged, toward conservative and less efficient
communication protocols like time division multi-
ple access (TDMA) that minimize nonfunctional
component dependencies like those in Figure 3. The
Sonics SiliconBackplane MicroNetwork is an
example of these protocols, which make commu-
nication timing straightforward and predictable.
Distributed systems exhibit a similar trend toward
conservative protocols, such as the time-triggered
protocol in automotive and aerospace electronics.

Conservative protocols enforce static bus-access
patterns and thus support independent verification
of each communication’s runtime behavior. This
integration simplicity, however, comes at a signifi-
cant performance price—a price that increases with
system complexity. Buffer sizing requirements
increase, along with response times. In addition,
such protocols do not adapt to the dynamically
changing load situations that are typical for reactive
embedded systems. The conservative approach will
therefore not scale well to future communication-
centric MpSoCs with complex network protocols.

FORMAL TECHNIQUES:
A PROMISING ALTERNATIVE

When simulation falls short, formal approaches
become more attractive, offering systematic verifi-
cation based on well-defined models. Formal analy-
sis guarantees full performance corner-case
coverage and bounds for critical performance para-
meters. The example of hardware circuit verifica-

DSPIP1 IP2

Network on chip

HardwareCPU M1Sensor

Subsystem 1

Subsystem 2

M3 M2

M1 Hardware

Network on chip

P3

Maximum execution time
➥ Minimum bus load

Minimum execution time
➥ Maximum bus load

CPU

Figure 3. Scheduling anomaly resulting from a performance dependency between the CPU and DSP subsystems. P3 is a driver process reading
data from M1. During bursts, P3 iterates at maximum speed. Because P3 also has a nonconstant execution time, the shorter the process execu-
tion time, the shorter the distance that packets travel over the bus and the higher the transient bus load.

tion, for which industry has widely adapted formal
techniques as a supplement to hardware simula-
tion, shows the practicability of formal approaches.

On the system level, the formal performance or
timing verification literature distinguishes two
problem areas:

• formal process and task performance analysis,
usually in the form of process execution time
analysis; and

• resource-sharing analysis, also known as
scheduling or schedulability analysis, which is
based on process execution times.

Process execution time analysis
Formal process execution time analysis has roots

both in real-time system analysis for software
processes and in hardware/software codesign for
rapid hardware performance estimates. It includes
two parts:

• program path analysis to find out what is going
to execute; and

• architecture modeling, including pipelines and
caches, to determine the execution time spent
on this path.

This field has progressed enormously over the
past 10 years and includes large-scale industrial
applications in the aircraft industry, such as the
AbsInt tool (www.absint.com), which calculates
the execution time of C-processes using a technique
called abstract interpretation. Details of process
execution time analysis are beyond the scope of this
article, but the technology currently provides con-
servative upper and lower bounds (intervals) for
individual process execution times as well as
bounds for the communication between processes.3

These bounds lay the foundation for the scheduling
analysis on shared resources.

Scheduling analysis
Real-time systems research has addressed sched-

uling analysis for processors and buses for decades,
and many popular scheduling analysis techniques
are available. Examples include rate-monotonic
scheduling and earliest deadline first, using both
static and dynamic priorities;4 time-slicing mecha-
nisms like TDMA or round-robin;5 and static order
scheduling.6 Many extensions have found their way
into commercial analysis tools, such as TriPacific’s
Rapid RMA, LiveDevices’s Real-Time Architect,
and TimeSys’s TimeWiz.

The techniques rely on a simple yet power-
ful abstraction of task activation and com-
munication. Instead of considering each event
individually, as simulation does, formal sched-
uling analysis abstracts from individual events
to event streams. The analysis requires only a
few simple characteristics of event streams,
such as an event period or a maximum jitter.
From these parameters, the analysis system-
atically derives worst-case scheduling scenar-
ios, which safely bound the worst-case process
or communication response times.

The event-stream model displays the con-
sequences of resource sharing, as Figure 2
shows. The scheduling transforms a periodic
input event stream (process activation) into an
event stream with burst at the component outputs.
A larger system with more priority levels generates
even more complex event sequences.

TAMING EVENT STREAM COMPLEXITY
Complex runtime interdependencies can change

the event stream characteristics from component
inputs to component outputs. In Figure 3, for
example, the CPU output event stream is no longer
exactly periodic. It propagates into the network
input event stream, where communication sched-
uling on the shared network distorts it further.

To solve the system-level performance verification
problem, we could look for analysis techniques that
deal with the input event streams at hand and prop-
agate them through the component network. How-
ever, protocols and corresponding analysis tech-
niques that can handle such complex input event
streams efficiently are rare. Furthermore, they pro-
duce even more distorted output streams, which then
enter the connected receivers, and so on. The event
sequences in the corresponding merged communi-
cation streams quickly become too complex for
existing scheduling and analysis techniques.

In effect, global scheduling analysis of complex
systems is currently not possible, since designers
cannot reasonably combine the known subsystem
techniques, mainly due to input-output event
stream incompatibilities. A few “holistic” analysis
approaches provide solutions for special classes of
distributed systems,7-8 but their scope and scala-
bility are limited.

Recently, a different view of global scheduling
analysis has emerged. The individual components
and subsystems are seen as entities that interact, or
communicate, via event streams. Schedulability
analysis then becomes a flow-analysis problem for
event streams that, in principle, event stream prop-

April 2003 63

Instead of
considering each
event individually,
as simulation does,
formal scheduling
analysis abstracts

from individual
events to event

streams.

64 Computer

agation can solve iteratively. One approach to tam-
ing event stream complexity is to generalize the
event model either in an event vector system9 or with
upper- and lower-bound arrival curves.10 However,
both these approaches introduce a new event stream
representation and thus require new scheduling
analysis techniques for the local components.

However, we don’t necessarily need to develop
new local analysis techniques if we can benefit from
the host of work in real-time scheduling analysis.
For example, in Figure 2, even if input and output
streams seem to have totally different characteris-
tics, the number of P3’s output events can be easily
bounded over a longer time interval. The bursts
only occur temporarily, representing a transient
overload within a generally periodic event stream.
In other words, some key characteristics of the orig-
inal periodic stream remain even in the presence of
heavy distortion.

We have developed a technology that lets us
extract this key information from a given schedule
and automatically interface or adapt the event
stream so that designers and analysts can safely
apply existing subsystem analysis techniques.

EVENT STREAM INTERFACING
Figure 4a shows a relatively simple event stream

interfacing scenario, converting a periodic event
stream with jitter into a sporadic stream. Some
analysis techniques need this transformation, which
requires only a minimum of math. The jitter events
are characterized by a period (TX) and a jitter (JX).
The jitter bounds the maximum time deviation of
each event with respect to a virtual reference period.
In other words, each event can be at most JX/2 ear-
lier or later than the reference event.

The required sporadic input event model has
only one parameter, the minimum interarrival time
(tY,min) between any two events in the stream, thus
bounding the maximum transient event frequency.

Imagine two successive events in the original
stream, the first being as late as possible (t + JX/2)
and the second as early as possible (t + TX – JX/2).
The minimum distance between two dedicated

events in the output stream is thus tY,min = TX – JX.
With respect to existing analysis techniques and

practicably important input stream characteristics,
we can identify two event model classes:

• Periodic event models are particularly useful
when the event timing shows a generally peri-
odic behavior, as in typical signal processing
and control applications. Periodic events with
jitter originate from a purely periodic source
but the timing has been distorted by process
preemption or network congestion, as in the
case of P2’s output jitter in Figure 2. Jitters that
exceed the original period lead to event bursts.

• Sporadic event models define situations in
which the source is not periodic, such as seem-
ingly irregular user-generated service requests.
To conduct performance analysis, however, we
need some information to bound the overall
system load—for example, the minimum inter-
arrival time between any two events. Besides
the basic sporadic events model, we also model
sporadic events with bursts that illustrate high
transient event frequencies.

Our technology supports adaptation for all pos-
sible event model combinations, helping system inte-
grators control complex event stream dependencies
and understand and optimize the dynamic behavior
of component interactions. We base the interfacing
and adaptation on mathematical relations estab-
lished between the involved streams or models.11

We can see the practical impact of event stream
adaptation on system design and analysis in Figure
4a. The event stream itself—the timing properties
of actual events—remains unchanged while only
the mathematical representation—the underlying
event model—is transformed. We refer to such
transformations as event model interfaces (EMIFs).
Such transformations require that the target model
parameters directly encompass the timing of any
event sequence possible in the source model.

If such direct model transformation is not possi-
ble, then our technology adapts the actual timing of

X Y
EMIF

with EAF

X Y

Periodic
with burst

EMIF

In
se

rt

In
se

rt Periodic

TYTX , tX , bX

Event stream adaptation

TY = TX /bXtY, min = TX – JX

Event model interfacing

Periodic
with jitter

Sporadic

tY, minTX , JX

(a) (b)

Figure 4. Event
stream interfacing.
(a) An event model
interface (EMIF)
transforms periodic
events with jitter
into the sporadic
event model, and (b)
an event adaptation
function (EAF)
adapts periodic
bursts into the
purely periodic
event stream.

the stream events. An example is a periodic stream
with jitter or burst that enters a component expect-
ing purely periodic events. Figure 4b shows this sit-
uation, in which our technology automatically
inserts an event adaptation function (EAF) in an
EMIF to make the streams match. Practically
speaking, EAFs correspond to buffers that are
inserted at the component interface to make the
system working and analyzable. Using EAFs, buffer
sizing and buffering-delay calculation is automat-
ically performed during adaptation. This is impor-
tant in global system analysis.

Again, the math for the resynchronization shown
in Figure 4b is relatively simple. The sought-after
parameter TY of the purely periodic stream is the
average period of the bursty stream, given by TY =
TX/bX. The burst event model7 captures a number
of bX events within a period of TX.

Likewise, sophisticated interfaces and adapta-
tions—possibly requiring appropriate design ele-
ments—are available for all other event model
combinations. Furthermore, designers can easily
extend the library of existing EMIFs and EAFs to
other event models and streams to support the
design of sophisticated high-performance subsys-
tems or to integrate complex IP components. These
EMIFs and EAFs form the foundation for a novel
and very promising system-level performance
analysis procedure.

INTERFACE AND PROPAGATE
We can now reliably verify the performance of

the heterogeneous system in Figure 3. The sensor
uses the logical channel C1 to send new data spo-

radically to P1, while P3 sends bursts of requests
through C2 to the fixed-function hardware com-
ponent. Simultaneously, the DSP subsystem is also
using the network. IP1 periodically sends data over
channel C3 to the DSP, which implements a peri-
odic scheduling to efficiently run a set of signal pro-
cessing applications.

The network can implement any protocol for
which an appropriate analysis technique is avail-
able. This freedom widens the design space,
because real-time analysis covers many network
protocols, including complex dynamic arbitration
schemes.

Assume that to use a known analysis technique,
the input event streams to the network must com-
ply with the model of periodic events with burst.
Figure 5 illustrates the required EMIFs at the net-
work inputs. Only the burst stream from the CPU
already meets the required model; the other two
input streams require an EMIF. Next, the designer
can analyze the network using the known technique
and obtain the distorted output event streams. In
other words, the input streams are interfaced and
propagated through the network analysis.

Finally, the output event streams are interfaced to
the input models that the individual receiver com-
ponents require. The DSP requires periodic input
data to fit the given implementation of purely peri-
odic scheduling. We already know this situation
from Figure 4b, so we insert an EMIF with an
appropriate EAF at the network output.

EMIFs and EAFs give system integrators tremen-
dous assistance in system-level performance analy-
sis for complex event stream dependencies spanning

April 2003 65

EMIF EMIF EMIFEMIF

HardwareCPU M1Sensor

Sporadic Sporadic SporadicBurst

Network on chip

Periodic Periodic

EMIF EMIF
with EAF

DSP
IP1 IP2M3 M2

Burst-based
netw

ork analysis
C1

C3

C2

Figure 5. Event
stream view of com-
plex component
interactions after
integration. The
merged network traf-
fic on the logical
channels C1, C2, and
C3 consists of peri-
odic, bursty, and
sporadic event
streams. EMIFs and
EAFs adapt the event
streams to the com-
ponents’ require-
ments, so the
designer can use
known analysis
techniques and effi-
cient component
implementations.

66 Computer

heterogeneous components. The required event
models are either constrained by the local compo-
nent and subsystem analysis techniques such as the
network in Figure 5 or given by a component’s
implementation—for instance, the periodic DSP
schedule or the maximum frequency (sporadic event
model) of the hardware component.

CYCLIC EVENT STREAM DEPENDENCIES
An additional performance pitfall in MpSoC

design occurs when cyclic event stream dependen-
cies are introduced during system integration.
These dependences are subtle and difficult to detect
if the integration process does not consider com-
ponent details. Figure 6 highlights a nonfunctional
event stream dependency cycle in the system of
Figure 5 that is only introduced by communication
sharing. Upon receipt of new sensor data, the CPU
activates process P1, which preempts P3 and thus
affects the execution timing of P3. Figure 2 illus-
trates this preemption.

P3’s output, in turn, enters the network on chan-
nel C2, where it now interferes with the arriving
sensor data on C1. The interference of the two func-
tionally independent channels, C1 and C2, closes
the dependency cycle because the subsystem in
Figure 2 was originally cycle-free.

Such cycles are analyzed by iterative propagation
of event streams until the event stream parameters
converge or until a process misses a deadline or
exceeds a buffer limit. This iteration process termi-
nates because the event timing uncertainty—that is,
the best-case to worst-case event timing interval—
grows monotonically with every iteration.

For cases in which no convergence occurs auto-
matically, we have developed a mechanism that uses
EAFs to break up the dependency cycle and enforce
convergence by reducing the timing uncertainty. We
have thoroughly investigated cyclic dependencies.12

Note that the event flow cycles are not an artificial
result of global analysis but exist in practice as the
example demonstrates.

APPLICATIONS
We have defined the methods and developed a

simple tool for analysis interfacing as well as a
library with analysis algorithms for configuring a
global analysis model.

We have also applied the technology to three case
studies in cooperation with industry partners in
telecommunications, multimedia, and automobile
manufacturing. Each case had a very different
focus. In the telecommunications project, we re-
solved a severe transient-fault system integration
problem that not even prototyping could solve. In
the multimedia case study, we modeled and ana-
lyzed a complex two-stage dynamic memory sched-
uler to derive maximum response times for buffer
sizing and priority assignment. In the automotive
study, we showed how the technology enables a
formal software certification procedure.

T he case studies have demonstrated the power
and wide applicability of the event flow inter-
facing approach. It allows designers to apply

scheduling analysis techniques to programmable
cores and their software as well as to hardware
components, as MpSoC verification requires. We
consider this approach to be a serious alternative
to performance simulation. The new technology
allows comprehensive system integration and pro-
vides much more reliable performance analysis
results at far less computation time.

Global application of the analysis technique still
requires some expert knowledge to guide the
process, but we are working on an automated sys-
tem using libraries of analysis techniques. We can
profit here from the host of work already completed
in real-time systems analysis. �

References
1. S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A

Multiprocessor SoC for Advanced Set-Top Box and
Digital TV Systems,” IEEE Design & Test of Com-
puters, Sept.-Oct. 2001, pp. 21-31.

2. L. Benini and G. DeMicheli, “Networks on Chips: A
New SoC Paradigm,” Computer, Jan. 2002, pp. 70-
78.

3. F. Wolf, Behavioral Intervals in Embedded Software,
Kluwer Academic, 2002.

4. C.L. Liu and J.W. Layland. “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment,” J. ACM, vol. 20, no. 1, 1973, pp. 46-61.

5. E. Jensen, C. Locke, and H. Tokuda, “A Time-Dri-
ven Scheduling Model for Real-Time Operating Sys-

Figure 6. Cyclic
event stream depen-
dencies introduced
in system integra-
tion and not re-
flected in the
system function.
Appropriate buffer-
ing when inserting
EMIFs breaks up
such cycles. Putting
the buffers in the
right place signifi-
cantly improves sys-
tem performance
and memory
optimization.

Sensor
CPU

Sporadic Burst

Network on chip

EMIF
with EAF

P1 P3

C1 C2Interference

Preemption

EMIF

Hardware

EMIF
EMIF

tems, Proc. 6th IEEE Real-Time Systems Symp.
(RTSS1985), IEEE CS Press, 1985, pp. 112-122.

6. E.A. Lee and D.G. Messerschmitt, “Static Schedul-
ing of Synchronous Data Flow Programs for Digital
Signal Processing,” IEEE Trans. Computers, Jan.
1987, pp. 24-35.

7. K. Tindell and J. Clark, “Holistic Schedulability for
Distributed Hard Real-Time Systems, Euromicro J.,
vol. 40, 1994, pp. 117-134.

8. P. Pop, P. Eles, and Z. Peng, “Holistic Scheduling and
Analysis of Mixed Time/Event-Triggered Distributed
Embedded Systems,” Proc. Int’l Symp. Hardware/
Software Codesign (CODES2002), ACM Press,
2002, pp. 187-192.

9. K. Gresser, “An Event Model for Deadline Verifica-
tion of Hard Real-Time Systems,” Proc. 5th Euromi-
cro Workshop on Real-Time Systems, IEEE CS Press,
1993, pp. 118-123.

10. L. Thiele, S. Chakraborty, and M. Naedele, “Real-
time Calculus for Scheduling Hard Real-Time Sys-
tems,” Proc. Int’l Symp. Circuits and Systems (ISCAS
2000), IEEE CS Press, 2000, pp. 101-104.

11. K. Richter and R. Ernst, “Event Model Interfaces for
Heterogeneous System Analysis,” Proc. Design,
Automation and Test in Europe (DATE2002), IEEE
CS Press, 2002, pp. 506-513.

12. K. Richter et al., “Model Composition for Schedul-
ing Analysis in Platform Design,” Proc. Design
Automation Conf. (DAC2002), ACM Press, 2002,
pp. 287-292.

Kai Richter is a PhD candidate at the Technical
University of Braunschweig, Germany, and a
research staff member of its Institute of Computer
and Communication Network Engineering. His
research interests include real-time systems, per-
formance analysis, and heterogeneous hardware/
software platforms. He received a Diploma (Dipl.-
Ing.) in electrical engineering from the University
of Braunschweig. Contact him at kair@ ida.ing.tu-
bs.de.

Marek Jersak is a PhD candidate at the Technical
University of Braunschweig, Germany, and a
research staff member of its Institute of Computer
and Communication Network Engineering. His
research interests include real-time embedded sys-
tems, multilanguage design, and model transforma-
tions. He received a Dipl.-Ing. in electrical engi-
neering from the Aachen Institute of Technology,
Germany. Contact him at marek@ ida.ing.tu-bs.de.

Rolf Ernst is a full professor at the Technical Uni-
versity of Braunschweig, Germany, where he heads
the Institute of Computer and Communication
Network Engineering. His main research interests
are embedded system design and embedded system
design automation. He received a PhD in electri-
cal engineering from the University of Erlangen-
Nürnberg, Germany. Contact him at ernst@ida.ing.
tu-bs.de.

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles and conference papers

available!

$9US per article for members

$19US for nonmembers

http://computer.org/publications/dlib

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

