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Abstract

In a world where different systems have to share the same spectrum, the received
(interfering) power may be a more relevant constraint than the maximum transmit
power. Motivated by such a spectrum-sharing approach, this paper investigates
the behavior of capacity under received-power constraints, modeling for example
the maximum interference that one system may inflict on another. The insight
of the paper is that while in the point-to-point case, transmit and received-power
constraints are largely equivalent, they can lead to quite different conclusions in
network cases, including relay networks, multiple access channels with dependent
sources and feedback, and collaborative communication scenarios.

1 Introduction

In this paper, we illustrate that received-signal constraints can lead to substantially dif-
ferent insights and conclusions, as compared to customary transmitted-signal constraints.
As examples, we consider Gaussian multiple-access and relay channels, as well as certain
scenarios involving collaborative communication. Capacity results and separation theo-
rems are found. Constraints on the received power have been considered in a number of
prior investigations, see e.g. [1].

Received-Signal Constraints

Let us denote the signal(s) received by the decoder(s) of a communication system by
{Y1[i], . . . , YN [i]}n

i=1, where i denotes the (discrete) time index. In this paper, we first
consider the scenario where the coding scheme must be designed in such a way as to
satisfy constraints of the form

E[ρk({Y1[i], . . . , YN [i]}n
i=1)] ≤ Γk, for k = 1, 2, . . . . (1)

Moreover, let us denote the signals transmitted by the encoders of a communication
system by {X1[i], . . . , XM [i]}n

i=1. In this paper, we also consider constraints taking the
shape

E[ρI,k({X1[i], . . . , XM [i]}n
i=1)] ≤ ΓI,k, for k = 1, 2, . . . . (2)

Here, the function ρI,k(·) may model the interference that the receiver k of a competing
system incurs from the M transmitters of our system. As we illustrate, the latter problem
is considerably more intricate than the former.

∗The material in this paper was supported in part by the National Science Foundation under awards
CCF-0347298 (CAREER) and CNS-0326503.



Scalar Point-to-point Channels

Consider the standard (memoryless) point-to-point capacity problem, as defined e.g.
in [2, p.108], but suppose that the channel input constraint is replaced by a channel
output constraint. More precisely, the coding scheme must be designed such that the
channel output sequence {Y [i]}n

i=1 satisfies 1
n

∑n
i=1 E[ρ(Y [i])] ≤ Γ. The resulting capacity

can be expressed as C(Γ) = max I(X, Y ), where the max is taken over all p(x) for which
E[ρ(Y )] ≤ Γ, see [2, p.117]. Using this, it is easy to show that the problem of finding
capacity under an output constraint is, in most cases, equivalent to the problem of finding
capacity under an (appropriately chosen) input constraint.

Example 1. The standard AWGN channel subject to an average input power constraint
P (see e.g. [3, p. 239]) is well known to be C(P ) = log2(1 + P/σ2

Z), where σ2
Z is the

variance of the additive noise on the channel. For the same channel model, consider now
the output (or received) power constraint

1

n

n
∑

i=1

E
[

|Y [i]|2
]

≤ Q + σ2
Z . (3)

It is easy to establish that C(Q) = log2(1 + Q/σ2
Z).

By contrast, we show in the sequel that transmit and receive power constraints lead
to significantly different insights in certain network capacity problems, including multiple
access and relay networks.

2 The Gaussian MIMO Channel

A. Received-Power Constraint

For the standard (linear) Gaussian vector (MIMO) channel with M transmit and N
receive antennas and additive noise of variance σ2

Z (as defined in [4]), characterized by
Y = HX + Z, where X ∈ CM and Y, Z ∈ CN , where Z is a vector of independent
and identically distributed (iid) circularly symmetric complex random variables, and
H ∈ CN×M is a fixed matrix, suppose the transmit power constraint is replaced by the
received-power constraint1

1

n

n
∑

i=1

E[‖Y [i]‖2] ≤ Q + Nσ2
Z . (4)

The capacity can be expressed as follows:

Theorem 1. The capacity of the standard Gaussian MIMO channel with fixed transfer
matrix H under the power constraint (4) is

C = rank(H) log2

(

1 +
Q

rank(H)σ2
Z

)

. (5)

Note that this capacity formula depends only on the rank of the channel matrix,
rather than on its singular values (by contrast to the formula in [4]).

1The RHS of (4) has been set to Q + Nσ2

Z
to allow for a slightly more compact result.



Proof sketch. Along the lines of [4], we equivalently determine the capacity of Ỹ = ΛX̃ +
Z̃, where Λ is a diagonal matrix containing the min{M, N} (non-negative) singular values
of H . Denote k = rank(H). Then, we equivalently determine the capacity of the channel
Ỹ k = ΛX̃k + Z̃k. It can be shown that the power constraint on Ỹ k is simply Q + kσ2

Z .
Hence,

I(XM ; Y N) = I(X̃k; Ỹ k) = h(Ỹ k) − h(Ỹ k|X̃k) = h(Ỹ k) − h(Z̃k)

= h(Ỹ k) − k log2(2πeσ2
Z) ≤ k log2

(

2πe
Q + kσ2

Z

k

)

− k log2(2πeσ2
Z).

It is easily verified that this is also achievable.

B. “Spectrum-Sharing”: Third-Party Perspective

Suppose that (4) is replaced by the following set of constraints, for k = 1, 2, . . . , K:

1

n

n
∑

i=1

E
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 ≤ QI,k. (6)

These constraints may model the received interfering power at K competing receivers:
the “path loss” coefficient from transmitter m to the competing receiver k is given by
dm,k. Define the matrix D ∈ CM×K with entries Dm,k = dm,k. Hence, the constraints can
be written as {D†ΣXD}kk ≤ QI,k, for k = 1, . . . , K, where ΣX denotes the covariance
matrix of the vector X, and † the Hermitian transpose.

Proposition 2 (spectrum-sharing). For the MIMO channel under the “spectrum-
sharing” constraints characterized by the matrix D,

(i) if there exists a vector x = (x1, . . . , xM) such that D†x = 0 but Hx 6= 0, then the
capacity is unbounded.

(ii) if K = M and rank(D) = M , then the capacity C ≤ Cu, where

Cu =

rank(HD−†)
∑

m=1

(log2(µλ−1
m ))+, (7)

where µ is chosen such as to satisfy
∑rank(HD−†)

m=1 (µ − λ−1
m )+ ≤

∑K
k=1 QI,k, where

λm, m = 1, . . . , rank(HD−†), denote the eigenvalues of HD−†D−1H†. Moreover,
this upper bound is achievable if the power constraints of Eqn. (6) are weakened to
trace(D†ΣXD) ≤

∑K
k=1 QI,k.

This proposition illustrates how spectrum-sharing constraints incorporate both trans-
mit and receive constraints, and hence, permit to interpolate between the two.

Proof. For part (i), simply select the transmitted signal vector to be αx. Clearly, α
can be made arbitrarily large without violating the power constraint since the LHS in
(6) vanishes for k = 1, . . . , K. Part (ii) follows by substituting X̃ = D†X, leading to
the new channel Y = HD−†X̃ + Z, where the covariance matrix ΣX̃ of X̃ must satisfy
{ΣX̃}kk ≤ QI,k, for k = 1, . . . , K. Weakening this constraint by summing on both sides
yields a trace constraint on ΣX̃ . For the latter problem, the solution is well known (see
e.g. [4]).
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Figure 1: The geometry of the example in Sec-
tion 2.C.
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Figure 2: The multiple-access chan-
nel considered in Section 3.

C. Example: Geometric Spectrum-Sharing

While there does not seem to be a simple capacity formula for the general problem
considered in Section 2.B, we now illustrate the basic idea via a specific geometric example
where a simple solution can be given. Let M = 2, N = 1. Consider the two-dimensional
geometry depicted in Figure 1. The signal component caused by the two transmitter
antennae at any point θ in the plane is determined by

Vθ[i] = f(r′θ)X1[i] + f(r′′θ )X2[i], (8)

where r′θ and r′′θ denote the (Euclidean) distances between the point θ and transmitter
antennae 1 and 2, respectively. The function f(r) is assumed to be real-valued, non-
negative and non-increasing for r ≥ 0.

Consider the following power constraint: Outside of the dashed circles, the received
(“interfering”) power must not exceed QI . That is, we impose a continuum of constraints
of the form (6).

Proposition 3. The capacity of the Gaussian MIMO channel (with M = 2 and N = 1),
under the spectrum-sharing constraint defined in this section, is given by

C = log

(

1 +
f 2(b)QI

f 2(r0)σ
2
Z

)

. (9)

Proof sketch. In this special case, the spectrum-sharing constraint at point θ0 in Figure 1
can be rewritten as a power constraint on the received signal Y . Hence, Theorem 1
provides an upper bound. It can also be verified that this upper bound is achievable,
essentially since no other point on the boundary of the dashed area will received more
power than θ0.

3 The Gaussian Multiple-Access Channel

A. Independent Messages

Consider the additive white Gaussian multiple-access channel (MAC) as defined in [3,
Sec.14.1.2] and illustrated in Figure 2. The receiver observes Y [i] = Z[i]+

∑M
m=1 bmXm[i],

where {Z[i]}n
i=1 is a sequence of iid circularly complex Gaussian random variables of mean



zero and variance σ2
Z . The transmitters have to select their codewords {Xm[i]}n

i=1, for
m = 1, 2, . . . , M , in such a way as to satisfy

1

n

n
∑

i=1

E
[

|Y [i]|2
]

≤ Q + σ2
Z . (10)

In other words, the codewords must satisfy a constraint on the induced power at the
receiver.2 This is by contrast to the standard setting as considered in [3, Sec.14.1.2],
where the powers transmitted by the nodes have to satisfy a set of constraints.

The capacity region (see e.g. [3, Eqns.(14.6)-(14.10)]) is replaced by the following
simple characterization:

Theorem 4. The capacity region of the additive white Gaussian MAC under a received-
power constraint contains all rate vectors (R1, R2, . . . , RM) that satisfy

M
∑

m=1

Rm ≤ log

(

1 +
Q

σ2
Z

)

. (11)

In other words, the capacity region is a simplex.

For a proof, see the proof of Thm. 5 below.

Remark 1 (feedback). This result remains unchanged by (causal perfect) feedback
from the receiver to each transmitter. In other words, feedback does not enlarge the
capacity region of the additive white Gaussian MAC under a received-power constraint.3

Remark 2 (collaborative communication). The capacity region is not enlarged by
arbitrarily collaborating transmitters, either, by contrast to, e.g., [6].

B. Dependent Message Streams, Received-Power Constraint

Reconsider Fig. 2, but suppose now that each node observes a message stream {Um[i]}n
i=1.

Consider the following simple standard model of dependence: {(U1[i], U2[i], . . . , UM [i])}n
i=1

is a sequence of independent and identically distributed (iid) random vectors, according
to some fixed joint distribution p(u1, u2, . . . , uM). The goal of the communication system
is to provide estimates Ûm[i] such that, for m = 1, 2, . . . , M ,

lim
n→∞

Prob
{

{Ûm[i]}n
i=1 6= {Um[i]}n

i=1

}

→ 0. (12)

The fundamental performance question is most naturally posed as one of admissibility,
rather than capacity: Given a distribution p(u1, u2, . . . , uM) and a Gaussian multi-access
channel, is reliable communication possible? Under a transmit power constraint, this
question cannot be answered in a conclusive manner [7]. However, under a received-
power constraint, the solution turns out to be simple:

Theorem 5 (separation theorem). Reliable communication is possible if and only if

H
(

{Um}
M
m=1

)

≤ log

(

1 +
Q

σ2
Z

)

. (13)

2Note that we set the RHS of (10) to Q + σ2

Z
merely for notational convenience.

3This is by contrast to [5]: Under a transmit power constraint, feedback does enlarge the capacity
region.



Remark 3 (feedback, collaboration). This result holds even if arbitrary (causal)
feedback is available from the receiver to each transmitter, and if (arbitrary) collaboration
between the transmitters is allowed.

Remark 4. This theorem says that an optimal strategy is to compress the sources,
using Slepian-Wolf coding, and to transmit the compression indices across the multi-
access channel using standard multi-access coding for independent sources. In other
words, separating source from channel coding is an optimal strategy.

Remark 5. Equality may apply in Eqn. (13) in certain (“degenerate”) cases.

Proof sketch. For the converse, note that by the data processing inequality, any code of
length n must satisfy

nH(U1, U2, . . . , UM) ≤ I(Xn
1 , Xn

2 , . . . , Xn
M ; Y n) ≤ n(h(Y ) − h(Y |X1, . . . , XM))

≤ n log

(

1 +
Q

σ2
Z

)

. (14)

Equality is achievable (approachable) throughout as outlined in Remark 4.

Unfortunately, this separation theorem does not extend to the fully general case
involving distortion. This is discussed in more detail in [8].

C. Example: Geometric Spectrum-Sharing

Reconsider the example discussed in Section 2.C, and depicted in Figure 1. Now, the
nodes X1 and X2 are two users in the MAC scenario. Suppose again that the constraint
is that the received signal power at any point in the plane outside of the union of the
dashed circles may not exceed QI .

Proposition 6. The capacity region of the additive white Gaussian MAC (with M = 2),
under the spectrum-sharing constraint defined in this section, is given by

R1 + R2 ≤ log

(

1 +
f 2(b)QI

f 2(r0)σ2
Z

)

. (15)

Moreover, causal feedback and collaboration cannot enlarge this capacity region, and for
dependent sources, a separation theorem of the shape of Theorem 5 applies.

Proof. See Proposition 3.

4 The General Discrete Memoryless MAC

Consider the general discrete memoryless M-user MAC, defined in straightforward ex-
tension of [2, p.271], but subject to the constraint given in Equation (1), with N = 1 and
K = 1. From standard arguments, the capacity region can be described as follows:

Theorem 7. For the discrete memoryless MAC, characterized by the conditional dis-
tribution p(y|x1, . . . , xM), the capacity region is the convex hull of the union over all
p(x1, . . . , xM) satisfying E[ρ(Y )] ≤ Γ of the rate vectors (R1, . . . , RM) satisfying

RS ≤ I(XS; Y |XSc), (16)

for all S ⊆ {1, . . . , M}, where RS =
∑

m∈S Rm, and Sc = {1, . . . , M}\S.
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Figure 3: The considered Gaussian single-relay channel.

By contrast to the Gaussian example discussed in the preceding section, this region
can generally be enlarged if feedback is available from the receiver to all the transmitters,
and no separation theorem holds for the reliable transmission of potentially dependent
sources in the general case. At the same time, the Gaussian example is not unique, as
the following proposition establishes:

Proposition 8. If the channel conditional distribution p(y|x1, . . . , xM ) satisfies the fol-
lowing symmetry conditions:

(i) H(Y |x1, . . . , xM) = H0, for all (x1, . . . , xM),

(ii) for each m, there exist xm′,0, for m′ 6= m, and a distribution p(xm) such that

∑

xm

p(y|x1,0, . . . , xm−1,0, xm, xm+1,0, . . . , xM,0)p(xm) ∈ arg max
p(y):E[ρ(Y )]≤Γ

H(Y ),

then the capacity region is
∑M

m=1 Rm ≤ C
def
= maxp(y):E[ρ(Y )] H(Y ) − H0, and cannot be

enlarged by feedback. Moreover, reliable communication is feasible if and only if the joint
entropy of the sources is smaller than C, by analogy to Thm. 5.

5 The Gaussian Relay Network

A. The Considered System

A model for the relay channel was introduced and studied [9].Two fundamental coding
strategies were developed in [10]. Due to space constraints, we refer to [11] for an extensive
list of the recent literature on relay channels. Here, we adopt the (non-degraded) relay
channel model used in [10], and illustrated in Figure 3. At the encoder, a message
V is selected uniformly at random out of 2nR possible messages, and a corresponding
(complex-valued) codeword of length n, denoted by {X1[i]}

n
i=1, is transmitted. The

relay receives {Y2[i]}
n
i=1 = {b12X1[i] + Z2[i]}

n
i=1, where {Z2[i]}

n
i=1 is a sequence of iid

circularly complex Gaussian random variables of mean zero and variance σ2
Z . The relay

then transmits (complex-valued) symbols X2[i] = fi(Y2[i−1], . . . , Y2[1]), where fi(·) is an
arbitrary function. Below, we will consider specific constraints on the coding functions
at the source and at the relay node.

Based on the received signal {Y3[i]}
n
i=1 = {b13X1[i] + b23X2[i] + Z3[i]}

n
i=1, where

{Z3[i]}
n
i=1 is a sequence of iid circularly complex Gaussian random variables of mean

zero and variance σ2
Z , the destination determines an estimate V̂ , and the capacity prob-

lem is that of determining the largest rate R for which a sequence of coding schemes
exists that satisfies limn→∞ Prob{V 6= V̂ } = 0.



B. Received-Power Constraint At The Destination

Suppose that the codewords {X1[i]}
n
i=1 and {X2[i]}

n
i=1, transmitted by the source and

the relay, respectively, must be designed such as to satisfy

1

n

n
∑

i=1

E
[

|Y3[i]|
2] ≤ Q + σ2

Z . (17)

Theorem 9. The capacity of the Gaussian single-relay channel under the received-power
constraint (17) is given by

C = log2

(

1 +
Q

σ2
Z

)

. (18)

Remark 6 (single-mode relays). This capacity result also applies to the single-mode
relay model, where the relay can only either transmit or receive, but not both at the
same time.

Proof. Capacity is bounded above by

C ≤ max
p(x1,x2)

I(X1, X2; Y3) ≤ max
p(x1,x2)

(h(Y3) − h(Y3|X1, X2)) ≤ log2

(

1 +
Q

σ2
Z

)

. (19)

It is clear that this can be achieved simply by switching off the relay and letting the
source node transmit at power P1 = Q/|b13|

2.

In other words, under this received-power constraint, the relay does not permit to
increase capacity. More interestingly, note that the capacity-achieving input distribution
(and hence, the coding scheme) is not unique in this case. Among the capacity-achieving
schemes, we can now search for the one whose transmit power is smallest. This question
does not seem to have a simple answer, but the results of [10] lead to bounds:

Proposition 10 (minimum transmit power capacity-achieving scheme). Among
the coding schemes that achieve capacity in Thm. 9, the one that minimizes the total
transmit power satisfies

min
P̃1,P̃2:|ρ|≤1,(b2

12
+b2

13
)P̃1(1−|ρ|2)=Q

(P̃1 + P̃2) ≤ P1 + P2 ≤ min
P̃1,P̃2:|ρ|≤1,b2

12
P̃1(1−|ρ|2)=Q

(P̃1 + P̃2),

where |ρ| = (Q − |b13|
2P̃1 − |b23|

2P̃2)/(2R(b13b
∗
23)(P̃1P̃2)

1/2).

Proof. The proposition follows directly from [11, Sec. V.A].

C. Example: Geometric Spectrum-Sharing

Reconsider the example discussed in Section 2.C, and depicted in Figure 1. The node X1

is the source node, and X2 the relay. Again, suppose that the received interfering power
at any point outside of the union of the dashed circles cannot be larger than QI .

Proposition 11. The capacity of the Gaussian single-relay channel, under the spectrum-
sharing constraint defined in this section, is given by

C = log

(

1 +
f 2(b)QI

f 2(r0)σ2
Z

)

. (20)

Remark 7 (relays to reduce interference). The spectrum-sharing perspective gives
a novel meaning to relays: Rather than boosting the source node’s transmission towards
the destination, the relays may be more helpful in reducing the signal strength in a
required direction.



D. Example: Spectrum-Sharing with Transmit Power Constraints

A further variation on the investigations of this paper, and a logical extension of the ma-
terial in this section, is to simultaneously consider transmit and receive power constraints.
A simple example can be characterized as follows:

Proposition 12. Consider the Gaussian single-relay channel with b13, b23 and d2 real-
valued and non-negative, subject to the power constraint E[|X1|

2] ≤ P and the spectrum-
sharing constraint E[|X1 + d2X2|

2] ≤ P . If b23/b13 ≥ d2, then

C = log

(

1 +
b2
13P

σ2
Z

)

. (21)

Proof sketch. Consider E[|b13X1 + b23X2|
2] = b13b23/d2E[|X1 +d2X2|

2]+ (b2
13 − b13b23/d2)

E[|X1|
2]− (b13b23d2− b2

23)E[|X2|
2] ≤ (b13b23/d2 + b2

13 − b13b23/d2)E[|X1|
2], since b13b23d2 −

b2
23 ≥ 0 by assumption. This is also achievable, e.g. by turning off the relay.

E. Gaussian Relay Networks

For Gaussian relay networks, similar capacity results can be obtained. Extend the model
of Section 5.A by introducing more relay nodes: Relay node m, m = 2, . . . , M − 1,
receives Ym = Zm +

∑M−1
m′=1,m′ 6=m bmm′Xm′ . The destination node (node M) receives

YM = ZM +
∑M−1

m=1 bmMXm. Detailed definitions are given in [11].
Suppose that the encoding process must be designed such as to satisfy a received-

power constraint

1

n

n
∑

i=1

E
[

|YM [i]|2
]

≤ Q + σ2
Z . (22)

Theorem 13. The capacity of the Gaussian relay network under the received-power con-
straint (22) is given by

C = log

(

1 +
Q

σ2
Z

)

. (23)

Proof. See the proof of Theorem 9.

6 The General Discrete Memoryless Relay Network

The capacity results obtained in the previous section can be extended beyond the Gaus-
sian case. Upper and lower bounds to capacity can be given in straightforward extension
of [10], and the interesting question again becomes: when can a capacity theorem be
established? A partial answer can be phrased as follows:

Proposition 14. For the general relay channel as defined in [10], subject to a con-
straint on the received signal E[ρ(YM)] ≤ Γ, suppose that p(yM |x1, . . . , xM−1) is sym-
metric in the sense that H(YM |x1, . . . , xM−1) = H0 for all (x1, . . . , xM). If there exist
x2,0, x3,0, . . . , xM−1,0 such that

∑

x1

p(yM |x1, x2,0, x3,0, . . . , xM−1,0)p(x1) ∈ arg max
p(yM ):E[ρ(YM )]≤Γ

H(YM), (24)

then, the capacity is C = maxp(yM ):E[ρ(YM )]≤Γ H(YM) − H0.

Note that this is a special class of relay networks for which the relays, in fact, do not
permit to increase capacity, extending [10, p.572,case 2)].



7 Conclusions and Extensions

This paper derives capacity results and separation theorems for communication systems
where the received power, either at the intended receiver, or at some third-party receiver,
is constrained. This is motivated, in part, by recent spectrum-sharing ideas: When
multiple systems need to share the same part of the spectrum, it may become meaningful
to define a maximum interference power that one system may inflict on its neighbors.

It is argued that while this change of perspective does not involve any conceptual dif-
ferences in the scalar point-to-point case, it provides a new set of conclusive performance
results in network cases, some of which are discussed or outlined in this paper. Detailed
proofs, along with extensions to other scenarios, will be presented in an upcoming journal
version.

It is also found that in certain network problems with received-power constraints,
the capacity-achieving distribution is non-unique. For these situations, an interesting
follow-up question can be asked by comparing these capacity-achieving distributions and
finding, e.g., the one that minimizes transmit power.

Another interesting question concerns networks that are subject to both a transmit
and and received-power constraint. A simple result concerning a relay situation is given.

Extensions may concern more general spectrum-sharing geometries, and an analysis
of the capacity of wireless networks under received-power constraints, in the spirit of [12].
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