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1. Introduction

The periodic-review, capacitated inventory control problem for systems facing stochastic, non-
stationary (time-dependent) demands that are correlated and evolve over time is an important
classical problem that is widely recognized to be computationally challenging. We develop a new
algorithmic approach to compute the order quantity for such a system. We build on the work
of Levi et al. (2007), who used a marginal holding cost accounting scheme and cost balancing
techniques to derive the first policies with worst-case performance guarantees for uncapacitated
models. In this paper, we introduce a novel marginal backlogging cost accounting scheme that, in
combination with their techniques, lead to analogous results for the much harder capacitated model.
We believe that our new cost accounting scheme will have applications in many other settings.
Our algorithm is guaranteed to compute a solution of total expected cost no more than twice that
of an optimal policy for any instance of the problem. The algorithm is computationally efficient
and implementable without having to enumerate exhaustively future scenarios and corresponding
future decisions. In particular, the decision made in the current period is unaffected by any future
decision. Thus, it can be implemented efficiently even in the presence of complex demand structures.
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Specifically, we consider single-item models with one location and a finite planning horizon of
T discrete time periods. The demands over the T periods are random variables that can be non-
stationary and correlated. The costs consist of a per-unit, time-dependent ordering cost, a per-unit
holding cost for carrying excess inventory from period to period and a per-unit backlogging cost,
which is a penalty incurred, in each period, for each unit of unsatisfied demand (where all shortages
are fully backlogged). There is a time-dependent capacity constraint on the number of units ordered
in each period and a lead time between the time that an order is placed and the time that it
actually arrives. The capacity constrains and lead times may be stochastic.

Capacitated problems are inherently more difficult computationally compared to their uncapac-
itated counterparts. The constraint on capacity makes future costs heavily dependent on current
decisions. Myopic policies, which do not consider the impact of a decision made in the current
period on the costs incurred in future periods, seem to perform well for some scenarios in uncapac-
itated systems and are even optimal in some settings (seeVeinott (1965), Ignall and Veinott (1969)
Iida and Zipkin (2001), and Lu et al. (2006)). However, when applied to capacitated problems, they
usually perform very poorly because they do not consider possible capacity limitations in future
periods.

In this work, we introduce a look-ahead backlogging cost-accounting scheme, called the forced
marginal backlogging cost-accounting scheme, to capture the long-term impact of current decisions
on future costs in the presence of capacity constrains. Our new cost accounting scheme assigns to
the decision in each period all of the expected backorder costs that, once this decision is made,
become inevitable; that is, they are unaffected by any decision made in future periods, and are
dependent only on future demands. The forced marginal backlogging cost reduces to the traditional
backlogging cost when the capacity is infinite; thus, it is a generalization of the traditional back-
logging cost. Finally, as discussed in Section 3.1, it is straightforward to compute in most common
scenarios.

The key feature distinguishing the algorithms presented in this paper from those previously
studied for capacitated systems is the treatment of correlation in demand across time as well as non-
stationarity. Moreover, we allow observations of the past to change demand forecasts for the future.
Our model also captures other important characteristics of a non-stationary environment: the
parameters are fully time-dependent, including cost parameters and system capacity. An important
application of demand correlation and non-stationarity is in the use of dynamic demand forecasts.
These forecasts and the way they evolve over time provide vital information that can be used to
find effective inventory control policies in dynamic and highly volatile demand environments. The
assumptions that we make on the demand distributions in this work are mild enough to generalize
all of the currently known approaches in the literature to model correlation and non-stationarity of
demand over time. These include classical approaches like the martingale model of forecast evolution
model (MMFE), exogenous Markovian demand, time series, order-one auto-regressive demand and
random walks. For an overview of the different approaches and models, and for relevant references,
we refer the reader to Iida and Zipkin (2001) and Dong and Lee (2003).

High correlation between demands across different periods in non-stationary and dynamic envi-
ronments presents a considerable challenge to computing, or even approximating, optimal inventory
control policies. The dominant paradigm in almost all of the existing literature has been to for-
mulate multi-period capacitated models using dynamic programming. The optimization problem
is defined recursively over time using subproblems for each possible state of the system. The state
usually consists of a given time period, the level of inventory at the beginning of the period, the
resulting conditional distribution of future demands over the rest of the horizon, and possibly more
information that is available by that period. For each subproblem, an optimal solution is computed
to minimize the expected overall discounted cost from the current point to the end of the horizon.
This framework has turned out to be very effective in characterizing the structure of the optimal
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policy of the overall system. Assuming stationary linear costs and independent and identically
distributed (i.i.d.) demands, Federgruen and Zipkin (1986a,b) showed that a modified, base-stock
policy is optimal under infinite-horizon average-cost and discounted cost criteria. They established
the existence of a target inventory level such that the optimal policy aims to keep inventory levels
as close as possible to that target. When the inventory level at the beginning of the period is above
the target level, the optimal policy does not order. When the inventory level at the beginning of the
period is below the target level, it might not be possible to order up to the target level because of
the capacity constraint. In this case, the order placed would be up to capacity. Tayur Kapuscinski
and Tayur (1998) and Aviv and Federgruen (1997) derived the optimal policy in the same settings,
but for independent cyclical demands.

Axsäter (1990) is the first to introduce the notion of matching between pairs of demand and
supply units. Specifically, he observes that in a distribution system with a single depot and multi-
ple retailers, a supply unit ordered by a retailer can be used to fill a corresponding demand unit
following a certain order. He matches this pair of units and evaluates the corresponding expected
holding cost. Katircioglu and Atkins (1996) have used this observation to analyze the optimal poli-
cies in unit demand inventory systems. For the uncapacitated periodic-review stochastic inventory
control problem, Muharremoglu and Tsitsiklis (2001) have proposed an alternative approach to
the dynamic programming framework. They have observed that this problem can be decoupled
into a series of unit supply-demand subproblems, where each subproblem corresponds to a single
unit of supply and a single unit of demand that are matched. This novel approach enabled them
to substantially simplify some of the dynamic programming based proofs on the structure of opti-
mal policies, as well as to prove several important new structural results. In particular, they have
established the optimality of state-dependent base-stock policies for the uncapacitated model with
general Markov-modulated demand. Using this unit decomposition, they have also suggested new
methods to compute the optimal policies. However, their computational methods are essentially
dynamic programming approaches applied to the unit subproblems, hence they suffer from similar
problems in the presence of correlated and non-stationary demand. Although our approach is very
different from theirs, we use some of their ideas as technical tools in some of the proofs. Janaki-
raman and Muckstadt (2003) have extended this approach to capacitated models and established
the optimality of state-dependent modified base-stock policies for models with Markov-modulated
demand.

Unfortunately, the rather simple forms of these policies do not always lead to efficient algorithms
for computing the optimal policies. Complex demand structures, such as the one we consider in this
work, cause the state space of the corresponding dynamic programs to explode (see Iida and Zipkin
(2001), and Dong and Lee (2003) for relevant discussions on the MMFE model). There does not
exist at present, nor is there likely to be developed, an efficient algorithm to solve these dynamic
programs to optimality, even for the uncapacitated model. The difficulty comes from the fact that
we need to solve ‘too many’ subproblems, a phenomenon known as the curse of dimensionality.
To date, computational procedures have been made tractable only under assumptions of simple
demand structures. If the demands in different periods are independent, the corresponding dynamic
programs are relatively straightforward to solve. Dynamic programming can still be tractable for
uncapacitated models with Markov-modulated demand but under rather strong assumptions on
the structure and the size of the state space of the underlying Markov process (see, for example,
Song and Zipkin (1993) and Chen and Song (2001)). Tayur (1992) uses the shortfall distribution
and the theory of storage processes to derive an efficient computational method for computing
the optimal policy in the stationary cost, i.i.d. demand, average-cost case. Roundy and Muckstadt
(2000) showed how to obtain approximate base stock levels, also for the stationary cost and i.i.d.
demand case, by approximating the distribution of the shortfall process. Kapuscinski and Tayur
(1998) proposed a simulation-based technique using infinitesimal perturbation analysis to compute
the optimal policy for capacitated problems with independent, cyclical demands.
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There have been heuristic approaches to compute order quantities for capacitated problems.
However, we are aware of very few attempts to analyze the worst-case performance of heuristics
and most bounds derived are dependent on the particular input (see, for example, Lu et al. (2006)).
To the best of our knowledge, there are no other policies for stochastic inventory control models
with constant worst-case performance guarantees. Metters (1997) found heuristics for capacitated,
lost-sales problems with independent, cyclical demands. Chan (1999) have considered heuristics
for uncapacitated and capacitated multi-item models. Instead of solving the one-period problem
(as in the Myopic policy), they have added a penalty function to the one-period problem, which
they called the Q-function. This function accounts for the holding cost incurred by the inventory
left at the end of the period over the entire horizon. Their look-ahead approach with respect to
the holding cost is somewhat related to our approach, though significantly different.

As we have already mentioned, this paper builds on the work of Levi et al. (2007). They give the
first algorithms with a constant performance guarantee for the uncapacitated stochastic inventory
control model with correlated, non-stationary demands; specifically, their algorithms always find
solutions of total expected cost no more than twice the optimal. Their algorithms are based on two
main ideas. First, they construct a look-ahead holding cost accounting scheme, called the marginal
holding cost accounting scheme, to compute the additional holding costs incurred by units ordered
in the current period throughout the entire horizon. Secondly, they use cost-balancing techniques in
that, in each period, they order exactly to balance the following two opposing costs: the conditional
expected marginal holding cost against the conditional expected period backlogging cost a lead time
ahead. Their approach relies heavily on the ability of the system to order in each period a ‘balancing
quantity’ that equalizes the expected marginal holding cost and the expected backlogging cost in
the period. In capacitated systems, the approach fails because this balancing quantity might not
be attainable due to capacity constrains. Our forced marginal backlogging cost accounting scheme
is designed to remedy this problem by reassigning backlogging costs more appropriately to the
decisions that create them, enabling us to find a ‘balancing order quantity’ for capacitated systems.
Suppose that in the current period the order placed was not up to capacity; we wish to account
for the potential backlogging cost in future periods incurred directly by the decision not to use
the full available capacity. Assume temporarily that we order up to capacity in each one of the
periods. Suppose now that in the current period we do not order up to capacity. Then the expected
marginal backlogging cost associated with the current period is the overall increase in the expected
backlogging cost over the entire horizon resulting from this decision. In this way, our balancing
policy for a capacitated system is able to achieve the same worst-case performance guarantee of
2, with surprisingly little additional computational effort. When applied to uncapacitated models
the policies described in this paper are identical to the Dual-Balancing policies described by Levi
et al. (2007). Thus, they can be viewed as generalizations of the original Dual-Balancing policies
to capacitated inventory models.

We also use the marginal holding and forced marginal backlogging cost accounting schemes to
derive additional semi-myopic policies, called the Lower-Myopic and Upper-Myopic policies. The
policies provide lower and upper bounds on the optimal base-stock levels, respectively, which can
be used in conjunction with any policy to achieve lower expected cost.

Furthermore, in Section 4.2 we show how to use standard cost transformations to improve the
performance of the algorithms in many important settings (see also Levi et al. (2007)). These
transformations yield a modified instance of the problem that is equivalent to the original one
from an optimization perspective, but models only holding and backlogging costs. If the per-unit
ordering cost is constant over time, then applying our algorithms to the modified instance yields
an approximation algorithm with a worst-case guarantee of 2 with respect to the holding and
backlogging costs, and which has the same total per-unit ordering cost as the optimal policy.
More generally, when the ordering costs are large, the worst-case performance guarantee of the
modified-cost Dual-Balancing policy will be much better than 2.
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In Section 6 we test the typical performance of the balancing algorithms in two settings. We
consider an inventory system that has i.i.d. demand (no correlations), and a demand distribution
with an exponential tail, because the optimal policy can be computed analytically. (The motivation
is to the test balancing policies at least in one environment, in which the optimal policy and cost
are known.) However, balancing policies are most attractive in scenarios with complex demand
structures, whereas optimal policies can not be computed and no provable good heuristics or
reasonable lower bounds are known. Thus,we also consider the same set of test scenarios tested
in Hurley et al. (2006), in which the uncapacitated versions of these algorithms were evaluated
computationally. In these scenarios the demands and forecasts evolve according to the multiplicative
MMFE model. Optimal policies are not computable and strong lower bounds do not exist, so
we used the Myopic policy as a benchmark for evaluating performance. The performance of the
Balancing policies is very robust. It was within 11% of optimal on average in the first test (always
within 25%), and consistently improved upon myopic, by over 27%, on average and by over 50%
in many scenarios.

The paper is organized as follows. In Section 2 we present the mathematical formulation of
the periodic-review, capacitated, stochastic inventory control problem. In Section 3 we describe
the forced marginal backlogging cost accounting scheme for the capacitated model. In Section 4
we describe the balancing policy and its worst-case analysis. We also extend the approximation
results to the case of discrete demand and stochastic lead times (see Appendix C). In Section 5,
we develop lower and upper bounds on the optimal inventory levels, and show how to use them
to improve any policy. Section 6 contains our computational results. Appendix A contains a very
simple, illustrative example for the case of integer-valued demand. In Appendix B we present a
detailed description of the scenarios tested in the computational results.

2. Capacitated Periodic-Review Stochastic Inventory Control Problem

In this section, we provide the mathematical formulation of the capacitated periodic-review stochas-
tic inventory problem and introduce some of the notation used throughout the paper. As a general
convention, we distinguish between a random variable and its realization using capital letters and
lower case letters, respectively. Script font is used to denote sets. We consider a finite planning
horizon of T periods numbered t = 1, . . . , T (note that t and T are both deterministic unlike the
convention above). The demands over these periods are random variables, denoted by D1, . . . ,DT .

As part of the model, we assume that at the beginning of each period s, we are given what we
call an information set that is denoted by fs. The information set fs contains all of the information
that is available at the beginning of time period s. More specifically, the information set fs consists
of the realized demands (d1, . . . , ds−1) over the interval [1, s), and possibly some more (external)
information denoted by (w1, . . . ,ws). The information set fs in period s is one specific realization
in the set of all possible realizations of the random vector Fs = (D1, . . . ,Ds−1,W1, . . . ,Ws). This set
is denoted by Fs. In addition, we assume that in each period s there is a known conditional joint
distribution of the future demands (Ds, . . . ,DT ), denoted by Is := Is(fs), which is determined by
fs (i.e., knowing fs, we also know Is(fs)). For ease of notation, Dt will always denote the random
demand in period t according to the conditional joint distribution Is for some s≤ t, where it will
be clear from the context to which period s we refer. We will use t as the general index for time,
and s will always refer to the current period. The only assumption on the demands is that for each
s = 1, . . . , T , and each fs ∈ Fs, the conditional expectation E[Dt|fs] is well defined and finite for
each period t≥ s. In particular, we allow non-stationarity and correlation between the demands of
different periods.

In the periodic-review stochastic inventory control problem, our goal is to supply each unit of
demand while attempting to avoid ordering it either too early or too late. In period t, (t = 1, . . . , T )
three types of costs are incurred, a per-unit ordering cost ct for ordering up to ut units, where
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ut ≥ 0 is the available order capacity in period t, a per-unit holding cost ht for holding excess
inventory from period t to t + 1, and a per-unit backlogging penalty pt that is incurred for each
unsatisfied unit of demand at the end of period t. Unsatisfied units of demand are usually called
backorders. Backorders fully accumulate over time until they are satisfied. That is, each unit of
unsatisfied demand will stay in the system and will incur a backlogging penalty in each period until
it is satisfied. In addition, there is a lead time of L periods between the time an order is placed
and the time at which it actually arrives. We first assume that the lead time is a known integer L.
In Appendix C, we show that our policy can be modified to handle stochastic lead times under the
assumption of no order crossing (i.e., any order arrives no later than those placed later in time).
In Section 4.1, we show that extensions to the case of random capacities are straightforward.

There is also a discount factor α≤ 1. The cost incurred in period t is discounted by a factor of
αt. Since the horizon is finite and the cost parameters are time-dependent, we can assume without
loss of generality that α = 1. We also assume that there is no speculative motivation for holding
inventory or having back orders in the system. To enforce this, we assume that, for each t =
2, . . . , T −L, the inequalities ct ≤ ct−1 +ht+L−1 and ct ≤ ct+1 +pt+L are maintained (where cT+1 = 0).
(If there is a discount factor, we require that αct ≤ ct−1 + αLht+L−1 and ct ≤ αct+1 + αLpt+L). We
also assume that the parameters ht, pt and ct are all non-negative. Note that the parameters hT

and pT can be defined to take care of excess inventory and back orders at the end of the planning
horizon. In particular, pT can be set sufficiently high so as to ensure that there are very few back
orders at the end of period T .

The goal is to find a feasible ordering policy (i.e., one that respects the capacity constraints)
that minimizes the overall expected discounted ordering cost, holding cost and backlogging cost.
We consider only policies that are non-anticipatory, i.e., at time s, the information that a feasible
policy can use consists only of fs and the current inventory level.

Throughout the paper we will use D[s,t] to denote the accumulated demand over the interval
[s, t], i.e., D[s,t] :=

∑t

j=s Dj. We will also use superscripts P and OPT to refer to a given policy P
and the optimal policy respectively.

Given a feasible policy P , we describe the dynamics of the system using the following terminol-
ogy. We let NIt denote the net inventory at the end of period t, which can be either positive (in
the presence of physical on-hand inventory) or negative (in the presence of back orders). Since we
consider a lead time of L periods, we also consider the orders that are on the way. The sum of the
units included in these orders, added to the current net inventory is referred to as the inventory
position of the system. We let Xt be the inventory position at the beginning of period t before the
order in period t is placed, i.e., Xt := NIt−1 +

∑t−1

j=t−L Qj (for t = 1, . . . , T ), where Qj denotes the
number of units ordered in period j (we will sometime denote

∑t−1

j=t−L Qj by Q[t−L,t−1]). Similarly,
we let Yt be the inventory position after the order in period t is placed, i.e., Yt = Xt + Qt. Note
that once we know the policy P and the information set fs ∈Fs, we can easily compute nis−1, xs

and ys, where again these are the realizations of NIs−1,Xs and Ys, respectively.

3. Marginal Cost Accounting Scheme

In this section, we present a marginal cost accounting for stochastic inventory control problems
with capacity constraints on the size of the order in each period. This extends and generalizes the
marginal cost accounting discussed by Levi et al. (2007). Since this cost accounting approach is
central for our approximation results, we explain it in detail, repeating some of the ideas of that
paper. Our approach differs significantly from the traditional cost accounting approaches, which is
based on standard dynamic programming.

We start by reviewing their cost accounting approach, which is called marginal cost accounting.
The main idea underlying this approach is to account for all the expected costs associated with



Levi at al.: Approximation Algorithms for Capacitated Stochastic Inventory Control Models
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

the decision of how many units to order in period t when this decision is made. More specifically,
the decision in period t is associated with all the expected cost that, after that decision is made,
become unaffected by any future decision, and are only dependent on future demands. In Levi
et al. (2007) it was shown that in uncapacitated models, these costs are relatively easy to compute
already in period t, even though they may include costs that are going to be incurred only in
future periods. Taking this approach, Levi, Pál, Roundy and Shmoys have proposed a marginal
holding cost accounting scheme. Their approach is based on the convention that units in inventory
are consumed on a first-ordered-first-consumed basis. This implies that the overall holding cost of
the qs units ordered in period s (i.e., the holding cost they incur over the entire horizon [s,T ])
is a function only of future demands, and is independent of any future decision. Based on the
assumption that inventory is consumed on a first-ordered-first-consumed basis, the qs units on order
will be used to satisfy demand only when the xs units presently in the system have been completely
consumed. Among these qs units, the number of those still remaining in inventory at the end of
period j (where j ≥ s+L) is precisely (qs− (D[s,j]−xs)+)+. Each of these units incurs a cost of hj.
More specifically, conditioning on an information set fs ∈Fs, the marginal holding cost is defined
to be (assuming again that α = 1)

∑T

j=s+L hj(qs − (D[s,j] − xs)+)+. Observe again that for each
non-anticipatory policy P , if conditioned on some ft ∈Ft, the inventory position at the beginning
of period t, denoted by xP

t , is known deterministically. In addition, once the order in period s is
determined, the backlogging cost a lead time ahead in period s+L, i.e., ps+L(D[s,s+L]− (xs +qs))+,
is also dependent only on the future demands. This leads to a marginal cost accounting. For each
feasible policy P , let HP

t be the ordering and holding cost incurred over the interval [t, T ] by the QP
t

units ordered in period t (for t = 1, . . . , T ), and let ΠP
t be the backlogging cost incurred a lead time

ahead in period t+L (t = 1−L, . . . , T −L). That is, HP
t = ctQ

P
t +

∑T

j=t+L hj(QP
t − (D[t,j]−XP

t )+)+

and ΠP
t := pt+L(D[t,t+L]− (XP

t+L + QP
t ))+ (where Dj := dj with probability 1 and QP

j = qj is given
as an input for each j ≤ 0). Let C(P ) be the cost of the policy P . Clearly,

C(P ) :=
0∑

t=1−L

ΠP
t +H(−∞,T ] +

T−L∑
t=1

(HP
t +ΠP

t ), (1)

where H(−∞,T ] denotes the total expected holding cost incurred over the interval [1, T ] by units
ordered before period 1. We note that the first two expressions

∑0

t=1−L ΠP
t and H(−∞,T ] are not

affected by our decisions (i.e., they are the same for any feasible policy and each realization of the
demands). Note that, without loss of generality, we can assume that QP

t = HP
t = 0 for any policy

P and each period t = T −L+1, . . . , T , since nothing that is ordered in these periods can be used
within the given planning horizon.

In models with no capacity constraints there is a fundamental difference between holding cost
and backlogging cost. In particular, any mistake of ordering ‘too little’ can be fixed in the next
period to avoid further backlogging cost. In particular, the decision of how many units to order
affects the backlogging cost in a single period. However, the effect of this decision, if we have ordered
‘too much’, may last for a number of periods depending on the realized future demands. That is,
no future decision can fix this mistake, since we can not order a negative quantity. Consequently,
ΠP

t only accounts for costs incurred in a single period, namely, backlogging cost in period t + L,
and HP

t accounts for holding costs incurred over multiple periods. By way of contrast, in models
with capacity constraints on the size of the order in each period, the above observation is no longer
valid. More specifically, because of the capacity constraints, it is no longer true that a mistake of
ordering ‘too little’ in the current period can always be fixed by decisions made in future periods.
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3.1. Marginal Backlogging Cost Accounting

We now present a new backlogging cost accounting that associates with the decision of how many
units to order in period s what we shall call forced backlogging cost resulting from this decision in
future periods.

Consider some period s. Suppose that xs is the inventory position at the beginning of period
s and that the number of units ordered in the period is qs < us. Let q̄s be the resulting unused
slack capacity in period s, i.e., q̄s = us − qs > 0. Focus now on some future period t≥ s + L when
this order arrives and becomes available. Suppose that for some realization of the demands, we
have that d[s,t] − (xs + qs +

∑
j∈(s,t−L] uj) > 0. This implies that there exists a shortage in period

t, and moreover, even if in every period after period s and until period t−L the orders had been
up to the maximum available capacity, this part of the shortage in period t would still exist and
incur the corresponding backlogging cost. The actual shortage may be even bigger and equal to
d[s,t]− (xs + qs +

∑
j∈(s,t−L] qj) > 0 (recall that qj ≤ uj for each period j). In other words, given our

decision in period s, this part of the shortage could not be avoided by any decision made over the
interval (s, t−L] (clearly, any order placed after period t−L will not be available by time t). We
conclude that, if more units had been ordered in period s, then at least some of the shortage in
period t could have been avoided. More precisely, the maximum number of units of shortage that
could have been avoided by ordering more units in period s is equal to min{q̄s, (d[s,t]− (xs + qs +∑

j∈(s,t−L] uj))+}. The intuition is that by ordering more units in period s, we could have averted
part of the shortage in period t, but clearly not more than the unused slack capacity q̄s, since we
could not have ordered in period s more than additional q̄s units. In this case, we would say that
this part of the backlogging cost in period t was forced by the decision in period s, and hence
period s is associated with a backlogging penalty of pt min{q̄s, (d[s,t]− (xs + qs +

∑
j∈(s,t−L] uj))+}.

This is significantly different from the traditional backlogging cost accounting, in which this cost
would be associated with period t−L.

We let Wst be the shortage in period t that is forced by the decision in period s (where again
s≤ t−L), i.e.,

Wst := min{Q̄s, (D[s,t]− (Xs +Qs +
∑

j∈(s,t−L]

uj))+}.

An alternative way to express Wst, using min(a, (b)+) = (b)+− (b− a)+ for a∈R+ and b∈R, is

Wst := (D[s,t]− (Xs +Qs +
∑

j∈(s,t−L]

uj))+− (D[s,t]− (Xs +
∑

j∈[s,t−L]

uj))+. (2)

Now using the equalities, NIt = Xs + Qs +
∑

j∈(s,t−L] Qj −D[s,t) (for each s ≤ t− L) and uj =
Qj + Q̄j (for each j = s, . . . , t−L), we conclude that equation (2) can be written as

(Dt−NIt−
∑

j∈(s,t−L]

Q̄j)+− (Dt−NIt−
∑

j∈[s,t−L]

Q̄j)+. (3)

To see why (2) (and hence, (3)) holds, observe that (D[s,t]− (Xs + Qs +
∑

j∈(s,t−L] uj))+ > Q̄s if
and only if (D[s,t]−(Xs +

∑
j∈[s,t−L] uj))+ > 0. Next we describe several properties of the parameters

Wst. Clearly, if Q̄s = 0 (i.e. Qs = us), then Wst = 0 for each t≥ s+L. It is also readily verified from
(3) that if Wst > 0 for some s≤ t−L, then we have Wjt = Q̄j for each j ∈ (s, t−L].

For each s = 1−L, . . . , T −L, let Π̃P
s be the overall forced backlogging cost in periods s+L, . . . , T

associated with period s, i.e., Π̃P
s =

∑T

t=s+L ptW
P
st (we again assume that Dj = dj with probability

1 for each j ≤ 0). Let u−L =∞, q−L = 0 and q̄−L =∞, and also define, for each t = 1, . . . , T ,

W−L,t := (D[1−L,t]− (x1−L +
∑

j∈[1−L,t−L]

uj))+ = (Dt−NIt−
∑

j∈[1−L,t−L]

Q̄j)+,
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and Π̃P
−L = Π̃−L :=

∑T

t=1 ptW−L,t. The last definition of Π̃−L is meant to account for the forced
backlogging cost which is independent of any decision, and is forced by the demands on any
feasible policy. It is now readily verified that, for each t = 1, . . . , T and for each policy P , we
have ΠP

t−L = pt(Dt −NIP
t )+ = pt

∑t−L

j=−L W P
jt (the sum

∑t−L

j=−L Wjt is telescopic). This implies the
following theorem.

Theorem 1. Let P be a non-anticipatory policy. Then the cost of policy P can be expressed as
C(P ) :=

∑0

t=−L Π̃P
t +H(−∞,T ] +

∑T−L

t=1 (HP
t +Π̃P

t ).

Note that the first two terms of C(P ) in Theorem 1,
∑0

t=−L Π̃P
t and H(−∞,T ], are independent

of any decision we make and are common to all feasible policies. Recall that
∑0

t=−L Π̃P
t represents

the forced backlogging penalty that is forced on any feasible policy. Since these two terms are also
non-negative, we omit them from the analysis. This does not impact our approximation results.
From now on, we will write the cost of a feasible policy P as C(P ) =

∑T−L

t=1 (HP
t +Π̃P

t ). In Appendix
A we provide an illustrative example of the our new cost accounting approach.

The intuition is that once a shortage is incurred in period t, it is allocated to past periods
s≤ t−L in which the orders were below the available capacity. More specifically, the shortage and
the resulting backlogging cost in period t are charged to periods s ≤ t− L with positive unused
slack capacity going backward in time from period t−L. Each period s≤ t−L, can be charged
with a part of the backlogging cost in period t for up to q̄s units, the unused slack capacity in
period s.

Figure 1 Period-by-period backorder cost accounting
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Figure 2 Forced marginal backorder cost accounting

Figures 1, 2 and 3 illustrate graphically the difference between classical period-by-period account-
ing and forced marginal accounting for backlogging costs. All three figures reflect a single sample
path of demands and orders. The total backlogging cost over the horizon is the area above the
cumulative supply curve (thick line) and below the cumulative demand curve (thin line). Classical
period-by-period accounting assigns to period s the difference between the curves at s (see Figure
1). Forced marginal accounting of backlogging costs assigns to period s all of the backlogging costs
that were ”forced”, or made inevitable, because we did not order to capacity in period s. This
corresponds to the area inside of the trapezoid shown in Figure 2. This trapezoid is created by
extending the cumulative supply curve, starting at s− 1 and at s, to the right at a slope equal
to the capacity of the system. These lines represent what the supply curves would look like if our
policy consistently ordered at full capacity from s−1 and s onwards, respectively. In fact, consider
the thick short bars in the trapezoid in Figure 2. The first and second terms of (2) are the vertical
coordinates of the end points of these bars. Consequently each Wst, for t > s, is the length of one
of these bars. Figure 3 takes a different point of view. It considers the backlogging costs incurred
in period s, and illustrates how those costs are allocated to periods s, s− 1, . . . ,1, . . . ,−L.

In Levi et al. (2007) it is shown that the marginal holding cost consists of a sum of partial
expectations. Once xs is known at time s, the summands are expectations of simple piecewise
linear functions. If the accumulated demand D[s,j] (for each j, s) has any of the distributions that
are commonly used in inventory theory (e.g., Normal, Gamma, Lognormal, Laplace, etc) (Zipkin
2000), then it is extremely easy to evaluate these terms. If the distribution of D[s,j] is discrete, these
functions can be computed recursively in efficient ways using the CDF functions. More generally, the
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Figure 3 Allocation of a period backorder to ordering decisions

complexity of evaluating the marginal holding cost can vary depending on the level of information
we assume on the demand distributions and their characteristics. In all of the common scenarios
there exist straightforward methods to solve this problem efficiently (see also Hurley et al. (2006)
for more details). Since in the presence of positive lead times, even computing a simple Myopic
policy requires the same knowledge on the distribution of the accumulated demand over the lead
time, the computational effort involved with computing the marginal holding cost is of the same
order of magnitude as for the Myopic policy. Evaluating the marginal backlogging costs based on
the scheme developed in this paper is analogous to the marginal holding cost. It is a sum of partial
expectations of simple piecewise linear functions, and therefore, is no more difficult to compute.

Finally, observe that for uncapacitated models with us =∞ for each s (and hence q̄s =∞), our
backlogging cost accounting is in fact identical to the traditional backlogging accounting discussed
above. This implies that the cost accounting scheme proposed in this paper is a generalization of
the one introduced in Levi et al. (2007). Therefore, the preceeding discussion is also a generalization
of the corresponding algorithm and analysis in Levi et al. (2007).

4. Dual-Balancing Policy

In this section, we describe a new policy for the capacitated periodic-review stochastic inventory
control problem. As in Levi et al. (2007), we call it a Dual-Balancing policy. We shall show that
this policy has a worst-case performance guarantee of 2, i.e., for each instance of the problem,
the expected cost of the policy is at most twice the expected cost of an optimal policy. Recall
the assumption discussed in Section 2 that the cost parameters imply no motivation for holding
inventory or backorders. This implies that, without loss of generality, for each t = 1, . . . , T , ct = 0
and ht, pt ≥ 0. Moreover, we first describe the algorithm, its analysis, and several extensions, under
the latter assumption. Then in Section 4.2 we discuss in detail the generality of this assumption.
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The Dual-Balancing policy presented in this paper is based on a balancing idea similar to the
one used in Levi et al. (2007) for the uncapacitated model. That Dual-Balancing policy balances,
in each period s and conditioned on the observed information set fs, the expected marginal holding
cost of the units ordered in the period against the expected (traditional) backlogging cost in period
s + L, a lead time ahead of s. However, it is readily seen that this approach does not work in the
case where there is a capacity constraint on the size of the order in period s. For one, the order
size q′s that balances these two costs might not be reachable when q′s > us.

In turn, we consider the forced marginal backlogging cost accounting and the corresponding
cost it associates with period s as described in Section 3 above. Conditioned on the observed
information set fs, we now balance the expected marginal holding cost of the units ordered in
period s against the expected marginal backlogging costs associated with period s. We will use the
superscript B to refer to the Dual-Balancing policy. For each period s = 1, . . . , T −L, conditioning
on the observed information set fs, let lBs (qB

s ) be the expected holding cost incurred over [s,T ] by
the units ordered by the Dual-Balancing policy in period s. That is, lBs (qB

s ) := E[HB
s (qB

s )|fs]. In
Section 3 we have defined HB

s =
∑T

j=s+L hj(QB
t − (D[s,j]−XB

s )+)+ (recall that we assume cs = 0).
In addition, let π̃B

s := E[Π̃B
s (qB

s )|fs] be the expected backlogging cost associated with period s by
the forced marginal backlogging cost accounting scheme described above, again conditioned on the
observed information set fs. Recall that in Section 3 we have defined Π̃B

s =
∑T

t=s+L ptW
B
st where,

W B
st = min{Q̄B

s , (D[s,t]− (XB
s +QB

s +
∑

j∈(s,t]

uj))+}=

(D[s,t]− (XB
s +QB

s +
∑

j∈(s,t−L]

uj))+− (D[s,t]− (XB
s +

∑

j∈[s,t−L]

uj))+.

Since if we condition on fs, the inventory position at the beginning of period s, xB
s , is known

deterministically; it is clear that lBs (qB
s ) and π̃B

s (qB
s ) are both indeed functions of qB

s , the number
of units ordered in period s.

We first discuss the case where the orders are allowed to be fractional. This implies that the
functions lBs (qB

s ) and π̃B
s (qB

s ) are continuous. In each period s = 1, . . . , T −L, given the observed
information set fs, the Dual-Balancing policy will order qB

s = q′s ≤ us units such that the expected
marginal ordering and holding cost incurred by these units over [s,T ] is equal to the expected
forced marginal backlogging cost associated with period s. In other words, we order q′s units such
that lBs (q′s) = E[HB

s (q′s)|fs] = π̃B
s (q′s) = E[Π̃B

s (q′s)|fs]. Next we show that this policy is well-defined.
It is readily verified that lBs (qB

s ) is a convex increasing function of qB
s that is equal 0 for qB

s = 0 and
goes to ∞ as qB

s goes to ∞. Similarly, one can verify that π̃B
s (qB

s ) is a decreasing convex function
of qB

s that has a non-negative value at qB
s = 0 and that is equal to 0 for qB

s = us (in this case there
is no unused slack capacity at s and q̄B

s = 0). Our assumption that these functions are continuous
implies that q′s, as defined above, always exists.

Computationally, q′s is the minimizer of the function gs(qB
s ) := max{lBs (qB

s ), π̃B
s (qB

s )}, which is a
convex function of qB

s , since it is the maximum of two convex functions. Hence, in each period s,
we need to solve a convex minimization problem of a single variable. In particular, if for each j ≥ s,
D[s,j] is distributed according to any of those distributions that are commonly used in inventory
theory, then it is extremely easy to evaluate the functions lBs (qB

s ) and π̃B
s (qB

s ). More generally, the
complexity of the algorithm is of order T (i.e., number of time periods) times the complexity of
solving the single variable convex minimization defined above. The complexity of this minimization
problem can vary depending on the level of information we assume on the demand distributions
and their characteristics. In all of the common scenarios there exist straightforward methods to
solve this problem efficiently. In particular, q′s is determined by the intersection of two monotone
convex functions, which suggests that bisection methods can be effective in computing q′s. We note
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that the Dual-Balancing policy is not a state-dependent base stock policy. However, it can be
computed in an on-line manner, i.e., computing the policy action in period s does not require any
knowledge on the future decisions to be made in the next periods. Moreover, unlike the Myopic
policy, the Dual-Balancing policy does use available information about long term future demands.

4.1. Analysis

Next we show that, for each instance of the problem, the expected cost of the Dual-Balancing policy
described above is at most twice the expected cost of an optimal policy. We will use the marginal
cost accounting scheme described in Section 3 and amortize the period cost of the Dual-Balancing
policy with the cost of the optimal policy.

Using the marginal cost accounting scheme discussed in Section 3, the expected cost of the Dual-
Balancing policy can be expressed as E[C(B)] =

∑T−L

t=1 E[HB
t + Π̃B

t ]. For each t = 1, . . . , T −L, let
Zt be the random balanced cost by the Dual-Balancing policy in period t, i.e., Zt = E[HB

t |Ft]. Note
that Zt is a function of the observed information set in period t. In the next lemma we obtain an
expression for the expected cost of the Dual-Balancing policy using the Zt variables. The proof is
identical to the proof of Lemma 4.1 in Levi et al. (2007).

Lemma 1. The expected cost of the Dual-Balancing policy is equal to twice the expected sum of the
Zt variables, i.e., E[C(B)] = 2

∑T−L

t=1 E[Zt].

In the next two lemmas we show that the cost of OPT can be amortized against some of the
cost of the Dual-Balancing policy. In particular, they imply that the expected cost of OPT is at
least

∑T−L

t=1 E[Zt]. For each realization of the demands D1, . . . ,DT , let TH be the set of periods
t = 1, . . . , T −L in which the optimal policy had inventory position higher than that of the Dual-
Balancing policy, i.e., the set of periods 1≤ t≤ T −L such that Y B

t < Y OPT
t . Let TΠ be the set of

period in which the Dual-Balancing had inventory position at least as high as that of OPT , i.e., the
set of periods t = 1, . . . , T −L such that Y B

t ≥ Y OPT
t . (We consider only the periods t = 1, . . . , T −L,

because the effective ordering decisions are made in these periods. Specifically, each order placed
after period T −L will arrive after period T .) Observe that TH and TΠ are random sets that induce
a random partition of the horizon.

The next lemma shows that, with probability 1, the marginal holding cost incurred by the Dual-
Balancing policy in periods t ∈ TH is at most the overall holding cost incurred by OPT , denoted
by HOPT , i.e.,

∑
t∈TH

HB
t ≤HOPT with probability 1. The proof is identical to the proof of Lemma

4.2 in Levi et al. (2007).

Lemma 2. For each realization fT ∈ FT , the total marginal holding cost incurred by the Dual-
Balancing policy for all of the periods t∈ TH is at most the overall holding cost incurred by OPT ,
denoted by HOPT , i.e.,

∑
t∈TH

HB
t ≤HOPT with probability 1.

The next lemma shows that, with probability 1, the marginal backlogging cost of the Dual-
Balancing policy associated with periods t∈ TΠ is at most the overall backlogging penalty incurred
by OPT , denoted by Π̃OPT .

Lemma 3. For each realization fT ∈FT , the total marginal backlogging cost of the Dual-Balancing
policy associated with all of the periods t ∈ TΠ is at most the overall backlogging penalty incurred
by OPT , denoted by Π̃OPT , i.e.,

∑
t∈TΠ

Π̃B
t ≤ Π̃OPT with probability 1.

T he forced marginal backlogging cost associated with the periods in TΠ is equal to
∑
s∈TΠ

∑
t:t≥s+L

ptW
B
st =

∑
t

pt

∑
s∈TΠ:s≤t−L

W B
st .
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Therefore, it is sufficient to show that for each t = L + 1, . . . , T , the traditional backlogging cost
incurred by OPT in that period is at least as much as the forced backlogging costs incurred by
the Dual-Balancing policy in period t as a result of decisions made in periods {s∈ TΠ : s≤ t−L}.
In other words, it is sufficient to show that for each t = L+1, . . . , T , we have

(Dt−NIOPT
t )+ ≥

∑
s∈TΠ:s≤t−L

W B
st ,

with probability 1. (Recall that the backlogging costs over the periods 1, . . . ,L are the same for all
policies.)

Consider now a specific realization fT ∈ FT and some period t = 1, . . . , T . If there is no period
in {s ∈ TΠ : s≤ t−L} with wB

st > 0, then there is nothing to prove. Assume that such a period s
exists, and let sl and se be, respectively, the latest and the earliest periods in the set
{s ∈ TΠ : s≤ t−L, wB

st > 0}, respectively (it is possible that sl = se). We note again that here we
abuse our notation and consider the set TΠ as the realized set of periods according to the specific
realization fT . In particular, se and sl are the respective realizations of random variables Se and
Sl. We have already seen (in the discussion in Section 3) that for each s∈ (se, sl] we have wB

st = q̄B
s ,

and wB
se,t ≤ d[se,t]− (xse + qB

se
+

∑
j∈(se,t−L] uj). Indeed,

dt−niOPT
t = dt− (yOPT

sl
+

∑

j∈(sl,t−L]

qOPT
j − d[sl,t))≥ d[sl,t]− (yB

sl
+

∑

j∈(sl,t−L]

uj)

= d[sl,t]− (yB
se

+
∑

j∈(se,sl]

qB
j − d[se,sl) +

∑

j∈(sl,t−L]

uj)

= d[se,t]− (xB
se

+ qB
se

+
∑

(se,t−L]

uj)+
∑

j∈(se,sl]

q̄B
j

≥
∑

j∈[se,sl]

wB
st ≥

∑

j∈[se,sl]∩TΠ
wB

st.

The first equality is based again on the fact that for each feasible policy and for each s≤ t, we
have NIt = Ys +

∑
j∈(s,t−L] Qj −D[s,t), applied to OPT and periods sl ≤ t−L. The first inequality

follows from the assumption that sl ∈ TΠ and so yOPT
sl

≤ yB
sl
, and from the capacity constraints

that imply qOPT
j ≤ uj. The second equality follows from the fact that (for each s ≤ s′) Ys′ =

Ys +
∑

j∈(s,s′] Qj−D[s,s′) applied to the Dual-Balancing policy and periods se ≤ sl. The last equality
is achieved by adding and subtracting

∑
j∈(se,sl]

q̄B
j and from the fact that uj = Qj + Q̄j. The proof

then follows.
As a corollary of Lemmas 1, 2 and 3 we get the following theorem.

Theorem 2. The Dual-Balancing policy has a worst-case performance guarantee of 2, i.e., for
each instance of the capacitated periodic-review stochastic inventory control problem, the expected
cost of the Dual-Balancing policy is at most twice the expected cost of an optimal solution, i.e.,
E[C(B)]≤ 2E[C(OPT )].

F rom Lemma 1, we know that the expected cost of the Dual-Balancing policy is equal to twice
the expected cost of the sum of the Zt variables, i.e., E[C(B)] =

∑T−L

t=1 E[Zt]. From Lemmas 2
and 3 we know that, with probability 1, the cost of OPT is at least as much as the holding cost
incurred by units ordered by the Dual-Balancing policy in periods t∈ TH plus the forced marginal
backlogging cost of the Dual-Balancing policy that is associated with periods t∈ TΠ. In other words,
with probability 1, HOPT + Π̃OPT ≥∑

t∈TH
HB

t +
∑

t∈TΠ Π̃B
t . Using again conditional expectations

and the definition of Zt, this implies that indeed,
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E[C(OPT )]≥E[
∑
t∈TH

HB
t +

∑
t∈TΠ

Π̃B
t ] =

∑
t

E[HB
t · 11(t∈ TH)+ Π̃B

t · 11(t∈ TΠ)] =
∑

t

E[E[HB
t · 11(t∈ TH)+ Π̃B

t · 11(t∈ TΠ)|Ft]] =
∑

t

E[(11(t∈ TH)+ 11(t∈ TΠ))Zt] =
∑

t

E[Zt].

We note that if the optimal policy is deterministic (i.e., it makes deterministic decisions in each
period t given the observed information set ft), then if we condition on Ft, then yB

t and yOPT
t are

known deterministically, and so are the indicators 11(t ∈ TH) and 11(t ∈ TΠ). If the optimal policy
is random, then the same arguments above still work. We now need to condition not only on Ft

but also on the decisions made by the policies. Since the inventory control policy does not have
any effect on the evolution of the demand, the arguments above are still valid. This concludes the
proof of the theorem.

We note that the examples discussed in Levi et al. (2007) show that the above analysis is tight.
However, the analysis hints that in a typical scenario, the performance would be significantly
better. Hurley et al. (2006) present a thorough empirical analysis of the typical performance of
Dual-Balancing policies in uncapacitated models. In Section 6, we present empirical results that
confirm that this phenomenon extends to the capacitated case.

Finally, we note that the Dual-Balancing policies and the worst-case analysis can be extended to
models where the capacities in each period are generated by some exogenous random process, and
the exact capacity available in period t is observed only at the beginning of the period. Thus, the
Dual-Balancing policies provide a worst-case guarantee of 2 for this important extension as well.
In this case, the expectations of the marginal backlogging costs are taken with respect to both the
random future demands and random future capacities. In Appendix C, we consider two extensions
of the Dual-Balancing policy and the worst-case analysis. Specifically, we discuss the extensions to
models where orders must be integral and the demands are integer-valued random variables, and
to models with stochastic lead times under the no order crossing assumption.

4.2. Cost Transformation

In this section, we discuss in detail the cost transformation that enables us to assume, without loss
of generality, that for each period t = 1, . . . , T , we have ct = 0 and ht, pt ≥ 0. Consider any instance
of the problem with cost parameters that imply no speculative motivation for holding inventory or
backorders (as discussed in Section 2). Following Levi et al. (2007), we use a simple transformation
of the cost parameters to construct an equivalent instance, with the property that for each period
t = 1, . . . , T , we have ct = 0 and ht, pt ≥ 0. More specifically, the modified instance has the same set
of optimal policies. Applying the Dual-Balancing policy to that instance, we obtain a policy that
is different from the original dual balancing policy, and which also has a performance guarantee of
at most 2 with respect to the original problem. We shall show that this cost transformation can
improve the performance guarantee of the Dual-Balancing policy in cases where the ordering cost
is the dominant part of the overall cost. In practice this is often the case.

We now describe the transformation for the case with no lead time (L = 0) and α = 1; the
extension to the case of arbitrary lead time is straightforward. Recall that any feasible policy P
satisfies, for each t = 1, . . . , T , Qt = NIt−NIt−1 +Dt (for ease of notation we omit the superscript
P ). Using these equations, we can express the ordering cost in each period t as ct(NIt−NIt−1+Dt).
Now replace NIt with NI+

t −NI−t , its respective positive and negative parts.
This leads to the following transformation of cost parameters. We let ĉt := 0, ĥt := ht + ct −

ct+1 (cT+1 = 0) and p̂t := pt−ct +ct+1. Note that the assumptions on the cost parameters ct, ht, and
pt discussed in Section 2, and in particular, the assumption that there is no speculative motivation
to hold inventory or backorders, imply that ĥt and b̂t above are non-negative (t = 1, . . . , T ). Observe
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that the parameters ĥt and b̂t will still be non-negative even if the parameters ct, ht, and pt are
negative and as long as the above assumption holds. Moreover, this enables us to incorporate into
the model a negative salvage cost at the end of the planning horizon (after the cost transformation
we will have non-negative cost parameters). It is readily verified that the induced problem is
equivalent to the original one. More specifically, for each realization of the demands, the cost of
each feasible policy P in the modified input decreases by exactly

∑T

t=1 ctdt (compared to its cost
in the original input). Therefore, any optimal policy for the modified input is also optimal for the
original input.

Now apply the Dual-Balancing policy to the modified problem. We have seen that the assump-
tions on ct, ht and pt ensure that ĥt and p̂t are non-negative and hence the analysis presented above
is valid. Let opt and opt be the optimal expected cost of the original and modified inputs, respec-
tively. Clearly, opt = opt+E[

∑T

t=1 ctDt]. Now the expected cost of the Dual-Balancing policy in the
modified input is at most 2opt. Its cost in the original input is then at most 2opt+E[

∑T

t=1 ctDt] =
2opt−E[

∑T

t=1 ctDt]. This implies that if E[
∑T

t=1 ctDt] is a large fraction of opt, then the perfor-
mance guarantee of the expected cost of the Dual-Balancing policy might be significantly better
than 2. For example, if E[

∑T

t=1 ctDt]≥ 0.5opt, then we can conclude that the expected cost of the
Dual-Balancing policy is at most 1.5opt. It is indeed the case in many real life problems that a
major fraction of the total cost is due to the ordering cost. The intuition of the above transforma-
tion is that

∑T

t=1 ctDt is a cost that any feasible policy must pay. As a result, we treat it as an
invariant in the cost of any policy and apply the approximation algorithm to the rest of the cost.

In the case where we have a lead time L, we use the equations Qt := NIt+L−NIt+L−1 + Dt+L,
for each t = 1, . . . , T − L, to get the same cost transformation. The transformation for α > 1 is
also straightforward. Also, it is not hard to see that the cost transformation can be modified to
remove, say, γ% of the per-unit ordering costs, where 0 < γ < 100. This leads to a continuum of
dual balancing policies, all of which are 2-approximations.

5. Improved Policy & Bounds on the Optimal Inventory Levels

In this section, we consider two semi-myopic (modified) base-stock policies that are easy to compute
in an on-line manner and provide, respectively, lower bounds and upper bounds on the inventory
levels of an optimal policy yOPT

t , in each period t = 1, . . . , T . We believe that these bounds can
be used effectively to improve existing algorithms for computing inventory control policies for
the capacitated model discussed in this paper and other capacitated stochastic inventory models.
Moreover, as in Hurley et al. (2006), we shall show that these policies provide bounds that are strong
in the following sense: each policy that, for some period t and some state ft, has inventory level
outside the range defined by the respective lower and upper bounds can be improved. In particular,
there is another (modified) policy that in period t and state ft, admits an inventory level within
the specified range, with expected cost no greater than the expected cost of the original policy. In
other words, any policy that violates these respective bounds is dominated by another policy. We
then follow Hurley et al. (2006) and construct an Improved Dual-Balancing policy that incorporates
these bounds. This policy also has a performance guarantee of 2 and as the computational study
for the uncapacitated model in Hurley et al. (2006) suggests, we expect that it will have a better
typical performance.

The policies we consider are called Lower-Myopic (denoted by LM) and Upper-Myopic (denoted
by UM), respectively. In the Lower-Myopic policy, in each period s, conditioning on the observed
information set fs, we minimize the sum of the expected marginal holding cost of the units ordered
in that period and the traditional expected backlogging costs a lead time ahead. That is, in each
period s, we minimize

gLM
s (qs) = lLM

s (qs)+E[ps+L(D[s,s+L]− (xs + qs))+|fs],
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under the constraint qs ≤ us. This is a convex function of qs. This policy has been first proposed
for the uncapacitated model by Levi et al. (2007) who called it the Minimizing policy. They have
shown that this is a base-stock policy that provides lower bounds on the optimal base-stock levels.
However, in the capacitated model it is possible that the actual minimizer will not be attainable.
In this case we order up to capacity, and this provides a modified base-stock policy. In this paper,
we extend and generalize their proof for the capacitated model. In the Upper-Myopic policy, in
each period s, again conditioning on fs, we minimize the sum of the expected period holding cost
and the expected forced marginal backlogging. Thus, we minimize

gUM
s (qs) = π̃UM

s (qs)+E[hs+L(xs + qs−D[s,s+L])+|fs],

subject to 0≤ qs ≤ us, which is also convex in qs. We shall show that this policy provides upper
bounds on the inventory levels of an optimal policy. By arguments similar to the ones used by Levi
et al. (2007), it can be shown that this gives rise to yet another modified base-stock policy. (In
particular, gUM

s (q1)− gUM
s (q2) depends only on y1 = xs + q1 and y2 = xs + q2.) To the best of our

knowledge, this is a new way for deriving upper bounds on the inventory levels of an optimal policy
in the capacitated model. We note that it is not clear whether the classical Myopic policy, where we
minimize the expected period cost, provides any bounds for capacitated models. Another similar
open question is how the policy that in each period minimizes the sum of the expected marginal
holding cost and expected forced marginal backlogging cost is related to an optimal policy.

Let Y LM
t and Y UM

t be the respective inventory position (after orders are placed) of the Lower-
Myopic and the Upper-Myopic policies in period t = 1, . . . , T . Specifically, we assume that Y LM

t is
the smallest minimizer of the corresponding period problem being solved (see above) and that Y UM

t

is the largest minimizer of the corresponding period problem. Note that the inventory position
levels depend on the specific state (ft, xt), but for ease of notation we omit the indication of the
state. The two semi-myopic policies described above can be implemented in an on-line manner,
i.e., regardless of the action control in future periods. We shall show that for each evolution fT ,
these two policies provide lower and upper bounds on the inventory levels of any optimal policy,
i.e., Y LM

t ≤ Y OPT
t ≤ Y UM

t , with probability 1, for each t = 1, . . . , T . Moreover, we shall show that
each non-dominated policy P must have Y LM

t ≤ Y P
t ≤ Y UM

t , for each t = 1, . . . , T .
The next two lemmas show that each policy P that has, for some period s and state fs, inventory

position yP
s /∈ [yLM

s , yUM
s ], can be strictly improved by a modified policy P ′ with yP ′

s ∈ [yLM
s , yUM

s ]
and expected cost at most the expected cost of P . For the sake of simplicity, we consider a model
with no lead time (the extensions to the case with L > 0 are straightforward).

Lemma 4. Consider a feasible policy P , and suppose that for some period s and information set
fs, we have yP

s < yLM
s . Further assume that s is the earliest such period. Then the policy P ′ that

follows P until period s − 1, then orders up to yLM
s in period s and again imitates P over the

interval (s,T ], has expected cost no larger than the expected cost of P .

S ince P ′ follows P over [1, s), we conclude that they incur exactly the same cost over that
interval, and that they have the same inventory position xs ≤ yP

s < yLM
s . Since s is the first such

period, we conclude that P ′ can indeed order up to yLM
s . Now over (s,T ], P ′ imitates P ; that is, it

orders nothing if XP ′
j ≥ Y P

j and orders up to Y P
j otherwise (for each j ∈ (s,T ]). Moreover, the policy

P ′ has ordered qP ′
s units in period s. Consider the overall expected marginal holding cost of these

units and the expected (traditional) backlogging cost incurred by P ′ in period s. By the definition
of qP ′

s , it is clear that this is no greater than the expected marginal holding cost and expected
(traditional) backlogging cost incurred by the policy P in period s. For each period j ∈ (s,T ], we
know that with probability 1, Y P ′

j ≥ Y P
j and that QP ′

j ≤ QP
j . This implies that the backlogging

incurred by policy P ′ over that interval is no greater than the backlogging cost incurred by policy
P , and similarly, the marginal holding cost policy P ′ incurs over that interval is no greater than
the respective marginal holding cost of policy P . The lemma then follows.
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Lemma 5. Consider a feasible policy P , and suppose that for some period s and information set
fs, we have yP

s > yUM
s . Further assume that s is the earliest such period. Then the policy P ′ that

follows P until period s − 1, then orders up to yUM
s in period s and again imitates P over the

interval (s,T ], has expected cost no larger than the expected cost of P .

B y arguments identical to the ones in Lemma 4, we conclude that P ′ and P incur the same
cost over [1, s) and that they have the same inventory position xs ≤ yUM

s < yP
s . The first inequality

follows from the fact that s is the first period in which P has more inventory than the Upper-
Myopic policy. Thus, P ′ can order up to Y UM

s , and assume that it orders qp′
s . Consider the overall

expected forced marginal backlogging cost and expected period holding cost incurred in period
s by policy P ′. By the definition of qP ′

s , we conclude that this expected cost is smaller than the
respective expected cost incurred by policy P in period s. Now over (s,T ] P ′ again tries to imitate
P , i.e., for each j ∈ (s,T ], it will order up to Y P

j or up to the capacity uj. Now let S′ be the earliest
(random) period after period s in which P ′ has reached Y P

S′ . Clearly, over (S′, T ] the policies P ′

and P are again identical and hence, incur the same cost. Observe that, for each j ∈ (s,S′], we
have Y P ′

j ≤ Y P
j and Q̄P ′

j ≤ Q̄P
j , with probability 1. This implies that the expected holding cost and

the expected forced marginal backlogging penalty incurred by policy P ′ over that interval are each
no greater than the respective expected cost incurred by policy P . The lemma then follows.

Lemmas 4 and 5 imply the following corollary.

Corollary 1. For any optimal policy and for each complete evolution fT , the Lower-Myopic and
Upper-Myopic policies provide respective lower and upper bounds on the inventory levels of the
optimal policy, i.e., Y LM

t ≤ Y OPT
t ≤ Y UM

t with probability 1, for each t = 1, . . . , T .

Now consider the Improved Dual-Balancing policy denoted by superscript IB. In each period s,
given the observed information set fs and the inventory position at the beginning of the period, we
still consider balancing the expected marginal holding cost against the expected marginal backlog-
ging cost, and compute q′s as described in Section 4. (That is, given the observed information set
fs and the inventory position at the beginning of period s, ordering q′s will balance the expected
marginal holding cost and the expected marginal forced backlogging costs associated with period
s.) However, in each case where the original balancing quantity brings the inventory position below
yLM

s (i.e., xIB
s + q′s < yLM

s ) or above yUM
s (i.e., xIB

s + q′s > yUM
s ), we fix this decision by instead

increasing the order up to yLM
s or decreasing it down to yUM

s , respectively. It can be readily verified
that for each evolution fT and each period s, we have yLM

s ≤ yIB
s ≤ yUM

s .
We next prove the following theorem.

Theorem 3. The Improved Dual-Balancing policy has a performance guarantee of 2.

O bserve that in the Improved Dual-Balancing policy it is no longer true that, in each period
t, the expected marginal holding cost is equal to the expected forced marginal backlogging cost.
Now let Zt be the maximum among the expected marginal holding cost and expected forced
marginal backlogging cost, i.e., Zt = max{E[HIB

t (QIB
t )|Ft],E[Π̃IB

t (QIB
t )|Ft]}, where QIB

t is the
order quantity placed by the Improved Dual-Balancing policy in period s. (As already mentioned
QIB

t can be either larger or smaller than the balancing quantity Q′
t.) Similar to Lemma 1, we now

conclude that E[C(IB)]≤ 2
∑

t E[Zt].
Next we modify the definition of the sets TH and TΠ in Section 4. The set TH will consist of periods

t = 1, . . . , T − L such that (i) Y LM
t < Y IB

t < Y UM
t and Y IB

t ≤ Y OPT
t ; or (ii) Y IB

t = Y LM
t < Y UM

t ;
or (iii) Y IB

t = Y LM
t = Y UM

t = Y OPT
t and the Improved Dual-Balancing policy orders more than

the balancing quantity Q′
t. (That is, XIB

t + Q′
t ≤ Y LM

t = Y UM
t and QIB

t ≥ Q′
t.) The set TΠ will

consist of all the other periods in t = 1, . . . , T −L. Specifically, TΠ contains periods such that (i)
Y LM

t < Y IB
t < Y UM

t and Y IB
t > Y OPT

t ; or (ii) Y LM
t < Y IB

t = Y UM
t ; or (iii) Y IB

t = Y LM
t = Y UM

t =
Y OPT

t and the Improved Dual-Balancing policy orders less than the balancing quantity Q′
t. (That
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is, XIB
t + Q′

t > Y UM
t = Y LM

t and QIB
t < Q′

t.) Note that for each t ∈ TH , we have Y IB
t ≤ Y OPT

t and
for each t ∈ TΠ, we have Y IB

t ≥ Y OPT
t . Thus, the arguments used to prove Lemmas 2 and 3 are

still valid. It is then sufficient to show that, for each t ∈ TH , we have E[HIB
t (QIB

t )|Ft] = Zt, and,
for each t ∈ TΠ, we have E[Π̃IB

t (QIB
t )|Ft] = Zt. This will imply that the arguments in the proof of

Theorem 2 are still valid and the performance guarantee of the policy then follows.
Assume now that for some t ∈ TH and some ft ∈ Ft, we have E[HIB

t (qIB
t )|ft] < zt. However,

this can happen only if in that period the Improved Dual-Balancing policy orders below Q′
t and

Y IB
t = Y UM

t . (The Improved Dual-Balancing policy orders QIB
t < Q′

t only when XIB
t + Q′

t > Y UM
t ,

and then it decreases the order until Y IB
t = Y UM

t .) This leads to a contradiction since by definition
t∈ TΠ (see cases (ii) and (iii) in the definition of TΠ above).

Similarly, assume that for t∈ TΠ and some ft ∈Ft, we have E[Π̃IB
t (QIB

t )|Ft] < zt. This can happen
only if in that period the Improved Dual-Balancing policy orders QIB

t > Q′
t (i.e., XIB

t +Q′
t < Y LM

t )
and Y IB

t = Y LM
t . However, again we get a contradiction since by definition t ∈ TH (see cases (ii)

and (iii) in the definition of TH above). This concludes the proof of the lemma.

6. Computational Experiments

As we mentioned in the introduction, due to state space explosion, the corresponding inventory
control models are very difficult from a computational perspective. Consequently, we study the
typical performance of the balancing policies in two settings. In the first setting the optimal solution
of the capacitated inventory system is easily computed, but there is no evolution of forecasts (i.e.,
demands are independent over time). This enables us to see how close to optimal the Balancing
policy is, in at least one setting. The second experiment is more realistic, in that the demand and
forecast evolution processes are governed by the multiplicative MMFE model. In fact these are the
settings, in which balancing policies are most attractive, because optimal policies are inaccessible
and no provably good heuristics or even reasonable lower bounds are available. As a result, we
benchmark the performance of the balancing policies using the Myopic and the other semi-myopic
policies developed in this paper in Section 5. In these experiments the balancing policies were very
robust. For the model with independent demands, the Dual-Balancing policy came within 11% of
the optimal cost on average, within 17% of optimal in 95% of the trials and never exceeded the
optimal cost by more than 25%. Moreover, the balancing policies out-perform the myopic policy by
49% in the first experiment and by 27% in the second, on average. (In many scenarios the balancing
policies improve upon myopic by more than 50%.) This indicate that the typical performance of
the balancing policies is significantly better than the worst-case guarantees.

6.1. Experiments with Translated-Mass Exponential Demand Distributions

In this experiment we consider infinite-horizon problems with i.i.d. demand, i.e., the distribution
of (Dt|Fs) is independent of both Fs and t. We assume that Dt has a translated-mass exponential
distribution, meaning that P (Dt > x) = 1 if x < a, and otherwise, P (Dt > x) = q e−θ(x−a)+ , where
0 ≤ q ≤ 1, θ > 0, a ≥ 0, and a · (1 − q) = 0. If q = 1 then Dt has an exponential distribution,
translated to the right by a units. If q < 1 then a = 0, Dt = 0 with probability 1− q, and with
probability q, Dt follows an exponential distribution. For every positive mean and variance there
is a unique translated-mass exponential distribution.

For infinite-horizon problems with translated-mass exponential demand, a stationary order-up-
to policy is optimal. The optimal policy and its cost are easily obtained, using the following
observation: for translated-mass exponential demand, the lower and upper bounds in Theorem 2
of reference Glasserman (1997) coincide.

The demand Dt has mean 1. We start with a Base Case, in which Dt has variance 1, the capacity
is 1.5, and the backorder cost per day is 8 times larger than the holding cost. Figure 4 illustrates
what happens when we fix two of these parameters and vary the third one. On the vertical axis we
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show the ratio of the cost of the Balancing policy to the optimal cost, and the ratio of the Myopic’s
cost to the optimal cost. Note that the scale on the vertical axis is not uniform. For the solid
lines, the horizontal axis displays the excess capacity (i.e., the capacity minus the mean demand,
or ”Capacity - 1”). For the dashed lines, the horizontal ordinate is the ratio of the backorder cost
per day to the holding cost. For the dotted lines, the horizontal ordinate is the variance of the
demand.

In addition, we randomly generated 1000 problem instances, using a mean demand of 1. The
capacity, the backorder-to-holding-cost ratio, and the standard deviation of the demand are all
randomly generated from translated beta distributions. For the capacity, the distribution has min-
imum, maximum, mean and standard deviation equal to (1.05, 3.3, 1.61, 0.32). For the backorder-
to-holding-cost ratio and the standard deviation of the demand, the corresponding values are (1,
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101, 26.00, 14.43) and (0.1, 3.6, 0.98, 0.51). The computations were done using JAVA on a standard
PC, and computing the balancing decision in each period took 0.00015 seconds on average.

Figure 5 shows histograms of the ratio of the balancing policy’s cost and the optimal cost, and
the ratio of the myopic policy’s cost and the optimal cost. Figure 6 is a restricted view of Figure
5, with a finer grid, limited to the neighborhood around 1. The ratio of the Balancing policy’s cost
to the optimal cost is 1.11 on average, with a standard deviation of 0.049, a 95-th percentile of
1.17, and a maximum of 1.58. For the Myopic, the corresponding ratio has mean 1.60, standard
deviation 0.92, 95-th percentile 3.38, and maximum 8.61. This indicates that the Balancing policy
is very robust compared to the Myopic.

6.2. Experiments with Multiplicative-MMFE-based Demand and Forecast Evolution

This test uses the experimental design of Hurley et al. (2006), in which the uncapacitated version
of the balancing algorithm was tested. In all of our experiments, the holding and backorder costs
are ht = 1 and pt = 10. A horizon of length T = 40 was used, and forecasts of demand evolve
according to the multiplicative MMFE model Heath and Jackson (1994). The mean demand per
period, averaged over the 40 periods in the time horizon, is 400 in all cases. The capacity is 460
units per period.

The experimental design consists of 82 scenarios. For each scenario we tested 1000 random
problem instances. The scenarios were designed to capture a variety of settings and characteristics.
Demand and forecast variability can be either high or low, and lead times can be short or long. Some
scenarios study different types of seasonality in the demand. Others consider product launches and
product phaseouts. Some scenarios account for the fact that many forecasting systems generate
accurate forecasts that extend many time periods into the future, whereas other systems can only
forecast accurately in the near term. In addition, shifts in forecasts can demonstrate either no
correlation, positive correlation or negative correlation. The scenarios are described in detail in
Appendix B, and in Hurley et al. (2006).

We study five policies: Myopic, Lower Myopic, Upper Myopic, Improved Balancing and Improved
Balancing. For each of the 82 scenarios constructed and for each policy, we examine the average per
period cost of the policy over 1000 runs. Note that since we consider a complex environment and
relatively long horizon (T = 40), it is not possible to compute the optimal expected cost. Moreover,
to the best of our knowledge, it is now even known how to compute reasonable lower bounds in this
setting. Instead, we use as our bench mark the Myopic policy and the other semi myopic policies
discussed in Section 5. The policies were computed using MATLAB on a standard PC. The average
times to compute the period ordering decisions were 0.0031, 0.0738, 0.0412 seconds for the Myopic,
the Minimizing and Balancing policies, respectively.

In Figure 7 we provide histograms of the ratio of the cost of each policy, divided by the cost
of Myopic. Both Balancing and Improved Balancing outperform Myopic in every one of the 82
scenarios. Relative to Myopic, they provide an average saving of 27.2% and 32.4%, respectively.
Lower Myopic is very close to Myopic (ratio is usually close to 1), and is sometimes worse than
Myopic. The trend is not unexpected since Myopic often under-orders in capacitated systems, and
Lower Myopic always orders less than Myopic. Upper Myopic is virtually identical to Improved
Balancing, which truncates the Balancing order quantities using the order-up-to levels of Upper
and Lower Myopic.

In all of our computational experiments, the performance of the Balancing policy is both strong
and consistent. Improved balancing is better than Balancing.

Appendix A: Marginal Backlogging Cost Accounting Approach - Numerical Example

To provide more intuition, we illustrate the new backlogging cost accounting through a simple
example. Suppose that the order capacity is 5 in all periods, L = 0 and α = 1. Assume that the
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inventory position at the beginning of period 3 was x3 = 3, and that we have ordered q3 = 3, q4 =
5, q5 = 4 and q6 = 2 units in periods 3, 4, 5 and 6, respectively. Now say that the demands were
d3 = 3, d4 = 3, d5 = 5 and d6 = 11 in periods 3, 4, 5 and 6, respectively. In particular, the accu-
mulated demand over periods [3,6], d[3,6], is equal to 22. This implies that in period 6 we had a
shortage of 5 units, each of which incurred a penalty cost of pt at the end of period 6. Out of these
5 units of shortage at the end of period 6, we associate a backlogging penalty of 3 units of shortage
with period 6 (the unused slack capacity in this period is 3), a penalty of 1 unit of shortage with
period 5 (the unused slack capacity in this period is 1), no cost is associated with period 4 since
we ordered up to capacity, and finally the penalty of 1 units of shortage is associated with period
3 (d[3,6] − (3 + 3 + 5 + 5 + 5) = 1). In other words, w36 = 1, w46 = 0, w56 = 1 and w66 = 3. This
example illustrates how we backtrack the ‘source’ of each unit of shortage and its corresponding
backlogging cost incurred in period t, and associate it as forced backlogging cost to past periods.
If L > 0, then we start the backtracking in period t−L, since only orders in periods earlier than
t−L+1 could have arrived by time t.

Appendix B: Experimental Design

In this appendix we give a detailed description of the scenarios that form the basis of the experi-
ments done in Section 6.2. The space of potential parameter settings for this study is very large. In
addition to parameters describing the inventory system, there are many parameters that describe
the manner in which forecasts of demand evolve over time. A fully comprehensive study is beyond
the scope of this paper. Our goal is to study a broad range of potential application settings, with
emphasis on the demand and forecasting processes.
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The experimental design is oriented around a Base Case and six sets of scenarios, each of which
expands the Base Case in an interesting dimension. In each set of scenarios we vary specific input
parameters. The first three of these scenario sets study first-order effects, in this case, trends and
seasonality patterns in the demand. The final three scenario sets study second order effects by
varying the probability model that governs the variance of the demand and of the forecast errors,
and the correlations that exist between them.

We begin by reviewing the structure, and some of the notation, of the MMFE model. Then we
discuss the Base Case. After that we describe the manner in which the parameters of the Base
Case are varied, in each of the six scenario sets.

The MMFE Model Hurley et al. (2006) described the MMFE model of forecast evolution. In
the multiplicative version of the MMFE, for every pair of times s, t, 0 ≤ s ≤ t ≤ T , 1 ≤ t, there
is a forecast Dst of the demand that will occur in period t, which was generated at the end of
period s, i.e., at the beginning of period s + 1. The actual demand is Dt = Dtt, observed at the
end of period t. We assume that forecasts are unbiased, so that Dst = E[Dt|Fs+1]. There is a
forecast horizon H ≤ T . The corporate forecasting process generates forecasts that extend H time
periods into the future. Therefore, Dst 6= Ds−1,t if t < s+H, because in that case Dst was effected
by the forecasting process that occurred at the end of period s. However, if t ≥ s + H then the
end-of-period-s forecasting process did not consider the period-t demand, and Ds,t = Ds−1,t. At the
beginning of the time horizon we are given the initial set of forecasts, d0 = (d0,t : 1≤ t≤ T ). (In
this case we use lower case because these forecasts have already been observed). Seasonality and
trend are introduced into the model my choosing the vector d0 appropriately.

We model the process by which forecasts are created as follows. The period-s update vector is
γs = (γst : s≤ t < s+H). At the end of time period s the update vector γs is observed, and the mul-
tiplicative MMFE model updates forecasts using the formula dst = γst ds−1,t for t = s, s + 1, ..., s +
H − 1, and by dst = ds−1,t for t≥ s + H. In our experiments γs = eεs , where the H - dimensional
random vector εs is normally distributed with mean −1

2
diag(Σs) and variance-covariance matrix

Σs, and γs has a multivariate lognormal distribution whose mean is a vector of ones. Σs ∼Σ and
γs ∼ γ are both stationary over time.

In the multiplicative MMFE model, it is not hard to show that at the end of period s, given the
current information set fs+1 and forecast vector ds = (ds,t : s≤ t≤ T ), the future demands (Dtt :
s < t≤ T ) have a conditional distribution that is multivariate lognormal, with easily-computable
parameters. Three of our six scenario sets study second order effects, which we create by using
different variance-covariance matrices Σ.

The Base Case In the Base Case our holding and backorder costs per unit per period are
stationary, equal to ht = 1 and pt = 10. All experiments are conducted for two different lead times:
L = 0 and L = 4. Therefore, to facilitate comparisons between different scenarios, costs are not
counted during the first four time periods. Note that when L = 4, in the first four time periods the
costs incurred are determined by decisions made in the past, and are not influenced by our choice
of policy. There is neither trend nor seasonality in the Base Case, so the initial demand forecast is
flat, with d0 = (400,400, . . . ,400). The time horizon has length T = 40, and the horizon over which
the user actively generates forecasts has length H = 12. This implies that at all times s, the first
13 elements of the forecast vector ds will be different from each other, but the 13-th element and
every subsequent element will be equal to 400.

In the Base Case, we have constant learning, meaning that all of the entries on the diagonal of
Σ are equal. The diagonal elements are selected so that for t≥ 12, the coefficient of variation of
the period-t demand Dtt, seen from the beginning of time period 1, is 0.75.

The off-diagonal entries of the covariance matrix Σ determine the degree of correlation between
the updates that are observed in a given time period, say, time period s. The Base Case assumes
that there is some correlation between these updates, modeled by having non-zero, positive values
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in the first off-diagonal of Σ. Consequently, in the Base Case, if the forecast for the demand in
month t will go up in period s (i.e., if Dst > Ds−1,t), then the forecast for demand in month t + 1
is likely to increase in period s as well (i.e., P (Ds,t+1 > Ds−1,t+1) > 0.5). However, Dst > Ds−1,t

does not tell us anything about the forecast Ds,t+2 for demand in month t + 2. The values of the
non-zero off-diagonal elements are chosen to give a correlation coefficient of 0.5 for each pair of
adjacent forecast updates. That is, for each s and each t, s≤ t≤ s+H − 2, the update factors γst

and γs,t+1 observed in period s have correlation coefficient 0.5, but γst and γs,t+2 are stochastically
independent.

Product Launch Scenarios In this set of scenarios we study the effect of rising demand, as
might be encountered at a product launch. Again, only the initial forecast vector d0 is varied. For
comparison with the base case, we ensure that the mean of the values in d0 is 400. We consider
upward demand trends of +5, +10 and +20 per period. In addition, we consider two examples in
which the demand rises in a steeper, non-linear manner, mid-way through the horizon; these are
generated using an appropriately scaled normal CDF curve. The five initial forecast vectors are
plotted in Figure 8.
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Figure 8 Initial forecast vectors used in Product Launch Scenarios.

End-of-Life Scenarios Here, we study scenarios associated with products that are in an end
of life situation, namely those with decreasing initial forecast vectors. Essentially, these are the
reverse of the Product Launch scenarios; we have initial forecast vectors with forecasted demand
decreasing by 5,10 and 20 per period. We also consider two products whose demands have steeper
drop-off curves, generated using the normal complementary CDF curve. In addition, we study a
total demand crash, in which the demand is forecast to crash to 0 midway through the time horizon.
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Seasonality Scenarios In the seasonality study, we use the common base-values described above
for all parameters except for the initial forecast vector d0. We conduct experiments with two forms
of seasonality, one defined via a sinusoidal function and the other via a step function. In both cases,
the maximum value attained is 700 and the minimum is 100. This allows us to compare results
more easily with the base case, because the mean of the entries in the initial forecast vector is 400
in all cases.

By the cycle length, we mean the number of time periods between two consecutive high-points.
We consider cycle lengths with values 2, 4 and 8. For example, for the step-function with period
4, we have d0 = (700,700,100,100,700,700,100,100, . . . ).

The above scenario sets test the effect of varying d0, the initial forecast vector. In the final three
scenario sets, we focus instead on varying Σ. In all of these, we take d0 = (400,400, . . . ,400).

Coefficient of Variation Scenarios In this scenario set, we study the effect of varying the mag-
nitude of the variance in the demands and the forecasts. Note that for t≥H = 12, at the end of
time period t−H, we have Dtt = Γt dt−H,t , where Γt is random and has the same distribution as

Γ = ΓH = ΠH
i=1 γ

H+1−i,H
= exp

(
H∑

i=1

ε
H+1−i,H

)
. (4)

The εH+1−i,H ’s are independent normal random variables, with mean such that E[eε
H+1−i,H ] = 1,

and with variance σii, the i-th diagonal element of Σ, our forecast update matrix. (Note that
σii is a variance, not a standard deviation). Thus, Γ is log-normal, with mean one and variance
e(
PH

i=1 σii) − 1. The coefficient of variation of Γ, and of Dtt for t≥H, is [e(
PH

i=1 σii) − 1]1/2. In the
Base Case this number is 0.75. In the scenarios where we investigate the effect of variance, we scale
the entries of Σ such that the coefficient of variation of Γ takes specific values, namely 0.5, 0.7, 1,
2, 4, and 8. This corresponds to different levels of demand variability.

Time of Learning Scenarios If s≤ t≤ s + H then the logic behind equation (4) above indicates
that at the end of period s, the random variable (Dtt|dst) has mean 1 and variance e(

Pt−s
i=1 σii)− 1.

Therefore we use (
∑t−s

i=1 σii), which in the Base Case ranges from 0 to 0.446, to measure the portion
of the total variability in Dtt that is still unresolved in period s. In Figure 9 we plot (

∑t−s

i=1 σii)
as a function of t− s, for 0≤ t− s≤H. The different curves represent four different possibilities
for the way in which variability is resolved. In the Base Case we have constant learning, meaning
that all of the entries in diag(Σ) are equal, and the curve is a straight line. When the diagonal of
Σ has relatively large values in the lower right portion of the matrix, the plot is convex, and the
unresolved uncertainty is low when s is close to t. This corresponds to early learning. Conversely,
when the values in the diagonal of Σ are weighted towards the upper right corner of the matrix we
have late learning, the plot is concave, and most of the uncertainty about the true value of Dtt is
resolved in periods s that are close to t. We also consider the setting in which there is more weight
in the center of the diagonal of Σ than at the extremes. In this case most of the learning takes
place near the middle of the forecast horizon.

We construct variance-covariance matrices Σ to correspond with these four cases: constant, early,
late and mid-horizon learning. In all cases, the values of Σ are scaled to ensure that the coefficient
of variation of Γ, and of Dtt for t≥ 12, remain constant at 0.75.

Correlation Scenarios In this scenario set we test the effect of different types of correlation
between the updates. We vary correlation in two ways. First, we set the number of non-zero off-
diagonals of our 12x12 matrix, Σ, to 0 (which corresponds to no correlation), 1, 4 and 8. Secondly,
the sign of the off-diagonal elements can be all positive, all negative, or entries alternating between
positive and negative. (The base case corresponds to 1 off-diagonal with non-zero elements which
are all positive.) As in the base case, the diagonal elements of Σ are all equal (the constant learning
case), and the coefficient of variation of Γ is 0.75.
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Figure 9 Cumulative sum of the diagonal elements of Σ for constant, early, late and mid-horizon learning.

Table 1 summarizes the scenarios we study. The number of scenarios for each set is given in
parentheses after the set name; we see that there are 38 in total. We run each of these with lead
times L = 0,4. In addition, the 6 seasonality-based scenarios were run with L = 8. That makes
a total of 38 × 2 + 6 = 82 scenario - lead time pairs. For each of the pairs, we ran N = 1,000
independent trials.

Appendix C: Extensions of the Dual-Balancing Policy

Integer-Valued Demands We now discuss the case in which the demands are integer-valued ran-
dom variables, and the order in each period is also restricted to an integer. A simple, illustrative
example of the Dual-Balancing policy with integer-valued demands is found in Appendix A. In
the integer-valued demand case, in each period s, the functions HB

s (qB
s ) and Π̃B

s (qB
s ) are originally

defined only for integer values of qB
s . We now define these functions for any value of qB

s by inter-
polating piecewise linear extensions of the integer values. It is clear that these extended functions
preserve the convexity and monotonicity properties discussed in the previous (continuous) case.
However, it is still possible (and even likely) that the value q′s that balances the functions lBs and
π̃B

s is not an integer. Instead we consider the two consecutive integers q1
s and q2

s := q1
s + 1 such

that q1
s < q′s < q2

s . In particular, q′s := λq1
s + (1− λ)q2

s for some 0 < λ < 1. We now order q1
s units

with probability λ and q2
s units with probability 1−λ. This constructs what we call a randomized

Dual-Balancing policy.
Observe that at the beginning of time period s the order quantity of the Dual-Balancing policy is

still a random variable QB
s = Q′

s with support {q1
s , q

2
s}= {q1

s(fs), q2
s(fs)}, which is a function of the
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Table 1 Scenario codes

Topic Description

Product Launch (5)
Increment by I per period, I ∈ {5,10,20}
Increasing scaled normal CDF curve
Steeper increasing scaled normal CDF curve

End-of-Life (6)

Decrement by I per period, I ∈ {5,10,20}
Decreasing scaled normal CDF curve
Steeper decreasing scaled normal CDF curve
Demand crash

Seasonal (7)
Initial forecast vector is flat
Sinusoidal periodicity with cycle length n, n∈ {2,4,8}
Step-function periodicity with cycle length n

Coeff. of Var. (6) Coefficient of variation equals β = 0.5,0.7,1,2,4,8

Learning Rate (4)

Constant learning
Late learning
Early learning
Mid-horizon learning

Correlation (10)

All off-diagonal elements of Σ are 0
First n off-diagonals of Σ have positive entries, n∈ {1,4,8}
First n off-diagonals of Σ have negative entries
First n off-diagonals of Σ have entries alternating positive and negative

observed information set fs. We would like to show that this policy admits the same performance
guarantee of 2. For each t = 1, . . . , T −L, let Zt be again the random balanced cost of the Dual-
Balancing policy in period t. Focus now on some period s. For a given observed information set
fs ∈Fs we have for some 0≤ λ = λ(fs)≤ 1,

zs = E[HB
s (Q′

s)|fs] = λE[HB
s (q1

s)|fs] + (1−λ)E[HB
s (q2

s)|fs] := E[HB
s (λq1

s +(1−λ)q2
s)|fs],

and

zs = E[Π̃B
s (Q′

s)|fs] = λE[Π̃B
s (q1

s)|fs] + (1−λ)E[Π̃B
s (q2

s)|fs] := E[Π̃B
s (λq1

s +(1−λ)q2
s)|fs].

The second equality (in each of the two expressions above) is a formal statement of the fact that
we extended the domains of HB

s (qB
s ) and Π̃B

s (qB
s ) from integer to real values using piecewise linear

interpolation. By the definition of the algorithm we have,

λE[HB
s (q1

s)|fs] + (1−λ)E[HB
s (q2

s)|fs] = λE[Π̃B
s (q1

s)|fs] + (1−λ)E[Π̃B
s (q2

s)|fs].

It is now readily seen that, for each period s and each fs ∈ Fs, we again have E[HB
s (Q′

s) +
Π̃B

s (Q′
s)|fs] = 2zs, i.e., E[HB

s (Q′
s)+Π̃B

s (Q′
s)|Fs] = 2Zs. This also implies that Lemma 1 is still valid.

Now define the sets TH and TΠ in the following way. Let TH = {t : XB
t + Q2

t ≤ Y OPT
t }, and

TΠ = {t : XB
t +Q2

t > Y OPT
t }. Observe that for each period s, conditioned on some fs ∈Fs, we know

deterministically xB
s , qB

2 and, if the optimal policy is deterministic, we also know yOPT
s . Therefore,

we know whether s∈ TH or s∈ TΠ. If the optimal policy is also a randomized policy, we condition
not only on fs but also on the decision made by the optimal policy in period s. Moreover, if s∈ TH ,
then, with probability 1, Y B

s ≤ Y OPT
s , and if s ∈ TΠ, then, with probability 1, Y B

s ≥ Y OPT
s . This

implies that also Lemmas 2 and 3 are still valid. The following theorem is now established (the
proof is identical to that of Theorem 2 above).
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Theorem C.1 The randomized Dual-Balancing policy has a worst-case performance guarantee of
2, i.e., for each instance of the capacitated periodic-review stochastic inventory control problem,
the expected cost of the randomized Dual-Balancing policy is at most twice the expected cost of an
optimal solution, i.e, E[C(B)]≤ 2E[C(OPT )].

Stochastic Lead Times In this section, we consider the more general model where the lead time
of an order placed in period s is some nonnegative integer-valued random variable Ls. However, we
assume that the random variables L1, . . . ,LT are correlated, and in particular, that s+Ls ≤ t+Lt

for each s ≤ t. In other words, we assume that any order placed at time s will arrive no later
than any other order placed after period s. This is a very common assumption in the inventory
literature, usually described as “no order crossing”.

Similar to Levi et al. (2007), we next describe how to extend the Dual-Balancing policy and the
analysis of the worst-case expected performance to this more general setting. For each t = 1, . . . , T ,
let St be the latest period for which an order placed in that period arrives before time t. In other
words, St := max{s : s + Ls ≤ t}. Now modify the definition of the random variables Wst (for each
s≤ t) to be

Wst := min{11(s≤ St)Q̄s,11(s≤ St) (D([s,t]−(Xs +Qs +
∑

j∈(s,St]

uj))+}.

Similar to the discussion in Section 3 above, we can write

Wst = 11(s≤ St)


(D[s,t]− (Xs +Qs +

∑

j∈(s,St]

uj))+− (D[s,t]− (Xs +
∑

j∈[s,St]

uj))+


 ,

and

Wst = 11(s≤ St)


(Dt−NIt−

∑

j∈(s,St]

Q̄j)+− (Dt−NIt−
∑

j∈[s,St]

Q̄j)+.




We again define the forced marginal backlogging cost in period s as Π̃s =
∑

t≥s ptWst. It is straight-
forward to check that we can still express the cost of each feasible policy P as C(P ) =

∑
t(Ht +Π̃t).

In each period, we again balance the conditional expected marginal holding cost against the con-
ditional expected forced marginal backlogging cost. It is readily verified that the same analysis
described in Section 4.1 is still valid.

Theorem C.2 The Dual-Balancing policy provides a performance guarantee of 2 for the capac-
itated periodic-review stochastic inventory control problem with stochastic lead times and non-
crossing orders.
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