
Flooding Attacks Detection and Victim
Identification over High Speed Networks

Osman Salem, Ahmed Mehaoua
UFR Mathématiques et Informatique

Université Paris Descartes
Paris, France

Sandrine Vaton, Annie Gravey
Departement of Computer Science

TELECOM Bretagne
Brest, France

Abstract—With the rapid dependency on the internet for
business, and the fast spread of powerful destructive DoS/DDoS
attack tools, the detection and thwarting of these attacks is
primordial for ISP, enterprises, hosting centers, etc. In this
paper, we present the implementation of a new framework, for
efficient detection and identification of flooding attacks over high
speed links. To accomplish that, we apply multi-channel non-
parametric CUSUM (MNP-CUSUM) over the shared counters in
the proposed reversible sketch, in order to pinpoint flows with
abrupt change via a new approach for sketch inversion. Shared
counters are used to minimize the memory requirements and to
identify the victim of flooding attacks. We apply our system at
various real traces, some traces are provided by France Telecom
(FT) within the framework of ANR-RNRT OSCAR project, other
traces are collected in FT backbone network, during online
experiments for testing and adjusting the proposed detection
algorithms in this project. Our analysis results from real internet
traffic, and from online implementation over Endace DAG 3.6ET
sniffing card, show that our proposed architecture is able to
quickly detect various kinds of flooding attacks and to disclose
culprit flows with a high level of accuracy.

I. INTRODUCTION

With the fast identification of operating systems and services
vulnerabilities, and the availability of daily update (patch, ser-
vice pack, etc.) which recover from discovered security holes,
gaining and maintaining an illegal remote access become more
and more difficult for non experimented attackers. However,
flooding for denial of service attack does not require any skill
in exploiting vulnerability, especially with the wide spread of
free attack tools, able to make silent any web site. When a
professional attacker may use Botnets of tens thousands of
compromised machines, a non experimented attacker may rent
compromised machines in few dollars at the web to prevent
tracking. Usually, intentions behind these attacks are wide, and
range from vandalism to extort money or obtain commercial
advantage from the hosting centers.

Recent flooding attacks against commercial web sites, such
as Yahoo and eBay, have motivated the development of several
approaches to detect denial of service attacks. Flooding can
easily lead to the disruption of critical infrastructure services
and degrades the QoS in ISP network. Effective detection of
anomalies in captured traffic requires the ability to separate
them from normal traffic, i.e. some additional information
about victim servers or attackers are required, in order to
take the appropriate countermeasures and protect the access

for normal users.
There are two approaches for network intrusion detection:

signature based and anomaly detection. Signature based sys-
tems (e.g. Snort [22], Bro [23]) look for various malicious
activities signatures inside each packet. This approach works
in the same manner as antivirus, by searching inside the
packet for strings, patterns and signatures of known attacks.
Therefore, it cannot detect new malicious activity that it
doesn’t have their signatures.

Network anomaly detection is statistic based approach,
and does not require prior knowledge about the signature of
attacks. It operates by building a statistic model of normal
network traffic in learning phase, and updating this model
in every discrete time interval. Any inconsistent deviation
from the built model is considered as anomaly. While a wide
range of anomaly detection algorithms have been proposed
to undermine attacks, the effectiveness of these models is
largely depending on assumptions about the underlying traffic
distributions parameters, and the built models to fit network
traffic [16], [7]. They lack the capability of handling shape
irregularities and unpredictable large fluctuations in real IP
traffic.

When some of anomaly detection algorithms are host based
and not scalable for high speed network, most of existing
network anomaly detection algorithms are engaged in the
detection of these anomalies as soon as possible. They are
applied on the overall traffic, i.e. the whole stream of packets
are aggregated in one flow, and a signal processing algorithm is
applied over the analyzed time-series (number of UDP packets,
SYN packets, etc.).

These algorithms only raise an alarm when there is a devi-
ation larger than a predefined threshold in time-series analysis
(EWMA [30], Holt-Winter [10], CUSUM [21], [4]). Given the
variability of the traffic, most focus were on reducing false
positive and delay detection. The application of change point
detection algorithms to the overall traffic tend to be inaccurate
in finding attacks, and does not reveal any information about
attacker/victim for mitigation. Intuitively, if too many flows
are aggregated, only the bigger anomalies will be visible.
Furthermore, the identification task of victim or anomaly type
without any information to separate malicious traffic from
normal traffic is like searching for a needle in a haystack.

In this paper, we consider the problem of online detection

978-1-4244-4624-7/09/$25.00 ©2009 IEEE

of flooding attacks over high speed links, and the identification
of victims in order to cope with attacks as soon as possible.
Denial of Service (DoS) and it distributed version (DDoS)
are the most common attacks over the Internet. This type of
attack consumes the resources of a remote host or network for
preventing legitimate users to access the service. Wide range
of flooding attack tools are available to accomplish DoS and
DDoS, by sending a significant amount of packets (TCP, UDP,
ICMP) from one/many sources to one/many destinations.

When the aggregation of whole stream of packets in one
flow may miss the detection of low intensity attacks, maintain-
ing one time-series for each active flow over high speed link
is not scalable, because the spatial and temporal complexities
are not adequate for real time analysis. In response to these
limitations, an efficient data structure based on k − ary
hash tables (Fig. 1), called sketch [9], [18], [20], was pro-
posed and used to handle large state space, with a small
amount of memory requirement and a linear computational
(update/query) complexity. It is a multi-stage bloom filter
based at random aggregation, where flows identifier (denoted
by key) are hashed to index into a set of buckets in different
stages using k different hash functions, usually chosen to
reduce collision effect and to uniformly distribute keys.

The flow identifier (key) used in this paper is the destination
IP address (DIP). This key is used to update the data structure
of the kth hash table by some value (DIP, valuei). Sketch is
usually used with universal hash functions for random aggre-
gation, which are not reversible. Thus mean when monitoring
high speed links, all keys must be recorded and verified.
Unfortunately, this approach require storing the whole keys for
further verification. To avoid storing keys, we use an additional
Multi-Layer Reversible Sketch (MLRS) to identify the victim
of flooding attacks.

In contrast to our previous work in [24], where our focus
were only at TCP SYN flooding packets, the current work is
able to detect a wide range of flooding attacks (TCP, UDP,
ICMP). The proposed framework is based at online detection
of change point in the time-series of residual observations,
stored in shared counters of sketch data structure (ΔXi =
Xi+1 − Xi). To detect anomalies, we use a non-parametric
version of multi-channel CUSUM (MNP-CUSUM) to detect
change point in one of 3 time series inside every bucket
of sketch. These 3 time-series monitor significant variation
in the number of packets, bytes or flows between discrete
time interval T . The motivation behind the choice of these
parameters is that most of anomalies can be detected at least
by one of these times series (bytes, packets, flows).

The proposed method begins by recording the value of
the 3 preceding observations in the counters data structure
contained in each bucket of the sketch, during T time interval.
Afterward, MNP-CUSUM algorithm is used to check the
presence of buckets which value deviates significantly from
normal behavior. In fact, CUSUM algorithm is able to react
quickly when observing abrupt changes in bucket counters,
while being able to distinguish effect of attack deviation
from usual traffic fluctuations, through dynamic update for

the normal profile of each time-series. After the detection of
anomalies by CUSUM algorithm, we recover associated keys
to buckets with raised alarm by CUSUM, through exploiting
bucket index in MLRS.

The rest of this paper is organized as follows. In sec-
tion II, we give a glance at prior work in the area of
anomalies detection. Section III gives a brief overview of
CMS Sketch and MNP-CUSUM mechanisms that are related
to our work. Section IV describes our proposed method for
detecting change point in a reversible sketch. In section V,
we present some analysis results from the application of our
proposed framework over real traffic traces, some captured
during online experimentations with well known attacks type
and instant, other traces are provided by France Telecom.
Finally, section VI presents concluding remarks and the future
work.

II. RELATED WORKS

Many important contributions have been proposed to un-
dermine anomaly in network traffic [26], [29], [7], [19], [5].
When early approaches for anomaly detection were focused
in the definition of models able to represent the traffic pattern,
other advanced work aggregates the whole stream of packets in
one flow, and apply change point detection algorithm to detect
anomaly occurrence instant [26], [29]. These approaches have
a good performance in terms of spatial and temporal complex-
ities, but present the drawback of aggregating the whole traffic
in one flow, especially over high speed network, where low
intensity attacks can not be detected. Furthermore, discovering
an attack instant without any additional information about the
malicious source or victim are not enough for reacting against
the attack. Usually, the amount of traffic is huge, and manual
searching/extracting the malicious flows are difficult opera-
tions. Therefore, to increase the accuracy of these methods,
and to pinpoint the victim or attacker, several approach have
been proposed in the literature [20], [31], [14], [25]. This is
the spirit of our work.

Schweller et al. in [25] proposed the use of random aggre-
gation counters for more grained detection. To discover the
victim of flooding, they propose a method based on galois field
GF (2l) for mangling and for simplifying the sketch inversion.
The proposed method is hardware efficient, and has been
implemented in FPGA. In [8], BU et al. propose an extension
to the previous method of sketch inversion by focusing on
reducing the complexity of inversion method. In [14], Feng et
al. propose a method based on xor operator and linear algebra
for sketch inversion. In this paper, we will briefly show another
method for reversing sketch through the use of additional table.

All these proposed approaches have been used either to
detect the heavy hitter flows (most frequent flows) or to detect
abrupt deviation between two discrete interval via simple com-
parison. We can pinpoint that due to the complex mathematical
analysis (signal processing, statistic, etc.) of existing detection
approaches. In this paper, we will apply the recursive CUSUM
algorithm over sketch. CUSUM is a simple algorithm with a
linear compelxity O(1). In [29], Wang et al. aggregate the

whole traffic in one flow, and use a non parametric version
of CUSUM for detecting TCP SYN flooding. They consider
different metrics such as number of SYN, FIN and SYN/ACK
in CUSUM for detecting flooding attacks. In [26], Siris et
al. evaluate and compare two anomaly detection algorithms
(adaptive threshold and CUSUM) also for detecting the TCP
SYN flooding. The result of the comparison is that CUSUM is
more efficient for detecting low intensity attacks. In [6], [27],
authors prove that non-parametric CUSUM is asymptotically
optimal, where the detection delay reaches the theoretic min-
imum value for exponential distributions. When the threshold
is well regulated, it reduces the average delay detection and
increases the mean time between false alarms.

In this paper, we will use muti-channel non-parametric
CUSUM over the sketch, in order to detect abrupt deviation in
three time series of residual number of bytes, flows, packets.
When an alarm is raised, we will reverse the sketch to uncover
the victim server, in order to take further action for reacting
against the ongoing attacks.

III. BACKGROUND

In this section, we briefly survey the underlying Count-Min
Sketch CMS data structure and Multi-channel Non-Parametric
CUSUM (MNP-CUSUM) used in our framework.

A. Count-Min Sketch

let S = s1s2 . . . sn be the set of input stream that arrives
sequentially, item by item [13]. Each item si = (κi, vi) is
identified by a key κi ∈ U drawn from a fixed universe of
items U . A reward (or frequency occurrence) value vi ∈ R

is associated with each key. The arrival of item with key κi

increments its associated counter in the jth hash table by νi

(Cj,hj(κi)+ = νi), as shown in figure 1. The update procedure
is realized by d different hash function, chosen from the set
of 2-universal hash function Hj(κi) = {((ajκi + bi) mod
PU) mod w

′}, to uniformly distribute κi over hash tables and
to reduce collision. Parameter PU is a prime number larger
than the maximum number in universe, where Mersenne prime
numbers of the form 2i − 1 are generally chosen for fast
implementation.

0
'

1w −�1

0

�

1d −

i
v+

i
v+

i
v+

i
v+

(),
i i
vκ

1
()

i
h κ

()
d i
h κ

Fig. 1. Sketch data structure.

The Count-Min point query return an estimate of the counter
for a given key, as the minimum of d counters value (ŝk(κi) =
min

0≤j<d
{C[j][hj(κi)]}).

In our proposed framework, each bucket in this 2D
table is a data structure, which contains many vari-
ables (Xi,nb bytes, Xi,nb flows, Xi,nb packets, Xi−1,nb bytes,

Xi−1,nb flows, Xi−1,nb packets, meani, σi) and the three
CUSUM function (Gij(T)) used to detect heavy deviation in
each time-series. From each exported flow record, we update
the sketch with (κi, nb bytes, 1, nb packets), where κi is the
DIP , and 1 is for the number of flow. CMS query can estimate
if a given DIP is under flooding attack by returning the
minimum value of Gij(T) through all the buckets.

In CMS we use d = �ln(1/δ)� pairwise independent
universal hash function, where each one take κi as parameter
and return a random integers in the range w

′
= [0, e/ε]. e is

the base of the Neperian logarithm, and ε is the an error rate
with probability less than δ. Thus, it maintains modest storage
requirements of O (ln(1/delta)× (1/ε)) count cells.

B. MNP-CUSUM change detection algorithm

We will use the sequential change point detection algorithm
CUSUM, in order to detect flooding attacks instant, as it has
been proven that CUSUM [17] has an optimal small detection
delay, with a low computational overhead and small storage
requirements.

Due to large variation in traffic pattern, and lack of consen-
sus on network traffic characteristics, we consider non i.i.d
traffic characteristics, and we will apply a non-parametric ver-
sion of M-CUSUM [17] over the 3 residual of observations in
every sketch bucket. MNP-CUSUM is insensitive to topology
and traffic patterns. It relies on two phases: training and de-
tection. In training phase, it establishes and updates a dynamic
behavior profiles for normal flows. In detection phase, it uses
log likelihood ratio to detect any kind of abrupt deviation from
well established profile. In multi-channel version of CUSUM,
the algorithm is applied over many channels, and once an
anomaly is detected in any channel, an alarm is raised.

Let {XnT
ijk , 1 ≤ i ≤ d, 1 ≤ j ≤ w, 1 ≤ k ≤ 3} be

the value of each bucket for each of 3 monitored parameters
during the nth time interval. Observations XnT

ijk are i.i.d
with a pdf fijk,γ0 (x) for n < ta (before attack occurrence)
and with another pdf fijk,γ1 (x) for n ≥ ta (after attack),
where ta is the instant of attack detection. MNP-CUSUM tests
statistical hypotheses Hijk (eq. 1) to detect abrupt change in
time-series k stored in bucket with index (i, j) at the time
epoch n = ta:

Hijk,0 : γijk = γ0 versus Hijk,1 : γijk = γ1 (1)

Where γ0 and γ1 are respectively the pdf parameters before
and after change occurrence. The detection of anomaly is
based on log likelihood ratio for an observation XnT

ijk between
the two hypotheses:

snT
ijk = ln

(
P (ΔXn

ijkT |γ1)
P (ΔXn

ijkT |γ0)

)
(2)

If snT
ijk is positive, the monitored random variable ΔXnT

ijk

is changing the distribution from Hijk,0 to Hijk,1. Usually, a
threshold h is defined for confirmation of the change, and the
value of h is a tradeoff between the average delay detection
and the mean time between false alarms.

The cumulative sum function is a summation of the log
likelihood ratio:

SnT
ijk =

n∑
r=1

srT
ijk (3)

SnT
ijk will decrease under normal condition (snT

ijk < 0), and
increases if a change occurs (snT

ijk > 0). When the value
of SnT

ijk become greater than threshold h, a decision can
be taken about the hypotheses (Hijk,0 for normal condition
and Hijk,1 under attack condition). Therefore, the relevant
information for detecting change lies in the difference between
the value of the log-likelihood ratio and its current minimum
value [26]. Hence the stopping time for the M-CUSUM
algorithm is given by:

ta = ta(h) = min{n ≥ 1 : GnT
ijk ≥ h} (4)

Where:

GnT
ijk

1≤k≤3

= SnT
ijk −mnT

ijk and mnT
ijk = min

1≤i≤d

1≤j≤w
′

SnT
ijk (5)

The statistic function GnT
ijk obeys the recursion:

GnT
ijk =

{
0, G

(n−1)T
ijk + ln

(
P (ΔXnT

ijk |γ1)
P (ΔXnT

ijk |γ0)

)}+

∧ G0
ijk = 0 (6)

Where {y}+ = max (0, y).
Like the distribution function of ΔXnT

ijk is unknown, the
log-likelihood ratio in eq. (6) must be replaced by a statistic
function u(ΔXnT

ijk) with the same properties, i.e. u(ΔXnT
ijk)

must be negative under Hijk,0 and positive under Hijk,1.
An appropriate function for detecting change in the mean
is u(ΔXnT

ijk) = ΔXnT
ij − (μijk + εσijk). As a result, the

decision function becomes:

GnT
ijk =

{
G

(n−1)T
ijk + (ΔXnT

ijk − (μijk + εσijk))
}+

(7)

We apply MNP-CUSUM over sketch, and we consider three
time-series (nb bytes, nb flows, nb packets) in a discrete time
interval T of 1 minute. At the end of each interval, we compute
the value of MNP-CUSUM functions GnT

ijk . If its value is larger
than a predefined threshold h (if GnT

ijk > h) then an alarm is
raised. μijk and σijk are the mean and standard deviation of
the corresponding bucket estimated in the previous interval,
and they are updated in each interval as shown in eq. (8):

μnT
ijk=αμ

(n−1)T
ijk + (1− α)ΔXnT

ijk

(8)

varnT
ijk=βvar

(n−1)T
ijk + (1− β)(ΔXnT

ijk − μnT
ijk)2

A detection algorithm should have a low false alarm rate
FAR and small detection delay. In [27], [6], it was proven that
CUSUM minimizes the average delay detection ADDt0(ta)
for a given false alarm rate FAR. The FAR increases by
decreasing the speed of detection, and a trade-off between low
FAR and minimum delay detection is required. The threshold
value should be chosen to minimize delay detection given

a fixed FAR. It is worth noting that value of threshold h
controls the sensitivity of the attack detection, hence large
value of h decreases the FAR, but true attacks may also
completely missed.

IV. PROPOSED APPROACH

Our proposed framework is based at 2 data summary archi-
tecture: a Multi-Layer Reversible Sketch (MLRS) and a Count-
Min Sketch (CMS) as shown in figure 2. Operations of the pro-
posed framework are performed by two steps. First, it continu-
ously updates the two sketches (MLRS and CMS) data structure
from input data stream (DIP, nb bytes, 1, nb packets) for a
fixed time interval T . Secondly it applies MNP-CUSUM in the
background at each bucket to detect anomalies in each time
series. Afterward we identify and output DIP that mapped to
buckets with a CUSUM triggered alarm.

1
h

2
h

3
h

4
h

0
'

1w −�10 1w −�1

0

�

1l −

i
v+

i
v+

i
v+

i
v+

i
v+

i
v+

i
v+

i
v+

Fig. 2. Multi-Layer Reversible Sketch MLRS and CMS sketch.

In order to detect victim servers of flooding attacks, we
use the destination IP (DIP) as key for updating the shared
counters in each bucket of the proposed sketch. At the end of
each interval, the MNP-CUSUM analyzes the time-series of
these 3 counters and raises an alarm in buckets with abrupt
change. However, with the presence of collision inside the
MLRS, the abrupt change may be caused by collision, and
a verification through the CMS sketch is required. Only if all
shared counters associated with DIP in the second CMS raises
an alarm, we conclude to flooding attack against this server.

Our idea to reverse sketch is based at exploiting index in
an additional multi-layer reversible sketch (Figure 2), where
indexes are used to store keys. Related works for sketch
inversion can be found in [25], [14]. In fact, the MLRS is used
in the same way of CMS sketch, where each flow increments
its 3 counters in the two 2D tables. In MLRS each DIP has l
counter (one by layer), where we split the DIP of 32 bit
into l×w bit, with w = 2P , and l = �N/P�. P is the number
of bits used to split the key, and w is used as layer width in
MLRS. The update procedure is summarized in algorithm 1.

Algorithm 1 Sketches Update procedure

1: Mkey = encrypt(DIP, key);
2: for i = 0 to d− 1 do
3: j = univ hashi(Mkey);
4: CMS.counter[i][j].X [k]+ = κi;
5: end for
6: for j = 0 to l − 1 do
7: MLRS.counter[i][Mkey&(2P − 1)].X [k]+ = κi;
8: Mkey >>= P ;
9: end for

To reveal the victim server (or DIP with raised alarm by
MNP-CUSUM), we can release hierarchical search procedure
in MLRS. If we don’t find at least one bucket with raised alarm
in each of the ith (i ≤ l− 1) first layers of MLRS, there is no
need to continue searching in other deep layer or through the
second CMS sketch. Malicious flows must have one alarmed
bucket in each layer.

We will begin by the simple case, where we assume that
there is at most one bucket with CUSUM raised alarm in
each layer as shown in Fig 2. To recover key, we concatenate
the l index in MLRS and we get the DIP . We can not be
sure of suspect key before verification, where due to collision
with other IP prefix, their accumulated value become large.
The suspect key is verified through hashing and verification
(by count-min query of CUSUM function) in the CMS for
confirmation.

In general, even with a different value of width (e.g. 212 or
214) for the MLRS, many buckets in different layers will be
subject to collision occurrence, and in some case, we will be
found with a bigger set of keys to verify through CMS than
the original one. Nevertheless, it is important to notify that
even if the set of suspect key is larger than departure one, it
requires a small memory and with respect to original list.

To resolve this problem and reduce collision in MLRS,
we use use the encryption algorithm optimized version RC4
(Ron’s code [15]) available in [2]. Encryption is a bijective
function which randomizes the input data in an attempt to de-
stroy correlation between adjacent DIP , and may disperse IP
address with the same prefix uniformly at all available bucket
(table I). After encryption MDIP = E(DIP), the new value
is used as a key to update the sketch, and if there is any
alarm raised by CUSUM in all layer, the decryption operation
DIP = D(MDIP) recover the DIP for verification through
the CMS.

192.168.92.40 10010100101001011110100010011011

192.168.92.41 10101011011001000011001000100110

192.168.92.42 10010110111011000010010010101110

192.168.92.43 00100000001101001000000001101101

· · · · · ·
TABLE I

ENCRYPTION OF DIP BY OPTIMIZED VERSION OF RC4.

At the end of each time interval T , MNP-CUSUM run in the
background to detect heavy deviation in the function GnT

ijk . If
there is a raised alarms in all layers of MLRS, decryption func-
tion is called to recover the value of DIP , and a verification
through count-min query over the CMS is realized to verify
raised alarms through all hash function. Algorithm 2 shows
the search and verification procedure, where boolean alarm
variable is used to indicate the state of CUSUM function.

V. EXPERIMENTS RESULTS

In this section, we start by evaluating the capability of our
proposed mechanism to detect flooding and to identify the
victim IP address by using MLRS and MNP-CUSUM presented

Algorithm 2 Search and verification procedure
1: for i = 0 to w − 1 do
2: if (MLRS.counter[0][i].Alarm) then
3: for j = 0 to w − 1 do
4: if (MLRS.counter[1][j].Alarm) then
5: MDIP = (j << P) | i;
6: Alarm=cms query(CMS, DIP);
7: if (Alarm) then
8: DIP=decrypt(MDIP, key);
9: output(DIP)

10: end if
11: end if
12: end for
13: end if
14: end for

in the previous sections. We have implemented MNP-CUSUM
over sketch in C using the code of CMS available from [1].
We applied the proposed algorithm over many public traces
(Abilene, Auckland, etc.) available from [3], and other traces
used in OSCAR RNRT French Research project. We also
use traces collected during online experimentations conducted
for testing detection ratio of the proposed algorithms. Our
results are encouraging in terms of accuracy and response time,
especially when comparing them to the result obtained by the
application of single CUSUM over the aggregated traffic in
one flow.

For this work, we present the result with 2 different
traces: one captured during online experimentations of OS-
CAR project, with well known attack flooding instant and
victim server, and the second are provided by FT, and collected
at their infrastructure. All experiments were performed using
Ubuntu box with an Intel core 2 DUO (E4500) with 2.2 Ghz
and 3 GB of RAM and 750 GB SATA disks.

In order to reduce spatial and temporal complexity of
the proposed algorithms in OSCAR project, partners decide
to enhance the capture process of high speed sniffing card
(Endace card), by adding a small C program for transforming
captured packets in one 1 min into flows. In low speed network
from 100 Mbit to 1 Gbit, processing of distinct network packet
is possible, however for high speed networks, this is hardly
feasible. Therefore, we keep approximately the same definition
of flow used by Netflow [12] in Cisco router or the IPFIX [11]
protocol. A flow record in OSCARFIX is a set of unidirectional
stream of packets moving from one source to a destination, and
is identified through the same five tuple (source IP, destination
IP, protocol, source port, destination port), but with counters
for the accumulated value of SYN, SYNACK, RST & FIN,
and we took a timeout value of 1 minute. Even if the flow
doesn’t finish in the current time interval (1 min), subsequent
packets are considered as member of new flow in the next
minute. Our analysis will use flow records data in order to
detect flooding attacks, as they are widely deployed in many
monitoring techniques due to the wide deployment of CISCO
Netflow.

The parameters we considered for the MNP-CUSUM algo-
rithm were: threshold h = 10, α = 0.9 as in [26], β = 0.9
and ε = 2. Sketches parameters were P = 10, w = 1024,
l = 4, d = 4 hashing functions from the set of 2-universal
hash function, and with the use of tabulation [28]. The first
trace is two hours of OSCARFIX records traces with P2P
traffic and with the contribution of many planetlab machines
for generating background traffic. This trace was collected
using Endace DAG 3.6ET and a GPS-synchronized timestamp.
Many French research laboratories (project partners) have
contributed in this experiment. The attack instant in this trace
are known and generated by FT. Figure 3 shows the time-
series of the total number of bytes, packets, and flows in
interval of 1 min, as well the raised alarms instant in MNP-
CUSUM (in Figures 3(a), 3(b), 3(c) & 3(d) respectively).
Figures 4(a), 4(b) & 4(c) show the residuals number of bytes,
flows, packets. The malicious flows received by the identified
victim servers, residuals of malicious flows and packets are
shown in figures 4(d), 4(e) & 4(f). After the identification
of victim server, we extract the number of: flows, bytes &
packets received by each victim. The victim servers were:
10.0.0.1,10.0.0.2, 10.0.0.3, 10.0.0.4. The delay between each
attack is approximately 30 minutes and the attack duration
range from 5 to 10 minutes. This trace contains four attacks
with variable intensity (form high to small rate) and can be
used to verify the accuracy of detection with high and low
flooding attacks rate. The variation curves of the number of
flows, packets and bytes received by the victims have exactly
the same shape as in figures 4(d) for the three time-series,
and the same variation value for the nb flows & nb packets
as shown in their residuals in figures 4(e) & 4(f). It is logical
to have the same value for nb flows and nb packets, as it is a
TCP SYN flooding attack with randomly spoofed IP address
and with one SYN packet in each flow.

Learning phase (or initial phase) is very important for
change point detection algorithm, where statistical parameters
(mean, variance) are estimated. However, in this trace, all the
victim servers do not receive any packets outside the attack,
and does not have any learning phase. To resolve this problem,
we initialize the statistical parameters of servers that doesn’t
receive any packets for the first several minutes, to 0.1% of
the statistical parameters associated to the aggregation of the
overall traffic. With the current value of parameters, no false
negative has been occurred during the analysis of this trace.

Our second experiment considers anonymized traces col-
lected over high speed network. We realize the same analysis
study and present the results in figures 5 & 6. Figures 5(a),
5(b) & 5(c) show the variation of the total number of bytes,
flows and packets respectively. The raised alarms by NMP-
CUSUM are shown in figure 5(d). After the identification
and the extraction of malicious flows received by victims, all
anomalies were manually inspected and verified. Over the 6
raised alarms shown in figure 5(d), four of these alarms are
raised by legitimate traffic. In fact, there is an abrupt change
either in the number of bytes or packets for these hosts caused
by legitimate traffic. These false alertes can easily be avoided

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

#B
yt

es

Time (min)

(a) #Bytes.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
x 10

4

#F
lo

w
s

Time (min)

(b) #Flows.

0 20 40 60 80 100 120
3

4

5

6

7

8

9

10
x 10

4

#P
ac

ke
ts

Time (min)

(c) #Packets.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
x 10

4

#F
lo

w
s

Time (min)

Total #Flows
Raised alarms

(d) MNP-CUSUM Raised alarm.

Fig. 3. Total number of Bytes, Flows, Packets & Raised alarms.

by adjusting the initial value of statistical parameters used by
cusum (mean, variance), as well as by increasing the value
of the threshold h or the ε parameter in MNP-CUSUM. Only
one host with two raised alarms by MNP-CUSUM is under
attack, and the corresponding malicious flows & packets are
shown in figures 6(d) and 6(e). The residual number of flows
is given in figure 6(f).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new approach based at sketch
and MNP-CUSUM for flooding attacks detection (TCP, UDP
and ICMP), and victim identification over high speed link.
Existing attacks detection formalisms focus on attack detection
instant without giving any information about the victim server.
Our proposed framework is able to automatically pinpoint
the victim server and the malicious IP flows responsible of
anomaly, through exploiting bucket index in an additional
multi-layer sketch. The detection tool which implements the
proposed architecture, has very low computational cost and
small memory requirement, and we demonstrate its ability to
detect low intensity attacks. Therefore, the proposed mecha-
nism can be used to detect flooding near to the source.

Our online evaluations show that many raised false alarms
are due to legitimate traffic. To regulate the number of false
alarms, one can adjust the value of the threshold to control
the sensibility of MNP-CUSUM.

In our ongoing work, we are interested in exploiting de-
pendencies between different metrics for anomaly classifica-
tion (Flooding, Scan, etc.). Furthermore, monitoring a sliding
window for time interval (multi-scale) may allow discovering
other kinds of anomalies, such as slow scan activity, where
a malicious user takes his time to scan existing services with
a very slow rate, to avoid detection by the existing intrusion

0 20 40 60 80 100 120
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7

R
es

id
ua

ls
 B

yt
es

Time (min)

(a) Residuals of total bytes.

0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

R
es

id
ua

ls
 F

lo
w

s

Time (min)

(b) Residuals of total flows.

0 20 40 60 80 100 120
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

4

R
es

id
ua

ls
 P

ac
ke

ts

Time (min)

(c) Residuals of total packets.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (min)

#B
yt

es

10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4

(d) Malicious traffic.

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Time (min)

R
es

id
ua

ls
 P

ac
ke

ts

10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4

(e) Residuals of malicious packets.

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Time (min)

R
es

id
ua

ls
 fl

ow
s

10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4

(f) Residuals of malicious flows.

Fig. 4. Analysis results for online experiment traces.

0 20 40 60 80 100 120 140 160 180
7

7.5

8

8.5

9

9.5

10
x 10

6

#B
yt

es

Time (min)

(a) #Bytes.

0 20 40 60 80 100 120 140 160 180
5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

#F
lo

w
s

Time (min)

(b) #Flows.

0 20 40 60 80 100 120 140 160 180
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

5

P
ac

ke
ts

Time (min)

(c) #Packets.

0 20 40 60 80 100 120 140 160 180
5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

#F
lo

w
s

Time (min)

Total #Flows
Raised alarms

(d) MNP-CUSUM Raised alarm.

Fig. 5. Total number of Bytes, Flows, Packets & Raised alarms.

0 20 40 60 80 100 120 140 160 180
−2

0

2

4

6

8

10
x 10

6

R
es

id
ua

ls
 B

yt
es

Time (min)

(a) Residuals of total bytes.

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

1

1.5

2

2.5
x 10

5

R
es

id
ua

ls
 F

lo
w

s

Time (min)

(b) Residuals of total flows.

0 20 40 60 80 100 120 140 160 180
−2000

−1000

0

1000

2000

3000

4000

5000

6000

7000

R
es

id
ua

ls
 P

ac
ke

ts

Time (min)

(c) Residuals of total packets.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12
x 10

5

#B
yt

es

Time (min)

(d) Malicious flows.

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3
x 10

4

#P
ac

ke
ts

Time (min)

(e) Malicious packets.

0 20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

5

R
es

id
ua

ls
 fl

ow
s

Time (min)

(f) Residuals of malicious flows.

Fig. 6. Analysis results.

detection system. Scan activities can easily be detected by a
slight modification of our proposed approach, by using another
sketch data structure for monitoring the source IP address.

ACKNOWLEDGMENT

This work has been partially funded by the French National
Research Agency through the OSCAR project.

REFERENCES

[1] Count-min sketch source code. http://www.cs.rutgers.edu/ muthu/massdal-
code-index.html.

[2] Optimized rc4 code. http://www.zengl.net/freeswan/.
[3] Traces archive. http://pma.nlanr.net/Special/.
[4] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes : Theory

and Application. Prentice-Hall Inc, 1993.
[5] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina.

Impact of packet sampling on anomaly detection metrics. In IMC
’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 159–164, 2006.

[6] B. Brodsky and B. Darkhovsky. Nonparametric Methods in Change
Point Problems, volume 243. Kluwer Academic Publishers, 1993.

[7] J. D. Brutlag. Aberrant behavior detection in time series for network
monitoring. In LISA ’00: Proceedings of the 14th USENIX conference
on System administration, pages 139–146, Berkeley, CA, USA, 2000.

[8] T. Bu, J. Cao, A. Chen, and P. P. C. Lee. A fast and compact method
for unveiling significant patterns in high speed networks. In 26th IEEE
International Conference on Computer Communications (INFOCOM
2007), pages 1893–1901, May 2007.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in
data streams. In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP ’02), pages 693–703,
London, UK, 2002. Springer-Verlag.

[10] C. Chatfield. The Analysis of Time Series: An Introduction. CRC Press
LLC, 6 edition, 2003.

[11] B. Claise, S. Bryant, G. Sadasivan, S. Leinen, and T. Dietz. Specification
of the IP Flow Information Export (IPFIX) Protocol for the Exchange
of IP Traffic Flow Information. RFC 5101, Jan. 2008.

[12] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes. Cisco Systems
NetFlow Services Export Version 9. RFC 3954, Oct. 2004.

[13] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, April 2005.

[14] W. Feng, Z. Zhang, Z. Jia, and Z. Fu. Reversible sketch based on the
xor-based hashing. In Proceedings of the Asia-Pacific Conference on
Services Computing (APSCC ’06), pages 93–98, Guangzhou, Guang-
dong, China, December 2006.

[15] S. Fluhrer and D. McGrew. Statistical analysis of the alleged rc4
keystream generator. In Proceedings of the 7th International Workshop
on Fast Software Encryption (FSE ’00), pages 19–30, London, UK,
2001. Springer-Verlag.

[16] H. Hajji. Statistical analysis of network traffic for adaptive faults
detection. IEEE Transactions on Neural Networks, 16(5):1053–1063,
September 2005.

[17] H. Kim, B. Rozovskii, and A. Tartakovsky. A nonparametric multichart
cusum test for rapid intrusion detection. International Journal of
Computing and Information Science, 2(3):149–158, December 2004.

[18] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change
detection: methods, evaluation, and applications. In Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement (IMC’03),
pages 234–247, New York, NY, USA, 2003.

[19] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. SIGCOMM Comput. Commun. Rev., 35(4):217–
228, 2005.

[20] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and
A. Lakhina. Detection and identification of network anomalies using
sketch subspaces. In Proceedings of the 6th ACM SIGCOMM on Internet
measurement (IMC ’06), pages 147–152, New York, NY, USA, 2006.
ACM Press.

[21] E. S. Page. Continuous inspection schemes. Biometrika, 41:100–115,
1954.

[22] V. Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. In Computer Networks, volume 31 (23–24), pages 2435–2463,
1999.

[23] M. Roesch. Snort - lightweight intrusion detection for networks. In
LISA ’99: Proceedings of the 13th USENIX conference on System
administration, pages 229–238, Berkeley, CA, USA, 1999.

[24] O. Salem, S. Vaton, and A. Gravey. An efficient online anomalies
detection mechanism for high-speed networks. In IEEE Workshop on
Monitoring, Attack Detection and Migitation (MonAM 2007), November
2007.

[25] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parsons, Y. Zhang,
P. Dinda, M.-Y. Kao, and G. Memik. Reverse hashing for high-
speed network monitoring: Algorithms, evaluation, and applications. In
Proceedings of IEEE International Conference on Computer Communi-
cations (INFOCOM 06), pages 1–12, April 2006.

[26] V. A. SIRIS and F. PAPAGALOU. Application of anomaly detection
algorithms for detecting syn flooding attacks. In Proceedings of IEEE
Global Telecommunications Conference (GLOBECOM ’04), volume 4,
pages 2050–2054, Dallas, USA, 2004.

[27] A. Tartakovsky. Asymptotic performance of a multichart cusum test
under false alarm probability constraint. In Proceedings of the 44th
IEEE Conference on Decision and Control and the European Control
Conference, pages 320–325, Seville, Spain, December 2005.

[28] M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with
applications to second moment estimation. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA ’04), New Orleans,
Louisiana, USA, January 2004.

[29] H. Wang, D. Zhang, and K. G. Shin. Syn-dog: Sniffing syn flooding
sources. In Proceedings of the 22th International Conference on Dis-
tributed Computing Systems (ICDCS’02), pages 421–429, Washington,
DC, USA, 2002. IEEE Computer Society.

[30] N. Ye, S. Vilbert, and Q. Chen. omputer intrusion detection through
ewma for autocorrelated and uncorrelated data. IEEE TRANSACTIONS
ON RELIABILITY, 51(1):75– 82, March 2003.

[31] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online
identification of hierarchical heavy hitters: algorithms, evaluation, and
applications. In IMC ’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pages 101–114, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

