
Programmable Arithmetic Devices for High Speed Digital

Signal Processing

Devereaux C. Chen

University of California Department of Electrical Engineering

Berkeley, California and Computer Science

Abstract

The high throughput computation requirements of real-time digital signal processing (dsp)

systems usually dictate hardware intensive solutions. Often attendant to hardware approaches are

problems of high development costs, slow turnaround, susceptibility to errors, and di�culty in test-

ing and debugging, all of which tend to inhibit the rapid implementation of such systems. Research

is underway into the synthesis of application speci�c hardware to aid the system designer by au-

tomatically generating hardware that is \correct by construction". The creation of con�gurable,

pre-fabricated hardware that has been designed for high speed computations forms part of this

research and is the main topic of this thesis.

This work contains a survey of some typical real-time dsp algorithms drawn from video

and speech processing and summarizes the particular computation challenges posed by this class of

algorithms. Currently available hardware choices and their trade-o�s and limitations are discussed.

A multiprocessor architecture consisting of programmable arithmetic devices is presented as a novel

platform for supporting high speed digital signal processing. The vlsi realization of the architecture

and an accompanying software development environment are presented as a proof of concept. The

main conclusion of this work is that software-con�gurable hardware approaches to high speed digital

signal processing problems form viable alternatives to existing approaches, for systems designers

interested in rapidly prototyping or implementing their ideas.

Prof. Jan M Rabaey

Thesis Committee Chairman

Programmable Arithmetic Devices for High Speed Digital

Signal Processing

Copyright

c

 1992

Devereaux C. Chen

i

Acknowledgements

No man is an Illand intire of it selfe;

| J. Donne

I wish to thank my advisor Jan Rabaey for his support and guidance of this

work. His high standards have left an indelible mark upon this thesis. I would also like to

thank Bob Brodersen and Charles Stone for serving on my dissertation committee. Thanks

also to Bob Brayton and John Wawrzynek for participating on my qualifying examination

committee,

Among the many members of the U.C. Berkeley eecs faculty who have been

especially encouraging and supportive are David Hodges, Ping Ko, Edward Lee, Richard

Muller, A. Richard Newton, and Aram Thomasian. William Oldham deserves special thanks

for encouraging me to apply to the Department.

Tso-Ping Ma of Yale University, Winston Strachan of St. George's College, and

Sister Margaret Mary of Holy Childhood Prep. represent the many wonderful teachers from

my previous schools who have taught me so much.

Several former colleagues who encouraged and inspired me to continue with grad-

uate studies are Paul Merchant, John Moll, and Chuck Tyler.

Hugo de Man and Francky Catthoor of imec gave helpful advice at the beginning

of the paddi project.

Participants on the paddi project included Cecilia Yu, who helped with the xilinx

investigation, David Schultz who assisted with the exu layout, Simon Li who assisted with

the scan-test board, and Eric Ng who wrote the paddi assembler and simulator. Their

assistance is gratefully acknowledged. Thanks also to Andy Burstein and Cormac Conroy

for assistance with spice, Angela Cheng, Joan Pendelton and Bart Sano for providing the

pad cells, Chuck Cox for advice on xilinx, Paul Landmann for providing the carry-select

adder cells, Alex Lee for providing the sram cells, and the sta� members of the mosis

organization, especially Sam Reynolds, for chip fabrication support.

The bj group members included many fellow students who provided generous

time, support, and camaraderie when it was needed. Special thanks to Alfred Yeung for

being a great o�ce-mate. Sta� members including Tom Boot, Carole Frank, Sue Mellers,

Brian Richards, Phil Schrupp, Kirk Thege, and Kevin Zimmerman provided the essential

infrastructure which was critical to the success of the project.

ii

Among the many friends who have enrichened my life at Berkeley, Pranav Ashar,

Behzad Behtash, Chedsada Chinrungrueng, Randy Cieslak, German Ferrer, Paul Freiberg,

Osvaldo Garcia, Bruce Holmer, D.K. Jeong, Ming Lin, Rajeev Murgai, Irena Stanczyk-Ng,

Allen Nehoraya�, Todd Strauss, Kenny Toh, Greg Thomas, and Greg Uviegara deserve

special mention. They, among many others, have made the going a whole lot easier and fun

than it might have been otherwise.

I am at loss for words to express my gratitude to my parents, Marsden and Viola,

my wife, Sharon, and my cousin Pamela for their wonderful love and encouragement through

the years. This thesis would not have been possible without them. My daughter Kristin

helped make it all a much happier and brighter experience.

To all the people that I should have mentioned but haven't, due to lack of space,

many thanks. Please forgive the omission.

I would like to thank the Hewlett-Packard Company for providing �nancial support

during my �rst year as a graduate student.

This project was sponsored by the Defense Advanced Research Projects Agency

(monitored by U.S. Department of Justice, Federal Bureau of Investigation, under contract

no. J-FBI-90-073) and Sharp Microelectronics Technology, Inc. Their support is grate-

fully acknowledged. The views and conclusions in this document are those of the authors

and should not be interpreted as representing the o�cial policies, either expressed or im-

plied, of the Defense Advanced Research Projects Agency, the U.S. Government, or Sharp

Microelectronics Technology, Inc.

Contents

Acknowledgements i

Table of Contents iii

List of Figures vii

List of Tables x

1 Introduction 1

1.1 A Perspective : 1

1.2 Goals and Organization : 2

2 High Speed Digital Signal Processing 4

2.1 Introduction : 4

2.2 Video : 5

2.3 Image Processing : 6

2.4 Speech Recognition : 7

2.5 Computation Requirements of High Speed DSP : : : : : : : : : : : : : : : : 10

2.6 Conclusions : 12

3 Architectural Classi�cation 13

3.1 Introduction : 13

3.2 Architectural Taxonomies : 14

3.2.1 Flynn : 14

3.2.2 Extensions to Flynn's Taxonomy : 14

3.2.3 Telecommunications ASICs : 21

3.2.4 Image and Video Processing Architectures : : : : : : : : : : : : : : : 22

3.2.5 Digital Signal Processors : 22

3.3 Architectures for High Speed DSP : 24

3.4 Conclusions : 26

4 Rapid Prototyping Platforms 27

4.1 Introduction : 27

4.2 Implementation Platforms : 28

iii

CONTENTS iv

4.2.1 Programmable DSPs : 28

4.2.2 Generic Components : 30

4.2.3 ASICs : 30

4.3 High Level Synthesis : 31

4.3.1 Microsystems: Chip Level : 31

4.3.2 Systems: Board Level : 31

4.4 Software-con�gurable Hardware : 32

4.4.1 Purdue CHiP : 33

4.4.2 Texas Instrument RIC : 34

4.4.3 CMU White Dwarf : 36

4.4.4 MIT RAP : 39

4.4.5 Video Signal Processors (VSP's) : 40

Philips VSP : 41

ITT DataWave : 42

4.4.6 NTT VSP : 45

4.4.7 Software Recon�gurable Transceiver : : : : : : : : : : : : : : : : : : 45

4.4.8 Field Programmable Gate Arrays : 46

4.4.9 PADDI: Programmable Arithmetic Devices for High Speed DSP : : 49

4.5 Conclusions : 50

5 PADDI: Architectural Design 52

5.1 Introduction : 52

5.2 Design Goals : 53

5.3 Dynamic/Static and Hardware/Software Interfaces : : : : : : : : : : : : : : 53

5.3.1 Design Methodology : 55

5.3.2 Functional Design : 57

Operator Statistics : 59

Interconnect Statistics : 60

Control Statistics : 60

IO Statistics : 66

Computation Rate Statistics : 66

5.4 Techniques for High Performance : 67

5.5 Processor Architecture : 70

5.5.1 Execution Units : 70

Design Considerations : 70

Execution Unit Architecture : 71

5.5.2 Interconnection Network : 74

Design Considerations : 74

Interconnect Network Architecture : : : : : : : : : : : : : : : : : : : 75

5.5.3 Control : 76

Design Considerations : 76

Control Architecture : 77

5.5.4 IO : 82

5.5.5 Memory : 82

5.5.6 Con�guration : 82

CONTENTS v

Design Considerations : 82

5.6 Processor Summary : 83

5.6.1 Benchmarks : 83

5.7 Instruction Set Summary : 86

5.8 Programmer's View : 86

5.9 Summary and Conclusions : 86

6 PADDI: Hardware Design 88

6.1 Introduction : 88

6.2 Execution Unit : 89

6.3 Interconnection Network : 91

6.4 Control : 98

6.4.1 Nanostore : 98

6.4.2 Branch Logic : 100

6.5 Con�guration Unit : 104

6.5.1 Modes of operation : 104

Scan Chain : 106

6.5.2 Finite State Machines : 106

6.6 Testability : 109

6.6.1 Test Modes : 109

6.6.2 Test Support System : 110

6.7 Clocking : 112

6.7.1 Layout and Simulation : 112

6.7.2 Test Results : 115

6.8 Discussion : 117

6.9 Conclusions : 121

7 PADDI: Software Environment 122

7.1 Introduction : 122

7.2 Low-level Programming Tools : 122

7.2.1 The pas assembler : 123

7.2.2 The psim simulator : 123

7.3 High Level Synthesis for Programmable Arithmetic Devices : : : : : : : : : 123

7.3.1 Architectural Constraints : 124

7.3.2 Hardware Assignment Using Clustering : : : : : : : : : : : : : : : : 125

Hierarchical Two Phase Clustering : : : : : : : : : : : : : : : : : : : 126

Initial Phase : 126

Improvement Phase : 127

Detailed EXU Clustering : 127

Detailed Quadrant Clustering : 128

7.3.3 CADDI Compiler : 129

7.4 Conclusions : 130

8 Conclusions and Future Work 131

CONTENTS vi

A Xilinx Case Study 136

A.1 Introduction : 136

A.2 Limitations of FPGAs : 136

B Mapping an Example to PADDI 141

C Programmer's Guide 144

C.1 Introduction : 144

C.1.1 Dynamic Instructions : 144

Registers : 145

Functions : 145

Output Bus Enables : 145

A and B Register Sources : 146

Interrupt Enables : 146

C.1.2 Con�guration Speci�ers : 147

C.1.3 Putting it all Together : 147

D Con�guration With External Memory 150

E Pin List 152

E.1 Pad Types : 152

E.2 PGA Pinout : 153

F Assembler Manual Page 156

F.1 Introduction : 156

G Annotated grammar 158

G.1 Annotated Assembler Grammar : 158

H Simulator 162

Bibliography 164

List of Figures

2.1 Pipelined Data Path for Luminance Conversion : : : : : : : : : : : : : : : : 6

2.2 Image Convolution : 8

2.3 Signal Flow Graph of 3x3 Linear Convolver : : : : : : : : : : : : : : : : : : 8

2.4 Grammar Processor Architecture : 11

3.1 Flynn's Taxonomy : 15

3.2 Flynn's Taxonomy (contd.) : 16

3.3 Skillicorn's Taxonomy : 18

3.4 Basic von Neumann Abstract Machine : 19

3.5 Type I Array Processor : 19

3.6 Type II Array Processor : 20

3.7 Tightly Coupled Multiprocessor Model : 20

3.8 Loosely Coupled Multiprocessor Model : 21

3.9 Architectural Classi�cation Based on Control/Arithmetic Ratio : : : : : : : 23

3.10 Performance and Flexibility for Di�erent Approaches : : : : : : : : : : : : : 24

4.1 Commercial DSP Multiply-Accumulate Time : : : : : : : : : : : : : : : : : 29

4.2 SIERA : 32

4.3 Three CHiP Switch Lattice Structures : 34

4.4 Embedding of Graph K4,4 into Switch Lattice : : : : : : : : : : : : : : : : : 35

4.5 Texas Instrument's RIC Block Diagram : 36

4.6 CMU's White Dwarf Processor Overview : : : : : : : : : : : : : : : : : : : 37

4.7 White Dwarf Data Path : 37

4.8 White Dwarf Control Flow : 38

4.9 White Dwarf Downloading Flow : 39

4.10 RAP Data Path : 40

4.11 RAP Block Diagram : 41

4.12 Philips VSP : 42

4.13 Philips VSP: ALE Block Diagram : 43

4.14 DataWave: Processor Architecture : 43

4.15 DataWave: Cell Architecture : 44

4.16 NTT VSP Architecture : 45

4.17 XC3000 Logic Cell Array Family : 47

vii

LIST OF FIGURES viii

4.18 XC3000 CLB Architecture : 47

4.19 XC3000 Combinational Logic Options : 48

4.20 XC3000 Interconnect Structure : 48

4.21 PADDI Abstract Architecture : 51

5.1 DSI Placement Examples : 54

5.2 Architectural Design Methodology : 56

5.3 General Characteristics of Benchmark Set : : : : : : : : : : : : : : : : : : : 58

5.4 Number of Ops vs. Op Type : 59

5.5 Total Number of Ops vs. Op Type : 61

5.6 Number of Arcs vs. Arc Type : 62

5.7 Total Number of Arcs vs. Arc Type : 63

5.8 Control Structure by Benchmark : 64

5.9 Grammar Processor Control : 65

5.10 IO Statistics : 65

5.11 Computation Rate Statistics : 67

5.12 Computation Rate / IO : 68

5.13 Computation Rate / IO : 68

5.14 Naive Mapping of Uni-processor Task Set : : : : : : : : : : : : : : : : : : : 69

5.15 EXU Architecture : 72

5.16 Primitive PADDI Operations (a) : 72

5.17 Primitive PADDI Operations (b) : 73

5.18 Crossbar Switch : 75

5.19 Nanostore as a Local Decoder : 78

5.20 Four Stage Pipeline : 78

5.21 Local Delayed Branches : 79

5.22 Global Delayed Branches : 80

5.23 Load/Execution Alignment : 81

5.24 PADDI with 32 EXUs : 84

5.25 PADDI with 16 EXUs : 84

5.26 Prototype Architecture : 85

5.27 Prototype Architecture With Multipliers : 85

5.28 System Using PADDI Chips : 86

6.1 EXU Architecture : 89

6.2 Logarithmic Shifter : 90

6.3 Register-File Cell : 91

6.4 EXU Detail : 92

6.5 EXU Critical Path : 93

6.6 Crossbar Network : 94

6.7 Type 1 Bit-slice : 94

6.8 Type 2 Bit-slice : 95

6.9 Layout of Type 2 Bit-slice : 95

6.10 Regenerative PMOS Design : 96

6.11 Regenerative PMOS Design (Spice) : 97

LIST OF FIGURES ix

6.12 Interconnect Critical Path : 97

6.13 Interconnect Critical Path Simulation : 98

6.14 SRAM Detail : 99

6.15 SRAM Control Circuitry : 100

6.16 SRAM Timing Diagram : 101

6.17 SRAM Read Cycle : 102

6.18 Branch Logic : 103

6.19 Clocking of State Latches : 105

6.20 Section of Con�guration Scan Chain : 107

6.21 FSM1 : 108

6.22 PHIM and PHIM Clock Generation : 108

6.23 FSM2 : 109

6.24 Test Support System : 111

6.25 TCB Architecture : 111

6.26 Clock Distribution : 112

6.27 Chip Photo : 113

6.28 Four Quadrant Critical Path : 114

6.29 25 MHz Counter : 118

6.30 Simple Low Pass Biquadratic Filter : 118

6.31 Biquad Processor Schedule : 119

6.32 Biquad Impulse Response : 119

7.1 Software Environment : 130

8.1 Processing Power vs. Maximum Signal Frequency : : : : : : : : : : : : : : : 133

A.1 Simple Low Pass Biquadratic Filter : 137

A.2 Transformed Biquad : 138

A.3 Convolver on XC3090 with Routing Congestion : : : : : : : : : : : : : : : : 139

A.4 Insu�cient Routing Resources for the Convolver : : : : : : : : : : : : : : : 139

B.1 Retimed Linear Convolver : 142

B.2 Linear Convolver Mapping (1/2) : 143

B.3 Linear Convolver Mapping (2/2) : 143

C.1 Instruction Format : 145

D.1 Con�guration Timing Diagram : 151

D.2 Interfacing to External Memory : 151

E.1 PADDI PGA Pin Assignments : 153

H.1 Typical Psim Session : 163

List of Tables

2.1 Computations and I/O Summary : 10

4.1 Application Sample Period : 29

4.2 Instructions per Sample : 29

6.1 Chip Characteristics : 120

6.2 Chip Comparison of Technologies and Areas : : : : : : : : : : : : : : : : : : 120

8.1 Some Typical Dedicated-Function DSPs : 132

A.1 Comparison of XILINX and PADDI : 140

B.1 Benchmarks : 142

C.1 Summary of Arithmetic Instructions : 146

C.2 Summary of Con�guration Speci�ers : 147

E.1 Pad Types : 152

E.2 PADDI Pin List : 154

E.3 PADDI Pin List (contd.) : 155

x

Chapter 1

Introduction

A great discovery solves a great problem but there is a grain of discovery in the solution of

any problem. Your problem may be modest; but if it challenges your curiosity and brings into

play your inventive faculties, and if you solve it by your own means, you may experience the

tension and enjoy the triumph of discovery. Such experiences at a susceptible age may create

a taste for mental work and leave their imprint on mind and character for a lifetime.

| G. Polya, How To Solve It

Weapons are the tools of fear; a decent man will avoid them except in the direst necessity and,

if compelled, will use them only with the utmost restraint.

| Lao Tzu, Tao Te Ching

1.1 A Perspective

At this point in time, throughout the cad community, and particularly here at

U.C. Berkeley, many resources are being directed to establishing an Integrated System

Design Environment for the rapid design of all levels of electronic systems [29, 12]. The

result will be the creation of e�cient, high performance systems which will compete with

present manual design approaches by incorporating the very best of algorithms and by

using advanced implementation technologies. Top priority is being placed on performance

optimization, and reducing the time and cost of implementation.

A particular thrust of this overall cad e�ort targets high performance real-time

systems. Examples of such systems can be found in the �eld of digital signal processing

(dsp) which has become a dominant force in signal processing and communications [31].

Typical application domains include digital audio [75, 8], speech recognition and synthe-

sis [10], mobile communications [44], personal communications systems [14, 47], robotics

1

CHAPTER 1. INTRODUCTION 2

and electro-mechanical control, digital image and video processing [43], machine vision [11],

digital television [30], high de�nition television [56], sonar [84], ultrasonic imaging, advanced

video services [27], smart weapons, and advanced �re control for target discrimination and

tracking [71, 76].

In signal processing applications, the computation involves a set of operations

which operate on an in�nite data stream (the signal). In many applications, such as facsim-

ile, modems, televisions, compact disk players, video cassette recorders, and video cameras,

to name a few, large amounts of data (MB/sec for speech, GB/sec for video) must be

processed in real-time or at the same rate that the data is required. The high speed com-

putational requirements of real-time digital signal processing (dsp) systems usually dictate

hardware intensive solutions. Often attendant to hardware approaches are problems of high

development costs, slow turnaround, susceptibility to errors, and di�culty in testing and

debugging. System designers are frequently faced with two main choices, that of using bulky

boards of ttl components or generating their own costly application speci�c integrated cir-

cuits (asics). These factors tend to inhibit the rapid and economical implementation of

real-time systems.

1.2 Goals and Organization

The goal of this work is to enhance the system design environment by de�ning a

library of o�-the-shelf macro-components which can be applied to real-time signal process-

ing applications. These macro-components should be programmable, support high speed

computation, and possess a high level of integration, With such components, the system en-

gineer will be able to synthesize application speci�c hardware within a very short time when

compared to current approaches. This approach can be economical since there are none of

the non-recurring engineering (nre) costs associated with asic design and fabrication.

In order to de�ne the contents of the library and the desired programmability and

functionality, algorithms and architectures from real-time speech recognition, image, and

video processing were examined.

It was observed that most of the systems which perform these algorithms are im-

plemented as a set of concurrently operating, bit-sliced, pipelined processors. However the

controller structure, data path composition, memory organization, and connection and com-

munication patterns of these processors were found to depend heavily upon the particular

CHAPTER 1. INTRODUCTION 3

application. The challenge is to de�ne a restricted set of programmable components that

covers these apparently dissimilar architectures. Four classes of devices are necessary: con-

trollers, memory (including delay lines), data path blocks, and interprocessor communica-

tion units. Fairly e�cient solutions are available for control structures (using programmable

logic devices or plds) and memory structures (using commercially available memory). How-

ever, no high-level re-programmable data path or interprocessor communication structures

are yet available. The creation of such con�gurable, pre-fabricated hardware, designed for

high speed computations, is the main topic of this thesis.

The rest of the thesis is organized as follows: Chapter 2 examines typical exam-

ples of some real-time applications, and summarizes their computation requirements and

common architectural features. Chapter 3 discusses ways of di�erentiating between the

many architectural styles found in dsp and focuses on one particularly suited to high speed

dsp, and which is based on control/arithmetic ratio. A review of currently available im-

plementation approaches for these computation intensive applications, together with their

trade-o�s and limitations, is presented in Chapter 4. The need for rapid prototyping of

systems in general and high speed dsp data paths in particular, and the bene�ts of using

software-con�gurable hardware for rapid prototyping is also discussed. The main goal of

this research was to develop a programmable architecture for the rapid prototyping of high

speed dsp data paths. Such an architecture is presented in Chapter 5. It consists of clusters

of multiple programmable arithmetic devices or execution units (exus) connected by a ex-

ible communication network for data and status ags, with wide inter-exu and inter-cluster

communication bandwidth. In order to demonstrate concept feasibility, a prototype chip,

dubbed paddi for Programmable Arithmetic Devices for Digital Signal Processing, was

designed and fabricated [25]. Its vlsi implementation is described in Chapter 6. The sup-

porting software environment necessary to program these devices is discussed in Chapter 7

along with compilation approaches, and Chapter 8 concludes the dissertation.

Chapter 2

High Speed Digital Signal

Processing

Fallacy: There is such a thing as a typical program.

Pitfall: Designing an architecture on the basis of small benchmarks or large benchmarks from

a restricted application domain when the machine is intended to be general purpose.

| J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach

2.1 Introduction

In this chapter we will examine several representative real-time dsp applications.

in order to ascertain their computation requirements. While there exist many di�erent ar-

chitectural approaches for implementing real-time dsp algorithms, the hard-wired pipelined

data path approach is particularly e�cient because each algorithm can be hard-wired into

it's own unique data path. In short, the data path is \tailor-made" to �t the algorithm.

This approach has been widely and successfully applied.

As each application is discussed, we will present several example architectures

which illustrates the pipelined data path approach. The basic architectural features such

as level of pipelining, functional requirements, control, and i/o bandwidth of each example

will be examined.

4

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 5

2.2 Video

High de�nition television, or hdtv, is rapidly on its way to becoming a commer-

cial reality [53]. Let us consider a typical hdtv bit transfer rate. Given a typical frame

of 900x1200 pixels, a display rate of 30 frames/sec, with each pixel composed of 16bits (8

luminance, 8 down-sampled chrominance) or 24 bits rgb the resulting transfer bit rate is

900 x 1200x 30 x 24 or approximately 800 Mbit/sec or 100 MB/sec. Typical signal process-

ing requirements are yuv and rgb conversions, digital �ltering, video compression, motion

compensation, and sampling conversion [85]. If one makes the reasonable assumption that

any of these algorithms can require several tens of operations, then the resulting computa-

tional requirements are in the billions of (byte) operations per second (gops). For higher

resolution screens and/or more complicated algorithms, this can increase by one or two

orders of magnitude.

As an example, consider the conversion of rgb to yuv [88]. Video sources generate

three color signals, red (R), green (G), and blue (B). The three color signals are oversampled

to 27 MHz and converted to eight bits. These signals are often converted to luminance (Y),

and two chrominance (U,V) signals for further processing. This conversion is done by a

video matrix according to the following three equations:

Y =

77 �R+ 150 �G+ 29 �B

256

U =

�44 �R� 87 �G+ 131 �B

256

V =

131 �R� 110 �G� 21 �B

256

In [88], various hard-wired data paths were constructed in an attempt to meet the

high throughput requirements. Pipelining was found necessary to meet the the clocking rate

speci�cation. Fig. 2.1 shows a possible data path to perform the luminance conversion. It is

composed of a set of pipelined carry save full-adders (csfas), which performs the luminance

conversion. The �nal stage is a pipelined vector merging adder (vma). In the luminance

calculation, ten additions and ten shifts are performed at a rate of 27 MHz., which amounts

to a total computational requirement of 540 mops. If one also takes into account the oper-

ations required for the two chrominance calculations, the total computational requirement

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 6

A

M

V

BG

R
C

S

F

A

C

S

F

A A

F

S

CC

S

F

AA

F

S

C

A

F

S

CC

S

F

AA

F

S

C

A

F

S

C

Figure 2.1: Pipelined Data Path for Luminance Conversion

is 1,674 mops. Salient architectural features include the use of many fast operational units,

and the heavy reliance on pipelining to meet the computational requirements. Additionally,

minimal control logic is required because of the highly pipelined nature of the design. The

data input streams are 8b wide and the output streams are 16 wide. Therefore 213 MB/sec

of i/o bandwidth are required for the rgb and yuv signals, excluding and synchronization

signals.

Flexible memory address generators are also required in video processing. A ex-

ible memory control chip for formatting data into blocks suitable for video coding appli-

cations is described in [106]. In this case, fast programmable counters are used to e�ect

the address generation while data path pipelines are used to format the data according to

speci�cation.

2.3 Image Processing

The computational needs of image processing will vary depending on the level of

the processing being done, and the spatial and temporal resolution required. The com-

putational requirements of low level image processing are quite high, especially if done in

real-time. The motivations of performing the processing in real-time are discussed in [104].

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 7

A real-time image processing chip set is described in [104, 103]. The functions performed

by these chips are 3x3 convolution, 7x7 logical convolution, 3x3 non-linear �ltering based

on sorting, image contour extraction, feature extraction, and line delays. Chips of these

types are in commercial production [72].

As an example, consider the 3x3 linear convolver. A mask of �xed coe�cients

is dragged across an image (Fig. 2.2). At each point, the output y(i,j) is the sum of

the products of the coe�cients and their corresponding pixel intensities. A signal ow

graph, (sfg), of the computation is shown in Fig. 2.3. In a real-time implementation of

this algorithm (where a new result might be required every clock cycle), high throughput

is best achieved by using multiple data path pipelines (composed of shifters and adders

in this example since the coe�cients are �xed), interconnected in a way to reect the

algorithmic data ow. The sfg can be hard-wired into the architecture by mapping it

directly to hardware. In the convolution, eight additions and nine shifts are performed

at a rate of 10 MHz., which amounts to a total computational requirement of 170 mops.

As in the rgb to yuv converter example, salient architectural features include the use on

many fast operational units, and the heavy reliance on pipelining to meet the computational

requirements,. The control logic requirements are minimal because of the highly pipelined

nature of the design. The data i/o streams are 8b wide and require 20 MB/sec of i/o

bandwidth excluding any synchronization signals. (The actual architecture used in [104]

was a pipelined data path composed of multiply accumulate units with a somewhat di�erent

topology than the sfg).

2.4 Speech Recognition

The computational requirements of speech recognition will vary depending on the

type of recognition being performed (isolated word vs. connected speech), whether it is

speaker dependent or independent, the size of the vocabulary being supported, and the type

of algorithm being used. The computational needs are exacerbated when the recognition

is performed in real-time. A real-time isolated-word speech recognition system with a

vocabulary of 1000 words was presented in [58]. It requires the computation of 1.25 M

equations/sec or roughly 60 mips, where each equation is a dynamic programming recursion

equation.

The 3000 word, real-ime, hidden Markov model-based, continuous-speech recogni-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 8

a11 a12 a13

a21 a22 a23

a31 a32 a33

i

j

m

n

y(i,j) = a(m,n) x(i-m+2, j-n+2)
m=1 l=1

3 3

MASK

IMAGE

Figure 2.2: Image Convolution

INPUT
a31

a21

a11a12

a22

a32a33

a23

RESULT

+

+

+

X

+

X

+

X

+++

X X X-L

Z

-L

Z
XXa13X

X MULT+ ADD

ALGORITHM IS HARD-WIRED

DELAY

LINE

DELAYS

FEATURES :

NO RESOURCE SHARING

SIMPLE OPERATORS

SPECIFIC COMMUNICATION

SIMPLE CONTROL

HIGH PERFORMANCE VIA

PIPELINING, PARALLEL UNITS

Figure 2.3: Signal Flow Graph of 3x3 Linear Convolver

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 9

tion system described in [97] is another example. The word processing sub-system performs

a Viterbi search over 50,000 states and computes 225 Mops/sec with 85 MB/sec of memory

accesses [116]. Speech recognition accuracy is further enhanced when syntactic constraints

are imposed on the concatenation of individual words in the vocabulary. This task is per-

formed in the grammar processing sub-system which searches for the most probable word

sequence given transition probabilities in speech model supported. The grammar process-

ing sub-system performs evaluations of the starting word probabilities associated with the

across-word transitions and computes 200 Mops/sec with i/o bandwidth of 265 MB/sec.

Recently, this system has been upgraded to handle 60,000 words in real-time with 30 ac-

cesses per state which require in excess of 600 MB/sec of i/o bandwidth [115]. In this

system, 520 Mops/sec are required.

Let us discuss the grammar processing sub-system in some more detail ([22]). The

statistical grammar model allows any word to follow any other word. Associated with the

ith word produced by the word processing sub-system is a probability PGO

i

, the probability

that the word i ends at a particular point in time. The grammar sub-system calculates a

probability PGI

j

, the probability that word j starts in the next frame. This jth successor

word probability is then sent back to the word processing sub-system. The probability

PGI

G

j

(t + 1) under the statistical grammar model is found by using:

PGI

G

j

(t+ 1) = max

i2allwords

[PGO

i

(t)� c

ij

] (2:1)

where c

ij

is the transition probability from word i to word j. The evaluation of the ith word

(equation (2.1)) is terminated when the probability falls below a programmable threshold

and processing, and the i+1th evaluation is begun. Assuming average of 17 successors per

word ([22]), the two cycle branch delay of the Grammar Processor leads to a 12 per cent

performance branch penalty. The dynamically adjusted threshold will terminate successor

updates before complete processing of all the successors of a word. It is not unreasonable

to assume cases where fewer than 8 successors are updated per word. In these cases, the

performance branch penalty becomes 25 percent or more. If the branch delay penalty were

four cycles instead of two, these cases would su�er a performance branch penalty of 50 per

cent or more. Clearly in this and other applications which contain repetitive data-dependent

loop iterations, low overhead conditional branching between the loop iterations is desirable

for e�cient hardware utilization. Fig. 2.4 shows a detailed block diagram of the architecture

of the Grammar Processor which is one of two processors in the Grammar Processing sub-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 10

YUV 3x3 WORD GRAMMAR

CONV. CONV. PROC. PROC.

MOPS 1674 170 225/520 200

IO (MB/sec) 213 20 85/600 265

Table 2.1: Computations and I/O Summary

system ([22]). The main architectural features are: 1) the algorithm is hard-wired into the

data paths 2) high performance is achieved through extensive pipelining and parallelism 3)

operators are very simple (add and compare/select) 4) irregular communication patterns

among operators. 5) high i/o bandwidth is necessary 6) low overhead branching between

loop iterations.

The main architectural features of the Grammar Processor are very similar to

the previously discussed video and image processing examples. It is also useful to note

that in those examples the communication patterns between the various operational units

was regular whereas here they are rather irregular. There, the word length requirements

were �xed, 8b and 10b respectively, whereas here they vary between 12b and 19b. The

previous examples were fully pipelined, whereas here the address generation unit is hardware

multiplexed. There the i/o bandwidth requirements are not as high as here. Here, fast,

data-dependent branching is required for terminating the calculation for a given word when

the probability falls below its threshold.

2.5 Computation Requirements of High Speed DSP

Table 2.1 summarizes the computational and i/o requirements of some of the

examples presented in the previous section. From these numbers we can see that real-

time dsp applications place a tremendous demand on both computation and bandwidth

requirements.

Such high speed computation is required in video and real-time image processing

because of the high throughput requirements. In speech, high speed computation is also

required, because, although the sampling rate is lower than for video, the algorithms are

typically more complex.

The goal of this work is to de�ne a set of high level, programmable macro-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 11

UNIT

UNIT

UPDATE

SUCCESSOR

12

1

1

3

0

0x1110x111

ADD 2 ADD 3 COMP 1

.

COMP 3

ADD 1

.

32
1

1

32 i

ooe

13

OPERATOR MUXREGISTER

ALGORITHM HARD-WIRED

FEATURES :

LOW RESOURCE SHARING

SIMPLE OPERATORS

IRREGULAR COMMUNICATION

WIDE I/O BW

19

VARIOUS WORD LENGTHS

(STATE)

SIMPLE CONTROL

HIGH PERFORMANCE VIA

COMP 2

EXT

MEM

MEM

EXT

ADDRESS

GENERATION

I/O

C

O

N

T

R

O

L

START

FIFOEMPTY

PIPELINING, PARALLEL UNITS

Figure 2.4: Grammar Processor Architecture

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 12

components to support the rapid prototyping of real-time dsp data paths. Case studies

of real-time algorithms and pipelined data path architectures such as discussed above, en-

able us to identify the following key architectural features which must be supported by these

macro-components:

a) a set of concurrently operating execution units (exus) with fast arithmetic, to

satisfy the high computational (hundreds of mops) requirements.

b) very exible communication between the exus to support the mapping of a

wide range of algorithms and to ensure conict free data routing for e�cient hardware

utilization.

c) support for moderate (1-10) hardware multiplexing on the exus, for fast com-

putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds of MB/sec).

2.6 Conclusions

In this chapter it has been shown that high speed dsp applications, particularly

real-time ones, require massive amounts of computation and wide i/o bandwidth. Practi-

cal implementations of these high speed systems usually require the creation of application

speci�c hardware. Although many di�erent architectural styles exist, pipelined hard-wired

data paths, tuned to reect the data-ow of the algorithm, result in particularly e�cient

system implementations. The goal of this work is to de�ne a set of high level, programmable

macro-components to support the rapid prototyping of such data paths. The key compu-

tational requirements and architectural features that should be supported by these macro-

components were identi�ed by surveying a variety of existing data paths.

Chapter 3

Architectural Classi�cation

"A good classi�cation scheme should reveal why a particular architecture is likely to provide

a performance improvement"

| David Skillicorn, A Taxonomy for Computer Architectures

3.1 Introduction

There are many reasons for classifying architectures. One is historical i.e. un-

derstanding past accomplishments. Another is the identi�cation of missing gaps i.e. the

revelation of con�gurations that might not otherwise have occurred to a system designer.

Another is that it allows useful performance models to be built and used. A good classi�ca-

tion scheme should reveal why a particular architecture is likely to provide a performance

improvement [111].

In this chapter we will investigate ways of di�erentiating between the many ar-

chitectural styles found in dsp. In order to establish a framework we will �rst consider

taxonomies for general purpose computer architectures. We will also consider more spe-

cialized ones for ic applications such as telecommunications and image processing. We will

then focus on a classi�cation developed speci�cally for dsp architectures. It is based on the

concept of control/arithmetic ratio which is related to the amount of operation sharing on

an arithmetic unit. This taxonomy is particularly suitable because of the strong empha-

sis on high speed computations in real-time dsp. Using this taxonomy we will investigate

what are the most viable architectural approaches for satisfying the key computation re-

quirements of high speed dsp. The answer has already been hinted at in Chapter 2 where

it was shown that hard-wired pipelined data path architectures were well matched to the

13

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 14

computational requirements of real-time dsp. We will compare the various architectural

styles for functionality, performance, and hardware implementability.

3.2 Architectural Taxonomies

The concepts of instruction stream parallelism, data stream parallelism, node gran-

ularity, and control/arithmetic ratio are relevant when making architectural comparisons.

They are discussed below in several di�erent taxonomies.

3.2.1 Flynn

The classical taxonomy for computer systems was presented by Flynn in [37, 38].

The classi�cation (Fig. 3.1 and Fig. 3.2) is based on the parallelism within the instruc-

tion stream and parallelism within the data stream. Flynn observed that the methods for

achieving parallel operation depended on replicating the instruction stream and the data

stream. This gives rise to four classes of computers: single-instruction single-data (sisd),

single-instruction multiple-data (simd), multiple-instruction single-data (misd), multiple-

instruction multiple-data (mimd). A sisd computer is essentially a serial computer. A simd

computer is essentially a vector processor. A misd computer is generally unrealistic for

parallel computation while a mimd computer is the most general. The two most interesting

types for achieving high performance through parallelism of operation are simd and mimd

[117].

3.2.2 Extensions to Flynn's Taxonomy

Since Flynn's original work there have been many suggestions on how to modify

and/or extend it. The work by Skillicorn [111] is one such example. The classi�cation

method is shown if Fig. 3.3. At the highest level, the model of computation is consid-

ered, for example, von Neumann, dataow, and graph reduction models. At the next level,

the abstract machine captures the essence of a particular architecture form without dis-

tinguishing between di�erent technologies and implementations. In this classi�cation, the

basic functional units are instruction processors (for instruction interpretation i.e. if they

exist in the model), data processors, memory hierarchy, and a switch that provides connec-

tivity between other functional units. The basic von Neumann abstract machine is shown

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 15

I-stream

Arithmetic

Processor

Data-stream

Data-stream

Processor

Arithmetic

Data-stream

Processor

Arithmetic

Unit

Control

Model of an SISD computer

Data-streamI-stream

Processor

Arithmetic

Unit

Control

Model of an SIMD computer

Figure 3.1: Flynn's Taxonomy

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 16

I-streamN

I-stream2

I-stream1

Arithmetic

Processor

Processor

Arithmetic

Processor

Arithmetic

Arithmetic

Processor

Processor

Arithmetic

Processor

Arithmetic

Data-streamN

Data-stream2

Data-stream1

Control

Unit

Unit

Control

Unit

Control

I-streamN

I-stream2

I-stream1

Control

Unit

Unit

Control

Data-stream

Unit

Control

Model of an MISD computer

Model of an MIMD computer

Figure 3.2: Flynn's Taxonomy (contd.)

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 17

in Fig. 3.4 as an example. The next level is the machine implementation which could be,

for example, the architecture as seen by the assembly language programmer, as well as the

technology used.

A series of states can be associated with the internal structure of each processing

unit in the abstract machine. Skillicorn accounts for the three major ways to increase per-

formance. The �rst is to re-arrange the internal states to increase parallelism by removing

any unnecessary sequentiality in the state transition sequence. The second is to pipeline the

state transitions, with the recognition that pipelining will complicate certain instructions.

The third is to replicate functional units. The author presents several models which contain

functional unit replication: two types of array processors, and tightly and loosely coupled

multiprocessors.

The basic paradigm of the array processors is similar to the simd model of Flynn,

but further distinctions are drawn depending on the interconnectivity of the units. A type I

array processor model is shown in Fig. 3.5. Here the data processor-data memory connection

is n-to-n and the data processor-data processor connection is n-by-n. (In an n-to-n switch

connection, the ith unit of one set of functional units connects to the ith unit of another.

This type of switch is a 1-to-1 connection replicated n times. In an n-by-n switch connection,

each device of one set of functional units can communicate with any device of a second set

and vice versa. In a 1-to-n switch connection, one functional unit connects to all n devices of

another set of functional units.) A type II array processor model is shown in Fig. 3.6. Here

the data processor-data memory connection is n-by-n and there is no connection between

the data processors.

The basic paradigm of the multiprocessors is similar to the mimd model of Flynn,

but again, further distinctions are drawn depending on the interconnectivity of the units.

A tightly coupled multiprocessor model is shown in Fig. 3.7. Both data and instruction

processors are replicated, but the data processors share a common data memory. Com-

munication and synchronization between processes is achieved by used of shared variables.

There is an n-by-n switch between data processors and data memories. Loosely coupled

systems also have functional unit replication. The connection between data processors and

data memories is n-to-n, and there is an n-by-n connection between the data processors. A

loosely coupled multiprocessor abstract machine is shown in Fig. 3.8.

Another classi�cation is contained in the paper by Seitz [110] which presents a

useful taxonomy for concurrent vlsi architectures that adhere to a basic structural model

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 18

Model of computation

Abstract machine model
No. of instruction processors

No. of data processors
connection structure

Performance model
simple or pipelined

state diagram

Implementation model

implementation technology
speed

Figure 3.3: Skillicorn's Taxonomy

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 19

Instruction

Hierarchy

Memory

Hierarchy

Memory

Data

Instructions

adresses

Operand AddressesOperands

State

Instructions

IPDP

Figure 3.4: Basic von Neumann Abstract Machine

1:N

Instruction

Hierarchy

Memory

Hierarchy

Memory

Data

NxN

SW IP

DP

SW

Figure 3.5: Type I Array Processor

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 20

SW

DP

IPSW

NxN

Data

Memory

Hierarchy

Memory

Hierarchy

Instruction

1:N

Figure 3.6: Type II Array Processor

Instruction

Hierarchy

Memory

Hierarchy

Memory

Data

NxN

IP
DP

SW

Figure 3.7: Tightly Coupled Multiprocessor Model

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 21

SW

DP
IP

NxN

Data

Memory

Hierarchy

Memory

Hierarchy

Instruction

Figure 3.8: Loosely Coupled Multiprocessor Model

based on the repetition of regularly connected elements. Based on the complexity (or

granularity) of the nodes (or computing elements) i.e. the node granularity, the author

identi�es �ve major classes i.e. rams, logic enhanced memories, computational arrays,

microcomputer arrays, and conventional computers, in increasing order of node complexity.

The classes de�ned span a broad range of computational elements.

3.2.3 Telecommunications ASICs

In the paper by Keutzer [59]. the scope of the taxonomy is restricted to ic appli-

cations and architectures, speci�cally: microprocessors, digital signal processors, oating-

point units, co-processors such as for graphics and memory management, protocol engines

for communications applications, sequencers, and glue logic.

The author analyzed over one hundred asic designs for telecommunications ap-

plications, implemented in standard cells. He found that these asics tended to be control

dominated, with little need for arithmetic, typically requiring low component density (under

10,000 logic transistors), and operating below 10 MHz.

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 22

3.2.4 Image and Video Processing Architectures

The idea of node granularity is used in the classi�cation of over forty image pro-

cessing lsis made in Japan in the 1980's [41]. The author classi�es the devices into �ve

categories: the fully parallel processor (fpp), the partially parallel processor (ppp), the dig-

ital signal processor (dsp) specialized for image processing, the functional processor (fp),

and the neural network processor (nnp). In this taxonomy, fpps correspond to arrays of

very �ne-grained, 1b alus, operating in simd fashion to form so-called Cellular Array Pro-

cessors. The author lists four fpp-like devices. Eleven ppp-like devices are listed. ppps

are chips which contain several pipelined processing elements. A processing element might

contain an 8b alu and an 8x8 multiplier for example. Image processing dsps essentially

contain one large-grained processor containing, for example, a 16b alu, 16bx16b multiplier,

and one 16b accumulator. The processors are designed to handle speci�c operations such

as spatial convolution, FIR �ltering, and Discrete Cosine Transforms (dct). Eight dsp-like

devices are listed. fps are essentially asics that perform speci�c task such as address con-

trol, feature extraction, character recognition. Thirteen of these devices are listed. Four

nnps are listed for tasks such as character, text, voice, and image recognition.

Similar classes of image processing ics as above are produced elsewhere e.g. [72],

to name just one.

Another interesting classi�cation for real time video architectures is contained

in [126], where the author attempts a functional classi�cation based on processing proper-

ties, memory properties, communication properties, and control properties. Examples of

di�erent video architectures are presented: a) systolic arrays b) wavefront arrays c) self-

timed language-driven architectures [125]. Speci�c chips are discussed: a) the nec vspm

system [121] b) the Matsushita ismp chip [73] c) the Philips vsp chip [127] The rough

trade-o�s of asynchronous vs synchronous schemes are mentioned.

3.2.5 Digital Signal Processors

A general classi�cation for dsp architectures, based on the control/arithmetic ratio,

was suggested by Brodersen and Rabaey [15]. It is based on the amount of operation

sharing on an arithmetic unit (hardware multiplexing), a concept developed further in [20].

We will adopt this taxonomy since the concepts of control/arithmetic ratio and hardware

multiplexing are closely related to the issue of high speed dsp computation which is our

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 23

DATA FLOW

DRIVEN

DRIVEN

CONTROL FLOW

Systolic

Bit-Serial

Data Path Clusters

Dedicated Multi-Processors

Dedicated Signal Processor

General Purpose Signal Processor

Micro-Processor

DSP ARCHITECTURES

Figure 3.9: Architectural Classi�cation Based on Control/Arithmetic Ratio

main interest. This classi�cation does not explicitly consider node granularity. However, it

is included implicitly since it is closely related to the control/arithmetic ratio, as is apparent

in Fig. 3.9.

The authors in [15] explained their classi�cation as follows:

Architectures can be classi�ed in many di�erent ways. One way of classi�cation

is based on the amount of operation sharing on an arithmetic unit, as shown in

Fig. 3.9. One extreme end of the scale represents the traditional micro-processor

architecture, where all arithmetic operations are time-multiplexed on one single

general purpose alu. This architecture is classi�ed as control driven, since

the functionality of the programmed device is completely determined by the con-

tents of the control section. On the other end of the spectrum, one can �nd

architectures such as systolic arrays (bit-parallel or bit-serial), where each op-

eration is represented by a separate hardware unit. The architectures are called

hard-wired or data-ow and the control section is minimal, if at all existing.

Naturally, a complete suite of in-between architectures can be de�ned. In fact,

one of the major challenges in architectural design is to strike the right bal-

ance between control and data path sections for a given application and a given

throughput range.

Henceforth, we will assume that the reader is reasonably familiar with the di�erent

classes outlined in Fig. 3.9 i.e. bit-serial, systolic, data path clusters, dedicated multi-

processors, dedicated signal processors, general purpose signal processors, micro-processors.

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 24

Systolic

Bit-Serial

Data Path Clusters Micro-Processor

HARDWIRED

ASSEMBLY

CODE

General Purpose

Signal Processor

Dedicated DSP

Dedicated

Multi-Processors

FULLY
INTERMEDIATE

PERFORMANCE

FLEXIBILITY

Figure 3.10: Performance and Flexibility for Di�erent Approaches

Reference should be made to [15] for any necessary clari�cation.

3.3 Architectures for High Speed DSP

What architectural approaches satisfy the speci�c computation requirements of

high speed dsp, that were outlined in Section 2.5 of Chapter 2?

For a given algorithm, hard-wired approaches usually dominate in performance

since they can be designed to �t the speci�c problem at hand (with the caveat that a superior

algorithm in software can beat an inferior algorithm in hardware). Furthermore, hard-wired

approaches are more e�cient since they tend not have any of the extraneousness (such as

unused hardware units) that a general purpose programmable processor might have. Control

driven architectures are easily prototyped since can be solved by software e.g. programming

a general purpose dsp. Software systems are more easily created and simulated than hard-

wired approaches which require the creation of application speci�c hardware. The problem

of rapid prototyping for high speed dsp applications poses the interesting challenge of �nding

architectural approaches which exhibit the exibility of control driven ones and the high

performance of hard-wired ones.

(Fig. 3.10) shows the rough trade-o�s in performance and exibility for the di�erent

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 25

architectural classes of based on the control/arithmetic taxonomy. Digital signal processing

chips are now capable of tens of millions of multiply-accumulates per second. However,

they are still not fast enough to meet the computations intensive tasks of real-time dsp.

Section 4.2.1 will discuss these processors further. Bit-serial architectures do not lend

themselves easily to hardware multiplexing and conditional operations which limits their

application range. For high performance circuits, they are less area e�cient and are slower

than bit-parallel ones for the reasons outlined in [54]. Systolic architectures ([62, 63])

are generally restricted to algorithms which can be formulated in a regular fashion (such

as �lters). Examples of bit-serial, systolic, and semi-systolic programmable �lters can be

found in [86, 55, 50].

Vector-pipelined architectures such as described in [123] (not classi�ed in [15])

can achieve high throughput rates. However, due to the high branching penalty overhead

associated with very deep pipelines, the use of conditional operations is very restricted.

There have been recent investigations to alleviate this overhead [33], but this is still in the

research phase.

Moderate performance has been reported for architectures which have dedicated

multi-processors. The control based nature of these architectures restricts the throughput

range. In general, the performance of architectures with a restricted number of large gran-

ularity processing elements (as constrained by chip area say) can be improved by increasing

the level of pipelining of the processors e.g [127]. However conditional operations will have

severe overhead penalties due to the deep pipelines.

On the topic of heterogeneous data path clusters, the authors in [15] stated:

The control oriented processor approach tends to break down for applications

with higher throughput ranges (such as required in speech recognition, video,

and image processing), since the ratio between data rate and instruction rate

tends to approach unity in these cases. A multi-data path approach with limited

hardware sharing (and hence small control unit) and extensive use of pipelining

and concurrency is required.

Detailed examples of data path clusters or hard-wired data paths were presented

in Chapter 2. The distinguishing features of the hard-wired data path approach are the

high computational speeds and hardware e�ciency achievable through the use of heavy

pipelining and concurrency and the \hard-wiring" of the algorithms into the data paths. In

cases where conditional operations are required, these can often be hard-wired into the data

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 26

path with little or no overhead. The operational units will be speci�ed by the computation

nodes of the algorithm, and will have very little unnecessary overhead. As a consequence

of better hardware e�ciency, hardware replication becomes feasible. Hardware replication

can increase concurrency and performance, and can be used together with or instead of

pipelining as appropriate.

3.4 Conclusions

Several architectural taxonomies were discussed. Focus was placed on a scheme

which uses the control/arithmetic ratio to distinguish between di�erent dsp architectures.

Using this scheme, architectural styles were compared for functionality, performance, and

hardware implementability. It was shown that among the approaches to achieving high

performance, hard-wired pipelined data paths have distinct advantages over control ori-

ented processor approaches, since the ratio between data rate and instruction rate tends to

approach unity in these cases.

Chapter 4

Rapid Prototyping Platforms

"A wide variety of chips move to higher levels of integration, making previous distinctions

ambiguous and heralding a new generation of dsp technology",

| W Andrews, Computer Design Magazine [7]

4.1 Introduction

In real-time dsp applications the emphasis is on performance. Because of their

distinctive advantages in achieving high performance, hard-wired pipelined data paths are

used in many designs (Chapters 2 and 3). Currently, these data paths are implemented as

ASIC s. The costs in money and time to design, fabricate, test, and debug these integrated

circuits are usually non-trivial.

In order to capture market share for any product, a quick time to market can be

critical, more so due to increasingly shorter and shorter product life cycles. Engineers need

to be able to rapidly implement, test, and modify their designs. In short, a capability for

rapid prototyping is needed.

The goal of this work is to de�ne software-con�gurable integrated circuits which

can be used to synthesize hard-wired pipelined data paths. Since the con�guration of

the hardware is done in software, it is quickly and easily changed which makes it ideal

for rapid prototyping, and, because the hardware can be con�gured to speci�cally match

the application, high performance is also achievable. Using these circuits, the dsp system

design engineer will be able to prototype his design in a matter of days instead of the months

associated with the costly asic design, fabrication, and test cycle.

To establish a context, we will �rst discuss the implementation platforms such as

27

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 28

ttl and bit-sliced parts, asics, and digital signal processors, upon which dsp systems are

built. We will then discuss approaches for rapid prototyping of these systems: a) High-

level synthesis tools are being built to aid the automatic generation and interconnection of

parts both at the chip and the board level of design. b) Software-con�gurable hardware has

proven to be an exciting approach to rapid prototyping. We will examine several recent

and interesting architectures of this genre both at the system level, and at the chip level.

Examples are considered both within and without the dsp arena for the valuable lessons

they have to teach about con�gurable hardware approaches. We will then present a novel

hardware platform for high speed dsp prototyping which is based on the idea of software

recon�gurable data paths.

4.2 Implementation Platforms

4.2.1 Programmable DSPs

It has been roughly ten years since the introduction of the �rst digital signal

processing chips or dsps. Since then, they have established themselves as being �rst choice

for general purpose digital signal processing. These processors are surveyed in [1, 2, 65,

66, 18].

If there is a de�nitive feature of these dsps, it is the multiply-accumulate time

(mac). Since their introduction, the mac time has been steadily decreasing from several

hundreds of nanoseconds to the 50 - 100 nanoseconds that they now exhibit. Fig 4.1 shows

the trend. The data was drawn from the data sheets of several popular manufacturers such

as Motorola, AT& T, Texas Instruments, Fujitsu, Hitachi, and Analog Devices.

One possible way of deciding whether or not a dsp is appropriate for the task at

hand [67] is described in the following steps:

Step 1: Determine the application sample period. For example Table 4.1 shows

the sample period for three applications.

Step 2: Divide by the multiply-accumulate time of the machine. For example,

assuming a 100 nsec. mac time, we can calculate the instructions available per sample as

shown in Table. 4.2.

Step 3: Compare the instructions available per sample against the estimated com-

plexity of the algorithm.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 29

KEY:

floating point

fixed point

YEAR OF INTRODUCTION

MAC TIME (nsec.)

80 82 84 86 88 9078

100

200

300

400

Figure 4.1: Commercial DSP Multiply-Accumulate Time

Application Sample Sample

Class. Rate Period.

Voiceband 8 kHz 125 �sec

Audio 44kHz 22.7 �sec

Video 5Mhz 200 nsec

Table 4.1: Application Sample Period

Application Instructions

Class. per Sample

Voiceband 1,250

Audio 227

Video 2

Table 4.2: Instructions per Sample

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 30

This is of course an over-simpli�cation. One must also consider factors such as the

types of instruction that needs to be executed, and i/o bandwidth constraints. They key

observation to be made here however, is that once the sampling rate gets high, as in video

or real-time applications, or the algorithm becomes very complex (relative to the number

of instructions available per sample), then the dsps are not able to sustain the required

computation unless an unrealistic and impractical number of them are used. In some cases,

even that option is not available, due to i/o bandwidth and other limitations.

4.2.2 Generic Components

In rapid prototyping the use of generic integrated circuits (ics) would be preferred

over much costlier and riskier asic fabrication which can take weeks or months. Pre-

fabricated generic ics include ttl chips, ttl bit-slices [78], and ecl and cmos byte-slices [3].

The major disadvantages of using these approaches are high power, low speed, and large

board area, drawbacks which are related to the low level of integration of the parts.

Recently, components such as programmable logic devices (plds) and �eld pro-

grammable gate arrays (fpgas) have made dramatic improvements in integration levels.

Using plds and fpgas the designer can integrate glue logic, counters, simple �nite state

machines, micro-controllers and other functions that would require many ttl chips, and

integrate them into one or a few chips. However, despite their rapid advancements in speed

and integration levels, there are fundamental reasons why these components are not well

suited for high speed data paths. These components are software-con�gurable. Some can

be con�gured once only while others can be recon�gured for each application. Section 4.4

discusses these approaches further.

4.2.3 ASICs

By increasing the level of integration to that of an asic one can overcome many of

the de�cits of generic components. Performance can be increased, and power consumption

and board area decreased. Gate-arrays and sea of gates are the most popular implemen-

tation mediums for asics because they combine customizability with fast turn-around.

Standard cells are attractive for designs which require greater levels of customization. Full

custom designs are viable for high volume parts. The major drawbacks of using an asic

approach are high nre costs, high manufacturing costs, long turn-around time (weeks or

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 31

months), and di�culty to test and debug and correct errors. This approach is very intol-

erant of failure. If an error needs to be corrected, one can be faced with another long and

costly fabrication cycle.

4.3 High Level Synthesis

4.3.1 Microsystems: Chip Level

One way of improving the turn-around time of asics is to reduce their design

time by improving the layout and simulation tools. Logic synthesis is the translation of a

register-transfer level (rtl) description of a circuit into combinational logic and registers

that implement this register transfer. An example of a successful logic synthesis system is

reported in [13].

By creating designs that are \correct by construction", the designer can reduce the

number of iterations through the design, fabrication, and test cycle. High level synthesis is

one approach to this problem and its advantages are discussed in [74]. Traditionally, high

level synthesis is followed by automatic layout generation of an ic which implements the

rtl description. However, one is still left with the time for fabrication and testing, and the

still rather high nre costs associated with asic design and sophisticated cad tools.

Early synthesis systems which target the generation of dedicated multi-processors

have been reported in the Lager-I [101], and the Cathedral-II [100, 88]. More recent

synthesis systems target the generation of dedicated data paths in order to achieve the

much higher throughput demanded by real-time applications. Examples of such systems

are Lager IV [64] (actually more of a silicon compiler than a high level synthesis system),

Cathedral-III [88, 87], hyper [28, 99], and phideo [70].

4.3.2 Systems: Board Level

siera (Fig. 4.2) is an integrated cad environment for the behavioral and physical

design of dedicated systems [118, 113]. It extends the concepts of a vlsi silicon compiler

to board level module generation. Board level components are produced using a mix of

module generators and a module library. An interface generation module targets the auto-

matic integration of these components into a higher level module, or the entire board, by

synthesizing the appropriate interface modules.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 32

System Structure Description

ASIC PLD, PLA

Generators Generators

Parameterized

Library Modules

Interface

Generation

parameters

behavior descriptionbehavior description

Layout Generation

(place & route)

Board Layout

Figure 4.2: SIERA

High level synthesis holds great promise and continues to be a very active area of

research.

4.4 Software-con�gurable Hardware

With relief, with humiliation, with terror, he understood that he also was an illusion, that

someone else was dreaming him.

| Jorge Luis Borges, The Circular Ruins

In the previous section we have seen that none of the hardware platforms such as

commercial dsps and generic components, were capable of providing the system engineer

with high performance parts that could be quickly, easily, cheaply, and e�ciently proto-

typed. The typical price for performance and e�ciency is asic design and fabrication.

Improved logic synthesis and high level synthesis capability can reduce the design time but

do not eliminate the need for fabrication.

Given the above limitations, the idea of software-con�gurable hardware for rapid

prototyping is a natural and logical one. To re-iterate the basic argument: since the con�g-

uration of the hardware is done in software, it is quickly and easily changed which makes

it ideal for rapid prototyping, and, because the hardware can be con�gured to speci�cally

match the application, high performance is achievable.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 33

In this section we will describe several examples of recon�gurable architectures,

processors, and integrated circuits, some proposed and some existing. Each case study

contains some important lessons and clues to reveal in their approaches to architectural

and hardware con�gurability.

4.4.1 Purdue CHiP

Early proposals for con�gurable architectures can be found in [120]. The basic

idea is the creation of algorithmically specialized processors via polymorphic architectures,

the important characteristics being a) Construction is based on a few easily tessalated

elements b) Locality is exploited; i.e., data movement is often limited to adjacent processing

elements. c) Pipelining is used to achieve high processor utilization. Examples of the target

applications included designs for lu decomposition, solving linear equations, solving linear

recurrences, tree processors, sorting, expression evaluation, and dynamic programming.

As stated by the authors:

The con�gurable, highly parallel, or CHiP computer is a multiprocessor architec-

ture that provides a programmable interconnection structure integrated with the

processing elements. Its objective is to provide the exibility needed to compose

general solutions while retaining the bene�ts of uniformity and locality that the

algorithmically specialized processors exploit."

The CHiP computer is a family of architectures each constructed from three com-

ponents: a collection of homogeneous microprocessors or pes, a switch lattice, and a con-

troller. The switch lattice is the most important component and the main source of di�er-

ences among family members. It is a regular structure formed from programmable switches

connected by data paths. The pes, are connected at regular intervals to the switch lattice.

Fig. 4.3 shows three examples of switch lattices. Each switch in the lattice contains local

memory capable of storing several con�guration settings. The controller is responsible for

loading the switch memory via a separate interconnection network. Switch memory loading

is done prior to processing and in parallel with pe program loading.

Switches can vary by several parameters: m: the number of wires entering a switch

on one data path, or the data path width d: the degree or number of incident data paths c:

the number of con�guration settings that can be stored in a switch. The pe degree is the

number of incident data paths.

Lattices can vary depending upon the pe degree, the switch parameters, and the

corridor width, w, the number of switches that separate two adjacent pes. Fig. 4.4 shows

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 34

Switch

PEKey:

(a)

(c)

(b)

Figure 4.3: Three CHiP Switch Lattice Structures

the embedding of the complete bi-partite graph K4,4 in the lattice of Fig. 4.3c where the

center column of pes is unused i.e. the switch crossover value is 2. The ideas of exploiting

locality, pipelining and polymorphism for increasing performance are noteworthy.

Hardware con�gurability leads to enhanced fault tolerance. If an error is detected

in a processor, data path or switch, once can route around the o�ending element.

Overall, this paper contains several interesting ideas on con�gurable hardware at

the processor level. It is not clear how many of these ideas have been implemented into

hardware.

4.4.2 Texas Instrument RIC

The Texas Instrument's ric [16], is another early proposal for recon�gurable

hardware, at the integrated circuit level. Essentially, "A Restructurable Integrated Circuit

for Implementing Digital Systems" is proposed. The overt goal of the design was to create

a semicustom ic that serves much the same purpose as gate arrays and master-slices.

The design calls for an ic that contains four 16b micro-programmable slices (mpss).

The slices can operate in three modes: a) lockstep: all mpss receive the same micro-

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 35

(b)

(a)

Figure 4.4: Embedding of Graph K4,4 into Switch Lattice

instruction b) independent: each mps has its own micro-instruction stream, c) pipelined:

each mps forms a stage of a pipeline and the micro-instruction streams are di�erent for

each mps. Status ports contain signals for alu status, a carry chain, a shift/rotate linkage,

and a synchronization signal to provide implementations with word widths greater than

64b. Although no detailed information was reported, the high level speci�cation for the

mps design called for six major blocks: a) the data path b) the pla for interpreting data

path instructions c) the rom address sequencer d) the scheduler, and e) the programmable

interconnect. A centralized rom contains system microprograms and/or microprograms for

interpreting machine languages. If the rom is replaced with a ram, mpss become user

programmable.

An application example was the programming of a ric to implement a vax-11/780

instruction set processor. The proposed architecture contains many interesting ideas such

as linkable alu slices with di�erent modes of operation, writable microstore, and pro-

grammable interconnect for hardware con�gurability. However, it is not clear whether a

real machine was ever built. The target applications of this architecture are geared more

towards general purpose computing.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 36

RAM

43

M

P

SS

P

M

2

S

P

M

MPS 1

MEMORY

INTERFACE

EXTERNAL

INTERFACE

MEMORY

ALU, DECODER

REGISTER

SEQUENCER

MICROCONTROL

MANAGER

INTERRUPT

INTERFACE

INTERRUPT

EXTERNAL

ROM MANAGER

ROM

Figure 4.5: Texas Instrument's RIC Block Diagram

4.4.3 CMU White Dwarf

The cmu White Dwarf [129] was designed speci�cally to solve �nite element algo-

rithms and other algorithms employing similar sparse matrix techniques. It employs a wide

instruction word architecture in which the application algorithm is directly implemented in

microcode. An overview of the processor is given in Fig. 4.6. The cpu board contains all

the data path logic, the microcode memory, and the timing control unit. The system board

contains the interface to the vme-bus and the required logic to download microcode and

the data memories, and perform diagnostics. The Dwarfbus connects these boards to the

memory subsystem.

The data path organization is shown in Fig. 4.7. It comprises separate integer and

oating point units with dedicated connections to six memories which implement the six

data structures used in the fem algorithm.

The White dwarf employs a wide instruction word paradigm. All of the control

�elds for the alus register �les, data path routing, memory control and microsequencing

are contained explicitly in each microinstruction word (Fig. 4.8).

The microinstruction sequencer and how the microstore is con�gured is described

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 37

Dwarf Bus

VME Bus

Boards

Memory
CPU

Board

System

3/160

SUN

Figure 4.6: CMU's White Dwarf Processor Overview

MemoryMemoryMemory

LinkColRow

Registers

Address

Memory

Unit

Integer

Unit

Point

Floating

MemoryMemory

XYRP

Memory

SC

Figure 4.7: White Dwarf Data Path

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 38

address

branch

and

instruction

Sequencer

reg

Register

CC

Codes

Condition

Codes

Condition

Point

Floating

Unit

Unit

Integer

Microinstruction Register

Microstore

Sequencer

Figure 4.8: White Dwarf Control Flow

as follows:

The microinstruction sequencer is implemented with Am29818 shadow registers.

These registers contain both a standard pipeline register and a second register

called the shadow register. The shadow register can be loaded from the output

port and can drive the input port. The shadow register is a shift register. Data

can be serially loaded into the shadow register and then transferred to the pipeline

register or the input port. The registers which form the microinstruction register

are connected into a single serial scan path which is controlled by the system

board (Fig. 4.9). The scan path formed by the pipeline registers is used for

downloading microcode to the control memory. Microinstructions are shifted into

the pipeline register then written into the control memory through the same scan

data path normally used to read the control memory. This scan path can also be

used to read back contents of the control memory or to assist in diagnostics.

At the time this paper was published, the system was still in the process of being

built. The architecture is is tuned for a speci�c application domain, in this case, �nite

element analysis. The use of a wide microinstruction word, and a writable control memory,

con�gured via a serial scan chain are noteworthy.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 39

Microinstruction register

Microstore

Microstore Address

Downloader

Figure 4.9: White Dwarf Downloading Flow

4.4.4 MIT RAP

The mit recon�gurable Arithmetic Processor (rap) is an arithmetic processing

node for a message-passing, mimd concurrent computer [36]. It incorporates on one chip

several serial 64b oating point arithmetic units connected by a switching network. rap

calculates complete arithmetic formulas by sequencing the switch through di�erent patterns.

To paraphrase the authors: the basic rap data path is shown in Fig. 4.10 It

consists of four bit-serial arithmetic units, a switch, input registers, and output registers.

Intermediate results are fed back into the switch which is recon�gured to allow the next

stage of the computation to take place. When the computation is complete, the results are

sent to the output registers. At a higher level, the rap has a message passing interface. A

rap is sent messages that de�ne equations as a sequence of switch con�gurations, which are

stored in local memory. Subsequent messages use these stored con�gurations to evaluate

the equation. Mechanisms are included to allow pipelining of several raps.

Fig. 4.11 shows the overall rap block diagram consisting of the control blocks the

memories, and the data paths. The stated key feature of the rap is that it reduces the data

transfer bandwidth that the network must sustain to do arithmetic calculations e�ectively.

At the time of publication, a rap test chip had been fabricated and tested in 3 micron

scalable cmos technology. The rap is an example of a recon�gurable processor targeted to

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 40

Registers

Output

Units

Arithmetic

Switch

Registers

Input

Figure 4.10: RAP Data Path

fast oating point operation (20 MFlops), withing a message passing mimd environment.

The idea of sequencing the switch through di�erent con�gurations to achieve the various

levels of computation is particularly noteworthy.

4.4.5 Video Signal Processors (VSP's)

As might have become obvious in Section 3.2.4, the number of architectures for

image processing and real-time video applications are numerous. Many of these circuits are

user-con�gurable, and their number keeps increasing every year. For example: a general

purpose vsp is reported in [127], a four processor building block for simd image processing

arrays is reported in [35], a data-driven video signal array processor is reported in [107,

108, 109], a 300 mops video signal processor is reported in [79], and a data-ow processor

for real-time low level image processing is reported in [96].

Over forty image processing lsis made in Japan in the 1980's are surveyed in [41]

There are too many of these processors to describe all of them, so we will restrict

our discussion to a few representative specimens.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 41

NetworkNetwork

ToFrom

Control

Queue

Input

Buffer

Template

OutputSwitch

Control

Memory

Control

Input

Interface

Network

Queue

Input

Register

Switch

Registers

Output

Units

Arithmetic

Switch

Registers

Input

Figure 4.11: RAP Block Diagram

Philips VSP

The Philips vsp chip targets real-time video signal processing [127]. Each chip

contains three Arithmetic Logic Elements ales, and two Memory Elements mes, connected

by a full crossbar switch (Fig. 4.12). Connections to the crossbar switch are made through

so-called silos, which is a 32 word, two port ram which are used to provide algorithmic

sample delays. The ales are deeply pipelined (�ve stages). The mes contain 512 words

each. Each pe is controlled by its own control memory p, which accommodates up to 16

instructions. In this architecture, the program is cyclically repeated, without any breaks,

by avoiding conditional branches.

The ale blocks are shown in Fig. 4.13. Arithmetic and logic operations are possi-

ble. It has two data inputs for alu operations. A third input is used for partial multiplica-

tions and to enable data dependent operations by supplying a parameter for the instructions

stored in p. In this way data-dependent instructions are realized without using conditional

branches.

The techniques such as employing a fully crossbar switch and the philosophy of

polycyclically executing a repetitive kernel make this architecture very interesting. The

target application domain is closely related to to that of this work. However, we observe

that the granularity and level of pipelining of the processors (ales), the �xed word widths

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 42

S
O
L

I
S

inputs

outputs

SWITCH

CROSSBAR

5

P

ME

P

ME

P

ALE

PP

ALE

P

ALE

Figure 4.12: Philips VSP

of 12 b, and the choice to allocate large resources to on board memory support, limit its

applicability for rapid prototyping of high speed data paths. A �xed word width narrows

its applicability to certain video applications. Its deep ale pipelines are not well suited to

e�cient calculation of recursive loops and conditional branch type instructions.

ITT DataWave

The itt DataWave is a so called "Wavefront Array Processor for Video Applica-

tions" [107, 108, 109]. The processor topology is an array of 16 individually programmable

mesh-connected cells (Fig. 4.14). The processor executes statically scheduled data ow

programs, propagating data through the array in a wavefront-like manner.

In this data-driven approach, cells automatically wait when neighbors are not

ready to send or receive data. Built-in hardware supports an asynchronous self-timed

4-phase handshake protocol. A major bene�t of adopting an asynchronous paradigm is

immunity to clock skew, which is critical at very high clocking frequencies. Eight deep fifo

bu�ers smooth out the data transmissions between cells.

The cells have 12b word widths and communicate with nearest neighbors through

input and output fifos. The core cell with its execution units and program ram is sur-

rounded by three 12b ring buses (Fig. 4.15). This bus enables a result from the core cell to

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 43

R

KC

KBKA

O

CBA

PLA

QP

ALU

From P

SHC

MUXMUXMUX

SHBSHA

Figure 4.13: Philips VSP: ALE Block Diagram

EastWest

South

North

12

12

12

12

12 12

12 12

Bus Switch

Bus Switch

Figure 4.14: DataWave: Processor Architecture

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 44

EastWest

South

NorthOUT FIFO

IN FIFO

IN FIFO

OUT FIFO

Shift

ALU/

12*12+29

MAC

64 x 48

RAM

Program

File

Register

Figure 4.15: DataWave: Cell Architecture

be broadcast to all communication ports simultaneously. A four-port 16 word register �le

serves as local data store. The alu can perform arithmetic, a 1b shift/rotate, the 16 possi-

ble logic operations of two operands (and, or, xor, nand etc.), and provides several ags for

conditional operations. The mac can multiply two 12b �xed-point operands and add the

result to a 29b accumulator. Program con�guration is done via a serial bus. A fast internal

clock of 125MHz is achieved by pipelining the exus to �ve (deep) levels. As a consequence,

branch execution is delayed by 3 cycles. Also, due to the high clock frequency, the data

transmission rate for inter-processor communication is typically set lower by a factor of 2

or 3 than for inter-cell communication.

This architecture is intrinsically interesting because of its use of data-driven and

asynchronous communication techniques. The two-dimensional processor array topology

can be limiting in some applications. For those applications which map well to a two-

dimensional array of processors with homogeneous interconnectivity and for which 12 bits

are adequate, or which can tolerate the 3 cycle branch penalty, this architecture is could be

very attractive.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 45

8wx16b

File

Reg
data buses

16wx32b

prog. mem. 512w x 32b

Program Sequencer

Program Bus 32b

DP3DP2DP1

I/O

DP0

Program
Local

ADD/SUB

MPL

ALU

Cache

512w x 16b

Memory

Cache

512w x 16b

MemoryMemory

512w x 16b

Cache

Memory

512w x 16b

Cache

512w x 16b

Memory

Work

Address Generation Unit

Figure 4.16: NTT VSP Architecture

4.4.6 NTT VSP

The ntt vsp [79, 80] contains four pipelined data processing units (dpus) and

three parallel i/o ports (Fig. 4.16). Communication among the dpus and four sets of

cache memories occurs via eight 16b buses. The dpus are pipelined to �ve levels. The

dpus are controlled by local program units (16w x 32b) which are in turn sequenced by a

central program sequencer containing 512w x 32b of instructions. These units are initially

con�gured via a boot-rom which employs appropriate \set-up" commands. This vsp has

the advantage of having a very high data memory bandwidth and is attractive for speci�c

video processing such as video codecs.

4.4.7 Software Recon�gurable Transceiver

A programmable dsp engine for high-rate modems is was presented in [6]. The

architecture contains a fir processor for signal processing applications and a binary proces-

sor for data manipulation. The fir processor contains three fir engines in a multiprocessor

simd architecture with a 32b instruction set dedicated for dsp tasks. The binary processor

contains a general purpose unit for cascading, error computation, error scaling, slicing, A/D

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 46

and D/A interface, tdm interface, agc etc.

The device is fully programmable as a transmitter, echo canceller, equalizer, deci-

sion feedback equalizer. It supports programmable �lter structures, programmable adapta-

tion modes, programmable adaptation rates, programmable �lter rates, has software recon-

�gurable interconnections, zero-glue interface to most processors and programmable support

functions.

While the data rates (5 Mb/sec) are not as high as the applications that we

consider, this processor is an good example of the e�ective use of software-con�gurable

techniques to its application domain to provide exibility and high performance.

4.4.8 Field Programmable Gate Arrays

Programmable or restructurable devices known as programmable logic devices

(PLD's) (such as [5]) are able to implement random logic and simple fsms rather well.

Prior to these devices, any glue logic or simple controllers would typically require several

or many ttl parts depending on the complexity. With these devices, the chip count can

be dramatically reduced.

In recent years, the class of chips known as fpgas has seen rapid growth [40].

Examples are numerous and new ones are continually being reported. Among the many

popular ones are: Xilinx [52, 51, 130], Actel [4], Algotronix (Cal) [45], Plessey [46], att

[48], and Plus Logic [94]. These devices are of similar architecture and granularity in that

they all consist of some form of con�gurable logic block clb connected by some form of

programmable interconnect.

It would be impractical and unnecessary to discuss all members of this class. We

will choose the popular xilinx XC3000 fpga as a representative. Fig. 4.17 shows the basic

logic cell array layout. A logic cell array consists of a set of clbs which are user-con�gurable.

Other user-con�gurable structures are the programmable interconnect and the i/o blocks,

or iobs.

The basic clb architecture is outlined in Fig. 4.18. It contains two sections, one

combinational logic, the other, registers. The combinational logic section is implemented

as a thirty-two entry 1b sram. With this structure, several choices of combinational logic

functions are possible as shown in Fig. 4.19. The basic interconnection structure is shown

in Fig. 4.20.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 47

programmable interconnect

CLB

array of CLBs

perimeter of IOBs

CLB

CLB

CLB

CLB

2000

3000

3042

64

100

144

64

80

96

1202243064

1443203090

I/OCLB’sPART

CLB

CLBCLB

Figure 4.17: XC3000 Logic Cell Array Family

R
D Q

CE

CE

D Q
R

R

Din

CLOCK

CE

F
G

F
G

F

G

X

Y

STORAGE ELEMENTS

COMBINATIONAL

LOGIC

A

B

C

D

E

F

G

Figure 4.18: XC3000 CLB Architecture

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 48

any function
of up to 4

variables

any function
of up to 4

variables

A
B

C
D
E

F

A
B

C
D
E

G

QX
QY

QY
QX

any function

of 5 variables

A
B

C
D
E

F

G

any function
of up to 4
variables

QX
QY

A
B

C
D

QX
QY

variables
of up to 4

any function

D
C

A
B

QX
QY

M
U
X

E

G

F

Figure 4.19: XC3000 Combinational Logic Options

Long Lines: 4 Vertical, 2 Horizontal

General Purpose Interconnect: 5 vertical, 5 horizontal

Direct Connect to 4 Nearest neighbor CLB’s

Matrix

Switch

CLB

CLB

CLB

CLB

Figure 4.20: XC3000 Interconnect Structure

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 49

These devices are changing the way many system designs are being implemented

and prototyped. Because they are software-con�gurable, and have robust simulation tools,

designs which might take weeks to fabricate in an asic can now be done in a matter of

hours. As the level of integration increases, the number of usable gates will continue to

grow into the tens of thousands. Since many actual designs typically contain gates of this

order of magnitude, fpgas have and will continue to be competitive with conventional gate-

arrays for low to medium complexity designs. Active research is also currently being done

in the �eld of logic synthesis for fpgas [81, 82, 39] and in incorporating them as hardware

platforms into high level synthesis systems [132].

Due to their bit-level granularity, fpgas will not support as exible routing of

wide data-buses and will not have as fast adders (for the same technology) as a word-level

granular architecture with exible bus interconnections and adders optimized for speed.

fpgas also do not typically support hardware multiplexing of their clbs which can lead to

highly ine�cient designs in some cases. For these reasons, fpgas will have limitations in

the prototyping of high speed data paths. These limitations will be further elaborated on

in Appendix A.

4.4.9 PADDI: Programmable Arithmetic Devices for High Speed DSP

In Chapter 2, we discussed the computational requirements for real-time dsp ap-

plications. in Chapter 3, we discussed taxonomies which would help us di�erentiate between

the many architectural styles found in digital signal processing. There we focussed on the

arithmetic/control ratio as an appropriate metric and discussed the merits of hard-wired

data path approaches for high speed digital signal processing. In the previous sections of

this chapter, we have argued the need for rapid system prototyping, and the advantages

of software-con�gurable hardware approaches. We have discussed speci�c case studies of

systems and ics which use con�gurable hardware approaches. While these approaches serve

their particular application domains very well, none of them are well suited to rapid pro-

totyping of real time digital signal processing applications, speci�cally those which require

hard-wired data path solutions because of their high speed computations, and low arith-

metic/control ratio.

Clearly what emerges is the need for some type of programmable engine which

lends itself to the rapid prototyping of high speed data paths. From Section 2.5 we re-

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 50

iterate the basic architectural features which must be supported by such an engine:

a) a set of concurrently operating execution units (exus) with fast arithmetic, to

satisfy the high computation (hundreds of mops) requirements.

b) very exible communication between the exus to support the mapping of a

wide range of algorithms and to ensure conict free data routing for e�cient hardware

utilization.

c) support for moderate (1-10) hardware multiplexing on the exus, for fast com-

putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds of MB/sec).

The basic concepts for such an engine, paddi, or Programmable Arithmetic De-

vices for High Speed Digital Signal processing, were �rst reported in [25]. The abstract

architecture, shown in Fig. 4.21, is similar, but not identical to those of the software-

con�gurable architectures presented in the previous sections. The set of exus are repre-

sented as data processors. The n x n switch provides exible communication. Performance

is achieved through increased parallelism rather than increasing the level of pipelining of

the exus, which better satis�es c) and d). In order to satisfy both e) and f) simultaneously,

a two level instruction decoding scheme is employed. The local ips which directly control

the dps are serially con�gured at con�guration time. At run-time, they receive instructions

from an external ip via a 1-n switch. What sets this architecture apart from the others

mentioned previously is the granularity the exus, the instruction set, and the allocation of

resources to speci�cally support high speed data paths. The architecture will be presented

in detail in Chapter 5.

4.5 Conclusions

In this chapter we discussed the need for rapid prototyping in general, and for

dsp applications in particular. We also discussed various methods which can be em-

ployed to achieve a rapid prototyping capability. A promising approach is that of software-

con�gurable hardware. We have discussed several architectures which employ this approach.

While many such architectures exist for a variety of applications, none are well suited for

rapid prototyping of the high speed data paths found in real time dsp. We also presented

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 51

1:N

Instruction

Hierarchy

Memory

Hierarchy

Memory

Data

NxN

IP
DP

SW

IPSW

Figure 4.21: PADDI Abstract Architecture

an abstract view of the paddi architecture which was created to �ll this gap.

Chapter 5

PADDI: Architectural Design

Fallacy: One can design a awless architecture

| J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach

5.1 Introduction

The goal of this chapter is to describe the development and design of an archi-

tecture which targets the rapid prototyping of high speed data paths for real-time digital

signal processing applications.

In Chapter 2 we discussed the computation and i/o requirements of real-time dsp

applications. Many high speed dsp systems employ a hard-wired pipelined data path ap-

proach to attain the requisite high computation rate The merits of the hard-wired pipelined

data path approach were discussed in Chapter 3. Chapter 4 focussed on rapid prototyping

platforms for high speed dsp systems. There we identi�ed software-con�gurable hardware

to be a very promising approach to attaining the dual goals of exibility for rapid proto-

typing and high computation rate. We discussed several examples of software-con�gurable

hardware architectures and identi�ed the need for one that addresses real-time dsp. In this

chapter we describe the development and design of such an architecture, namely, the paddi

architecture. The acronym paddi stands for "Programmable Arithmetic Devices for High

Speed Digital Signal Processing".

We shall begin with a discussion of how paddi was developed. As we present

the architecture, we will explain the reasons for some of the key design choices and we

will discuss the various techniques used to achieve high performance. The programmer's

52

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 53

view will be presented along with a simple benchmark to illustrate how the prototype chip

functions.

5.2 Design Goals

Flexibility and high computation rate were the primary design goals for the archi-

tecture. Flexibility indicates the goal for the architecture be able to support a wide range

of real-time dsp applications. High computation rate arises due to the real-time nature of

the applications. Another major goal was e�cient hardware utilization i.e. not only should

the architecture able to support many di�erent algorithms, but it should do so with as little

unused resources as possible. Achieving this is strongly related to the ability of the compiler

to recognize and ultimately to utilize the underlying hardware resources.

These goals determine the �nal choice of logical functions, communication topol-

ogy, and control structure of the architecture.

The decision to adopt a software-con�gurable hardware approach to achieve exi-

bility and high speed computation rate, was made early in the design process, based upon the

analysis contained in the previous chapters, The next step was choice of the dynamic/static

interface, which is described in the following section.

5.3 Dynamic/Static and Hardware/Software Interfaces

In this section we adopt the interface model described by Melvin [77]. A computer

can be thought of as a multi-level system with high level algorithms at the top and circuits

at the bottom. In between are levels, or interfaces, which de�ne sets of data structures and

the operations allowed upon them. Examples of interfaces are high level languages, machine

languages and microcode.

The author distinguishes between the dynamic/static interface (dsi) and the hard-

ware/software interface (hsi).

The choice of placement of the dsi is a very basic decision and will directly a�ect

the performance of any machine. We digress briey to clarify what is meant by dsi.

The dsi is that boundary between translation and interpretation. During transla-

tion, the speci�cation of the algorithm is changed from one format to another and is a one

time a�air. During interpretation, the algorithm speci�cation is executed, using input data

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 54

(after Melvin 1990)

Conventional

Machine

with

Interpreter

Conventional

with

Machine

Compiled

Code

Compilation

to

Microcode

with

Compiled

Code

Processor

Performance

High

Machine

Language

Level

High

High Level

Language

Intermediate

code

Instruction Set

Architecture

Microcode

(single cycle

level)

Individual

gates

Figure 5.1: DSI Placement Examples

that is not part of the speci�cation, and results are generated. Interpretation occurs every

time the algorithm speci�cation is executed.

According to the author, the hsi is that boundary between hardware and software.

The distinguishing element between is one of alterability. The microcode of most machines,

although stored in read/write memory, can be viewed as hardware because it cannot be

changed without halting the processor. In some sense, this conicts with our usage of the

term software-con�gurable hardware where it is implied that user-de�ned con�guration in-

formation (including microcode), though static during execution time, is actually software.

Melvin observes that Patt and Ahlstrom argue that microcode should be considered hard-

ware if it provided by the manufacturer and software if it written by the user [93]. The

apparent conict is discussed by him and is resolved as follows: the idea of builder/user

interface is used to describe software-con�gurability and is considered a separate concept

from that of hsi.

The author discusses several examples of dsi placement as shown in Fig. 5.1.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 55

The �rst example represents a conventional interpreter. The high level language

program gets translated into an intermediate level code. It then gets interpreted by a

program running on a conventional microprogrammed machine. There are three levels of

interpretation involved: the intermediate level code by the machine level code, the machine

level code by the microcode, and the microcode by the gates. The second example rep-

resents a conventional microcoded machine running compiled code. Here the intermediate

code step is eliminated. The third example represents reduced instruction set machines

which puts the dsi (and hsi) at the lowest level possible. The fourth example represents

a higher performance version of the second example. Here, the microcode interpreter has

been eliminated and the machine language level is executed directly. If the instruction set

architecture is designed speci�cally with a hard-wired implementation in mind, the distinc-

tion between the third and the fourth examples blurs. The �nal example represents a high

level language architecture. The author quotes examples of actual machines for each case.

At the beginning of our architectural design, the choice was made to place the dsi

of our processor as in example three discussed above. As was observed in Chapter 2, real-

time dsp algorithms are typically implemented on pipelined data paths, which are either

fully pipelined (the hardware multiplexing ratio is one), or execute tight inner loops (the

hardware multiplexing ratio can range from one to ten). The choice of adopting a risc

philosophy dove-tailed with this for the following reasons. Firstly, a reduced instruction

set evolves naturally from the digital signal processing domain. The instructions that are

required are naturally restricted to arithmetic and comparison types due to inherent nature

of the computations. Secondly, since these instructions execute repeatedly in pipelines

and/or in loops, the performance gain of a simpli�ed, but faster design, will be magni�ed

many-fold as they are continually repeated over time.

Having committed to this choice of dsi, the next step was to evaluate the fre-

quency of individual functions and optimize the performance of those that were used most

frequently. Essentially, the problem was one of chosing the hsi.

5.3.1 Design Methodology

A design methodology of successive re�nement was used to develop the architecture

(Fig. 5.2). The successive re�nement consisted of two phases, one of analysis, and one of

synthesis.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 56

interconnect, control & IO.

IO

interconnect, control

Evaluate new benchmark

Compare performance

to existing architectures

or recast old one

Evaluate primitives,

primitive operators,

Define architecture,

Examine benchmarks

Reject complicated ones

analysis

synthesis

analysis

Figure 5.2: Architectural Design Methodology

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 57

In the analysis phase, a benchmark was evaluated for its particular architectural

requirements, namely its primitive operators, its interconnect, its control, and its i/o re-

quirements. Based on the results of the analysis, we could, in the synthesis phase, construct

or modify an architecture to support this benchmark. If a certain feature was not used

very often, or would complicate the architecture, it was rejected. Additionally, the �nal

architecture was compared to existing designs such as discussed in Chapter 4. The �nal

justi�cation of the design lay in its ability to out-perform prior ones. Our objective was to

create as simple an architecture that would meet the design goals. By keeping things sim-

ple, we wanted to maximize our chances for achieving functionality, high speed and e�cient

compilation.

5.3.2 Functional Design

Listed below are some of the main algorithms that were used as benchmarks.

Biquadratic �lters were a simple and convenient benchmark with which to get started.

The architecture can support non-recursive �lters but recursive biquadratic �lters are more

interesting because their feedback structure puts more of a burden on the architecture.

Filtering

� a) biquad

- hardware multiplexed

- direct-mapped

- pipelined [112, 92]

Video and Low Level Image Processing

� b) Video Matrix Converter [88]

� c) 3x3 Linear Convolver [104]

� d) 3x3 Nonlinear Sorting Filter [104]

� e) Memory Controller For Video Coding [106]

Speech Recognition

� f) Dynamic Time Warp [58]

� g) Word Processor [116, 115]

� h) Grammar Processor [22]

The basic features that must be supported by the architecture were listed in Sec-

tion 4.4.9. These were:

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 58

min, max

8-24b 2’sc

8-18b unsigned

communication
heterogenous

DATAPATH

parallel

pipelined,

OPERATORSARITHMETIC

8 - 51 O/P

8 - 112 I/P

saturation

global branch

local branch

compare

1/2 .. 1/128

DATA

I/O

CONTROL

+ - shift

acc, mult

Figure 5.3: General Characteristics of Benchmark Set

a) a set of concurrently operating execution units (exus) with fast arithmetic, to

satisfy the high computational (hundreds of mops) requirements.

b) very exible communication between the exus to support the mapping of a

wide range of algorithms and to ensure conict free data routing for e�cient hardware

utilization.

c) support for moderate (1-10) hardware multiplexing on the exus, for fast com-

putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds of MB/sec).

Figure 5.3 is a summary of the general characteristics of the benchmark set and

show speci�c features that need to be supported. The common theme to the data paths

examined was the requirement for many operators to be executing in pipelined and parallel

fashion, with a widely varying or heterogeneous communication between them. Typically

the arithmetic was unsigned or two's complement, ranged in required accuracy from 8b to

24b, and was saturating. Operations were mainly limited to addition, subtraction, shifting,

comparison, accumulation max and min, and multiplication. Two forms of low overhead

branching were required. Local branches where the result of one operator was used to

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 59

NUMBER of OPERATIONs

4:1 mux abs mult2:1 muxshift

OPERATION

compadd/sub

hgfedcba

30

20

10

Figure 5.4: Number of Ops vs. Op Type

control the output of another, and global ones where the result of an operator inuenced

the global instruction sequence. The i/o pin count for the various implementations that

were examined exhibited a wide range as shown, which gives some insight into the i/o

resource requirements. The combination of Table 2.1 which summarizes the computations

and i/o bandwidth requirements and Figure 5.3 which lists speci�c characteristics were

used to guide the design of the architecture. The detailed results of this study are described

below.

Operator Statistics

A count of the di�erent operations present in each algorithm (a - g) listed above

was compiled. The result, for each algorithm, is shown in Figure 5.4. The assumptions

made for the �xed coe�cient biquadratic �lter (case a) was that on average, four shifts

were required after canonic-signed digit conversion. Max and min functions functions were

decomposed into compare and multiplexing operations. The abs and mult (variable by vari-

able) operations were only present in the dynamic time warp example. As to be expected,

the add/sub operation is dominant for all algorithms.

Further perspective can be gained by summing a particular operation e.g. all

additions, across all the algorithms. The result is presented in Figure 5.5. The percentage

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 60

occurrence of all occurrences is also listed. Clearly, by adopting the ten percent rule,

architectural support for add/sub, shifts, comparisons, two to one multiplexing is desirable.

Interconnect Statistics

A count was made of the connectivity of the di�erent operations in each algorithm

i.e. (a - g), listed above. The result for each algorithm is shown in Figure 5.6. Here 1:m

denotes an arc in the signal ow graph which connects a single source to m destinations,

and n:1 denotes an arc which connects n sources with one destination. As to be expected,

the 1:1 arcs are dominant for all algorithms due to the spatial locality of the computations.

Further perspective can be gained by summing arcs across all the algorithms. The

result is presented in Figure 5.7. The percentage occurrence of all occurrences is also listed.

We observe that 1:1 connections dominate by occurring 78.9 % of the time, 1:2 connections

15.0 %, 1:3 connections 2.4 %, 1:4 connections 1.7 %, 1:5 connections 0.7 %, 1:5 connections

0.2 %, 2:1 connections 0.5 %, and 4:1 connections 0.2 %.

Because of the close correspondence between the operators and hardware execution

units in fully pipelined applications, we can reasonably associate operator connectivity with

execution unit connectivity. We can deduce from the high percentage of 1:1 and 1:2 arcs

that there is tremendous spatial locality in the usage of variables. This spatial locality

arises as a direct consequence of pipelining where operational units tend to communicate

with neighbors. In these considerations, the statistics will change depending upon the level

of hardware multiplexing which is allowed. Clearly when several operations are executed

upon the same hardware unit, the distribution of the various types of arcs will change. For

example, the need for data merging into a single destination (over several cycles) will be

clearly be greater.

Control Statistics

The types of control structures required for each algorithm is listed in Figure 5.8. In

many of the algorithms, the applications are fully pipelined and so the the control structure

is degenerate i.e. none is required. Others typically require the repetitive execution of a

small loop.

An example of such a loop is outlined in Figure 5.9. It is the control loop for the

grammar processor of the grammar processing subsystem of example h. The state transition

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 61

1.8%1.8%0.9%

16.3%15.8%

25.8%

37.6%

OPERATION

add/

sub muxmux

multabs4:12:1compsh

90

80

70

60

50

40

30

20

10

Total Number of Operations

Figure 5.5: Total Number of Ops vs. Op Type

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 62

hgfedcba

NUMBER

FANOUT

60

50

40

30

20

10

1:61:51:41:31:21:1

Figure 5.6: Number of Arcs vs. Arc Type

diagram for the grammar processor consists of eight states. The �rst two perform processor

initialization. In the third state, the processor idles until a word is available at the input

fifo. Upon receipt of this word, it performs several state transitions to �ll the processor

pipeline until the last state is reached. At this point, the pipeline is full and the processor

executes within state until all successors of the word are updated, or the current probability

falls below a dynamically adjusted threshold, whichever comes �rst. The processor then

returns to the third state to await the next word. The above example illustrates the the

ability of the processor to perform conditional branches, and to perform several di�erent

instructions in a tight loop.

From these examples we discern that the processor we design should be capable

of e�ciently performing global branches, as well as the degenerate case of full pipelining

of the exus. What might not have been clear is the need for e�cient performance of

local branches. In many of the benchmarks, the result of one operation directly a�ects

the outcome of another. Examples of this are evident in the data path of the Grammar

Processor which was presented in Fig. 2.4. In this way, high performance is achieved because

the conditional operation is directly hard-wired into the data path. Our processor should

also be capable of handling these cases e�ciently.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 63

(2:1 0.5%, 4:1 0.2%)

0.2%0.7%
2.4%

1.7%

15.0%

78.9%

TOTAL NUMBER

50

100

150

200

250

300

350

1:1 1:2 1:3 1:4 1:5 1:6

FANOUT

Figure 5.7: Total Number of Arcs vs. Arc Type

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 64

CONTROLBENCHMARK

multiplexed)

a) biquad (hardware

a) biquad

(pipelined)

b) video matrix

converter

c) 3x3 Linear

Convolver

d) 3x3 Non-linear

Sorting Filter

e) Memory Controller

f) DTW

g) Word Proc

h) Grammar Proc

fully pipelined

fully pipelined

fully pipelined

fully pipelined

fully pipelined

control loop

control loop

control loop

control loop

Figure 5.8: Control Structure by Benchmark

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 65

000

111

101 110

011

010

001

100

PROB < THRESH

or ENDLIST

READ SUCC ADDRESS and TRANSITION PROB

UPDATE SUCC ADDRESS COUNTER

READ OLD PROB FROM PRIOR UPDATE

WRITE NEW PROB FOR CURRENT UPDATE

READ OFFSET

READ RMIN, SET WCTR

RESET

DONE IF

FIFOEMPTY

FILL

PIPELINE

Figure 5.9: Grammar Processor Control

484824

4 88

5

64

(excl. Epsilon Proc)

685

5

(Viterbi only)

g) Word Proc 4254

10 24 8

82410

27

MB/secMB/sec

(M Hz)

CLOCK

4824

BWBW PINSPINS

OUTPUTBENCHMARK

multiplexed)

a) biquad (hardware

a) biquad

(pipelined)

b) video matrix

converter

c) 3x3 Linear

Convolver

d) 3x3 Non-linear

Sorting Filter

e) Memory Controller

f) DTW

h) Grammar Proc

INPUT

32 16

36128 12 36

20 10

34

43 40

26

30 10

30 10

51 162

16

16

16

16

Figure 5.10: IO Statistics

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 66

IO Statistics

The i/o statistics are shown in Figure 5.10.

In this �gure we see the inclusion of two versions of the biquadratic �lter. The �rst

assumes that the �lter runs at 4 MHz. The second assumes that transformations are made

(using techniques described in [112, 92]) to pipeline the �lter to achieve a sampling rate of

24 MHz. Both assume that the �lters are 16 bits. For the linear convolver and the non-linear

sorting �lter (examples c and d), we assume that the line delays exist external to the system.

This assumption is made to reect the fact that our targeted architecture does not support

the implementation of video line delays. This allows a more accurate accounting of the

i/o requirements of these benchmarks. Actual pin numbers were available for the Viterbi

Processor section of the Word Processing Sub-system of benchmark g, and the Grammar

Processor of the Grammar Processing Sub-system of benchmark h which is why we have

tabulated these cases.

The main conclusion that can be drawn from these numbers is that real-time

algorithms place a heavy burden on the pin and i/o bandwidth requirements of the systems

that implement them.

Computation Rate Statistics

The computation rate statistics for the di�erent benchmarks are presented in Fig-

ure 5.11. The computation rate is calculated as the product of the total number of operations

(excluding data moves) and the clock rate.

Here a1 and a2 refer to the two versions of the biquadratic �lter. The Viterbi

Processor of the Word Processing Sub-system is labeled as g1, and the total requirements

of the whole word processing sub-system is labeled as g2. As mentioned in Chapter 2, this

system has been upgraded to handle 60,000 words in real-time with 30 accesses per state

which require in excess of 600 MB/sec of i/o bandwidth [115]. This upgraded system is

labeled as g3. The grammar processor section of the Grammar Processing Sub-system is

labeled as h1, and the total requirements of the grammar processing sub-system is labeled

as h2.

In order to estimate the balance of the required computation rate and the i/o

bandwidth of these systems, we can tabulate the ratio of these two metrics, as shown in

Figure 5.12. These results are plotted in Figure 5.13. The arithmetic mean of the ratio is 6.4

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 67

Computation Rate (MOPs)

a1 a2 b c d e f g1 g2 g3 h1

1000

2000

3000

h2

BENCHMARK

Figure 5.11: Computation Rate Statistics

Mops/MB/sec. A better estimate (to reduce the e�ect of outliers) is probably the geometric

mean which is 3.56 Mops/MB/sec. Clearly, if our �nal architecture digresses greatly from

these values, it should serve as a warning ag of possible imbalance of resources.

5.4 Techniques for High Performance

A popular measure of the performance of conventional uni-processors is the time

required to accomplish a speci�c task (or program, or algorithm, or benchmark). It is often

expressed as the product of three factors:

Time per Task = C � T � I

C = Cycles per instruction

T = Time per Cycle (clock speed)

I = Instructions per Task

Fig. 5.14 shows the task set for a uni-processor and a corresponding task set for

the prototype chip. If, for argument's sake, we assume this naive mapping, then several

points are clear. For each individual exu, the above performance metric still applies. The

mapping is of course naive, since, by applying such techniques as pipelining and parallelizing

operations across exus, operator chaining within exus, pipelining within exus, one can

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 68

0.75265200

0.9600520

2.685225

0.98375

2.260130

5.930176

2.248104

7.040280

4.2540170

7.92131674

27.5962640

14.2516228

5

5

5

(total)

h1) Grammar Proc

h1) Grammar Proc

(extended)

g3) Word Proc

(total)

g2) Word Proc

g1) Word Proc

24

4

5

(excl. Epsilon Proc)
5

5
(Viterbi only)

10

10

27

(M Hz)

CLOCK
BENCHMARK

multiplexed)

a) biquad (hardware

a) biquad

(pipelined)

b) video matrix

converter

c) 3x3 Linear

Convolver

d) 3x3 Non-linear

Sorting Filter

e) Memory Controller

f) DTW

8

IO BW

(MB/s)(MOPs)

COMP COMP/IO

(MOPs/MB/s)

Figure 5.12: Computation Rate / IO

BENCHMARK

h2h1g3g2g1fedcba2a1

10

20

30

Geom Mean = 3.56

Arith Mean = 6.4

Computation Rate (Mops) / IO BW (MB/sec)

Figure 5.13: Computation Rate / IO

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 69

TASK SET

PADDI

TASK SET

UNI-PROCESSOR

ins 1

3

2

n

ins 1 2 8

9 10 16

nn-7

n/8

n
n-6

21 8

EXUs

instructions

instructions
wide

Figure 5.14: Naive Mapping of Uni-processor Task Set

dramatically reduce the number of wide instructions and, in the limit, approach I =1 for

a fully pipelined application. We will now discuss the various techniques which we have

applied to improving the performance. This work relies in part on the techniques used in

the popular risc [57] approaches.

If we can reduce any of the individual components which contribute to the overall

time per task without increasing any of the other components in the process, we will have

improved the performance. Techniques which can be brought to bear on reducing C are

instruction pipelining, adopting a load/store architecture, using delayed branching and

�lling the unused slots with useful instructions.

In order to reduce T one must attempt to optimize and equalize the various

critical paths of the machine. This is one of the strongest arguments for adopting a simple

rather than complicated architecture.

The primary techniques which help reduce I are resident in the compiler, will be

discussed in more depth in Chapter 7. For highest performance, the goal is to spread the

Task over as many exu's as possible and, in the limit, approach I = 1. By minimizing

architectural constraints, eliminating special case situations and adopting an orthogonal

instruction set, the task of the compiler can be greatly facilitated. We therefore tried

to maintain a regular architecture with as few restrictions as possible and to expose the

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 70

underlying hardware to the compiler.

5.5 Processor Architecture

Having established our design goals, decided on a software-con�gurable hardware

approach, and settled on a DSI, the next step was to design the architecture based on the

analysis of the benchmark set presented above, and employing the various high performance

techniques presented.

At this point the problem was partitioned into its component pieces or modules,

namely functional blocks, interconnect, control, i/o, memory, and software con-

�guration

We will now describe some of the basic design questions that arose for each of

the separate components. Design choices in a given component almost always inuence the

design of the other components, and so it was not always possible to de-couple the designs.

A major inuence on the choice of design was the ability to have reasonably accurate

knowledge of the impact of a particular design choice upon the underlying silicon area and

the timing. Finally, the questions of Will the compiler be able to make use of this? and

Will this make it di�cult to compile for? and How will this impact hardware utilization?

were constantly kept in mind.

5.5.1 Execution Units

We begin by re-iterating the relevant key architectural feature required for the

operational units that was identi�ed in Section 2.5. The requirement was one of a set of

concurrently operating execution units with fast arithmetic, to satisfy the high computation

(hundreds of MOPs) requirements.

Design Considerations

Some of the major questions which needed to be answered for the functional block

design were Which operators should we support? Should the blocks resemble gate arrays

or processors? What is appropriate granularity? and Should the blocks be homogeneous or

heterogeneous in nature?

The question of which operators should be supported was answered by examining

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 71

the general characteristics of the benchmark set as discussed previously. A decision was

made to adopt a processor or exu based approach with moderate granularity. With this

approach, the desired functionality could be incorporated into the data path, optimized for

area and speed, and not consume any global routing resources that would be required in

a more granular approach. Additionally the overhead of con�guring and controlling larger

blocks decreases linearly as the block size grows. The problem is that, as the block size

grows, the impact of an unused block becomes higher. This puts additional pressure on the

compiler to ensure that the hardware can be utilized as fully as possible. We considered

an initial block size of 8b with the possibility of linking the blocks together for 16b, 24b

and 64b accuracy. We �nally decided upon a 16b architecture with linking capability for

32b operation in order to reduce the control overhead. A decision was made to adopt a

homogeneous architecture the regularity of which would be a plus for compilation e�ciency.

Execution Unit Architecture

Fig. 5.15 shows the internal architecture of an exu. It supports addition, subtrac-

tion, saturation, comparison, maximum-minimum, and arithmetic right shift. Furthermore,

the exus can be user con�gured to be both 16b or 32b wide. Arithmetic is performed in

two's complement or unsigned format with automatic saturation.

Two register �les each containing six registers are used for the temporary bu�ering

of data. The �les are dual-ported for simultaneous read and write operations. They can also

be con�gured as delay lines to support pipelining and retiming of operations. In each �le,

one of the six registers is con�gured as a scan-register. It can be initialized to contain an

arbitrary value (for the implementation of constant variables), read and written as a regular

register, or used for scan-testing. A fast carry-select adder and logarithmic shifter are used

to implement the arithmetic functions. A pipeline register is available at the output of each

exu for optional use. By using the register, the user can increase the maximum sampling

rate by overlapping exu operations with data transmission over the network. This can be

useful in applications where the additional latency has no negative e�ect. However, if the

operation is in a feedback loop, the additional pipeline register would normally not be used.

A status ag (a � b) is available to other exus and the external world.

The basic paddi operations are shown in Fig. 5.16 and Fig. 5.17 respectively.

There are no fundamental reasons, save area, that limit the exu to the one used

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 72

register
pipeline

8 WORDS

NANOSTOREFILE
REG

FILE
REG

SHIFTER

+

MUX

MUX MUX

Figure 5.15: EXU Architecture

ADD/SUB ACCUM SHIFT/(ADD/SUB)

SATURATION MAX(A,B)

MIN(A,B)

COMPARE

Figure 5.16: Primitive PADDI Operations (a)

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 73

PIPELINE REGISTER

OPTIONAL

REG FILES

2 PORT

DELAY LINE

LINKABLE DATA-PATHS

PROGRAMMABLE

PASS A/B

16 16

Figure 5.17: Primitive PADDI Operations (b)

in paddi or the number of nano-store instructions to eight. For a di�erent application set,

one might indeed wish to modify the exu design and increase the number of nano-store

instructions.

A decision was made to not implement a dedicated hardware multiplier due to

area cost. Many commercially available chips already exist which are essentially multiply-

accumulate engines. These engines are tuned for algorithms which require lots of multipli-

cations. However, as our benchmark set indicates, for many applications, the presence of

a multiplier becomes a costly burden because it would be an under-utilized resource. The

architecture of the exus can be easily modi�ed to support modi�ed Booth coded, multi-

cycle multiplication using shift and adds. Such a modi�cation may be included in future

versions.

We also note that four to one multiplexing and absolute values can be implemented

using the operators chosen, and, if implemented across several hardware units, can be done

with no performance penalty. These were the two other, less frequently used, operations

that were present in the benchmark set.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 74

5.5.2 Interconnection Network

We recall that the key architectural requirement for the interconnection network

from Section 2.5 was very exible communication between the exus to support the mapping

of a wide range of algorithms and to ensure conict free data routing for e�cient hardware

utilization.

Design Considerations

The major question which needed to be answered for the interconnect design was

What is the most economical network that will support the types of algorithms which we

target? This was one of the more critical and important design issues that was faced.

Although there is a tremendous amount of research which has gone into multi-

stage routing networks, they were not considered as viable alternatives because several

clock cycles would ne needed to route data through such networks. A main criterion for

the interconnect network is that it be fast, with no latency. The main design choices left

to us was whether to adopt hierarchical approaches as fat-trees [69, 68] and discretionary

interconnection matrices as in [128], or to adopt a full-crossbar. Full-crossbars are more

expensive to implement than hierarchical ones, as the number of functional blocks grow.

Ultimately, we adopted a combination of the hierarchical and cross-bar approaches. As

mentioned previously each benchmark was analyzed for its communication and routing

requirements. For those benchmarks, the hardware mapping of the sfgs exhibit spatial and

temporal locality in the usage of variables. Spatial locality arises because of pipelining since

operational units tend to communicate with neighbors. This spatial locality is quite evident

from the results of the benchmark set analysis of operator interconnectivity presented earlier.

Temporal locality occurs because of moderate hardware multiplexing and tight loops where

variables tend to be used and consumed over the span of a few instructions. We also observed

the need for data broadcast, and data merging. This model of execution is supported

extremely well by communicating clusters of exus, each containing local register �les and

connected by a high bandwidth, conict-free network (full cross-bar). We were able to

successfully hand compile our benchmarks to the paddi architecture (excluding the Dynamic

Time Warp example). A example is given in Appendix B. We feel that this approach puts

less of a burden on the compiler than a hierarchical one because of the full cross-bar at

the lower level. One could have chosen a less expensive interconnect topology than a

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 75

A

EXU

B

EXU EXU

C D

EXU

EXU

H

EXU

G

EXU

F

EXU

E

Type 1

Type 2

Type 2

Type 1

OUTPUT BUS

INPUT BUS

LOCAL BUS

Figure 5.18: Crossbar Switch

full crossbar for the lower level of the interconnect hierarchy. However, the power of the

crossbar is evidenced in the ability to support data broadcast from and data merging into

a single exu. The crossbar ensures conict free data routing within a cluster of exus which

ensures e�cient hardware utilization. Since the cross-bar is only used at the lowest level

of the hierarchy, the cost is still much less than that of a complete cross-bar connecting all

processors.

Clusters of exus are connected to other clusters via a high bandwidth connection.

The task of the compiler is to map sfgs by partitioning and selecting and assigning cutsets

to a cluster of exus. By having a full cross-bar at the lowest level of the hierarchy, we

ensure that there are no routing constraints on scheduling and assignment at that level.

However, partitions must be chosen so as not to violate the i/o constraints of the clusters.

In cases where the i/o constraints cannot be satis�ed, hardware replication over clusters

can be used to overcome this barrier, at the cost of additional hardware.

Interconnect Network Architecture

Fig. 5.18 shows the internal structure of the crossbar for a cluster of processors.

(It is implemented as a two tiered structure for layout reasons). The routing from and exu

output to any input is conict free. Global broadcasting from a single source is supported,

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 76

and the dynamic nature of the interconnect ensures that multiple sources can be merged

at a single destination. There are no constraints on the data routing from the from input

ports over the input buses. Even numbered exus can route data to two of the four output

buses and odd numbered ones can broadcast to the other pair. The buses shown are 16b

wide.

The interconnection network routes both data as well as status ags. The data

routing is under program control and can be changed in each program cycle. The routing of

the status ags is static and set at compile time. By making the ag routing static we were

able to reduce the required number of nano-store bits and so remain within a reasonable

silicon budget.

Four input channels and four output channels, all sixteen-bits wide, are connected

to the crossbar network to provide a data i/o bandwidth of 400 MByte/sec. By providing

high communication bandwidth for inter-cluster (inter-chip for the prototype architecture),

scalability of the design is ensured.

5.5.3 Control

There are three main requirements for the control module: a) support for mod-

erate (1-10) hardware multiplexing on the exus, for fast computation of tight inner loops,

b) support for low overhead branching between loop iterations, and c) wide instruction

bandwidth.

Design Considerations

One way of supporting the above requirements would be to simply broadcast the

instruction for each exu in a mimd fashion, which requires a wide instruction bandwidth.

However, due to limited hardware resources, a wide instruction bandwidth conicts with a

wide data i/o bandwidth. The solution was to provide a control store for each exu that

could be serially-con�gured at set-up time, and which would receive a global instruction in

the form of an address into that store at run-time. In this way, a wide instruction bandwidth

could be achieved without consuming a large number of pins. The resulting architecture

is simd in the sense that a global instruction is broadcast to each exu and mimd in the

sense that each instruction is uniquely decoded for each exu. This provides one aspect of

software-con�gurability i.e. the ability to change the contents of the control store with each

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 77

new application and is similar to the approach taken in [127].

A control store with a �nite set of instruction words, supports the execution of

loops and hardware multiplexing. For speed considerations we aimed for single cycle exe-

cution of each instruction which led us to choose a horizontally encoded instruction word

format.

A major question was what form the support for conditional branching should

take. It was decided to provide dedicated hardware support for operations such as max,

min, and saturation instead of implementing them as a compare-branch instruction pair.

This enables single cycle execution and avoids and branching overhead penalty. To support

loops and operations where the result of one exu could directly a�ect the result of another,

we decided on a form of local branch support which allowed an exu to interrupt the control

ow of another with single cycle overhead. This is more fully discussed below in the section

on Delayed Branches. A complete next-address �eld is not supported in the control store,

which saves 3 additional bits per nano-store. Rather a scheme utilizing two statically de�ned

interrupt vectors was chosen, and is described below. Global branching is handled by the

external sequencer.

Control Architecture

In the �nal design, each exu has an sram-based nanostore which is con�gured

serially at set-up time. At run-time, an external sequencer broadcasts a 3b global address to

each nanostore which is locally decoded into a 53b instruction word (Fig. 5.19). E�ectively,

a 3b address is able to specify 8 x 53 or 424b very long instruction word.

Cycles per Instruction (C):

Techniques which allow C to be reduced include:

Instruction Pipeline: Each exu operates using a four stage pipeline as shown

in Fig. 5.20 (a). Here I-fetch refers to the fetching of a global instruction from the external

controller, and Output Result refers to the availability of result at the output pads for say

an external memory write. The instruction pipeline can potentially reduce the number of

cycles per instruction by the depth of the pipeline as shown in (b), depending on how well

the pipeline can be kept �lled.

Load/Store Architecture: All operations are performed on operands held in

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 78

53

424b VLIW

53

8

CONTROLLER

GLOBAL

2

NANONANO

1

NANO

3b GLOBAL INSTRUCTION

53b LOCAL

INSTRUCTION

Figure 5.19: Nanostore as a Local Decoder

7654321

4

3

2

INS 1

O

O

O

O

(O)

OUTPUT

F D E

F D E

F D E

F D E

INS

FETCH

INS

DECODE

EXU

OP RESULT

(F) (D) (E)

(a)

(b)

CLOCK CYCLES

2 3 4Cycle 1

Figure 5.20: Four Stage Pipeline

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 79

EXU 2

EXU 1

IV2

IV1

EDF

ED

F

EDF

EDF

O

O

O

O

Figure 5.21: Local Delayed Branches

exu registers. External memory is accessed by load and store instructions only, which are

handled by the external controller (Fig. 5.28).

Due to the pipelined nature of the architecture, branches and loads must be ac-

counted for. The delay slots which they introduce are exposed to the assembly language

programmer and to the compiler for optimization.

Delayed Branches: The architecture supports two types of branches local and

global. In the former type, any exu on the same chip can alter the control ow of any other

exu on the same chip after 1 delay slot, as shown in Fig. 5.21. The exu being interrupted

sets one or both of its interrupt enable ags in the previous instruction. Upon receipt of an

interrupt, it vectors to one of two pre-compiled instructions (denoted as IVs, for interrupt

vectors) in the next cycle. The hardware implementation of this feature will be described

in the next chapter (the test example of a modulo three counter described in Section 6.7.2

of the next chapter, also uses this feature and the branch logic hardware which implements

this is described in Section 6.4.2 of the next chapter). If the exu being interrupted resides

on a di�erent chip, an additional branch delay slot is required. During global branches, an

exu ags the external controller which can then alter the global control ow as shown in

Fig. 5.22. In this case, two branch delay slots are also required.

Load/Execution Alignment: Because of the four stage pipeline, there is a two

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 80

O

O

O

O

OF D E

F D E

F D E

EDF

EDF

Figure 5.22: Global Delayed Branches

slot delay between an instruction issue and its corresponding exu op. The external memory

load for that instruction must be issued (by the external controller) so that the operands

will be aligned with its exu operation. If single cycle sram is used, the system designer

must insert an additional delay stage between the sram and the chip as shown in Fig. 5.23.

Time per Cycle (T):

The time required to perform a single machine cycle is determined by such factors

as:

Instruction access time: Global instructions are generated by a fast commer-

cially available external programmable logic sequencer e.g. [17, 119] and broadcast to each

exu. For the prototype chip these are three bits long.

Instruction decode time: At con�guration time, the local controller for each

exu is serially con�gured each with its own unique set of instructions. Each controller is

an sram containing eight words of �fty-three bits each. Due to the small size of the srams,

global instructions can be decoded in a very short time.

Instruction operation time: All instructions execute in a single cycle.

Architectural simplicity: The organization of the machine is streamlined to-

wards high speed dsp applications. By focusing on the operations important to our needs,

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 81

OPERAND

ALIGNED

DELAYLOAD

INS

FETCH

INS

DECODE

EXU

OP RESULT

(F) (D) (E)

OUTPUT

(O)

Figure 5.23: Load/Execution Alignment

we were able to optimize a small number of critical exu features which support those oper-

ations e.g. fast addition, max-min, accumulation, branching, and exible communications.

Discussion:

A basic choice was to use a von Neumann-like, statically scheduled architecture

vs. a data-ow one. An objection to the former approach is that pipeline initialization

requires special controller states (nano-words) which serve no other really useful function.

Also data merges into a given processor requires several controller states. In a data-driven

approach, an encoding into the data stream might indicate the validity of the data. Hence

processing would occur only on the existence of valid data. This would circumvent the

need for extraneous prologue code necessary for pipeline �lls in the statically scheduled

case. Some mechanism would be required to deal with data merge conicts when several

sources attempt to broadcast to a single receiver. Another choice was to use a synchronous

approach vs. an asynchronous one. An asynchronous approach would not su�er from clock

skew problems, but would incur overhead to support the necessary handshaking protocols.

Which of these various approaches might yield better results still remains to be answered

and is the subject of active research (e.g. [131]).

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 82

5.5.4 IO

The key requirement for i/o is that there should be wide i/o bandwidth (hundreds

of MB/sec). Wide i/o bandwidth mainly refers to the communication of the processors with

the external world. Recalling that we have chosen a hierarchical interconnection approach,

we note that a wide i/o bandwidth is also desirable for on-chip inter-cluster communication.

This will facilitate the task of the compiler in mapping and scheduling operations which

need to communicate across clusters.

5.5.5 Memory

Since the applications that we intend to support are data path intensive, a decision

was made not to explicitly support memory. There is some implicit memory support. Every

exu has a register �le connected to both its input ports. These register �les allow for a

temporary data bu�ering, which can alleviate the contention problem on the interconnect

buses. If larger amounts of memory such as video delay lines and frame bu�ers are required,

these will be implemented as external (commercially available) components in the �nal

system.

5.5.6 Con�guration

Design Considerations

The con�guration module must do whatever is necessary to con�gure the archi-

tecture before run-time. The major issues were whether or not to have on-chip support for

automatic con�guration, how to interface with slow external boot memory. It was �nally

decided to include an on-chip con�guration module which could interface seamlessly to an

external boot eprom without the need for additional glue logic. The hardware design of

these modules will be described in the next chapter.

At another level, we needed to decide which con�guration information was required

to be in the control store and therefore under run-time control, and which could be statically

de�ned. The former is more costly in silicon area because it increases the size of the control

store, whereas the latter can be stored more cheaply in the serial con�guration scan registers.

Appendix C lists the �nal choices that were made.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 83

5.6 Processor Summary

The �nal overall architecture is outlined in Fig. 5.24. It contains thirty-two exus,

organized into four clusters (or quadrants) of eight exus each. Quadrants are organized in

a ring network. The exus in each cluster are fully connected by a dynamically con�gurable

crossbar. We envision a family of processors using this architecture. The main di�erence

between the di�erent processors shown is the number of exus per processor. Two members

of the family are shown in Fig. 5.25 and Fig. 5.26. Additionally, the number of words in the

instruction store and the basic functions of the exus can be varied to provide new members

of the family. For example, Fig. 5.27 shows a modi�ed architecture with two multipliers

shared over six exus. Another design might share one multiplier over seven exus, depending

on the demands of the applications. The level of pipelining in the multipliers could be varied

to accommodate the level of sharing.

At this point, a word about resource balancing is appropriate. Assuming a 25

MHz operating frequency, the Peak Computation Rate to i/o ratio for a thirty-two exu

processor is 800 Mops to 400 MB/sec or 2.0 Mops/MB/sec. This ratio is similar to the

geometric mean of 3.56 Mops/MB/sec of the benchmark set. An mcm based approach with

double the processors and similar i/o resources will make the ratios tend to converge even

further, if desired.

As a proof of concept the architecture shown in Fig. 5.26 was implemented as a

single vlsi component. Its hardware implementation will be described in Chapter 6.

Fig. 5.28 shows how the chips might be applied in a simple system. At power up,

the paddi chips (labeled pads) are con�gured by self-booting from the boot rom. After

receiving a start signal from the external controller, the chips are able to perform both data

computation and memory addressing tasks. The external controller determines the global

instruction sequence and issues the appropriate loads and stores to external memory. (The

�gure shows a pad being used as an address generation unit (agu)). Flags generated from

the pads (and the external world) can be monitored to e�ect global branching.

5.6.1 Benchmarks

Appendix B contains a list of benchmarks that were hand compiled to the paddi

architecture and exemplify how the mapping is done.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 84

SWITCH

SWITCH

I/O I/O

SWITCH

SWITCH

Figure 5.24: PADDI with 32 EXUs

I/OI/O

SWITCH

SWITCH

Figure 5.25: PADDI with 16 EXUs

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 85

I/OI/O

C
T
L L

T
C

L
T
C

T
C

L

C
T
LL

T
C

L
T
C

L
T
C

EXU EXU EXU EXU

EXUEXUEXUEXU

SWITCH

Figure 5.26: Prototype Architecture

MX

I/OI/O

C
T
L L

T
C

L
T
C

T
C

L

C
T
LL

T
C

L
T
C

L
T
C

EXU EXU EXU

EXUEXUEXU

SWITCH

MX

Figure 5.27: Prototype Architecture With Multipliers

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 86

DATA

OUTIN

DATA
D/AA/D

ROM

BOOT

CONTROL

AGU

PAD3 MEMMEM

PAD2PAD1

Figure 5.28: System Using PADDI Chips

5.7 Instruction Set Summary

A detailed description of the paddi instruction set is given in Appendix C.

5.8 Programmer's View

Appendix C provides an overview of the architecture as seen by the assembly

language programmer. The formats of the run-time instructions as well as the con�guration

speci�ers are presented there. A sample assembly program that contains instances of the

basic instructions, together with explanatory comments, is also presented.

Section 7.2.1 of Chapter 7 and Appendix G describe the annotated grammar that

was developed for the assembly language.

A description of the software environment and a discussion of the compiler issues

will be presented in Chapter 7.

5.9 Summary and Conclusions

We have presented the architecture of a software-con�gurable multi-processor

which was developed to support the rapid prototyping of high speed data paths. The

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 87

design was driven by the results of analyzing a characteristic benchmark set. Various tech-

niques from the domains of software-con�gurable and risc architectures were employed to

achieve high performance. The general design philosophy was one of \keep it simple" for

speed and implementability, with as few constraints on the compiler as possible, in order

to enhance hardware utilization.

Chapter 6

PADDI: Hardware Design

Een gra�cus heeft in zijn wezen iets van een troubador.

(A graphic artist has something of the troubador within him.)

| M Escher, Escher on Escher

6.1 Introduction

As a proof of concept, a prototype of the the architecture described in Chapter

5 was implemented as a multiprocessor ic [26] using vlsi technology. This chapter will

discuss the logic and vlsi implementation of the major units which comprise the chip.

In order to maximize the probability of fabricating a functional chip, a conservative

approach to circuit design was taken wherever possible. Thus, a static design style was

chosen over a dynamic one. In some cases this meant trading o� increased area, and some

speed, for improved noise margin and decreased susceptibility to clock skew. This also

meant the choice of a conventional and modest two-phase clocking scheme using external

clock generators over more elaborate methods involving multi-phase clocks with on-chip

analog phase-locked-loop generators. Additionally, special attention was paid to the routing

and metal layer width of critical signals (such as clocks) and power lines.

The functional and speed test results will be presented for the prototype circuit

which contains 8 execution units connected via a dynamically controlled crossbar switch. In

summary: it can operate at 25 MHz (200mips) with a data i/o bandwidth of 400 MByte/sec

and a typical power consumption of 0.45 W. It contains 140,106 transistors on a 8.9 x 9.5

mm

2

die, in 1.2 �m cmos technology.

88

CHAPTER 6. PADDI: HARDWARE DESIGN 89

register
pipeline

8 WORDS

NANOSTOREFILE
REG

FILE
REG

SHIFTER

+

MUX

MUX MUX

Figure 6.1: EXU Architecture

6.2 Execution Unit

A detailed block diagram of an exu is shown in Fig. 6.1. This section will describe

the implementation of its major parts.

The adders were implemented using the carry-select-adder cells from the lageriv

cell library [64], the fastest available at the time. The adder consists of several stages that

work in parallel to produce carry results for two cases: that of a zero carry input into the

stage and that of a one carry input into the stage. The true carry then ripples (stage-wise

not bit-wise) through the stages selecting the proper pre-computed carries, which are then

used to compute the sum at each bit. The successive stage lengths were chosen for optimal

speed. Starting from the least signi�cant bit, these were three, �ve and eight respectively.

The shifters are capable of arithmetic right shifting from zero to seven bits, and

are implemented as a logarithmic shifter (Fig 6.2) using complementary pass transistor

gates. As mentioned previously, the exus can be user-con�gured to operate in 16b and

32b modes. Shifter interface logic ensures correct operation for both 16b and 32b modes of

operation, independent of whether the arithmetic is two's complement or unsigned.

Multiplexors are also implemented using complementary pass transistor logic.

The dual ported register-�les and pipeline register at the output of each exu are

implemented using a static register cell for regular storage, and c2mos inverters for delay

CHAPTER 6. PADDI: HARDWARE DESIGN 90

OUT

IN BIN A

SHIFT

SHIFT

4/24/24/24/2

OUT15 OUT0

SHIFT4

SHIFT2

SHIFT1

IN0IN15

20/2

20/2 20/2

Figure 6.2: Logarithmic Shifter

line mode. A detail of the register-�le cell is shown in Fig 6.3. Register six of each register

�le has the same basic structure as the other registers register. However it is linked to the

serial con�guration scan chain by extra hardware and input and output ports. This feature

allows it to be set to an arbitrary value at Con�guration time which is useful for setting

constants and initial values. This feature also enables it to be used during the Scan-Test

mode.

The exus contain hardware support for the max and min operations, and satu-

ration logic for both unsigned and two's complement arithmetic. A status ag (a � b) is

also provided. Correct operation is provided for both 16b and 32b modes. A detail of the

logic which implements this is shown in Fig 6.4. In this �gure, the carry out bits from the

adder are used to generate two overow bits, v2sc for two's complement mode and vun-

signed for unsigned mode. The choice of arithmetic mode is speci�ed by the SUN bit which

is statically determined and set by the user. The saturation logic block uses these bits to

provide the correct saturated output (high or low) whenever an overow or underow is

detected, independent of the arithmetic mode. Other �elds of interest are agebbar2sc and

agebbaru. The former is a ag which indicates that operand A is greater than B, assuming

CHAPTER 6. PADDI: HARDWARE DESIGN 91

C2MOS

6/2 n

12/2 p
WRITE.PHI2

5/2 p

2/2n2/2n

5/2 p

6/2 n

12/2 p

8/2 n20/2 p

3/2 n

7/2 p

3/14 n

8/4 p

5/2 n

13/2 p

DATA-OUT BUS

DATA-IN BUS

to nextfrom previous

READ.PHI1

DELAY-LINE

PHI2.ENPHI1.EN

Figure 6.3: Register-File Cell

two's complement representation, and is active low. The latter is the corresponding ag for

unsigned representation. These ags are communicated to the interconnection network to

be used by other exus and the external world. They are also used in the logic which provides

hard-wired max and min functions (shown as MUXM, MUXI, and MUXH respectively.

The component blocks of the exu were Spiced separately. From these simulation

results, the critical path was estimated, and is shown in Figure 6.5. The values shown are

in nano-seconds.

6.3 Interconnection Network

One of the main challenges in the design of the crossbar network is to ensure

pitch-matching between the crossbar switches and the exus for e�cient layout. Therefore,

a layered crossbar structure was developed, as shown in Fig. 6.6. A detail of the data

routing bit-slice which connects exus A and E to each other, to other exus in the cluster,

and the i/o busses, is exhibited. The layered switch implementation is organized as follows:

The Type I switch connects the input of an exu to either one of its neighbors (B,C,D for

exu A) or to the i/o busses or the other half of the cluster via a Type II switch. The

squares and the circles represent inputs and outputs to the switches respectively. Data lines

CHAPTER 6. PADDI: HARDWARE DESIGN 92

v

151

vunsigned

addsub

muxhin

muxhsel

muxgsel

SATURATION LOGIC

MUXLMUXK

MUXV

Cv2sc

v2sc

+A B

H

MUXG

MUXFMUXE
M
U
X

linkbit

I

M
U
XM

X
U
M

(agbbar from other EXU)

SUN

BA

MUXJ

C-1

S

01415

S

SUN

C

1

saturated valueagebbar

agebbar2sc agebbaru

agebbaroe

maxmin

Figure 6.4: EXU Detail

ow horizontally and control lines vertically. The major advantage of this approach is that

it yields substantial area savings by allowing all horizontal busses to �t within the pitch

provided by the exus.

nmos pass transistors form the core of the Type 1 and Type 2 switches of Fig. 6.6.

This layout style allows horizontal channels to be shared, ensuring pitch-matching between

the crossbar switches and the exus. The bit-slice design for both types of switches are

shown in Figure 6.7 and Figure 6.8 respectively. The layout of a Type 2 bit-slice is shown

in Figure 6.9. The essential feature is that the number of horizontal channels never exceeds

nine and so the pitch of the exus is never exceeded. These channels are routed in metal

2 with minimum pitch. The control signals are routed in metal 1 wires that run vertically

and which connect to the polysilicon gates of the pass transistors. Another advantage

of this scheme is that nmos pass transistors consume less area than full complementary

transmission gates.

The logical high voltage level which the nmos transistors pass is degraded by a

threshold voltage drop (increased by the body e�ect), which compromises noise immunity.

In order to alleviate this, regenerative pmos transistors are combined with the output bu�er

CHAPTER 6. PADDI: HARDWARE DESIGN 93

3 ns
4.5 ns

1 ns

3.5 ns

12 ns

MUX

MUX

+

SHIFTER

REG
FILE

NANOSTORE

2 ns

Figure 6.5: EXU Critical Path

CHAPTER 6. PADDI: HARDWARE DESIGN 94

INPUT OUTPUT

IN2

OUT

EXU E

EXU F

EXU G

EXU HEXU D

EXU C

EXU B

EXU A

OUT

IN2

IN1

TYPE2

SWITCH

TYPE1

SWITCH

TYPE2

SWITCH

TYPE1

SWITCH
OUT IN

IN1

BUS BUS

CROSSBAR SWITCH SCHEMATIC

MINIMUM METAL PITCHMINIMUM METAL PITCH

Figure 6.6: Crossbar Network

Figure 6.7: Type 1 Bit-slice

CHAPTER 6. PADDI: HARDWARE DESIGN 95

Figure 6.8: Type 2 Bit-slice

Figure 6.9: Layout of Type 2 Bit-slice

CHAPTER 6. PADDI: HARDWARE DESIGN 96

CB

A

TYPE 2 SWITCH
TYPE 1 SWITCH

5 V

5 V

5 V

5 V

W/LW/L

29/2

3/2 N

7/2 P

4/2 N

10/2 P

50117187 114

29/2

4/2 N

10/2 P

5 V

5 V

5 V

5 V

W/LW/L

29/229/2

3/2 N

7/2 P

4/2 N

10/2 P

50117187 114

Figure 6.10: Regenerative PMOS Design

stages of each switch to restore the output high voltage level to rail. The output bu�er stages

are necessary to maintain sharp edges and speed. Types 1 and 2 switches were cascaded

directly as shown in Fig. 6.10 (the capacitance values shown are in femto-farads). The

design was coupled in order to avoid using extra bu�er stages. This circuit was Spiced

for di�erent W/L values of the regenerative pmos's and a few of the results are shown in

Fig. 6.11. Too weak a W/L causes an inordinately long restoration time. Too strong a W/L

inhibits the driving stage (Type 2), from ever pulling down the following stage (Type 1). A

W/L of 4/3 was chosen for the chip. The critical path through the network was simulated.

Imagine that there are two communicating quadrants. This path begins at the output of

an exu in one quadrant (say exu G in Fig. 6.6 which is input to the network. The path

continues through to the out bus into the in bus of another quadrant, through Type 2 and

Type 1 switches, and is �nally input to an exu (say exu D) of that quadrant. Such a path

is shown in Fig.6.12. The spice output (inverted) is shown in Fig.6.13. An average delay

of approximately 15 nsec. from input to output was measured.

CHAPTER 6. PADDI: HARDWARE DESIGN 97

0

1

2

3

4

5

20 40 60 80 100

A

B

C

A

B

C

3/3

8/2

V

TIME (NS)

W/L = 0

8/2

3/3

W/L = 0

Figure 6.11: Regenerative PMOS Design (Spice)

1 ns

2 ns

6 ns

6 ns

Figure 6.12: Interconnect Critical Path

CHAPTER 6. PADDI: HARDWARE DESIGN 98

output

input

14.914.65

TIME (nsec)

VOLTS
5

4

3

2

1

0 10080604020

Figure 6.13: Interconnect Critical Path Simulation

6.4 Control

This section describes the implementation of the nanostores which control the

exus. It also describes their associated branch logic which determine the ow of local

control streams.

6.4.1 Nanostore

The nanostores are implemented using an sram containing standard six transistor

sram cells. A bit-slice of the nanostore is detailed in Fig 6.14. A serial master-slave

scan-register, which is part of the global serial con�guration scan chain, is connected to the

read/write ports of the sram. During Con�guration mode, it is used to write the contents of

the srams word by word. At run-time, it is transparent as the sram issues each instruction

word.

Each sram contains eight instruction words, each 51b wide. No column decoding

or column ampli�ers are required for these small srams. They also have fast word accesses

due to their small size.

The associated control signal generation circuitry for the srams is shown in Fig.

6.15. Bu�ers are sized to ensure minimal delay, sharp edges and proper timing of critical

CHAPTER 6. PADDI: HARDWARE DESIGN 99

RODEC

CIRCUITRY

SCAN-REGISTER

phisphim.SCAN

MASTER-SLAVE

ROW DECODE CIRCUITRY

ENABLE

WRITE

WORD-LINE

SLAVEMASTER10/2

10/2

10/2

address

DATA-OUT

BITLINE-BAR BITLINE

READ WRITE

90/2 p

SRAMCELL

3/2 n
4/2 p

3/2 n
4/2 p

8/28/2

12/2

12/2 n

28/2 p

4/2 n
6/2 p

W

3/3 3/3

4/2 4/23/2 3/2

20/2

20/2

20/2

16/2

16/2 3/3

36/2 n

24/2

8/2 8/2

PRE-AMP

WRITE
DECODE

8/2

8/2 8/2

8/2

DATA-IN

SCAN-IN
SCAN-OUT

INSTRUCTION-BIT

SERIAL

BIT
EQUALIZATION

PE

BE

PH1

R.PH1

Figure 6.14: SRAM Detail

CHAPTER 6. PADDI: HARDWARE DESIGN 100

PH1

PH2_BAR

PH2

RODEC
PH1

PH2

W_BAR

PREAMP

ENABLE

(PE)

2 pF

8

4
8

8

4

88

44

88

4

108

270

36

90

12

3910

4

2 pF

(BE)

EQUALIZATION

BIT

160

400

60

150

20

50

8

20

4

10

RD

ENABLE

WRITE

1pF30

75

10

25

8

10WR

5

1212

5

5/4P, 3/6 N

5

12

20

48
48

20

90/2 p
20/2

20/2

20/2

16/2

16/2 3/3

36/2 n

Figure 6.15: SRAM Control Circuitry

signals.

The timing diagram of the sram is shown in Fig. 6.16. The sram operates using

the same two phase clocks phi1 and phi2 that are used throughout the rest of the chip.

Using this methodology, addresses are latched on the falling edge of phi2 and read data

is latched on the falling edge of phi1. The read (/r) and write (/w) signals are active

low. Special attention was paid to ensure that word lines (wl) did not glitch due to charge

sharing e�ects in the row decode circuitry. The bit-line and inverted bit-lines are denoted

by (b) and (/b). The pre-amp enable is denoted by pe and the write enable is denoted by

we. The data-out line is denoted by do and the data in line by di. A spice simulation of

the critical path during reading is shown in Fig. 6.17. The reading and writing times of

the sram is not an issue because the size of the sram is quite small. A read access time of

approximately 21 nsec. is observed.

6.4.2 Branch Logic

The branch logic is shown in Fig. 6.18. It controls which nano addresses are sent

to the nanostores during the various phases of operation. During con�guration, the nano

address is set by the Con�guration Unit, independent of the interrupt ags and interrupt

enables (which are indeterminate during con�guration). At run time, the nano address may

CHAPTER 6. PADDI: HARDWARE DESIGN 101

PHI1

PHI2

ADDR

/R

WL PCHG WL EVAL

WL

/W

CE

RODEC WL PCHG WL EVAL

B, /B

READ ADDR WRITE ADDR

PE

WE

BITEQ

DO

DI

eq eq eq

data valid

input data

Figure 6.16: SRAM Timing Diagram

CHAPTER 6. PADDI: HARDWARE DESIGN 102

tacc = 20.7 ns

VOLTS

TIME (nsec)

do

wl

rodec

120 140 160150130

1

2

3

4

5

120 140 160150130

1

2

3

4

5

ph2 ph2

ph1 ph1

ph2
pe pe

ph2

ph1ph1

ph2ph2

b

b
/b

/b

pe

biteq

biteq

Figure 6.17: SRAM Read Cycle

CHAPTER 6. PADDI: HARDWARE DESIGN 103

SYNC

0

1

0

1

PH1PH2

SNOP

INT1 IEN1 IEN2INT2INT1 IEN1

2
V

I

1

V

I

INPUT ADDRESS

NANO ADDRESS

Figure 6.18: Branch Logic

come from one of three sources. In the normal ow of operation, the usual source is is the

address generated by the external microsequencer. However, depending on the values of the

interrupt ags and interrupt enables it may also come from one of two (serially con�gured)

interrupt vectors (IV1, IV2). Synchronization between the con�guration and run phases is

enabled by the snop and sync signals. The snop signal is asserted whenever a stop signal is

received from the external sequencer, or whenever a nop is received from the con�guration

unit during con�guration and veri�cation phases.

A conventional non-overlapping two phase clocking scheme was used in the proto-

type chip. A diagram showing how the various latches in the processor are clocked is shown

in Figure 6.19. This diagram shows two exus, A and B which communicate with each

other and the external world. Data-in, ag-in, global-addr and stop are input from the

external world. The input pads are contain half-latches which are clocked with phi1. The

global-addr is routed to the Branch Logic Module (BRL) the output of which is latched

on phi2 as the address to the nano-store. The register �les of exu are read at the beginning

of phi1 and results are latched at the end of phi2. In this �gure, exuA can be interrupted

from the external world and exuB depending on the status of the interrupt enables (IEN1

and IEN2. exuB can be interrupted by exuA. In general output data is latched at the

output pads on phi2 and output ags are latched on phi1 as shown for exuB. In this way,

CHAPTER 6. PADDI: HARDWARE DESIGN 104

paddi chips can be directly cascaded with an e�ective pipeline stage connecting the input

pins.

6.5 Con�guration Unit

The Con�guration Unit provides the requisite signals which allows the chip to

automatically self-boot from an external memory e.g an eprom. It enables the chip to

temporarily suspend operations, to verify the nanostore contents, and perform scan-testing

of the exus and interconnection network.

All chip con�guration registers are connected as a serial shift register. This serial

shift register is also connected to the i/o circuitry of the srams. The Con�guration Unit

is composed of two on board fsms which generate the necessary clock and interface and

internal control signals for the external eprom, the serial shift register, and the srams.

6.5.1 Modes of operation

The Con�guration Unit provides several modes of operation for the chip: a) Con-

�guration, b) Stop, c) Run, d) Test.

Upon receipt of the appropriate boot signal (start), the chip enters Con�guration

Mode. During Con�guration Mode a complete line-scan is performed, then a location of

the nanostores are written via sections of the scan-chain which connect to the i/o circuitry

of the srams. (A description of the scan-chain is given in below). This repeats until all

nanostore locations are written. The �nal scan is left in place to con�gure the rest of the

chip.

During Stop Mode, the chip has been properly con�gured (or was running), but is

awaiting a go signal from the external controller before proceeding to Run mode. After the

chip has been properly con�gured, and has received the go signal at its input pin it enters

Run Mode. In this mode, normal operation proceeds until the go signal is de-asserted (or

the chip is re-booted).

Test Mode will be described in Section 6.6.

CHAPTER 6. PADDI: HARDWARE DESIGN 105

global

int1

int2

int1
N

A

N

O

N

A

N

O

B

A

EXU A

EXU B

ON-CHIP

B

R

L

B

R

L

p2

p2

p1p1

p1

p1

p2

w

w

r

r

p2

p2

p1

data-in flag-in adr stop

data-out flag-out

p1

p1

ien[1,2]

ien1

KEY:

Figure 6.19: Clocking of State Latches

CHAPTER 6. PADDI: HARDWARE DESIGN 106

Scan Chain

Fig. 6.20 shows a section of the scan chain connecting two exus. Cona, conb, and

oreg are scan registers which are used to set constants, and which can be overwritten at run

time. Statically de�ned con�guration bits include: Link which determines 16-bit or 32-bit

exu mode, sun which sets two's complement or unsigned arithmetic mode. Nvec which

contains pre-compiled interrupt vectors, and fsw1 and fsw2 which determine the routing of

status ags. Ftri determines output bus selection. Nanostores are con�gured via the nano

register.

The exu instructions and data routing are under program control and can be

changed in each program cycle. The routing of the status ags is static and set at compile

time.

6.5.2 Finite State Machines

In this section the constituent �nite state machines which make up the Con�gu-

ration Unit will be described.

By using a simple 3b counter, fsm1 (cf. Fig. 6.21) slower non-overlapping, two-

phase clocks (phim and phis) which are slower than phi1 and phi2 (the normal operating

clocks of the chip), and which are synchronized to phi2 (Fig. 6.22). Slower clocks allow

interfacing to eproms which operate at slower (10x) speeds than the operating speed (25

MHz) of our chip. Appendix D describes the various signals that interface with the external

boot-memory.

The main con�guration tasks are performed by fsm2 which operates on the slower

clock frequency. After the start signal has been asserted and fsm1 stabilized, startdel (a

delayed version of start) is asserted and fsm2 enters Con�guration mode. A line counter

(lctr) keeps track of the scan into the serial con�guration scan-chain. A frame counter

(fctr) keeps track of which nanostore word is currently being written (or read).

Multiplexors ensure that correct values are set for scan and addr respectively

during each mode of operation. scan is combined with clocks phim and phis for clocking

the serial con�guration scan-chain. addr is broadcast to the Branch Logic Units of all

exus. It is de-multiplexed from frame cnt and ext addr. frame cnt provides the

appropriate address for writing during Con�guration Mode. ext addr is sourced from the

external world, usually from the external microsequencer.

CHAPTER 6. PADDI: HARDWARE DESIGN 107

EXU BEXU A

link

nano

fsw1

fsw2

ftri

sunsun

conb

enb

cona

ena

oreg nvec

12 13
14

10

15

11

15
12
11

14
13
10

1 0

9
6
5
2
1

10

9
6
5
2
1

8
7
4
3
0

8
7
4
3
0

9
6
5
2
1

8
7
4
3
0

8
7
4
3

9
6
5
2

01

fsw1

fsw2

ftri

oreg

ena

cona

conb

nvec

nano

enb

Figure 6.20: Section of Con�guration Scan Chain

CHAPTER 6. PADDI: HARDWARE DESIGN 108

FSM1

PH2 PH1

PH2

3b CTR

PHM

PHS

LDSTART

EN
COUT

Figure 6.21: FSM1

PHS

PHM

PHI2

PHI1

Figure 6.22: PHIM and PHIM Clock Generation

CHAPTER 6. PADDI: HARDWARE DESIGN 109

LOGIC

BRANCH

TO

ADDR

EXT ADDR

FRAME CNT

COUT
NOP SCANC

ADRSEL

R

W

ENLDLD EN

LCTR FCTR

FSM2

PHM PHS

COUT

VERIFY

STARTDEL

SCANT

TEST

SCAN

Figure 6.23: FSM2

6.6 Testability

Besides operating the chip in normal Run Mode and observing the values at the

i/o pins, additional, controllability and observability is possible at most nodes by utilizing

the scan-chain used for chip con�guration. Although the resulting scan-testing procedure

is not quite transparent as for jtag, the on-chip support hardware required is smaller.

This approach is complicated by the fact that the registers of the chip are clocked

by phi1 and phi2 during normal operation, while the scan chain is clocked by slower phim

and phis clocks.

The next two sections will describe the scan-test strategy and the external test

support system.

6.6.1 Test Modes

The chip has three special independent Test modes, a) Test exus (Teste Mode),

b) Test Interconnections (Testi Mode) and c) Verify nanostore contents (Verify Mode).

The pins test and teste are asserted for Teste Mode. Scan vectors are then

scanned into register six of both register �les of all exus (Fig. 6.1). The control word for

the exus is also scanned into the scan registers at the output of the nanostores (Fig 6.14)

CHAPTER 6. PADDI: HARDWARE DESIGN 110

of Section 6.4.1. For one (long) clock cycle, the exus operate normally, after which the

results are latched in the output pipeline register (Fig. 6.1) and scanned out.

The pins test and testi are asserted for Testi Mode. Scan vectors are then

scanned into the output pipeline registers of all exus (Fig. 6.1). The control word which

speci�es the routing of data through the crossbar switch is also scanned into the scan

registers at the output of the nanostores (Fig 6.14). For one (long) clock cycle, the data

in the pipeline registers are propagated through the switch, latched into register six of the

target exus, and scanned out.

At any time after Con�guration, the chip can receive a verify signal which will

force it into the Verify Mode. In this mode, a word of the nanostores is read, and scanned

out. This repeats for all nanostore words, thus enabling veri�cation of the nanostore con-

tents.

6.6.2 Test Support System

A pre-existing Test Support System [61], (Fig. 6.24), was retro-�tted to accom-

modate the speci�c requirements of the chip. The system allows the user to download

scan-test vectors from a sun workstation to a Test Control Board (tcb) which is connected

to the Device Under Test (dut). The architecture of the Test Control Board is shown

in Fig. 6.25. It is comprised of the vme interface which connects it to the backplanes (J1

and J2), the vme interface logic (a vme2000) which implements the protocols that meet the

vmebus speci�cation ieee 1014 timing requirements, control, status, and data registers, the

Test Controller, test data memory (scanin and scanout memories), the address counter

which generates the addresses for the test data memory, and the analog, scan-path, and

tap interfaces, which connect the tcb to the duts.

The main change to the architecture was made in the Test Controller. This which

was implemented using epld's and so the changes were essentially software ones. The

design of the new test control board was completed but it was never fully implemented,

because the chips were tested (in Run Mode) and found to be completely functional, before

its hardware implementation was completed.

CHAPTER 6. PADDI: HARDWARE DESIGN 111

SUN (UNIX)

CAGE
CARD
VME

Ethernet

Communication
Networking and

Protocols
Implements Testing

VME Bus

Test Bus

TCB DUT

BOARD

CPU

Figure 6.24: Test Support System

Local Test Bus

Local Bus

Test-Data

MemoryController

Test

Control,
Counter

Address

Registers
Data
and

Status,Logic
Interface

VME

Test Interface

VME Interface

Figure 6.25: TCB Architecture

CHAPTER 6. PADDI: HARDWARE DESIGN 112

152/2 P

152/2 N

75/2 P

30/2 N

30/2 N

75/2 P

72/2 N180/2 P

60/2 P 24/2 N

1.3 PF

152/2 N

152/2 P

PHI1 PHI2

B C D

F G H

A

C

Figure 6.26: Clock Distribution

6.7 Clocking

A conventional non-overlapping two-phase clocking scheme was used in the proto-

type chip. Clock distribution was facilitated by the identical nature of of the exus and the

symmetry of the layout. Fig. 6.26 shows how the clocks were routed from the input pads.

Drivers were sized to maintain sharp edges.

6.7.1 Layout and Simulation

Layout: Hand-crafted cells were laid out using the magic cad tool [90]. The

carry-select adder cells were obtained from the Lager cell library [64]. A micro-photograph

of the chip is shown in Fig. 6.27.

Simulation: Circuit and behavioral simulation were performed using spice [83]

and irsim [105] respectively, and the pas assembler was used to generate simulation test

vectors and chip con�guration �les. The con�guration fsms were described in a high level

behavioral language and their corresponding plas were automatically generated using the

Berkeley oct tools [64].

spice simulations were performed to simulate the critical path of the chip. The

respective load capacitances were estimated from the worst case ic process parameters and

CHAPTER 6. PADDI: HARDWARE DESIGN 113

PHOTO

CHIP

Figure 6.27: Chip Photo

CHAPTER 6. PADDI: HARDWARE DESIGN 114

24 ns

6 ns

6 ns

2 ns

1 ns

2

Figure 6.28: Four Quadrant Critical Path

incorporated into the spice decks. The critical path simulation results for the exu was

shown in in Fig. 6.5 and the critical path simulations for the interconnect network were

shown in Fig. 6.12. These results are combined to show the critical path simulation results

for a four quadrant chip (Fig. 6.28). The units shown are in nanoseconds. The critical

path begins from the issue of a read address to register �le B. A delay of 24 nanoseconds is

incurred during exu transit from the register �le, through the shifter and inversion logic,

through the carry path of the carry select adder, through the saturation logic to the output

of the exu. An additional 15 nanoseconds is lost during transit through the crossbar

networks, after which 2 nanoseconds are required to latch the data into the input of the

target exu. The total simulated critical delay is 41 nanoseconds.

We note that the prototype chip which contains a single quadrant runs at a maxi-

mum clock frequency of 25 MHz with a critical path delay of 40 nanoseconds. This indicates

that there is excellent agreement with the spice simulations. The only major di�erence be-

tween a single quadrant and one with four quadrants is the additional inter-quadrant transit

time which, with proper bu�ering, can be limited to 1 or 2 nanoseconds.

As was indicated in Section 5.5.1, a pipeline register is available at the output

of each exu for optional use. By using the register, the user can increase the maximum

sampling rate by overlapping exu operations with data transmission over the network. This

CHAPTER 6. PADDI: HARDWARE DESIGN 115

can be useful in applications where the additional latency has no negative e�ect. However,

if the operation is in a feedback loop, the additional pipeline register would normally not

be used.

6.7.2 Test Results

Test Methodology: Chip con�guration �les were transferred from sun worksta-

tions to a dataio programmer to burn the con�guration eproms. Functional chip testing

was performed using a Tektronix das9100 logic analyzer. Appendix E contains a listing of

the pin assignments for the paddi chip.

Results: A variety of test programs were executed on paddi chips to test for

speed and functionality. Chip con�guration �les were transferred from sun workstations

to a dataio programmer to burn the con�guration eproms. Functional chip testing was

performed using a Tektronix das9100 logic analyzer. Some of our tests results are described

below.

The listing below shows the assembly code for a mod 3 counter which cycles

between 0,1,2 at 25 MHz.

/� Modulo 3 Counter:

Default values are set globally for all EXUs and can be

over-written locally for each EXU. �/

defaults f

a6=0, b6=1,

normal a, normal b,

signed,

unlink,

ien1=0,ien2=0

g

/� User-de�ned aliases can be de�ned for any EXU �/

map f

(block depth counter=Xa),

(block depth compare=Xb)

g

/� Instructions 0 through 7 are de�ned below for each EXU.

If an instruction is not de�ned for an EXU, it defaults

to a NOP. �/

block depth counter

CHAPTER 6. PADDI: HARDWARE DESIGN 116

/� vector to instruction 1 when block depth compare

asserts its ag �/

ag1=block depth compare, ivec1=1

f

/� instruction 0: increment a6 by 1 and store the result

in a6 and b1, enable interrupt ien1, send result to

output bus o1 �/

0: a6=this exu, b1=this exu, (a6+b6), ien1, o1;

/� instruction 1: subtract b1 from a6 and store the result

in a6 and b1 (this resets a6 and b1 to zero), send

result to output bus 1 �/

1: a6=this exu, b1=this exu, (a6-b1), o1;

g

block depth compare

a6=0,b6=0, /� overwrite global default values �/

agout1=1 /� route ag o�-chip via bus 1 (for

monitoring) �/

f

/� instruction 0: latch output of

block depth counter into register b6, subtract b6 from

a6. If b6 is greater than or equal to a6, assert ag.

Send result of a6-b6 to output bus o2 (for monitoring) �/

0: b6=block depth counter, (a6-b6), o2;

g

The oscilloscope trace for the counter is shown in Fig. 6.29

The sfg of a low pass biquadratic �lter is shown in Fig. 6.30. (It is the same one

referred to in Appendix A). The multiplying coe�cients were converted to a canonic signed

digit format to minimize the number of non-zero bits and transformed into shifts and adds

(Fig. A.2). A processor schedule for this transformed sfg was hand-generated. It uses three

exus and three instructions and is shown in Fig. 6.31. The listing below shows the assembly

code for the biquad. Shown in Fig. 6.32 is the acquired impulse response (from a Tektronix

das9100), (a) a plot of the impulse response and (b) a plot of the corresponding frequency

response. The arithmetic mode is 16-bit two's complement and the impulse is input at bit

13. The measured results agree perfectly with simulations. Due to limitations of the signal

analyzer in acquiring data, the maximum clock rate of this biquad was constrained to 10

MHz.

/� Biquadratic Filter �/

DEFAULTS f

CHAPTER 6. PADDI: HARDWARE DESIGN 117

A6 = 0, B6 = 0, SIGNED, UNLINK,

NORMAL A, NORMAL B,

BFSW = 11111111b,

IEN1 = 0, IEN2 = 0

g

MAP f

(EXU A = XA),

(EXU B = XB),

(EXU C = Xc)

g

EXU A f

1: (A6+(B6�4));

2: (B6);

3: A6 = I2L, B6 = EXU A, (A6);

g

EXU B f

1: A4=EXU A, (A6+(B6�2));

2: B6=EXU A, (A4+B6);

3: A6 = EXU C, B6 = EXU C, (B6);

g

EXU C f

1: A2=EXU B, B2=EXU C, (A6-(B6�2));

2: A3=EXU B, B3=EXU C, (A2-B2);

3: A6=EXU B, B6=EXU C, (A3+B3),O1;

g

Table 6.1 summarizes the chip characteristics.

6.8 Discussion

Given a more aggressive ic process, e.g. 0.8 �m, and a reasonably sized chip, a four

quadrant paddi chip each quadrant consisting of eight exus, is certainly implementable. In

order to illustrate this point we have tabulated several vsps [79, 107, 127] together with

the paddi chip in Table 6.2. The actual chip areas are listed. They are also normalized to

account for the di�erence in design rules. Two layers of metal were used in the fabrication

of all these processors. The ntt and Data-Wave chips are relatively six and four time

larger than paddi. Clearly we can realistically expect four to six times the area occupied

CHAPTER 6. PADDI: HARDWARE DESIGN 118

Figure 6.29: 25 MHz Counter

(a)

X[n] Y[n]

-
-

a1=-1.25

a2=0.75

-1Z

-1Z

b1=0.625

b2=1

-1Z

-1Z

Figure 6.30: Simple Low Pass Biquadratic Filter

CHAPTER 6. PADDI: HARDWARE DESIGN 119

a3 b3

4
>>

22
>>>>

T1

X[n]

Y[n]a6

T1

a4

S1A S1B
S2A S2B

a3 b3

T2

a2 b2

EXU A EXU B EXU C

2

1

3

INS

CYCLE

Figure 6.31: Biquad Processor Schedule

Figure 6.32: Biquad Impulse Response

CHAPTER 6. PADDI: HARDWARE DESIGN 120

EXUs 8 units

16-32 bits

Register Files 2 �les,

Six 16 bit registers

Nanostores 53 bits

8 words

I/O Ports 128

Clock Frequency 25 MHz.

Compute Power 200 Mips

I/O Bandwidth 400 MBytes/sec

No. of Transistors 140;106

Die Size 8.8x9.5 sq.mm

Table 6.1: Chip Characteristics

NTT VSP Data Wave Philips VSP PADDI

Design Rule 0.8 �m 0.8 �m 1.6 �m 1.2 �m

Technology Bi-CMOS CMOS CMOS CMOS

Word Lengths 16-24b 12b 12b 16-32b

No. transistors 910k 1.2M 206k 140k

Area (mm

2

) 15.2 x 15.2 12.5 x 12.5 9.9 x 12.3 8.9 x 9.5

Normalized area 6.15 4 0.81 1

Table 6.2: Chip Comparison of Technologies and Areas

by the prototype paddi chip. This will translate directly to four to six time the current

peak computation rate, to the �rst order. We also expect the performance of the chip to

improve with a scaled technology, especially if a BI-CMOS process is used.

One obvious way to increase the compute power of the paddi architecture is to

increase the number of exus on a single chip. Another is to employ an mcm based approach

usings sets of prototype chips. Both methodologies are being considered as future extensions

to the project, at the time of writing.

The crossbar switch in the paddi chip occupies exactly eighteen percent of chip

area. The design was the most e�cient one available to the author at the time. In the Philips

vsp the crossbar occupies less than �ve percent of the total chip area. At �rst glance, barring

any timing considerations, the vlsi design of the Philips crossbar switch seems superior to

that of paddi. This gives us reason to hope that, if the appropriate technology were to

CHAPTER 6. PADDI: HARDWARE DESIGN 121

become available, the size of the paddi crossbar could be shrunk dramatically.

6.9 Conclusions

The hardware implementation of a recon�gurable multiprocessor ic for rapid pro-

totyping of real time data paths has been described. The chip is targeted towards high

performance digital signal processing applications. A 16 exu (400 mips) processor is cur-

rently under design, together with a multi-chip module approach which could support up

to 32 exus (800 mips) in a single package.

Chapter 7

PADDI: Software Environment

A slash symbol was used simply because the � symbol was not a character on the 026 keypunch.

Similarly, the asterisk was used for explicit multiplication because the x and � were not available

on the keypunch.

| M. Klerer on FORTRAN, Design of Very High-Level Computer Languages

7.1 Introduction

The major obstacle for the adoption of new programmable hardware platforms is

usually the lack of e�cient and fast cad support tools. Therefore, from the inception of the

paddi project, special attention has been paid to developing cad tools which will enable a

mapping from high level language onto paddi.

In this section we will describe the grammar, assembler and simulator which have

been developed to enable user assembly language programming of paddi. Methods which

use high level synthesis techniques, to compile an abstract behavioral description of an

algorithm into these programmable arithmetic devices will be discussed. We will examine

the speci�c features of the architecture which will a�ect the quality of the compilation. The

cad environment and software tools being developed for automatic compilation from a high

level language [91] will be discussed.

7.2 Low-level Programming Tools

The low-level programming tools, the pas assembler and psim simulator, provide

the foundation for the higher-level synthesis tools.

122

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 123

7.2.1 The pas assembler

Pas represents the lowest software level interface between the programmer and

the paddi architecture, providing a method for describing algorithms. The pas assembly

language was designed and implemented with the interconnection network of the paddi

architecture in mind: programs written in it can easily exploit intercommunication between

execution units. The intercommunication follows a \receiver controlled" model in which the

receiving unit controls the routing of the actual communication while the broadcasting unit

only concerns itself with the data or ag to be communicated (except when broadcasting to

the external world; in this case the broadcaster must specify which output bus to employ).

In addition to being able to express all available paddi operations in a convenient c-like

syntax, the assembler also allows for the explicit speci�cation of instructions within the

nanostores at the individual bit level. A detailed manual page for the assembler is listed in

Appendix F.

An annotated grammar for the assembly language is contained in Appendix G.

7.2.2 The psim simulator

Psim serves as a tool for simulating and debugging multiple chip paddi algorithms

in software. It consists of a simulation engine coupled with an x-based graphical user

interface (gui). (see Fig. H.1) in Appendix H. The simulation engine can operate both

as a \black box," allowing it to interface with external software tools, or as a stand-alone

simulation environment when coupled with the x-based gui. The stand-alone simulation

environment supports many of the common debugging features, including single-stepped

execution and the ability to modify registers and instructions \on the y." A detailed

manual page for the simulator is also listed in Appendix H.

7.3 High Level Synthesis for Programmable Arithmetic De-

vices

The success of an architecture depends heavily upon its ease of usage or ease of

programming. We are therefore interested in methods to compile an abstract behavioral

description of an algorithm into programmable arithmetic devices.

High level synthesis techniques can be brought to bear on the compilation problem.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 124

In high level synthesis, basic interdependent tasks which must be done include translation of

the high level language into an internal representation (typically some variation of a graph

with control ow and data ow constructs), transformations (at all levels of the process)

[124, 102, 89] scheduling, allocation, assignment, as described in [74] Various approaches

di�er in manner and the order in which these basic tasks are attacked.

In one approach, scheduling, allocation and assignment are performed separately

and in separate phases. The advantage of this approach is that it makes the problem some-

what more tractable, because the di�erent tasks are decoupled and solved independently.

The disadvantage of the approach is that it could yield sub-optimal results since decisions

chosen in one phase can have signi�cant negative impact on the results obtained in another.

In another approach, for example the approach taken in hyper [98, 99], a global

optimization routine simultaneously takes into consideration all these tasks. Here the prob-

lem is harder than the previous one.. A decision was made to adopt this type of approach

mainly because of the availability of the installed hyper software base, and the potential

for superior results.

We will begin by describing some of the architectural constraints of the paddi

architecture which will a�ect the compiler. We will then describe the two approaches to

compilation. In the �rst we will examine in detail a proposal for allocation and assignment

problem using a hierarchical clustering scheme. We will also discuss the latter approach

though somewhat briey. The details of this approach will appear in [23].

7.3.1 Architectural Constraints

The goal is to identify computationally e�cient means of compiling a high level

behavioral speci�cation of an algorithm into paddi, subject to its particular hardware con-

straints.

A strong point of the architecture is the power of the cross-bar switch. It alleviates

much of the burden on the compiler since there are no conicts when data routing is being

performed inside a cluster of exus.

At this point we recall that the paddi chip will have clusters (or quadrants) of

eight exus. The term \quadrant" is adopted because the prototype architecture of exus

is one quarter of the original design. connected by a con�gurable crossbar switch. These

quadrants can communicate with each other but in a restricted fashion. The maximum i/o

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 125

bandwidth of the chip is limited by the �xed number of i/o pins. Each exu has two register

�les at its inputs, and is controlled by its own local memory (nanostore) to perform a set

of basic operations. Each nanostore is in turn sequenced by the o�-chip controller.

The ultimate goal of the synthesis process is to map the high-level description

onto paddi. This is achieved by generating the controlling sequence of nano-instructions

for each exu. We will now discuss speci�c features of the architecture which will a�ect this

compilation process.

The system throughput requirements and the maximum clock frequency will de-

termine the maximum level of hardware resource sharing as follows. The repetitive kernel

in an (or in a part of an) algorithm is the smallest coherent part of the algorithm which

is repeated again and again in time, and which covers all arithmetic operations [42]. If

the rate at which the kernel has to be evaluated is f

k

and the operating clock frequency is

f

clock

, then the hardware sharing ratio (hsr) is:

HSR =

f

clock

f

k

This sets an upper bound on the maximum number of operators which can be mapped to a

single exu. The maximum hardware sharing ratio is constrained by two parameters. The

�rst is the maximum number of registers in the exu's. In the prototype architecture this is

six. The register storage required for operands in the set of operations that get mapped to

a particular exu must not exceed this limit. The second is the number of instruction words

contained in the nanostore (eight in the prototype architecture). The maximum number of

unique operations that any given exu can perform is set by this number. We note that, at

the cost of additional hardware, the number of registers and nanostore size can be varied for

other members of the chip-set depending upon the performance range targeted. In general,

it is desirable to pack as many operations into as few exus as possible to maximize hardware

utilization.

7.3.2 Hardware Assignment Using Clustering

We will now examine the �rst approach to the compilation process i.e. where

the tasks of allocation and assignment are de-coupled from scheduling. In this approach,

allocation and assignment will precede scheduling. Since much prior work has been done

on scheduling, we will address the allocation and assignment problem only. For example,

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 126

we are considering the use of the hyper system scheduler as a candidate scheduler. hyper

is a high level synthesis system for real time applications.

Hierarchical Two Phase Clustering

We propose a hierarchical clustering approach to attack the allocation and assign-

ment problem. In the following discussion, we restrict the problem size to one that will �t

on a single chip. One performs initial estimations to see whether or not the problem can �t

on a single ship. The multi-chip problem is subject to future research.

Clustering begins with exu clustering followed by quadrant clustering. The ob-

jective of exu clustering is to pack as many operators into each exu as possible without

violating the hardware constraints. Quadrant clustering is clustering of the exu clusters

with the goal of packing as many exu clusters as possible in each quadrant. Each type

of clustering uses the same algorithm and contains two phases, an initial solution phase

and an improvement phase. For each type of clustering, only the hardware and scheduling

constraints are di�erent. Prior to clustering, we envision a pre-optimization stage where sep-

arate operations such as shift followed by an add, and add-compare-select can be collapsed

into a single operation to take advantage of the native instructions of the architecture.

We will now describe the initial and improvement phases which are generic to both

types of clustering.

Initial Phase

In the initial phase of clustering an attempt can be made to achieve a good �rst

guess. In many instances, the user will be able to easily identify obvious partitions where

there is a lot of local communication and from these partitions choose appropriate seed

nodes. Otherwise heuristics could be developed, to help guide the choice of the seed nodes.

When a node is attached to a seed node or another assigned node it is said to be assigned.

At each step of the initial phase, an existing cluster will join with the closest unassigned

node. Closeness measures will be de�ned using heuristics and moves will be subject to

hardware and scheduling constraints. Seed nodes will not be coalesced since there is no

backtracking in this phase. This phase provides an initial solution which, although it is not

guaranteed to have a successful schedule, does have a high probability of being scheduled

by keeping the constraints hard.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 127

Improvement Phase

In the improvement phase, simulated annealing [60] is applied to improve the

initial solution. One or more of the hard bounds are relaxed and even bad moves are

probabilistically accepted. Since the granulatity of the problem is coarse, i.e. we work with

exus and quadrants, not gates or transistors, the size of the problem will not be very large,

and so simulated annealing should not be too expensive to use. The closeness measures

and hardware bounds are wired into the cost function. Moves are tried e.g. pairwise swaps,

triplet permutation etc. If the cost function is expensive to evaluate, complicated moves

will not be tried. Here a cost function based upon the closeness criteria and architectural

constraints is constructed. After completion of the annealing schedule, the �nal solution is

compared with that of the initial feasible solution and the winner is selected.

Detailed EXU Clustering

Closeness measures can be constructed which would attempt to encourage the

clustering of operators which share the same control ow. If two operators are in the same

path, their clustering is encouraged, if not they would be discouraged. Other measures would

encourage the clustering of operators which share data, in order to keep the communications

local. On the other hand we would like to exploit low level parallelism and force operators

that have to be executed in the same cycle into di�erent exus. Similar closeness measures

for a di�erent clustering scheme have been done in the aparty architectural partitioner

used in a behavioral synthesis system under development at Carnegie Mellon University

[122] Some rough scheduling might be necessary here in order to identify such operators.

We will now discuss constraints particular to the paddi architecture.

1) Maximum number of available registers per exu: these will be incorporated

into the closeness and cost functions. An e�cient mechanism for estimating the number of

registers need per cluster will be required. Such a mechanism already exists for the hyper

system.

2) Maximum resource sharing: is determined by throughput constraints, sets upper

bound on the maximum number of operators which can be mapped onto any exu. This is

a hard bound.

3) Communication constraints : we note that the switch network connecting the

exus within a quadrant is under program control, while the switches connecting to quad-

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 128

rants and to o�-chip modules are statically con�gured. If one makes the simplifying (sub-

optimal) assumption that the switches connecting the exus are statically con�gured, then

the maximum allowed fan-in per exu is 2 and the fan-out is 1, again hard bounds. Such

an assumption will make the job of the register estimator and ultimately the scheduler

easier but will probably lead to sub-optimal solutions. Clearly the approach of not mak-

ing this assumption will exploit the true power of the conict-free routing network. If the

assumption is not made, then the bound on the fan-in to any exu will be the twice the

maximum resource sharing allowed. The fan-out will be exactly the same. This is because

the exu switching network and the exus share the same nanostore. In this case, a more

sophisticated register estimator and scheduling algorithm will be required.

During the initial phase of exu clustering, an initial \good" solution is constructed.

Here a good solution means one which has a high probability of successful scheduling. In this

phase, the register bound is kept hard. Assuming the speci�cation of suitable seed nodes,

clusters are built up by attaching closest unassigned nodes. If a candidate causes either

the register, operator, fan-in or fan-out bounds to be exceeded, it is said to be infeasible.

Addition of nodes into a particular cluster terminates when all candidates are infeasible. At

this point, the cluster is said to be saturated and an exu is allocated to it. At this point, a

new seed can be created by assigning an operator connected to any of those in the saturated

cluster. exu clustering continues until no unassigned operator exists. At this point, an exu

can be allocated for each cluster. A record is kept of this initial feasible solution for later

use.

The improvement phase of exu clustering attempts to improve upon the initial

feasible solution by application of simulated annealing, as described earlier.

Detailed Quadrant Clustering

At this point, quadrant clustering of the exu clusters can proceed. The problem of

quadrant clustering is to map the assigned exus to quadrants such that the interconnection

constraints are satis�ed. These clusters are �xed internally and will not be modi�ed. Once

the speci�c hardware constraints are updated for this level, the same clustering algorithm is

employed. At the quadrant level, the fan-in and fan-out bounds and maximum number of

exus are set by the architecture. The register estimator will continue to play an important

role at this level of clustering.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 129

When clustering is �nished, the assignment task is complete and the scheduler

takes over. If the scheduler is successful the compilation task is essentially done. If not,

then either the time constraint or the clustering of operators within exus will need to be

relaxed.

The clustering approach described above is one approach which can be considered

for hardware assignment.

7.3.3 CADDI Compiler

We will now discuss the second approach to compilation, the one used in the

caddi compiler. This compiler is being developed as a part of the uni�ed rapid prototyping

framework environment, which also includes the hyper and mcdas [49] systems. The

three systems share a common database structure, but each targets a di�erent architecture:

caddi targets programmable arithmetic devices, hyper, semicustom architectures, and

mcdas, multiple programmable processor architectures. Besides the common data structure

and several tools, caddi shares with mcdas and hyper the same fully modular software

organization. This makes it easy to add new tools or to modify existing tools.

An overview of the envisioned system is shown in Fig. 7.1. An automated com-

pilation path from a high level data ow language silage [91] to the paddi chip, which

includes partitioning, scheduling, and code generation is forseen. caddi will be similar

to the approach [95] taken in hyper and will contain all steps required for compilation

namely allocation, assignment, and scheduling modules, followed by translation into assem-

bly language and ultimately into a con�guration �le. In hyper the synthesis procedure

is implemented as a search process. From an initial solution, new solutions are proposed

by executing a number of basic moves, such as adding or removing resources, changing

the time allocation for di�erent subgraphs in the algorithm, or applying graph transforma-

tions. hyper uses a single global quality measure, called resource allocation, to drive the

search process. The allocation and assignment approach di�ers from the approach presented

above in that a modi�cation of the rejectionless antivoter assignment algorithm of [95] is

envisioned.

The rapid prototyping framework will allow the designer to experiment and analyze

the speed vs. cost trade-o� for various implementations as well as the e�ects of quantization

and transformations on system performance. Initial results and the on-going investigation

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 130

Transformations

7654321

x

x

xxx

xx

x

x

x

x

EXU_C

EXU_B

EXU_A

Time

Allocation/Assignment/SchedulingPartitioning

exu_a - 60 %

exu_b - 75 %

resource utilization:

execution time = 7

Estimation

sUXE

PADDICode Level Simulation

}

b6=exu_c, (a4+b6);

exu_a{

a4=exu_b;

Assembler

Out

In
DDD

Flowgraph database

Out = Sum{(i = 1 .. N) :: c(i) * In@i}

func fir(in:fix) Out: fix =

Input: Flowgraph language

Figure 7.1: Software Environment

of the compiler e�ort will be reported in [23].

7.4 Conclusions

We have described the low-level programming tools for the paddi architecture. We

have also discussed the architectural features which directly a�ect the quality of software

compilation from a high level language. A proposal was made for optimizing hardware

allocation and assignment. The on-going compiler e�ort which forms part of an integrated

rapid prototyping environment for high performance systems was described.

Chapter 8

Conclusions and Future Work

Dear Sister Irma,

{ The bare truth is as follows: If you do not learn a few more rudiments of the profession, you

will only be a very, very interesting artist the rest of your life instead of a great one.

| J.D. Salinger, De Daumier-Smith's Blue Period

The focus of the dissertation has been to develop a new software-con�gurable

hardware approach for the rapid prototyping of high speed digital signal processing appli-

cations. A benchmark set of real-time digital signal processing algorithms were analyzed

to determine the basic architectural features that require support. A multiprocessor ar-

chitecture of programmable arithmetic devices was designed and implemented. A fully

functional vlsi part serves to demonstrate that architectures of this class are both feasible

and implementable.

The initial version contains 8 processors connected via a dynamically controlled

crossbar switch, and has a die size of 8.9 x 9.5 mm

2

, in a 1.2 �m cmos technology. With

a maximum clock rate of 25 MHz, it can support a computation rate of 200 mips and can

sustain a data i/o bandwidth of 400 MByte/sec with a typical power consumption of 0.45

W. An assembler and simulator have been developed to facilitate programming and testing

of the chip. A software compilation path from the high level data ow language silage [91]

to paddi is currently under development, and handles partitioning, scheduling, and code

generation. A 16 exu (400 mips) processor is currently under design, together with a multi-

chip module approach which could support up to 32 exus (800 mips) in a single package.

Further investigations are being performed by other researchers into similar architectures

which employ a data driven paradigm.

The main conclusion of this work is as follows:

131

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 132

Vendor PN Function

ADI ADV7141 Continuous edge graphics

AMD Am7911 1200/150 bps modem

C-Cube CL-550 DCT image compression IC

Dallas DS2160 DES encryption chip

DSP group DSPG6000 Answering machine processor

Exar XR-2401 2400 bps MNP5 modem processor

Intel 89C026 2400 bps modem

ITT Digit2000 TV chip set

NEC �PD77501 Speech synthesizer

NPC SM5804 CD audio �lter

Oki MSM6994 V.32 modem chip

Pioneer PD0029 Filter chip (�xed)

Plessey PDSP16401 Edge detector chip

Rockwell RD96NFX 9600 bps fax modem (hybrid)

Sanyo LC7860 CD player �lter/servo IC

Siemens PEB2091 ISDN U transceiver

Sierra SC11046 2400 bps modem

Sony CXD1144AP CD player �lter

ST/Inmos IMSA121 DCT image compression IC

Yamaha YM-3805 CD player �lter/servo IC

Zoran ZR36020 DCT image compression IC

Table 8.1: Some Typical Dedicated-Function DSPs

Software-con�gurable hardware approaches to high speed digital signal

processing problems form viable alternatives to existing approaches for systems

designers interested in rapidly prototyping or implementing their ideas.

At present, more computation is done in signal processing applications than in any

other use of integrated circuit technology. Digital signal processing has made, and will con-

tinue to make tremendous inroads into the domain of analog signal processing. As we stated

at the beginning of the thesis, dsp chips can be found in medical instruments, cars, satel-

lites, rockets, video cameras, compact disks, televisions, modems, audio equipment, musical

instruments, facsimile and modems, cellular phones, disk drives, conventional workstations,

robots, and assembly lines. In other words, they are currently found in many places, and

are quickly becoming ubiquitous. To illustrate the pervasive nature of these chips we list

some typical dedicated-function ones in Table 8.1 (from [18]).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 133

Maximum Signal Frequency

AM RF

band

TV
RF

Audio
ISDN

subscriber

channel

NTSC

video

signal

seismic

signal

spectrum

one

telephone

channel

Parallel structures (systolic arrays, etc.)

Bit slices or multiple DSP chips

Single-chip DSP

TI TMS320C50

TI TMS32010

uproc/uctl

0 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz

Processing Power

Figure 8.1: Processing Power vs. Maximum Signal Frequency

In the future, digital signal processors will be applied extensively to application

areas such as machine vision, speech synthesis and recognition, personal communication de-

vices, multimedia, video conferencing, handwriting recognition, adaptive noise cancellation

in automobiles and aircraft, adaptive vehicular suspension systems, to name a few. The key

to this revolution will be the massive computation power which will become available with

multiprocessing architectures.

Figure 8.1 (from [18]) shows processing power as a function of maximum signal

frequency. The author's view is that below 1 MHz., one chip can su�ce, but above that,

multiple chips or even systolic arrays are needed. Here the term systolic array was used to

refer to parallel and multiprocessor architectures in general. This view essentially re-iterates

the view presented in Chapter 2 where we also saw that maximum signal frequency is not

the only criterion for high computation. The complexity of the algorithm plays a major

role.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 134

We expect to see many novel multiprocessor architectures for digital signal pro-

cessing. Accompanying innovations will be required in the software arena to fully exploit

the power of these architectures. Investigations into this domain, such as here and in

[127, 35, 34, 107, 6], have begun, and will continue to expand. For example star Semicon-

ductor has recently introduced a complete development system, the Sproclab. It uses the

sproc1400 processor which contains four general signal processors with on-board shared

memory and serial and parallel i/o [114, 19]. The objective of this system is to provide

better performance than single chip dsps, together with a rapid prototyping environment.

With a complete software and hardware development system, the user can automatically

compile his application down to board level within a matter of minutes from a block diagram

description.

The area of rapid prototyping and emulation of systems is, in itself, a fast growing

area. For example, work is in progress by other researchers to provide programmability at

mcm level [32]. A �eld programmable mcm architecture utilizing an a array of modi�ed

fpgas is proposed. Interconnections are provided by a �xed routing network on the mcm,

and by programmable interconnection frames on each fpga. Quickturn Systems reports an

emulation machine based on xilinx fpgas. In [9], a programmable active memory (pam)

card which consists of a large array of xilinx fpgas is connected to the system bus of a

host computer, in this case, a dec work-station. In the cases where the algorithms could

be hard-wired into the pams, several orders of magnitude speed-ups were observed. Similar

e�orts at this level are reported in [21]

We anticipate that the impact of these and similarly new technologies on logic

design and system design methodology will be as follows:

a. Software-con�gurable components such as fpgas, micro-controllers, plds, and

multiprocessor architectures such as wavefront arrays and programmable arithmetic devices

will gradually replace ssi components such as ttl. Future board level designs will consist

of relatively few components, those stated above, and perhaps some custom or semi-custom

vlsi parts.

b. The methodology of design will be driven by these generic devices. Synthesis

based approaches with robust simulation tools and real-time operating systems will guar-

antee almost one hundred percent functionality for initial prototypes. The result will be

the creation of e�cient, high performance systems which will compete with present manual

designs.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 135

The work reported in this thesis forms part of a new, exciting, and growing �eld of

research into software-con�gurable hardware systems which exhibit high performance and

which can be rapidly prototyped.

Appendix A

Xilinx Case Study

A.1 Introduction

The results presented in this appendix were �rst presented in [24].

As mentioned in Section 4.4.8, the number of choices for fpgas are numerous. As

part of this research, we made a detailed study of the applicability of fpgas to high speed

data path prototyping. This Appendix will outline the results of that study.

A.2 Limitations of FPGAs

Due to their bit-level granularity, fpgas will not support as exible routing of

wide data-buses and will not have as fast adders (for the same technology) as a word-level

granular architecture with exible bus interconnections and adders optimized for speed.

fpgas also do not typically support hardware multiplexing of their clbs. In software-

con�gurable fpgas, the functions of the clbs can be re-de�ned, but this is not typically

done in high speed applications except at system re-boot, since recon�guration time is

of the order of milliseconds. In order to illustrate these points, we have mapped several

benchmarks to the popular xilinx XC3090 family.

As a simple example, consider the low pass �lter biquad section of Fig. A.1 and

Fig. A.2. We have mapped this benchmark to both xilinx and paddi, assuming ripple

adders (for e�cient layout) and hard-wired shifts. The results are shown in Table A.1, case

A. The fpga speed numbers are optimistic because no account is taken for routing delays.

Assuming ripple adders (for optimal layout) and hard-wired shifts, the critical path from

register S1 through three adders and back to S1 will take at least (1 16-bit ripple delay

136

APPENDIX A. XILINX CASE STUDY 137

(a)

X[n] Y[n]

-
-

a1=-1.25

a2=0.75

-1Z

-1Z

b1=0.625

b2=1

-1Z

-1Z

Figure A.1: Simple Low Pass Biquadratic Filter

+ 3 clb delays + interconnect delays). Assuming a realistic 20 nsec of interconnect delay

in the ripple path and between macro blocks, the critical path will be at least 153 nsec

using numbers from the xilinx design manual. If we consider a biquad with an average of

4 non-zero bits per coe�cient (after canonic signed digit transformation) then the critical

path will be (1 16-bit ripple delay + 7 clb delays + interconnect delays) or roughly 190

nsec. The �nal number will be even greater due to interchip delays.

Similar results are shown for case B where the coe�cients are assumed to have 4

non-zero bits (after canonic-signed-digit transformations). If we apply transformations to

pipeline case B (using techniques described in [112, 92]), the critical path will continue to

be dominated by the 16-bit ripple delays of the adders. paddi delivers equal or superior

minimum sampling intervals for similar hardware costs.

To illustrate the limited routing cability of fpgas, consider the previously discussed

3 x 3 linear convolver of Fig. 2.3 in Section 2.3 of Chapter 2. (For comparison purposes,

a mapping of this same benchmark to the paddi architecture is given in Appendix B.)

Fig. A.3 shows its oorplan on a XC3000 part (excluding the two line delays). Highlighted

are certain hot-spots of congestion where six (non-local) vertical channels are needed. This

is detailed in Fig. A.4. However there are only �ve vertical (and horizontal) general purpose

lines available in the XC3000 series. A solution to this problem is to partition the convolver

APPENDIX A. XILINX CASE STUDY 138

>> 2

>> 4

(b)

Y[n]

X[n]

T3

-
>>2

S2S1

T2T1

Figure A.2: Transformed Biquad

across 3 chips, one per vertical section (Table A.1). paddi again delivers a superior minimum

sampling interval for similar hardware costs.

When we started our investigations only the XC3000 family was available. The

recently introduced of the xilinx XC4000 series which uses 0.8 and 0.5 �m cmos technol-

ogy and which has hooks for faster adders, and a di�erent interconnect architecture will

a�ect the above comparison. The XC4000 series alleviates some of the the abovementioned

limitations by incorporating special architectural hooks for faster addition (20nsec per 16

bits in 8 clbs). Per column there are now 8 single length lines, 2 double length lines, and

6 long lines but the switching matrices are less powerful than in the XC3000. Without fur-

ther detailed study one cannot make de�nite conclusions about the new family's ability to

support high speed dsp algorithms. We also note that the XC3000 family was implemented

in 1.2 �m cmos as is our prototype chip whereas the XC4000 is implemented in 0.8 �m

cmos. The XC4005 (14 x 14 clbs) is being sampled with the XC4010 (20 x 20) planned

before going to 0.5 �m technology. The di�erence in implementation technology will com-

plicate the task of comparison. vsps [127] and commercial dsps are other programmable

alternatives. In future comparisons, one must take into account the technology and archi-

tectural di�erences and also the on chip hardware multiplexing support of paddi which is

not present in conventional fpgas. However, because of the features described above i.e.

APPENDIX A. XILINX CASE STUDY 139

16-bit line delayed inputs (use 3 vertical long lines)

registered output

Z-1

-1Z

Z-1

-1Z

Z-1

-1Z

Z-1

-1Z

Z-1

Z-1

-1Z

Z-1

-1Z

Z-1

-1Z

16 16 16

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

ROWS

Figure A.3: Convolver on XC3090 with Routing Congestion

R6

R5

R4

bit2bit1

adderadder

ter
regis- regis-

ter

ter
regis-

ter
regis-

Figure A.4: Insu�cient Routing Resources for the Convolver

APPENDIX A. XILINX CASE STUDY 140

CASE XILINX PADDI

MIN MIN

SAMPL No. of SAMPL No. of

INT CLB's INT EXU's

(nsec.) (nsec.)

16-bit biquad 153 176 75 4

(case A)

16-bit biquad 190 400 200 9

(case B)

16-bit biquad 144 1504 40 55

(case B,

pipelined)

3 x 3 Linear 144 | 40 11

Convolver (3 chips)

Table A.1: Comparison of XILINX and PADDI

faster arithmetic for the same technology, more exible interconnect, support for hardware

multiplexing, more e�cient implementation of register �les, paddi is better suited for data

path intensive applications.

As a further comparison, a Motorola dsp56000 can operate at 10.25 mips and has

a data i/o bandwidth of 60 MByte/sec. vsps [127] can operate three 12-bit execution units

at 27 MHz (81 mips) with a data i/o bandwidth of 405 MByte/sec, but typically operate

at 13.5 MHz (40 mips) due to the latency of the long pipelines. The chip presented here

can operate eight 16-bit execution units at 25 MHz (200 mips) with a data i/o bandwidth

of 400 MByte/sec. Because of the larger degree of concurrency due to the smaller level

of granularity of the exus, smaller branch penalty, paddi is better suited for data path

prototyping.

Appendix B

Mapping an Example to PADDI

Table B.1 shows several benchmarks which were manually mapped onto the paddi

architecture.

Below, we show how one of these examples maps to the architecture. It is the 3 x

3 linear convolver of Fig. 2.3 of Section 2.3. The coe�cients. are powers-of-two and so the

multiplications can be implemented as shifts and adds. This convolver is used in low level

image processing [103] to implement various �ltering operations.

After retiming [68], the signal ow diagram of Fig. B.1 results. Fig. B.2 and

Fig. B.3 show how this can be mapped to two chips (excluding the line delays). (Note

also that the pads of each chip are pipelined). In this example the sfg is mapped directly

to hardware and there is no hardware multiplexing of operations on the exus. The exus

receive a single static global instruction, and the instructions pins can be hard-wired to a

constant value.

141

APPENDIX B. MAPPING AN EXAMPLE TO PADDI 142

BENCHMARK POSSIBLE EXUs

SAMPLING RATE REQUIRED

3 x 3 Linear 25 MHz 11

Convolver

(Image processing)

3 x 3 Nonlinear 25 MHz 16

Sorting Filter

(Image processing)

RGB Video Matrix 25 MHz 31

Converter

Flexible Memory 25 MHz 28

Control Chip

For Video Coding

Biquad 5 MHz 9

Direct Form II

(time-multiplexed)

Biquad 25 MHz 55

Direct Form II

(pipelined)

Table B.1: Benchmarks

input

output

-L+1

-L+1

XXX

X

+

X

+

a32X

+

X

+

X

+

a13Z

Z

X

+

+

+

a23

a33

a22

a12 a11

a21

a31

Figure B.1: Retimed Linear Convolver

APPENDIX B. MAPPING AN EXAMPLE TO PADDI 143

XZ
-L+1-L+1

XZXZ
-L+1

XZ
-2L+2-2L+2

XZXZ
-2L+2

XZ

XZ
-2L+2

-L+1

a11a12a13

E

EXU

F

EXU

G

EXU

H

EXU

EXU

DC

EXUEXU

B

EXU

A

+ a23
+ a22

+ a21

AA
BB
CC

Figure B.2: Linear Convolver Mapping (1/2)

AA

a21+
a22+

a23+A

EXU

B

EXU EXU

C D

EXU

EXU

H

EXU

G

EXU

F

EXU

E

BB
CC

X

AA
X

a21+

X X

DD

DD

EE

EE BB CC

+

FF GG

GG

FF

RESULT

RESULT

Figure B.3: Linear Convolver Mapping (2/2)

Appendix C

Programmer's Guide

C.1 Introduction

This Appendix provides an overview of the assembly language supported by the

high level compiler.

The operations of the machine determined by two types of information: initial

con�guration settings, and run time instructions. After con�guration, each exu accepts

run-time instructions which specify its operation, and the routing of the data. In model of

execution that was adopted, each exu always issues it's output to the crossbar switch. as

a consequence, there is no speci�cation of any particular destination be it internal register,

other exu or i/o port. This \receiver controlled" model was described in Section 7.2.1.

C.1.1 Dynamic Instructions

We will begin by describing the format of the dynamic or run-time instructions.

Each exu's operation in a given cycle is speci�ed by a �fty-three bit instruction

word. The instruction format is shown in Fig. C.1. Two �elds specify read and write

addresses for the A and B register �les. The function �eld speci�es the exu function. The

switch �elds are used to specify the sources of data for each of the register �les. Sources

can be the outputs of any exu or any of four input busses. The ags �eld sets the interrupt

enable ags for interrupt vectors IVONE and IVTWO respectively.

Each instruction executes in one cycle. We will now describe the separate �elds

which are contained in an instruction.

144

APPENDIX C. PROGRAMMER'S GUIDE 145

6 (bits)

FUNCTION
FUNCTION

A REGISTER

SPECIFIERS

SPECIFIERS

B REGISTER

SPECIFIERS

A REGISTER

SOURCE

B REGISTER

SOURCE

OUTPUT BUS

ENABLES

INTERRUPT

ENABLES

6

11

2

13

13

2

REGISTER

FILES

SWITCH

FLAGS

Figure C.1: Instruction Format

Registers

Each exu has two dual-ported register �les (See Section 5.5.1) designated A and

B. Each register �le contains six registers A1 .. A6 and B1 .. B6. The registers A6 and

B6 are special i.e. they can be initialized to contain an arbitrary value.

Each exu instruction contains speci�ers for both read source register and write

destination register for each register �le. Source and destination register speci�ers can be

identical. The source register will be read at the beginning of the cycle, and the destination

register will be written at the end of the cycle.

Functions

A summary of the various exu functions is shown in Table C.1. Accumulation in

a given exu is achieved by specifying register for reading and writing i.e. the accumulator

and the source unit for the write register to be \this exu"

Output Bus Enables

There are four 16b output buses O1L, O1H, O2L, O2H that communicate with

the external world. The routing of data to these buses is controlled by the output bus

APPENDIX C. PROGRAMMER'S GUIDE 146

Description Op-code Operand

Load = src

Addition + src1, src2

Subtraction - src1, src2

Maximum max src1, src2

Minimum min src1, src2

Arithmetic � amount

Right Shift

Insert output oreg

pipeline register

No operation nop

Table C.1: Summary of Arithmetic Instructions

enable �elds. exus A, C, E, F can write to buses O1L and O2L while exus B, D, G, H

can write to buses O1H and O2H. In 32b mode, e.g. where exus A and B might be linked

and routed to output bus 1, the output from A would form the lower half of the output

word, and the output from B would form the upper half.

The assembler automatically checks for and ags any bus conicts which might

occur due to an error in the code.

A and B Register Sources

The A and B register sources �elds control the switch settings of the crossbar net-

work to determine the routing of data. These �elds are implicitly speci�ed by the assembly

code by the the sources (exus and/or input buses) for each register, and automatically

generated by the assembler.

There are four 16b input buses, I1L, I1H, I2L, and I2H respectively. There are

no restrictions on which input bus might be routed to any exu.

Interrupt Enables

An exu can be interrupted from the normal control ow if either of its two interrupt

enable ags are set as described in Section 5.5.3.

APPENDIX C. PROGRAMMER'S GUIDE 147

Description Op-code Operand

Specifying constants = value

Normal register normal a

�le mode (A)

Normal register normal b

�le mode (B)

Delay register delay a

�le mode (A)

Delay register delay b

�le mode (B)

Link exus link

Unlink exus unlink

Unsigned arithmetic unsigned

Two's complement signed

arithmetic

Table C.2: Summary of Con�guration Speci�ers

C.1.2 Con�guration Speci�ers

We will now describe the various �elds which control the initial con�guration and of

the machine. Apart from the constant register which may be overwritten, the con�guration

remains static until the next re-boot. Table C.2 lists the various con�guration speci�ers.

C.1.3 Putting it all Together

The following program does not perform any meaningful operation. The listing is

presented to illustrate the syntax of the assembly language and a will be useful reference

to the assembly language programmer. It contains examples of all the main assembly

instructions with appropriate comments. (The reader may refer to Section 6.7.2 for some

real program listings).

/� global defaults section

� these can be overridden at the speci�c EXU defaults

� section

�/

defaults f

A6=0, B6=0, /� initial values for constant regs �/

bfsw=11111111b, /� bu�er switch value (note the binary

constant) �/

normal a, /� normal mode for reg �le A �/

APPENDIX C. PROGRAMMER'S GUIDE 148

normal b, /� normal mode for reg �le B �/

ien1=0, ien2=0, /� turn o� interrupts �/

unlink, /� don't link EXUs �/

oreg=0xABCD, /� pipeline reg value (note the hex

constant) �/

signed /� signed mode �/

g

/� symbol name to EXU letter maps �/

map f

(exu a=Xa), (exu b=Xb), (exu c=Xc), (exu d=Xd),

(exu e=Xe), (exu f=Xf), (exu g=Xg), (exu h=Xh)

g

/� for delay line mode, all incoming values �must� go to

� reg num 5

�/

#de�ne DELAY REG A A5

#de�ne DELAY REG B B5

exu a

link, /� link mode �/

delay a /� delay line mode for register A �/

/� if you don't specify an instruction number,

� the instruction number defaults to the next

� available instruction `slot' (in this case

� instruction zero)

�/

f

DELAY REG A=i1l, oreg (A1+B1), o1;

/� read in from external world input

bus 1L, latch the output, and

output it on external world output

bus 1 (either 1H or 1L, whatever is

valid) �/

g

exu b

link, /� link mode �/

delay a /� delay line mode for register A �/

f

DELAY REG A=i1h, oreg (A1+B1), o1;

g

APPENDIX C. PROGRAMMER'S GUIDE 149

exu c unsigned,a6=1234 /� decimal value 1234 (base 10) �/

f

1: nop;

0: a5=exu a, b5=exu b, (max(a5, (b5�1))), o2;

7: a5=i1l, b5=i2l, (min(a5,b5�7)), o2;

g

exu d a6=1, b6=1, ag1=i1l, ivec1=0 f /� usage of ags �/

0: a5= i1l, (a5), o1, o2;

1: a5= i1l, (a5+b6), ien1, o1, o2;

g

Appendix D

Con�guration With External

Memory

The paddi chip can interface directly to external memory with minimal glue logic.

Commercial eproms (such as the xilinx XC1736 and XC1764) which have internally re-

settable counters, are available. The paddi chip can interface directly to these with no glue

logic whatsoever.

Internally generated phim and phis non-overlapping, two-phase clocks are provided

for external synchronization. After an initializing start signal (e.g. power on reset) is

received by the paddi chip, the low during con�guration (ldc) signal will toggle, the chip

enable (ce) will go low, and scan signal will go high (Fig. D.1). The scan signal will

remain high for the duration of a complete line scan. It will then go low to allow writing

of the on board srams and then return high. This will repeat until all 8 nanostore entries

are fully con�gured. After con�guration is completed, the scan signal will be set low and

ldc and ce will be set high.

The actual circuits used during chip paddi testing are shown in Fig. D.2 and are

presented as a convenience for future users.

150

APPENDIX D. CONFIGURATION WITH EXTERNAL MEMORY 151

710SCAN

CE

LDC

START

PHS

PHM

Figure D.1: Con�guration Timing Diagram

CK

SCANINSCANCPHM

CE PADDI

address

EPROM

D

C

B

A

/LOAD

/ENP/ENT

169’

COUNTER

Figure D.2: Interfacing to External Memory

Appendix E

Pin List

E.1 Pad Types

The pin grid array (pga) pin assignments are shown in Fig. E.1. The package

is a 208 pin pga manufactured by the Kyocera Corporation. The type �eld refers to the

type of pad that is used for a particular pin. There are two basic types, non-registered and

registered. Tables E.2 and E.3 show the paddi pin list. The correspondence between pad

types and pin types is given in Table E.1.

Pad Name Description Pin Type

padBin non-registered input pad Bin

padininv non-registered inverting input pad ininv

padbo non-registered output pad bo

padin registered input pad in

pado tri-stated registered o/p pad out

Table E.1: Pad Types

152

APPENDIX E. PIN LIST 153

E.2 PGA Pinout

208

105

104

52 1

BOTTOM VIEW

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

TSRPNMLKJHGFEDCBA

16111621263137424853

58

63

68

73

78

83

89

94

100

105 110 115 120 125 130 135 141 146 152 157

162

167

172

177

182

187

193

198

204

Low inductance/resistance pins are those

Pins 11,63,115,167 are connected to substrate.

closest to the die edge.

208 PGA

Die mounted on top side.

54

55

158

53

159

CHIP

BOTTOM VIEW

Figure E.1: PADDI PGA Pin Assignments

APPENDIX E. PIN LIST 154

Pin Type Name Pin Type Name Pin Type Name

1 gnd GND 70 out O1L[10] 139 in FI2L

2 in I2L[11] 71 out O1L[9] 140 in I1H[15]

3 in I2L[10] 72 ininv testi 141 vdd Vdd

4 in I2L[9] 73 vdd Vdd 142 in I1H[14]

5 in I2L[8] 74 ininv ph1 143 in I1H[13]

6 vdd Vdd 75 gnd GND 144 in I1H[12]

7 in I2L[7] 76 ininv teste 145 in I1H[11]

8 in I2L[6] 77 ininv scant 146 gnd GND

9 in I2L[5] 78 gnd GND 147 in I1H[10]

10 in I2L[4] 79 out O1L[8] 148 in I1H[9]

11 substrate GND 80 out O1L[7] 149 in I1H[8]

12 in I2L[3] 81 out O1L[6] 150 in I1H[7]

13 in I2L[2] 82 out O1L[5] 151 in I1H[6]

14 in I2L[1] 83 vdd Vdd 152 vdd Vdd

15 in I2L[0] 84 out O1L[4] 153 in I1H[5]

16 vdd Vdd 85 out O1L[3] 154 in I1H[4]

17 Bin phm 86 out O1L[2] 155 in I1H[3]

18 bo scanc 87 out O1L[1] 156 in I1H[2]

19 bo read 88 out O1L[0] 157 gnd GND

20 in verify 89 gnd GND 158 in I1H[1]

21 gnd GND 90 out O2H[15] 159 in I1H[0]

22 bo phmo 91 out O2H[14] 160 in I1L[15]

23 bo ce 92 out O2H[13] 161 in I1L[14]

24 bo ldc 93 out O2H[12] 162 vdd Vdd

25 out nop 94 vdd Vdd 163 in I1L[13]

26 vdd Vdd 95 out O2H[11] 164 in I1L[12]

27 bo ns0 96 out O2H[10] 165 in I1L[11]

28 bo ns1 97 out O2H[9] 166 in I1L[10]

29 Bin lctr2 98 out O2H[8] 167 substrate GND

30 Bin lctr1 99 out O2H[7] 168 in I1L[9]

31 gnd GND 100 gnd GND 169 in I1L[8]

32 Bin lctr0 101 out O2H[6] 170 in I1L[7]

33 Bin gl2 102 out O2H[5] 171 in I1L[6]

34 Bin gl1 103 out O2H[4] 172 gnd GND

35 Bin gl0 104 Bin sci 173 in I1L[5]

Table E.2: PADDI Pin List

APPENDIX E. PIN LIST 155

Pin Type Name Pin Type Name Pin Type Name

36 bo phso 105 vdd Vdd 174 in I1L[4]

37 vdd Vdd 106 out O2H[3] 175 in I1L[3]

38 in start1 107 out O2H[2] 176 in I1L[2]

39 bo wr 108 out O2H[1] 177 vdd Vdd

40 Bin phs 109 out O2H[0] 178 gnd GND

41 Bin stop 110 gnd GND 179 ininv ph2

42 gnd GND 111 out O2L[15] 180 vdd Vdd

43 out O1H[15] 112 out O2L[14] 181 in I1L[1]

44 out O1H[14] 113 out O2L[13] 182 gnd GND

45 out O1H[13] 114 out O2L[12] 183 in I1L[0]

46 out O1H[12] 115 substrate GND 184 in I2H[15]

47 vdd Vdd 116 out O2L[11] 185 in I2H[14]

48 out O1H[11] 117 out O2L[10] 186 in I2H[13]

49 out O1H[10] 118 out O2L[9] 187 vdd Vdd

50 out O1H[9] 119 out O2L[8] 188 in I2H[12]

51 out O1H[8] 120 vdd Vdd 189 in I2H[11]

52 bo sco 121 out O2L[7] 190 in I2H[10]

53 gnd GND 122 out O2L[6] 191 in I2H[9]

54 out O1H[7] 123 out O2L[5] 192 in I2H[8]

55 out O1H[6] 124 out O2L[4] 193 gnd GND

56 out O1H[5] 125 gnd GND 194 in I2H[7]

57 out O1H[4] 126 out O2L[3] 195 in I2H[6]

58 vdd Vdd 127 out O2L[2] 196 in I2H[5]

59 out O1H[3] 128 out O2L[1] 197 in I2H[4]

60 out O1H[2] 129 out O2L[0] 198 vdd Vdd

61 out O1H[1] 130 vdd Vdd 199 in I2H[3]

62 out O1H[0] 131 out FO1H 200 in I2H[2]

63 substrate GND 132 out FO1L 201 in I2H[1]

64 out O1L[15] 133 out FO2H 202 in I2H[0]

65 out O1L[14] 134 out FO2L 203 in I2L[15]

66 out O1L[13] 135 gnd GND 204 gnd GND

67 out O1L[12] 136 in FI1H 205 in I2L[14]

68 gnd GND 137 in FI1L 206 in I2L[13]

69 out O1L[11] 138 in FI2H 207 in I2L[12]

208 vdd Vdd

Table E.3: PADDI Pin List (contd.)

Appendix F

Assembler Manual Page

F.1 Introduction

PAS(1) USER COMMANDS PAS(1)

NAME

pas - PADDI assembler

SYNOPSIS

pas [-ENPWsv] [-T type] [-e errors] [-i instruction]

[-o obj�le] �lename

DESCRIPTION

Pas translates the PADDI assembly language source �le,

�lename, into an object �le, either the base of �lename

followed by an apropos extension (the object �le type name)

or the speci�ed obj�le.

OPTIONS

Pas supports the following command-line options:

-E Do not display any error messages.

-N Do not display any informational messages (or

\notes").

-P Do not apply the standard UNIX C language preprocessor,

cpp, to the input �le. If this option is speci�ed,

then the standard C language comments will

cause problems for the parser.

-W Do not display any warning messages.

-s Do not perform any semantic checking.

-v Show the current version information. -T type The

argument type speci�es the object �le type. See the

below section OBJECT FILE TYPES for more details. This

option was originally \-O" and later \-M."

-e errors

The argument errors speci�es the maximum number of

156

APPENDIX F. ASSEMBLER MANUAL PAGE 157

errors allowed before pas terminates (the default is

ten).

-i instruction

The argument instruction speci�es a speci�c instruc-

tion number to assemble for the scandas and scantest

object �le types (the default is \-1" or all

instructions).

-o obj�le

The argument obj�le speci�es the output object �le.

OBJECT FILE TYPES

Pas supports several di�erent object �le types:

eprom

This object �le type is a straight ASCII �le of bytes

in hexadecimal form, suitable for loading into an EPROM

programmer.

irsim

This object �le type provides eight object �les (one

for each instruction within the nanostore) which (after

manual massaging) is suitable for loading into the

irsim switch-level simulator.

obj This object �le type is a \portable" object �le

suitable for loading the PADDI simulator psim. This is

the default object �le type.

scandas

This object �le type provides either eight object

�les (one for each instruction within the nanostore)

or a single object �le (the instruction speci�ed by

the \-i" option) and is suitable for use with das.

scantest

This object �le type provides either eight object

�les (one for each instruction within the nanostore)

or a single object �le (the instruction speci�ed by

the \-i" option) and is suitable for use with the

scantest program.) if mixed-case keywords are a problem.

AUTHOR

Eric Ng

University of California, Berkeley

Internet: erc@zabriskie.berkeley.edu

UUCP: ...!ucbvax!zabriskie!erc

Sun Release.4.1 Last change: February 1992

Appendix G

Annotated grammar

G.1 Annotated Assembler Grammar

The grammar presented below is the actual yacc parser-generator grammar used

by the paddi assembler (with a few modi�cations for increased clarity). There are sev-

eral unde�ned terminal symbols which are clari�ed within the annotations below: boolean-

state, ag-output-bus-id, integer-constant, input-bus-id, interrupt-id, output-bus-id, register-

number, and string-label. Text expressed in the typewriter font are terminal symbols given

literally.

For convenience, pas applies cpp (the standard unix C language preprocessor)

to input �les (unless instructed not to do so). Hence standard C language comments are

supported (`/* ::: */'), as are the usual preprocessor directives (`#define' and `#include').

program:

execution-unit-defaults execution-unit-mappings execution-unit-program-list

A paddi assembler program consists of three parts: the execution unit default settings,

the execution unit mapping table, and the program list.

execution-unit-defaults:

nothing

defaults { execution-unit-con�g-list }

All settings except for flag and flagout can be assigned default values here.

execution-unit-mappings:

map { execution-unit-mapping-list }

execution-unit-mapping-list:

execution-unit-id-mapping

execution-unit-id-mapping , execution-unit-mapping-list

158

APPENDIX G. ANNOTATED GRAMMAR 159

execution-unit-id-mapping:

(string-label = execution-unit-letter)

String-label is a literal string consisting of one letter followed by zero or more letters,

digits, or underscore characters. Execution-unit-letter consists of the letter `X' followed by a letter

between `A' and `H' (each letter represents an actual execution unit A, B, ::: H).

execution-unit-program-list:

execution-unit-program

execution-unit-program execution-unit-program-list

execution-unit-program:

execution-unit-declaration execution-unit-de�nition

execution-unit-declaration:

execution-unit-id

execution-de�nition:

execution-unit-con�g-list { instruction-list }

execution-unit-con�g-list:

nothing

con�g-code-list

con�g-code-list:

con�g-code

con�g-code , con�g-code-list

con�g-code:

A6 = integer-constant

B6 = integer-constant

bfsw = integer-constant

delay_a

delay_b

flag interrupt-id = source

flagout ag-output-bus-id = boolean-state

interrupt-state = boolean-state

ivec interrupt-id = instruction-number

link

normal_a

normal_b

oreg = integer-constant

signed

tfsw = integer-constant

unlink

unsigned

Integer-constant is a sixteen-bit integer, which can be expressed as a signed decimal (with

the regular expression of `-*[0-9]+'), an unsigned binary (`[01]+b'), or an unsigned hexadecimal

(`0x[0-9A-F]+'). Interrupt-id and ag-output-bus-id are either `1' or `2' and specify an interrupt

and an output bus to the external world, respectively. Boolean-state is either `0' (for false) or `1'

(for true). Instruction-number is an integer constant between `0' and `7' and addresses a speci�c

instruction within the nanostore.

APPENDIX G. ANNOTATED GRAMMAR 160

instruction-list:

instruction-pre�x instruction

instruction-pre�x instruction instruction-list

instruction-pre�x:

nothing

instruction-number :

If no instruction-pre�x is given, the current instruction is placed at the �rst empty

location within the nanostore, starting at zero.

instruction:

' bit-string ' ;

code-list ;

nop ;

Bit-string is �fty-three bits long and allows for the explicit speci�cation of an instruc-

tion within the nanostore. A nop is results in an instruction consisting entirely of zeroes; a nop

with destination-register, interrupt-state, and output-bus-id codes can be expressed by omitting the

expression code.

code-list:

code

code , code-list

code:

(expression)

oreg (expression)

destination-register = source

interrupt-state

O output-bus-id

Interrupt-state and output-bus-id codes reverse their respective default states (i.e., spec-

ifying an interrupt-state code for a previously enabled interrupt will disable it for that particular

instruction).

source:

execution-unit-id

I input-bus-id

Input-bus-id speci�es a particular input bus from the external world (with a regular

expression of `[12][HL]').

expression:

source-register

source-register operator source-register

function (source-register , source-register)

operator:

-

+

function:

max

min

APPENDIX G. ANNOTATED GRAMMAR 161

execution-unit-id:

string-label

destination-register:

A register-number

B register-number

Register-number is an integer between `1' and `6' and addresses a speci�c register within

the given register �le.

source-register:

A register-number

B register-number

B register-number >> integer-constant

(B register-number >> integer-constant)

interrupt-state:

ien interrupt-id

Appendix H

Simulator

PSIM(1) USER COMMANDS PSIM(1)

NAME

psim - PADDI simulator

SYNOPSIS

psim [-EHINPRW] [-e errors] �lename

DESCRIPTION

Psim simulates a multiple chip environment, allowing for the

interactive debugging of PADDI programs.

OPTIONS

Psim supports the following command-line options:

-E Do not display any error messages.

-H Do not load the on-line help system upon start-up.

-I Set the built-in variable ignoreinterrupts initially to false

-N Do not display any informational messages (or \notes").

-P Do not apply the standard UNIX C language preprocessor,

cpp, to the environment �le. If this option is speci-

�ed, then the standard C language comments will cause

problems for the parser.

-R Do not use the GNU readline library (i.e., disables

command-line editing).

-W Do not display any warning messages.

-e errors. The argument errors speci�es the maximum number of

errors allowed before psim terminates (the default is ten)

SEE ALSO

The PADDI Low-level Programming Environment User's Guide and Reference

BUGS

When asked to show all aliases or variables (using the

\alias" or \set" commands respectively), what psim shows

is not sorted; this is because aliases and variables are

implemented as hash tables.

AUTHOR

Eric Ng

University of California at Berkeley

Internet: erc@zabriskie.berkeley.edu

UUCP: ...!ucbvax!zabriskie!erc

Sun Release.4.1 Last change: none

162

APPENDIX H. SIMULATOR 163

Figure H.1: Typical Psim Session

Bibliography

[1] "IEEE Micro: Special Issue on Digital Signal Processors", Dec. 1986.

[2] "IEEE Micro: Special Issue on Digital Signal Processors", Dec. 1988.

[3] Advanced Micro Devices Inc. Array Processing and Digital Signal Processing Hand-

book, 1986.

[4] M. Ahrens, A. EL Gammal, D. Gailbraith, J. Greene, S. Kaptanoglu, K.R. Dharmara-

jan, L. Hutchings, S. Ku, P. McGibney, K. Shaw, N. Stiawalt, T. Whitney, T. Wong,

W. Wong, and B. Wu. "An FPGA Family Optimized for High Densities and Reduced

Routing Delay". In Proc. CICC'90: 1990 Custom Integrated Circuits Conference,

pages 31.5.1{4, May 1990.

[5] Altera Corp. User-Con�gurable Logic - Data Handbook, July 1988.

[6] D. Amrany, S. Gadot, and M. Dimyan. "A Programmable DSP Engine for High-

Rate Modems". In Proceedings International Solid State Circuit Conference, pages

222{223, Feb. 1992.

[7] W. Andrews. "Distinctions Blur Between DSP Solutions". Computer Design, pages

86{99, May. 1989.

[8] P.J. Berkhout and L.D.J. Eggermont. Digital Audio Systems. IEEE ASSP Magazine,

pages 45{67, Oct. 1985.

[9] P. Bertin, D. Roncin, and J. Vuillemin. "Programmable Active Memories". presented

at the 1992 ACM International Workshop on Field- Programmable Gate Arrays, pages

57{59, Feb. 1992.

164

BIBLIOGRAPHY 165

[10] R. Bisiani. "System Implementation Strategies". In Speech And Natural Language

Workshop, June 1990.

[11] W. E. Blanz, D. Petkovic, and J. L. C. Sanz. "Algorithms and Architectures for

Machine Vision (chapter)". In C. H. Chen, editor, Handbook of Signal Processing.

Marcell Decker, 1988.

[12] R.K. Brayton. "SRC Center Of Excellence In CAD/IC". 1990 Research Planning

Report, pages 1{45, 1990.

[13] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. "MIS: A Multiple

Level Logic Optimization System". IEEE Transactions on Computer Aided Design,

CAD-6(6):1062{1081, Nov. 1987.

[14] R.W. Brodersen, A. Chandrakasan, and S. Sheng. "Technologies for Personal Com-

munications". VLSI Symposium, 1991.

[15] R.W. Brodersen and J. Rabaey. "Evolution of Microsystem Design". In ESSCIRC'89:

Proceedings of the 15th European Solid State Circuits Conference, pages 208{217, Sept.

1989.

[16] R. Budzinski, J. Linn, and S. Thatte. "A Restructurable Integrated Circuit for Im-

plementing Programmable Digital Systems". Computer, pages 11{21, Mar. 1982.

[17] D. Bursky. "Programmable Sequencer Hits 125-MHz Clock Speed". Electronic De-

sign, pages 43{46, September 1989.

[18] D. Bursky. "DSP Expands Role As Cost Drops And Speed Increases". Electronic

Design, pages 53{81, Oct 1991.

[19] D. Bursky. "Parallel Processing DSP Chip Delivers Top Speed". Electronic Design,

pages 43{50, Oct 1991.

[20] F. Catthoor. "Microcoded Processor Architectures and Synthesis Methodologies for

Real-Time Signal Processing". In E.F. Depreterre and A-J. van der Veens, editors,

Algorithms and Parallel VLSI Architectures, pages 403{429. Elsvier Science, 1991.

Vol. A.

BIBLIOGRAPHY 166

[21] P.K. Chan, M. Schlag, and M. Martin. "BORG: A Recon�gurable Prototyping Board

Using FPGAs". presented at the 1992 ACM International Workshop on Field- Pro-

grammable Gate Arrays, pages 47{51, Feb. 1992.

[22] D. C. Chen, R. Yu, R. W. Brodersen, and J. Rabaey. "A VLSI Grammar Process-

ing Subsystem for a Real Time Large Vocabulary Continuous-Speech Recognition

System". In Proc. CICC'90: 1990 Custom Integrated Circuits Conference, pages

13.3.1{5, May 1990.

[23] D.C. Chen, L.M. Guerra, E.H. Ng, , M. Potkonjak, D.P. Schultz, and J.M. Rabaey.

"An Integrated System for Rapid Prototyping of High Algorithmic Speci�c Data

Paths". to be presented at the International Conference on Application-Speci�c Array

Processors, Aug. 1992.

[24] D.C. Chen, L.M. Guerra, E.H. Ng, D.P. Schultz, C.N. Yu, and J.M. Rabaey. "A Field

Programmable Architecture for High Speed Digital Signal Processing Applications".

presented at the 1992 ACM International Workshop on Field- Programmable Gate

Arrays, pages 117{122, Feb. 1992.

[25] D.C. Chen and J.M. Rabaey. "PADDI: Programmable Arithmetic Devices For DIgital

Signal Processing". In VLSI Signal Processing IV, pages 240{249. IEEE Press, Nov.

1990.

[26] D.C. Chen and J.M. Rabaey. "A Recon�gurable Multiprocessor IC for Rapid Pro-

totyping of Real Time Data Paths". In Proceedings International Solid State Circuit

Conference, pages 74{75, Feb. 1992.

[27] W.L. Chen, P.Haskell, D. Messerschmitt, and L.Yun. "Structured Video: Concept

and Display Architecture". sub. to IEEE Transactions on Circuits and Systems for

Video Technology, Aug. 1991.

[28] C. Chu, M. Potkonjak, M. Thaler, and J. Rabaey. "HYPER: An Interactive Synthesis

Environment for High Performance Real Time Applications". In IEEE International

Conference on Computer Design, October 1989.

[29] J.B. Costello. 1991 Keynote Address. In Proceedings 28th ACM/IEEE Design Au-

tomaton Conference, June 1991.

BIBLIOGRAPHY 167

[30] ed. C.P. Sandbank. In DIGITAL TELEVISION. John Wiley and Sons, 1990.

[31] ed. K. Feher. In Advanced Digital Communications: Systems and Signal Processing

Techniques. Prentice-Hall, 1987.

[32] A. ElGamal, I. Dobbelare, D. How, and B. Kleveland. "Field Programmable MCM

Systems". presented at the 1992 ACM International Workshop on Field- Pro-

grammable Gate Arrays, pages 52{56, Feb. 1992.

[33] R. Ernst. "Long Pipelines in Single-Chip Digital Signal Processors{Concepts and Case

Study". IEEE Transactions on Circuits And Systems, pages 100{108, Jan. 1991.

[34] R.D. Fellman. Design Issues and an Architecture for the Monolithic Implementation

of a Parallel Digital Signal Processor. IEEE Transactions on Acoustics, Speech, And

Signal Processing, pages 839{852, May. 1990.

[35] A.L. Fisher, P.T. Highnam, and T.E. Rocko�. "A Four Processor Building Block for

SIMD Processor Arrays". IEEE Journal of Solid State Circuits, pages 369{375, April

1990.

[36] S. Fiske and W. J. Dally. "The Recon�gurable Arithmetic Processor". 15th Annual

International Symposium on Computer Architecture, pages 30{36, May. 1988.

[37] M.J. Flynn. "Very High Speed Computing Systems". In Proceedings of the IEEE,

volume 54, pages 1901{1909, 1966.

[38] M.J. Flynn. "Some Computer Organizations and Their E�ectiveness". IEEE Trans-

actions on Computers, C-21, Sep. 1972.

[39] R.J. Francis, J. Rose, and Z. Vranesic. "Technology Mapping for Lookup Table-Based

FPGAs fro Performance". In IEEE International Conference on Computer-Aided

Design, pages 568{561, Nov. 1991.

[40] R. Freeman. "User-programmable Gate Arrays". IEEE Spectrum, pages 32{35, De-

cember 1988.

[41] T. Fukushima. "A Survey of Image Processing LSIs in Japan". In IEEE International

Conference on Pattern Recognition, volume 2, pages 394{401, 1990.

BIBLIOGRAPHY 168

[42] W. Geurts and F. Catthoor. "DSP Applications suited for Lowly Multiplexed Archi-

tectures". In ASICS Open Workshop on synthesis techniques for (lowly) multiplexed

datapaths, Aug. 1990.

[43] H. Gharavi, P. Pirsch, and H. Yasuda. Special Issue on VLSI Implementation For

Digital Image And Video Processing Applications. IEEE Transactions on Circuits

And Systems, pages 1259{1365, Oct. 1989.

[44] D. Goodman. "Trends in Cellular and Cordless Communications". IEEE Communi-

cations Magazine, pages 31{40, June. 1991.

[45] J.P. Gray and T.A. Kean. "Con�gurable Hardware: A New Paradigm for Computa-

tion". In Advanced Research In VLSI, pages 279{295. Proceedings of the Decennial

Caltech Conference on VLSI, Mar. 1989.

[46] N. Hastie and Richard Cli�. "The Implementation of Hardware Subroutines on Field

Programmable Gate Arrays". In Proc. CICC'90: 1990 Custom Integrated Circuits

Conference, pages 31.4.1{4, May 1990.

[47] G. Heilmeir. "Personal Communications: Quo Vadis". In Proceedings International

Solid State Circuit Conference, pages 24{26{123, Feb. 1992.

[48] D. Hill and D. Cassiday. "Preliminary Description of Tabula Rosa: an electrically

con�gurable hardware design". In ICCD, pages 391{395, Sep. 1990.

[49] P.D Hoang and J.M. Rabaey. "McDAS: A Compiler for Multiprocessor DSP Imple-

mentation". In Proc. ICASSP 92: 1992 International Conference on Acoustics Speech

and Signal Processing, pages V581{V584, Mar. 1992.

[50] R. Hofer, W. Kamp, R. K�unemund, and H. S�oldner. "Programmable 2D Linear

Filter For Video Applications". In ESSCIRC'89: Proceedings of the 15th European

Solid State Circuits Conference, pages 276{279, Sept. 1989.

[51] H.C. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erikson, P. Freidin, L. Tin-

key, and R. Kanazawa. "Third-Generation Architecture Boosts Speed And Density

of Field-Programmable Gate Arrays". In Proc. CICC'90: 1990 Custom Integrated

Circuits Conference, pages 31.2.1{31.2.7, May 1990.

BIBLIOGRAPHY 169

[52] H.C. Hsieh, K. Dong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, and W. Carter R. Free-

man. "A Second Generation User-Programmable Gate Array". In Proc. CICC'89:

1989 Custom Integrated Circuits Conference, May 1989.

[53] IEEE Communications Society. "HDTV: Special Issue", Aug. 1991.

[54] R. Jain, P. A. Ruetz, and R. W. Brodersen. "Architectural Strategies For Digital

Signal Processing Circuits". In VLSI Signal Processing II, pages 361{372, Nov. 1986.

[55] C. Joanblanq and P. Senn. "A 54 MHz CMOS Programmable Video Signal Processor

for HDTV Applications". In ESSCIRC'89: Proceedings of the 15th European Solid

State Circuits Conference, pages 7{10, Sept. 1989.

[56] R. K. Jurgen. "The Challenges of Digital HDTV". In IEEE Spectrum, page 28, April

1991.

[57] G. Kane. "Mips RISC Architecture". Prentice-Hall, 1989.

[58] R. Kavaler. "The Design And Evaluation Of A Speech Workstation". Technical

Report Memo. No. UCB/ERL M86/39, U.C. Berkeley, 1986.

[59] K. Keutzer. "Three Competing Design Methodologies For ASIC's: Architectural

Synthesis, Logic Synthesis and Module Generation". In Proceedings 26th ACM/IEEE

Design Automation Conference, pages 308{313, Feb. 1989.

[60] S. Kirkpatrick, C. Gelatt, and M. Vecchi. "Optimization by Simulated Annealing".

Science, pages 671{680, 1983.

[61] K. Kornegay. "A Test Controller Board For TSS". Technical Report Memo. No.

UCB/ERL M91/4, U.C. Berkeley, Jan. 1991.

[62] H.T. Kung. "Why Systolic Architectures?". IEEE Computer, 15:1:37{46, 1982.

[63] S.Y. Kung. "VLSI Array Processors". Prentice Hall, 1988.

[64] Electronic Research Laboratory. LagerIV Distribution 1.0 Silicon Assembly System

Manual. University of California at Berkeley, June 1988. Distribution 1.0.

[65] E. A. Lee. Programmable DSP Architectures, Part I. IEEE ASSP Magazine, Oct.

1988.

BIBLIOGRAPHY 170

[66] E. A. Lee. Programmable DSP Architectures, Part II. IEEE ASSP Magazine, Jan.

1989.

[67] E.A. Lee. "Introduction to Programmable DSPs". UCSB short Course on Signal

Processing and Speech, July 1988.

[68] C. Leiserson. "VLSI Theory and Parallel Supercomputing". In Advanced Research

In VLSI, pages 308{313. Proceedings of the Decennial Caltech Conference on VLSI,

Mar. 1989.

[69] C. E. Leiserson and J. B. Saxe. "Optimizing Synchronous Systems". Twenty-Second

Annual Symposium on Foundations of Computer Science, Oct. 1981.

[70] P. E. R. Lippens, J. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. Mc-

Sweeney, J.O. Huisken, and O.P. McArdle. "PHIDEO: A Silicon Compiler for High

Speed Algorithms". European Design Automation Conference, pages 436{41, Feb.

1991.

[71] M. J. Little, M. L. Campbell, S. P. Laub, M. W. Yung, and J. Grinberg. "3-D Com-

puter For Advanced Fire Control". First Annual Fire Control Symposium (SDIO),

Oct. 1990.

[72] LSI Logic Corp. Application Note: DSP and Image Processing Family, 1987.

[73] M. Maruyama, H. Nakahira, T. Araki, S. Sakiyama, Y. Kitao, K. Aono, and H. Ya-

mada. "A 200 MIPS Image Signal Multiprocessor on a Single Chip". In Proceedings

International Solid State Circuit Conference, pages 122{123, Feb. 1990.

[74] M.C. McFarland, A.C. Parker, and R. Camposano. "Tutorial on High-Level Synthe-

sis". In Proceedings 25th ACM/IEEE Design Automaton Conference, Feb. 1988.

[75] G.W. McNally. "Digital Audio in Broadcasting". IEEE ASSP Magazine, pages 26{44,

Oct. 1985.

[76] G. Melcher, G. Thomas, and D. Kaplan. "The Navy's New Standard Signal Processor,

the AN/UYS-2". Journal of VLSI Signal Processing, pages 103{109, Oct 1990.

BIBLIOGRAPHY 171

[77] S. Melvin. "Performance Enhancement Through Dynamic Scheduling and Large Ex-

ecution Atomic Units In Single Instruction Stream Processors". U.C. Berkeley, 1990.

UCB CS Divsion.

[78] J. Mick and J. Brick. In "Bit-slice Microprocessor Design". McGraw-Hill, 1980.

[79] T. Minami, H. Yamaguchi, Y. Tashiro, R. Kasai, J. Takahasi, S. Hamaguchi, K. Endo,

and T. Tajiri. "A 300 MOPS Video Signal Processor with a Parallel Architecture". In

Proceedings International Solid State Circuit Conference, pages 252{253, Feb. 1991.

[80] T. Minami, H. Yamaguchi, Y. Tashiro, R. Kasai, J. Takahasi, S. Hamaguchi, K. Endo,

and T. Tajiri. "A 300 MOPS Video Signal Processor with a Parallel Architecture".

In Journal of Solid-State Circuits, pages 1868{1875, Dec. 1991.

[81] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli.

"Logic Synthesis for Programmable Gate Arrays". 27th ACM/IEEE Design Automa-

tion Conference, pages 620{625, June 1990.

[82] R. Murgai, N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli. "Improved Logic

Synthesis for Table Look Up Architectures". In IEEE International Conference on

Computer-Aided Design, pages 564{567, Nov. 1991.

[83] L. W. Nagel and et al. "Simulation Program With Integrated Circuit Emphasis

(SPICE)". 16th Midwest Symp. Circuit Theory, Feb. 1985.

[84] R.O. Nielsen. In Sonar Signal Processing. Artech House Inc., 1991.

[85] Y. Ninomiya. "HDTV Broadcasting Systems". IEEE Communications Magazine,

pages 15{22, Aug. 1991.

[86] T.G. Noll and S. Meier. "A 40 MHz Programmable Semi-Systolic Transversal Filter".

In Proceedings International Solid State Circuit Conference, pages 180{181, Feb. 1987.

[87] S. Note, W. Geurts, F. Catthoor, and H. De Man. "Cathedral III: Architecture-Driven

High-level Synthesis for High Throughput DSP Applications". 28th ACM/IEEE De-

sign Automation Conference, pages 597{602, June 1991.

BIBLIOGRAPHY 172

[88] S. Note, J. Van Meerbergen, F. Catthoor, and H. De Man. "Hardwired Data Path

Synthesis For High Speed DSP Systems With The Cathedral III Compilation Envi-

ronment". In Logic and Architecture Synthesis for Silicon Compilers, pages 243{254.

Elsevier Science Publishers B.V. (North-Holland), Feb. 1989.

[89] S. Note, J.V. Meerbergen, F. Catthoor, and H. De Man. "Automated Synthesis of a

High Speed CORDIC Algorithm With The CATHEDRAL-III Compilation System".

ISCAS, pages 581{584, 1988.

[90] J. Ousterhout and et al. "The Magic VLSI Layout System". IEEE Design & Test of

Computers, pages 19{30, Feb 1985.

[91] P. Hil�nger. "A High Level Language and Silicon Compiler for Digital Signal Process-

ing". In Proc. IEEE Custom Integrated Circuits Conference, pages 240{243. IEEE,

May 1985.

[92] K.K. Parhi and D.G. Messerschmitt. "Pipeline Interleaving and Parallelism in Recur-

sive Digital Filters, I and II". IEEE Transactions on Speech and Signal Processing,

pages 1099{1134, July 1989.

[93] Y.N. Patt and J.K. Ahlstrom. "Microcode and the Protection of Intellectual E�ort".

Proceedings of the 18th Annual Workshop on Microprogramming, Dec. 1985.

[94] Plus Logic. FPGA2040, 1989.

[95] M. Potkonjak and J. Rabaey. "A Scheduling and Resource Allocation Algorithm for

Hierarchical Signal Flow Graphs". In Proceedings 26th ACM/IEEE Design Automa-

tion Conference, pages 7{12, June 1989.

[96] G. Quenot and B. Zavidovique. "A Data-Flow Processor for Real-Time Low-Level

Image Processing.". In Proc. CICC'91: 1990 Custom Integrated Circuits Conference,

page 12.4, May 1991.

[97] J. Rabaey, R. Brodersen, A. St�olzle, S. Narayanaswamy, D. Chen, R. Yu, P. Schrupp,

H. Murveit, and A. Santos. "A Large Vocabulary Real Time Continuous Speech

Recognition System". In VLSI Signal Processing III, pages 61{74. IEEE Press, 1988.

[98] J. Rabaey and M. Potkonjak. "Resource Driven Synthesis in the HYPER System".

ISCAS, 1990.

BIBLIOGRAPHY 173

[99] J.M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. "Fast Prototyping of Datapath-

Intensive Architectures". IEEE Design & Test of Computers, pages 40{51, June 1991.

[100] J.M. Rabaey, H. De Man, J. Vannhoof, G. Goosens, and F. Catthoor.

"CATHEDRAL-II: A Synthesis System for Multiprocessor DSP Systems". Addison

Wesley, Dec. 1989.

[101] J.M. Rabaey, S. Pope, and R. Brodersen. "An Integrated Automatic Layout System

for Multiprocessor DSP Systems". IEEE Transactions on Computer Aided Design,

CAD-4:285{296, July. 1985.

[102] M. Roberts. "Optimizing Compilers". BYTE Magazine, pages 165{170, 1987.

[103] P. Ruetz and R. Brodersen. "A Realtime Image Processing Chip Set". In Proceedings

International Solid State Circuit Conference, pages 148{149, Feb. 1986.

[104] P. A. Ruetz. "Architectures And Design Techniques For Real-Time Image Processing

ICs". Technical Report Memo. No. UCB/ERL M86/37, U.C. Berkeley, 1986.

[105] A. Salz and M. Horowitz. "IRSIM: An Incremental MOS Switch-Level Simulator".

In Proceedings 26th ACM/IEEE Design Automaton Conference, pages 173{178, June

1989.

[106] R. Schmidt. "A Memory Control Chip for Formatting Data into Blocks Suitable

for Video Coding Applications". IEEE Transactions on Circuits and Systems, pages

249{258, Oct. 1989.

[107] U. Schmidt. "Data Wave - a Data Driven Video Signal Array Processor". In Hot

Chips II : A Symposium on High Performance Chips, Aug. 1990.

[108] U. Schmidt and S. Mehgardt. "Wavefront Array Processor for Video Applications".

In ICCD, 1990.

[109] U. Schmidt, S. Mehgardt, K. Caesar, T. Himel, and S. Mehgardt. "Data-controlled

array processor for video signal processing". In Electronik, June 1990.

[110] C.L. Seitz. "Concurrent VLSI Architectures". IEEE Transactions on Computers,

pages 1247{1265, Dec. 1984.

BIBLIOGRAPHY 174

[111] D.B. Skillicorn. "A Taxonomy for Computer Architectures". IEEE Computer, Nov.

1988.

[112] M. A. Soderstrand and B. Sinha. "Comparison of Three New Techniques For Pipelin-

ing IIR Digital Filters". In Asilomar Conference on Circuits and Systems, pages

439{443, 1985.

[113] M.B. Srivastava and R.W. Brodersen. "Rapid-Prototyping of Hardware and Software

in a Uni�ed Framework". In ICCAD, pages 152{155, Nov. 1991.

[114] Star Semiconductor. SPROC Signal Processor Data Book, 1991.

[115] A. St�olzle. "A Real Time Large Vocabulary Speech Recognition System". PhD thesis,

University of California, May 1992.

[116] A. St�olzle, S. Narayanaswamy, K.Kornegay, R. W. Brodersen, and J. Rabaey. "A

VLSI Wordprocessing Subsystem for a Real Time Large Vocabulary Speech Recogni-

tion System". In Proc. CICC'89: 1989 Custom Integrated Circuits Conference, pages

20.7.1{5, May 1989.

[117] H.S. Stone, T.C. Chen, M.J. Flynn, S.H. Fuller, W. G. Lane, H.H. Loomis Jr., W.M.

McKeeman, Kay.B. Magleby, R.E. Matick, and T.M. Whitney. Parallel Computers,

pages 321{323. Science Research Associates, 1975.

[118] J.S. Sun, M.B. Srivastava, and R.W. Brodersen. "SIERA: A CAD Environment for

Real-Time Systems". 3rd IEEE/ACM Physical Design Workshop on Module Gener-

ation and Silicon Compilation, May. 1991.

[119] C. Sung, P. Sasaki, R. Leung, Y.M. Chu, K.M. Le, G.W. Conner, R.H. Lane, J.L.

DeJong, and R. Cline. "A 76-MHz BiCMOS Programmable Logic Sequencer". IEEE

Journal of Solid State Circuits, pages 1287{1294, Oct. 1989.

[120] L. Synder. "Introduction to the Con�gurable Highly Parallel Computer". Computer,

pages 47{57, Jan. 1982.

[121] I. Tamitani, H. Harasaki, T. Nishitani, Y. Endo, M. Yanshina, and T. Enomoto. "A

Real-Time Video Signal Processor Suitable for Motion Picture Coding Applications".

IEEE Transactions on Circuits and Systems, pages 1259{1266, Oct. 1989.

BIBLIOGRAPHY 175

[122] D.E. Thomas and E.D. Lagnese. "Architectural Partitioning for System Level De-

sign". In Proceedings 26th ACM/IEEE Design Automation Conference, pages 62{67,

June 1989.

[123] M. Toyoukura, K. Okamoto, H. Kodama, A. Ohtani, T. Araki, and K. Aono. "A Video

Signal Processor with a Vector-Pipeline Architecture". In Proceedings International

Solid State Circuit Conference, pages 72{73, Feb. 1992.

[124] H. Trickey. "Flamel: A High-Level Hardware Compiler". IEEE Transactions on

Computer Aided Design, CAD-6:259{269, Mar.. 1987.

[125] C. van Berkel, C. Niessen, M. Rem, and R.W.J. Saeijs. "VLSI Programming and

Silicon Compilation". In IEEE International Conference on Computer Design, pages

150{166, 1988.

[126] A.H. van Roermund. "Architectures for Real-Time Video". In E.F. Depreterre and A-

J. van der Veens, editors, Algorithms and Parallel VLSI Architectures, pages 445{461.

Elsvier Science, 1991. Vol. A.

[127] A.H. van Roermund, P.J. Snijder, H. Dijkstra, C.G. Hemeryck, C.M. Huzier, J.M.P.

Schmitz, and R.J. Sluitjter. "A General Purpose Programmable Video Signal Pro-

cessor". IEEE Transactions on Consumer Electronics, pages 249{258, August 1989.

[128] J. Wawrznyek. "A Recon�gurable Concurrent VLSI Architecture For Sound Synthe-

sis". In VLSI Signal Processing II, pages 385{396, Nov. 1986.

[129] A. Wolfe, M. Breternitz Jr., C. Stephens, A.L. Ling, D. B. Kirk, R. P. Bianchini

Jr., and J. P. Shen. "The White Dwarf: A High-Performance Application-Speci�c

Processor". 15th Annual International Symposium on Computer Architecture, pages

212{222, May. 1988.

[130] Xilinx Corp. The Programmable Gate Array Data Book, 1989.

[131] A. Yeung and J.M. Rabaey. "A Recon�gurable Data-driven Multiprocessor IC for

Rapid Prototyping of High Performance DSP Algorithms". In VLSI Signal Processing

V. IEEE Press, Oct. 1992. submitted.

[132] R. Yu and J. Rabaey. "Techniques for Very Fast System Prototyping". Eecs/erl

research summary, U.C. Berkeley, 1990.

