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Energy—Robustness Tradeoff in Cellular
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Abstract—In the seminal paper by Foschini and Miljanic in 1993,
a distributed power control algorithm was developed to meet SIR
targets with minimal powers in cellular network uplinks. Since the
SIR on an active link may dip below the SIR target during the
transient after a new user enters the cell, Bambos ef al. proposed
an active link protection algorithm to provide robustness, at the
expense of higher energy consumption. This paper examines the
tradeoff between energy and robustness. An optimization problem
is formulated where robustness is captured in the constraint and
the price of robustness penalized in the objective function. A dis-
tributed algorithm is developed to solve this problem. Local conver-
gence and optimality of equilibrium are proved for the algorithm.
The objective function modulates the tradeoff between energy and
robustness, and between energy and speed of admission, as illus-
trated through a series of numerical experiments. A parameterized
family of objective functions is constructed to control the transient
and equilibrium properties of robust distributed power control.

Index Terms—Distributed optimization, duality, power control,
wireless networks.

I. INTRODUCTION

OWER control on the uplinks of an interference-limited
P cellular network serves two major roles: managing energy
consumption and managing signal interference. These two
roles can be conflicting, and it is their tradeoff that we study
in this paper. Controlling signal-to-interference ratio (SIR) is
the key to providing quality-of-service to the mobile users,
and power control is often used to attain desired SIRs and has
been extensively studied since the early 1990s. In particular,
the Distributed Power Control (DPC) algorithm in [1] by
Foschini and Miljanic has been widely used and extended (e.g.,
in [2]-[9]). Following a simple power update rule, Algorithm
DPC converges to a minimal power vector that can attain a fixed
SIR target vector, provided it is feasible. While the equilibrium
of Algorithm DPC is well-understood, what happens during
the transient is more challenging to characterize and much less
clear. In particular, the SIR of an active link can easily dip
below the SIR targets when there is a slight perturbation such
as the entry of a new user.
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Fig. 1. A small numerical example of using Algorithm DPC in a CDMA cell.
Originally, there are two active users, but a new user enters the same channel at
the 300th time slot. The received SIRs of the two active users experience an SIR
outage that deviates from the SIR targets by as much as 37% and 63% during
the transient.

Consider the following simple example of a small CDMA
cell originally with two active users. A new user enters using
Algorithm DPC, and causes an SIR outage that deviates from
the SIR targets by as much as 63% during the transient that lasts
for approximately 20 time slots, as shown in Fig. 1. This simple
example illustrates that a key limitation of Algorithm DPC is
the lack of guaranteed signal quality in times of congestion.

How to prevent such dips, and in general, how to admit users
and manage congestion in cellular network power control be-
comes an important question. In particular, to guarantee that ac-
tive links continue to have acceptable received SIR when there
are disturbances in the network, an active link protection scheme
has to be incorporated with access control. In [2], the algorithm
of DPC with Active Link Protection (DPC/ALP) was developed
by Bambos et al. In [3], the DPC/ALP algorithm was further
developed for both voice and data communication over wireless
ad-hoc networks. First, an active link protection scheme pro-
vides a protection margin ¢ to the SIR targets of existing users.
Second, new users ramp up their power following a different
rule, one that avoids creating new interference too fast.

Intuitively, the protection margin € has to be large enough
such that the received SIRs of active link connections do not
drop below the minimum SIR requirements and cause SIR
outage. On the other hand, it should not be too large, otherwise
this might lead to excessive power expenditure. How to control
this energy—robustness tradeoff is one of the motivations for this
paper. We use the term “robust” in the sense of safety margin
against SIR outage. A related issue is the transient behavior of
Algorithm DPC before it reaches an equilibrium, especially the
tradeoff between quick admittance of new users to their SIR
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targets and low interference created during the admission. In
both questions, the intuition is that ¢ should be time-varying
instead of a constant, controlled possibly by some “interference
price” that is updated by inferring the network congestion level
from local measurements. Such an intuition is made rigorous
in this paper, and open questions on the transient behaviors of
power control answered consequently.

After reviewing the DPC and DPC/ALP algorithms
in Section II, we formulate an optimization problem in
Section III-A, where robustness is captured in the constraint
and the price of robustness penalized in the objective function.
Then in Section III-B, we present a distributed algorithm that
solves this problem. The development of this algorithm, the
Robust DPC (RDPC) algorithm is shown in Section IV. A
parameterized family of objective functions is constructed
to control the transient and equilibrium properties of robust
distributed power control, as shown in Section V. The con-
cepts of congestion measure and interference price are further
quantified in the same section. Convergence of the algorithm
and optimality of equilibrium are proved for Algorithm RDPC
(Theorems 1 and 3). The effectiveness of modulating the
tradeoff between energy and robustness, and between interfer-
ence management and speed of convergence, is demonstrated
through a series of numerical experiments in Section VI, before
we conclude in Section VII. To make the flow of presentation
smoother, we collect all the proofs in the Appendix.

The following notation is used. Boldface uppercase letters de-
note matrices, boldface lowercase letters denote column vectors,
italics denote scalars, and x > y denotes componentwise in-
equality between vectors x and y.

II. REVIEwW: DPC AND DPC/ALP

A. Algorithm DPC

Consider a CDMA cellular wireless network with L logical
links (equivalently, transceiver pairs), which models a single cell
of a CDMA system. Our analysis also applies more generally to
a multi-cell CDMA system, where a base station in each cell
acts as a central coordinator of uplink resource allocation. The
transmit power for the /th link is denoted by p; forl =1, ..., L.
Assuming a matched-filter receiver, the SIR for the receiver on
link [ can be written as [10]

Gup

SIR - = 1
t(P) > Gupj+m M
il

where G; are the channel gains from transmitter j to receiver [,
and n; is the additive white Gaussian noise (AWGN) power for
receiver [. The processing gain of the CDMA system is assumed
to be absorbed into G; in (1) for all [ [10]. We also assume that
the channel is frequency-flat and is constant for the duration of
a transmission, e.g., under slow fading.

The following power control problem of minimizing the total
transmitted power subject to SIR constraints was studied in [1]
and [11]:

minimize Z DI
1
subject to  SIR;(p) > v VI,

variables : p; Vi. 2)

The SIR constraint is the requirement that the /th received SIR is
above a given SIR target ~y, for all /. Problem (2) can be rewritten
as a linear program in matrix form:

1Tp
I-Fpxv 3)

minimize
subject to
where I is the identity matrix, F' is the matrix with entries [1]
Fij = { %a‘j% lfL . J 4)
el ifi # 7

and

v = (71711 Y212 'YLnL>
Gn' Ga' ' Grp
The algorithm proposed by Foschini and Miljanic is given by
(1]
p(k+1)=Fp(k) +v Q)

where k indexes discrete time slots. It converges asymptotically
to p*, a solution to (2), whenever it exists, i.e., when the fixed
SIR targets are feasible. Feasibility of SIR targets is well-known
to be equivalent to the following condition: the Perron—Frobe-
nius eigenvalue of F, denoted as p(F), is strictly less than 1.
Re-writing (5) in scalar form, it is clear that (2) can be solved
using the following distributed power control (DPC) algorithm:

i

= 3R, (p(k))pl(k) vi (6)
where SIR;(p(k)) is the received SIR at the kth time slot. The
update in (6) is distributed as each user only needs to mon-
itor its individual received SIR and can update by (6) indepen-
dently and asynchronously [9]. Intuitively, each user [ increases
its power when its SIR;(p(k)) is below ; and decreases it oth-
erwise, so that SIR;(p(k)) in the next time slot is exactly the
target -y, if no other users change their powers. Furthermore, the
optimal power allocation p* in (2) is achieved in the limit as
k — oo, and satisfies (I — F)p* = v, i.e., the constraints in
(3) are tight at optimality. Algorithm DPC is widely used for its
simplicity and effectiveness, and can be interpreted from several
angles, e.g., best response strategy of a game, or linear update
for a fixed-point equation [9].

pi(k+1)

B. Algorithm DPC/ALP

By extending the Foschini-Miljanic power control scheme,
Bambos et al. [2] proposed the Distributed Power Control with
Active Link Protection (DPC/ALP) algorithm to protect active
users from new users that access the same channel. The two key
ideas of the DPC/ALP algorithm are: 1) the gradual power-up of
new users; and 2) the introduction of an SIR margin ¢ to cushion
the existing users, which is accomplished by modifying the SIR
constraint in (2) to

SIRi(p) 2 n(l+¢) Vi )

where € > 0. Clearly, the parameter € serves as a protection

margin for users that are running (6) and helps keep them from

falling below 4 when new users access the same channel.
Specifically, for a given €, Algorithm DPC/ALP is given by

ol 1) = { B (K), SR (p(R) >3,
(1+e)pi(k),  if SIR, (p(k)) < w ©
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Implicitly, the DPC/ALP algorithm solves the following
problem of power minimization subject to a fixed robustness
setting:

minimize Z P
l
subject to  SIR;(p) > y(1+¢€) VI,

variables : p; VI. 9)

With the € fixed, (9) can still be rewritten as a linear program in
a way similar to (3), and Algorithm DPC/ALP converges to the
optimal solution of (9) if and only if (1 + ¢)p(F) < 1 [2].

A larger € obviously provides more protection to existing
users, but comes at a price of higher power expenditure. Further-
more, a larger € makes user admission faster, but may cause ex-
cessive interference or even infeasibility of the enhanced target
SIR. How to control these two tradeoffs? Our intuitive design
is that € should be time-varying instead of being a constant,
controlled possibly by some “interference price” that is updated
by inferring the network congestion level from local measure-
ments. This intuition will be made clear in the rest of the paper.

III. ROBUST POWER CONTROL: PROBLEM AND ALGORITHMS

To effectively control the tradeoffs and to accommodate
engineering requirements such as rise-over-thermal constraints
and convergence speed, Algorithm RDPC is developed based
on sensitivity analysis of the effects of power changes, on
interference prices obtained from Lagrangian duality theory, on
congestion measures related to the size of the Perron—Frobenius
eigenvalue, and on a primal-dual update equation with desir-
able convergence properties. It turns out that Algorithm RDPC
solves an underlying optimization problem, whose objective
function can be tuned to influence the behavior of Algorithm
RDPC in a predictive way. To make the presentation flow from
the first principles, we will first present the underlying opti-
mization problem and Algorithm RDPC in this section, before
we show how Algorithm RDPC is developed and its proper-
ties proved in Section IV. We then discuss the application of
Algorithm RDPC for energy—robustness tradeoff in Section V.

A. Robust Power Control Problem Formulation

We first present a general problem formulation for the up-
link transmission in a CDMA cell that takes robustness into ac-
count. Using the protection margin in (7) to enhance the SIR
constraints, we consider minimizing the total power expendi-
ture plus a cost function, over both p and e:

minimize Zpl + ¢(e)
1

subject to  SIR;(p) > (1 +¢€) VI,
€> Ovpl > 0 Vl

variables : ¢€,p; Vi (10)

where now e is an optimization variable and ¢(e) is a de-
creasing, convex, twice differentiable cost function that
captures the tradeoff in adjusting €. This objective function will
be very useful in modulating the tradeoff between robustness
and energy both at equilibrium and during the transient.
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The following necessary condition that characterizes any fea-
sible solution to (10) will become useful in later developments
and proofs:

Lemma 1: If p and € are feasible in problem (10), then

(1+e)p(F) < 1. (11)

We note that (10) can no longer be rewritten as a linear pro-
gram as can be done with (2) and (9), and in fact it is a non-
convex optimization problem. It can nevertheless be rewritten as
a convex optimization problem for certain functions ¢(e). First,
we apply a log transformation to p;, for all [, and € (p = logp
and € = log ¢), obtaining the following equivalent problem:

minimize Z Pl + ()

1
log (SIR;(P) /) > log(1 +€°) VI,
Vi, .

subject to

variables :  p; (12)

We will later focus on those ¢ satisfying the condition in the
following.

Lemma 2: The optimization problem in (12) is convex if
(0%¢(2)/022)z + 0p(2) ]9z > 0 for z > 0.

We will show in Section IV that designing appropriate ¢ can
be used to control the power of each user both at equilibrium
and during transient, and we look at ¢ that characterizes the
energy—robustness tradeoff.

B. RDPC Algorithm

We now give the main algorithm: Robust Distributed Power
Control (RDPC). The details of its derivation will be given in
the next sections (in particular, (14), (15) follow from Theorem
2 and (16) follows from Theorem 1). Computing the optimal p
and ¢ in (10) by Algorithm RDPC is aided by an “interference
price” vector v, which is key to access the impact of € on the in-
crease in the total power consumption (3, p; in (10)), as shown
in Section IV-A. It will also be shown that v is the Lagrange
multiplier vector for (12).

Algorithm RDPC:

* The base station initiates at €(0). New users power up
with sufficiently small p,(0), e.g., pi(0) = n;.
Update by each user !:
* Update the transmitter power p;(k + 1) at the (k + 1)th
step:

14+€e(k 1 .
(1 +e(k) pu(k), ifSIR (p(k)) <.
Update by the base station:
+ Update auxiliary variable x(k + 1):
x(k+1)=(1+ek)FTx(k)+1 (14)
* Update interference price v(k + 1):
vk+1)=z(k+p(k+1) VI (15)
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Fig. 2. Schematic of Algorithm RDPC for uplink power control.

 Update protection margin e(k + 1) by solving

9¢(e)
e

(1+ek+1)=1Tw(k+1).
e=e(k+1)

(16)

Note that the power update (13) differs from the DPC/ALP
algorithm in [2] in that € is not a constant parameter as in [2],
but is updated at each time slot according to variables x and
v. Interestingly, (16) quantifies the remark on choosing the pa-
rameter ¢ in [2]: “e should be chosen such that (1 + ¢) is larger
when the network is uncongested, so that links power up fast,
and grow smaller as congestion builds up to have links power
up more gently”.

Also note that both the DPC and DPC/ALP algorithms are
primal algorithms with linear updates, whereas Algorithm
RDPC is a primal-dual algorithm with nonlinear updates.

A general schematic diagram of Algorithm RDPC for an up-
link transmission is shown in Fig. 2. The inner loop power con-
trol block consists of a transmit power update for each user
based on the measured SIR values [cf. (13)], and the outer loop
power control block adjusts the SIR targets v as a function of
the frame error rates.! The interference management block takes
as input the measured power of all users and 4y, and, based on a
particular cost function ¢(¢€), modulates the parameter ¢, which
is then fed to the inner loop block [cf. (14)-(16)].

As proved in Appendix C, we have the following theorem for
Algorithm RDPC that connects it to the underlying optimization
model, and a stronger version for a special case will be presented
later as Theorem 3.

Theorem 1: If {e(k)} converges to a finite value €*, and
p(F) < 1/(1+4¢*), then Algorithm RDPC converges to a global
optimum (p*, €*) of problem (10).

IV. DEVELOPMENT AND IMPLEMENTATION OF RDPC

A. Step 1: Sensitivity Analysis

Intuitively, the amount of congestion in the system and the
“price” of maintaining the SIR constraints should be a factor in
determining how robust a power control algorithm needs to be.
A quantitative study in this section, based on a sensitivity anal-
ysis of the Foschini-Miljanic power control problem in [12], will
make this intuition precise. We first consider the case of € = 0
in (10), which corresponds to (2). We then use sensitivity anal-
ysis to show how adjusting -y affects the solution for (2), which

IThe inner and outer loop power control blocks exist in current CDMA cel-
lular network. Implementing Algorithm RDPC thus entails only a small modi-
fication by incorporating an interference management block as shown in Fig. 2.

further instructs us on how to choose the right cost function ¢(e)
in (10).

Recall that the SIR constraints in (2) are tight at optimality,
assuming that there is a feasible power allocation for all users.
Hence, tightening or loosening this constraint set affects the op-
timal value of (2). The following result relates the sensitivity of
the SIR constraint and the total power requirement in (2).

First, for the /th SIR constraint in (2), we define a perturbed
SIR target 7; /u; where 1/u; represents a fractional perturbation
of the SIR target ~y;, and substitute the /th SIR constraint in (2)
by 71/SIR;(p) < u; for all [. We have 0 < w; < 1 oru;, > 1if
we tighten or loosen the [th SIR constraint, respectively. Next,
we define f*(u) as the optimal value of (2) with these perturbed
constraints:

f*(u) = inf {Zplhz/S'Rz(P) <y Vl} .3
l

If f*(u) does not exist for some u, we define f*(u) = oo.
Although the optimization problem in (17) can be rewritten as
a linear program in p, it is expressed in a form that allows us
to apply a change-of-variable technique, which is a key step
that leads to RDPC. Let p; = logp; and the parameter 4; =
log u;, and taking the logarithm of the SIR constraints, we write
f*(u) in the log transformed parameter & as f*(a), and f* (1)
is determined by solving the following problem:

minimize E el
1

log (vi/SIRi(p)) <@ VI,
variables : p; V.

subject to
(18)

The following result quantifies the tradeoff between power
expenditure and robustness [13].

Lemma 3: Let v, for all [, be the optimal Lagrange multi-
pliers of the unperturbed problem in (18), (i.e., for u = 0), then

I* (1%—[091) - f*(0)
100 -
/*(0)
where e is a vector that has all its entries 0 except the [th entry
which is 1.

The engineering implication is as follows. Relaxing (or tight-
ening) the /th SIR target constraint by /3; percent in (2) decreases
(or increases) the total power by approximately ;v / f*(0) per-
cent, for a small 3;. Hence, the total power reduction (or incre-
ment) is approximately ), v}/ f*(0) percent. Fig. 3 shows
the supporting hyperplane at f*(0) with gradient —v} [13],
and illustrates Lemma 3. If a user with large v} compromises
the target SIR slightly, all users obtain both considerable power
saving and lower interference simultaneously.

Example 1: As an illustrative numerical example validating
Lemma 3, we compare the results given by Lemma 3 with those
in the simulation reported in [14] for a network with three users.
From initial SIR targets (7,7,7)" (in dB), only Users 2 and 3
change their SIR targets, i.e., from 7 dB to 6.90 dB (first oper-
ating point) and then to 6.50 dB (second operating point).

The v* (see Theorem 2 later for its computation)
that corresponds to the network operating at SIR targets
(7,6.9,6.9)" and (7,6.5,6.5)7 (in dB) are, respectively,
(128.680,155.598,107.532) T and (8.529,10.209, 7.066) " .

= =B/ F(0) + o(B1)

19)
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Fig. 3. Robustness—energy tradeoff using sensitivity analysis.

The numerical percent decrease in total power, as reported in
[14], when the SIR operating point changes to the first operating
point and when the SIR operating point changes to the second
operating point is given by 64.600% and 75.200%, respectively.
Now, using v*, the prediction given by Lemma 3 when the
SIR operating point changes to the first operating point and
when the SIR operating point changes to the second operating
point is given by 64.650% and 74.483%, respectively. The pre-
diction of Lemma 3 is observed to be quite accurate, and the
numerical experiment in [14] verifies the theory very well.

B. Step 2: Basic Primal-Dual Algorithm

In this subsection, we will show how to compute v in Lemma
3, and then develop the iterative updates used by Algorithm
RDPC in Section III-B.

Theorem 2: The optimal power p* in (2) and the Lagrange
multiplier »* in the unperturbed problem in (18) satisfy

*
Gil v,

1+ =%
2 22 ji Gigpj + i

il

vy =p; vi.  (20)

Furthermore, the following iterative updates can be used to com-
pute v*:

p(k+1) =Fp(k)+ v, 1)
x(k+1) =FTx(k) + 1, (22)

and
vi(k+1)=mz(k+ )pi(k+1) VI (23)

As k — oo, v(k) converges to v in (20) for all [ if and only if
p(F) < 1.

In Theorem 2, v = =} p; for all [. While p are the primal
variables in (2) and v are the dual variables of the unperturbed
problem in (18), x are the auxiliary variables assisting with the
computation of the primal and dual variables. It is interesting to
note that x* is also the optimal solution to the following opti-
mization problem:

maximize v'x

subject to (I—F')x <1, (24)
which is the Lagrange dual problem of (3). Using the iterations
(21)—(23), as long as p(k) and x(k) are feasible in (3) and (24),
respectively, then log(p(k)) and v(k) are primal and dual fea-
sible with respect to (18), respectively.
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Finally, we remark that there is an interesting duality between
the algorithm computing p* and that computing x*:

Algorithmic Duality Correspondence

columns of F — rowsof F
1 — v
* M *x * ook *
x* with v = z7p; < P
v x* PN 1Tp*

C. Step 3: Further Simplifications

Note that (21) can be computed distributively just like in Al-
gorithm DPC (6), but (22) cannot be computed distributively as
each user needs the cross-channel gains in (22). However, by
exploiting the uplink-downlink duality in [6], even (22) can be
carried out distributively in a time division duplex (TDD) net-
work, where the auxiliary variable x in Algorithm RDPC takes
on a physical interpretation as a virtual downlink power, as will
be shown below. The downlink case refers to transmission from
the base station to the users with the same SIR target as the up-
link case. In this case, the channel matrix is given by G ". The
update of € in (16) must still be done centrally at the base sta-
tion, which acts as the central coordinator for uplink resource
allocation for each cell in a multi-cell CDMA system.

First, the fact that all the constraints in (24) are tight at op-
timality implies that the optimizer to (24) is equivalent to the
optimizer of the following problem:

minimize 17x
subjectto (I-FT)x>1 (25)
which can be interpreted as minimizing the total power for the
downlink case (with x having a physical interpretation as the
downlink power) but with AWGN power Gy;/v; for all [ [6].
Compare (25) with the uplink case in (3). As in [6], the next step
to a distributed Algorithm RDPC is to create a virtual downlink
power minimization, which is solved by (25). Note that the vir-
tual downlink problem does not correspond to the real downlink
power control problem, but acts as an intermediary mechanism
for message passing in the downlink phase. The virtual down-
link problem corresponds to the real downlink power control
problem only if the real downlink AWGN noise power for each
link is exactly G,/ for all [.
Therefore, (14) in Algorithm RDPC is rewritten as

(1+e(k)m

kE+1)=-— k) Vi 26
= e ey 20
where SIR;(x(k)) is the virtual downlink received SIR:
~ G”:vl(k')
SIR k)) = vi.
) = S G )+ G G (11 )
=
J# 27

Unlike (1), which is a scalar measurement output at the receiver,
(27) has to be computed by keeping separate copies of the re-
ceived virtual powers Gz (k) for all j at the [ link during the
downlink time slot.
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Uplink power p Interference Fp

pl:f(p.l/)*—"/ =PpoX<— xl:g(x.ll)

-
Interference Price v F Downlink power x

Fig. 4. Algorithm RDPC and uplink-downlink duality. The functions f and ¢
are the updates for the uplink power p and the downlink power x, respectively.
The interference price » is the Schur product of p and x, i.e., v; = p;x;.

Thus, (13) and (14), (15) in Algorithm RDPC correspond to
the uplink and (virtual) downlink case, respectively, and we can
interpret v; as the product of the uplink and downlink power of
the [th user. Fig. 4 illustrates the role of uplink-downlink duality
in Algorithm RDPC. The modified Algorithm RDPC for a TDD
cellular network is given as follows, where the base station only
needs to compute and broadcast €.

Algorithm RDPC (for TDD Cellular Network):

 The base station initiates at €(0). New users power up
with sufficiently small p;(0), e.g., pi(0) = n;.

Update by each user [ during the uplink time slot:
* Update the transmitter power p;(k + 1) at the (k + 1)th
step:
1+e(k))r X
o pi(k),
(1 + (k) pu(k),

if SIR; (p(k)) > v

. (28)
if SIR; (p(k)) < 1.

Pl(k+1)={

Update by each user [ during the downlink time slot:
 Update the virtual transmitter power z;(k + 1) at the
(k + 1)th step:

1+ e(k
mh+1) = LEEDw o (29)
SIR, (x(k))
* Update the Lagrange multiplier v;(k + 1):
I/l<k'+1) :xl(k‘—{— 1)pl(k—|— 1). (30)
Update by the base station:
+ Update the protection margin e(k + 1) by solving
0
_ 99 (I+ek+1)=1Tv(k+1). @I
e e=e(k+1)

V. BALANCING THE TRADEOFFS

Recall that there are two main tradeoffs: one between robust-
ness and energy at equilibrium, and another one between the
speed of admission and energy during transience. Both trade-
offs can be controlled by changing the curvature of the function

¢(€), which then changes the dynamic and equilibrium proper-
ties of Algorithm RDPC. These two tradeoffs are discussed in
the first two subsections, followed by a discussion on “interfer-
ence price” in Algorithm RDPC and “congestion measure” in a
cellular network in the last subsection.

A. Choosing ¢(e)

Based on the sensitivity analysis result in Lemma 3, the extra
power needed to provide e* amount of SIR margin is

100(1 Tv*e* /1T p*) (32)
percent (see Appendix F), or, from (16),
0
_ ‘2(6) 100(1 + €*)e* /1T p* (33)
€

e=€*

percent. For example, a network operator with a good estimate
of (33) may choose to not admit new users because that might
double the power expenditure with just 3% safety margin, as
in the example in Section IV-A. Similarly, substantial energy
savings could be obtained if the target SIR or protection margin
is reduced a little.

Suppose the network can tolerate at most an increase of
1005/1 T p* percent in total power to limit interference. This §
can be obtained from different kinds of models. For example,
in [15], the authors propose an in-cell rise-over-thermal (IROT)
constraint. Given an IROT constraint, § can be configured as the
input parameter for Algorithm RDPC. Now, using this upper
bound 6 and (33), we have

9 (e) 5

=— 34
Oe e(l+¢€) (34)

which upon integration yields
d(€) = dlog(l + 1/e). (35)

It is easy to verify that ¢(¢) is strictly convex, decreasing, and
satisfies Lemma 2, thus can be used in Algorithm RDPC. Alter-
natively, an upper bound on the relative change §/1 " p* can be
used directly as an input to Algorithm RDPC, if we replace v; (k)
in Algorithm RDPC by v;(k)/1 " p(k) for all /.

Recall that the convergence result in Theorem 1 requires an
assumption that e(k) — ¢* as k — oo. For the function ¢(¢) in
(35), further analysis can be carried out to remove this assump-
tion and prove local asymptotic stability of Algorithm RDPC in
general.

Let z(k) =
§/17p*.

Theorem 3: Consider the mapping f from z(k) to z(k + 1)
and its Jacobian matrix D = (0f(2z)/0z)|z=z+, where

Fa) = (l-l-pTAx)(Fp-i-v)
= (1+%)FTx+1

P X

T

(k) 'x(k)'] , z* = [p*" X*T]T and A =

(36)

We have p(D) = (1+ (A/p*Tx*))p(F).
Furthermore, Algorithm RDPC with ¢ in (35) is locally
asymptotically stable if and only if

p(D) < 1. (37)
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The local asymptotically stability property in Theorem 3
guarantees that the received SIRs of active links converge to the
enhanced SIR requirements when they are slightly perturbed
from the equilibrium. This is a local, rather than a global con-
vergence result, but one that suffices in some practical cases. In
these cases, for the active links, the condition that SIR;(p(%))
is close to (1 + €*)~; is satisfied since the power update step in
Algorithm RDPC gets executed only when SIR;(p(k)) > i,
and the enhanced SIR target (1 4 €*)~; is already sufficiently
close to ~y; since €* is usually small.

B. A Parameterized Family of ¢(e)

Next, we turn to the speed of admitting a new user to meet
its target SIR. One issue is that admission delays of new users
may become intolerably large when ¢ is set to be very small.2
In any practical distributed system, new users are often given
a fixed period of time for admission control. This is to avoid
network instability due to a reinforced “clogging effect” when
there are too many new users in a congested system [2]. In order
to gain successful admission, a new feasible user (feasible as
given by Lemma 1) should power up sufficiently fast to meet
the SIR requirement within this period of time.

We consider the following family of ¢, (€), parameterized by
a nonnegative integer «, for ¢ € (0, 1]:

bale) = 6 <i(—1)a—ne—"/n +log(1 + 1/6)) NGT)

n=1

This ¢ (€) given by (38) is strictly decreasing and also satisfies
Lemma 2 (see Appendix G).

Using (38) to characterize the tradeoff between the speed of
admission and energy is described as follows. First, we repre-
sent D¢ (€)/0e = —5/(e*T1(1+€)). This choice of D¢, (€) /e
provides a way to adjust the curvature of the function ¢, (€) such
that €* increases as the control parameter «, tunable by the net-
work operator, gets larger. This implies that energy expenditure
increases, but new user admission rate also increases (cf. (13)
in Algorithm RDPC). Using this relationship, we have, at op-
timality, e* = (§/17v*)"/(@+1) with ¢* being a function that
maps o € Z4 to (0,1] for a given 1T . A larger « in (38) thus
models more aggressive protection margin, but also allows new
users to power up faster with increasing traffic load. Finally, we
integrate the expression to get (38). Effects of adjusting o will
be demonstrated in Experiment 3 in the next section.

C. Interference Price and Congestion Measure

In Algorithm RDPC, we can interpret the Lagrange multi-
pliers v as “interference prices”, and the sum 1 " » as a conges-
tion measure of a cellular system. As it increases, new users
are admitted into the channel on a more cautionary level. In
Section III, 1T » has been exploited for Algorithm RDPC de-
sign. In the following, we further discuss how 1 " v intuitively
quantifies the state of congestion in an interference-limited cel-
lular network.

In the extensive literature of power control, p(F) has been
viewed as a congestion measure, e.g., in [17]. Congestion refers
to either an increase in the number of users in the cell (thereby

2For example, in [2], an admission control heuristic is used in which even
feasible new users may be forced to leave the channel if their received SIRs are
still below the SIR targets after a time-out.
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Fig. 5. A typical numerical example of using Algorithm DPC to evaluate the
approximation in (39) with increasing p(F).

increasing the dimension of p, v, and F), or an increase in the
minimum SIR requirement of any user (thereby increasing some
of the elements in F'). In the former case, p(F') strictly increases
as shown in [17]. In the latter case, p(F) strictly increases since
the Perron—Frobenius eigenvalue of an irreducible nonnegative
matrix is a strictly increasing function of any of its elements.
Similarly, it is easy to see that 1Tw* also strictly increases in
these two cases.

We now connect the two measures of congestion: 1" v from
Algorithm RDPC, and p(F) from the linear algebraic structures
of power control problem formulations in (2) and (10).

First assume that p(F') is close to, but strictly less than 1. In
the case of € = 0, Appendix I proves the following relationship:

1Tp*
1—p(F)

For any ¢ € (0, 1], by considering problem (10), an approxi-
mation to 1" v* can similarly be given by

1T ~ (39)

ITV* B 1Tp*

STt e)pE) @

Using (40), the parameter ¢ in (35) can be related to p(F) since
b =1"ve¢* = 1Tp*e* /(1 — (1 + ¢*)p(F)).

Although the approximations in (39) and (40) are derived
based on the assumption that p(F) is close to 1, we show nu-
merically that the approximations are quite accurate even when
p(F) is much less than 1. Fig. 5 illustrates a numerical example
that computes the approximation in (39) using Algorithm DPC.
As shown in Fig. 5, the approximation is good for a wide range
of p(F) from 0.3 to 0.7.

Lastly, the approximations in (39) and (40) can be useful in
CDMA network load planning analysis for link budgets consid-
ered in [18] with the “interference price” obtained in (39) and
(40) corresponding to a high network load case.

VI. NUMERICAL RESULTS
We evaluate the performance of Algorithm RDPC with a se-
ries of five numerical experiments in progressive complexity.
A. Expt. 1 (Balance Energy—Robustness Tradeoff)

We first illustrate the ability of Algorithm RDPC to balance
energy and robustness compared to Algorithm DPC and Algo-
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Fig. 6. Experiment 1. Evolution of the total power with DPC/ALP, RDPC and
DPC algorithms. The percentage increases in extra power between (i) DPC/ALP
and DPC, and (ii) RDPC and DPC at two different operating points (i.e., time
slots 250-1000 and 1000-1500) are shown.

rithm DPC/ALP. As an illustrative example, we use the channel
gain matrix:

1.000 0.060 0.070
0.090 0.900 0.126 |,
0.094 0.064 0.800

(41)

noise power of 1 mW and the SIR targets v = (2,5,8)" or
(3,7,9)T dB.3 We assume a single cell, i.e., no interference
from adjacent cells, and ignore fast fading.

Using ¢(¢) in (35), Algorithm RDPC is configured with § to
have an increase of at most 15% total power as compared to Al-
gorithm DPC. During time slots 0-250, only User 1 and 2 are
active. From time slot 250, User 3 becomes active. At time slot
1000, User 1 completes data transmission, and departs from the
cell leaving User 2 and 3. Fig. 6 shows that Algorithm DPC/ALP
results in a total power expenditure of more than 150% at the
two network operating points at time slots 250 and 1000 as
compared to DPC, whereas Algorithm RDPC uses an additional
extra total power of 15%. Fig. 7 shows the evolution of received
SIRs for Users 1, 2, and 3 when User 3 enters the channel at
time slot 250. Compared to Algorithm RDPC and DPC/ALP,
Algorithm DPC has the fastest convergence to the SIR targets.
However, in Algorithm DPC, the received SIRs of Users 1 and 2
suffer a dip of approximately 30% and 60%, respectively, at
time slot 250 when User 3 enters the channel. In contrast, this
does not happen with Algorithm RDPC and DPC/ALP. In sum-
mary, Algorithm RDPC offers the same amount of robustness
as Algorithm DPC/ALP but with much less energy expenditure.

B. Expt. 2 (Meet Total Energy Constraint 6)

As in Experiment 1, we use the SIR targetsy = (3,7,9) " dB.
A series of simulations are conducted with different channel
gains and noise powers. We update e using the ¢(¢) in (35) and
select 6 such that at most an extra total power of 33.3\% is used.
We observe that Algorithm RDPC converges to the global op-
timum that meets the percent increase specified by 6. We update
P. v and € at each time slot. Fig. 8 shows the convergence be-
haviors.

3A typical SIR in the IS-95 CDMA system is 6 to 7 dB [10].
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Fig. 7. Experiment 1. Evolution of received SIR when a new user enters the
channel at time slot 250. The top left graph shows the SIRs for Algorithm DPC.
The top right graph shows the SIRs for Algorithm DPC/ALP (¢ = 0.1). The
bottom left graph shows the SIRs for Algorithm RDPC. The bottom right graph
shows the evolution of e(k) for Algorithm RDPC, and the €* changes from
0.0566 to 0.0572.
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Fig. 8. Experiment 2. A typical numerical example of power and protection
margin allocation using Algorithm RDPC. The top left graph shows the power
variables p. The top right graph shows the Lagrange multipliers ». The bottom
left graph shows the achieved SIR with the targets, and the bottom right graph
shows the parameter €.

C. Expt. 3 (Accelerate Convergence)

In this experiment, based on the a-parameterized ¢, (¢) func-
tion in Section V-B, we propose and test a simple heuristic to
achieve the goal of Experiment 2 with a faster convergence
speed. We initialize a large « in (38), which is then decremented
by 1 at every update of € using ¢, (€) in (38) until « = 0. After
that, € is updated using ¢(e) in (35). The goal of Experiment
2 in achieving the SIR targets with a 33.3% increase in extra
power is achieved after convergence. Fig. 9 shows the conver-
gence speed of the heuristic with different initial «’s, and the
baseline case of « = 0 (without the heuristic) is also included
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Fig.9. Experiment 3. Accelerating convergence speed in the Algorithm RDPC
using ¢, (¢) in (38) for different initial choice of . The top left graph shows
the baseline case for &« = 0, i.e., the heuristic is not used. The titles of the
other graphs indicate the initial o used in the heuristic. As shown, in the case of
« = 20, only 10 time slots are required to satisfy all the SIR targets, whereas
roughly 70 time slots are required in the baseline case. The heuristic with a larger
initial o converges much faster.

for comparison. As shown in Fig. 9, a larger « allows all the re-
ceived SIRs to rise and stay above the SIR targets in fewer time
slots than in the baseline case.

D. Expt. 4 (Different Timescale of Updates)

In our previous experiments, we update (p, v, €) at the same
timescale as in a primal-dual algorithm. In this experiment, we
repeat Experiment 2, but the base station updates (v, €) at dif-
ferent slower timescales as compared to the timescale of power
update by each user. In practice, the base station needs a rela-
tively long time interval to measure the channel gains in order
to update (v, €). Fig. 10 shows the convergence of the received
SIRs for different timescale updates of (v, ¢). Interestingly, a
slower timescale update of (v, €) may not lead to a slower con-
vergence to the SIR targets <y, but only to the enhanced SIR tar-
gets (1 4 €*)v. As shown in Fig. 10, all the received SIRs rise
and stay above the SIR targets « after the second update of (v, €)
before converging to the enhanced SIR targets for the case of
timescale (1:50), (1:100), and (1:200).

E. Expt. 5 (3GPP2 Simulation With Various Network
Conditions)

The idea of providing protection against disturbance caused
by new users admission can also be extended to providing pro-
tection against SIR outage induced by mobility or fading chan-
nels [19]. In this experiment, we evaluate the power control al-
gorithms under slow fading channels.

We use a simulator that models the realistic 3GPP2 uplink
evaluation network model [20]. The network model consists of
19 cells arranged in a three ring hexagonal structure. Each cell
is divided into three identical 120 degree sectors for a total of
57 base station sectors, as shown in Fig. 11. The base station an-
gular sectorization pattern is based on the commercial Decibel
DB 932DG65T2E antenna, which has a 65 degree 3 dB band-
width, 15 dB antenna gain and 20 dB front-to-back rejection.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

Evolution of received SIR (1 : 10) Evolution of received SIR (1 : 50)

2 & ~Link 1
8 ;"" —Link 1 wLink 2
. Link 2 ikl
6 '3 unka] O LT -
4 v
2

. Ny, =8
Y,=5 5 bz -
AN F\ 2
. f e . ~q,-2
0 T 200 400 600 0 200 400 600
iteration iteration
Evolution of received SIR (1 : 100) Evolution of received SIR (1 : 200)
15 15
—Link 1 —Link 1
=Link 2, =Link 2|
10 Link 3| 10 »Link 3|J
\73 =8 \'ya =8
5 5
N, =0 i =
0 \'Y1 =2 . \y1 =
0 200 400 600 0 200 400 600
iteration iteration

Fig. 10. Experiment4. A typical numerical example of using Algorithm RDPC
at different timescales of (v, €) update. A time slot on the x-axis of each graph
refers to a power update iteration. The top left graph shows an update of (v, €)
for every 10 time slots (1:10). The top right graph shows an update of (v, €)
for every 50 time slots (1:50). The bottom left graph shows an update of (v, €)
every 100 time slots (1:100), and the bottom right graph shows an update of
(v, €) every 200 time slots (1:200).

Fig. 11. A hexagonal cellular network for the uplink simulation consisting of
19 cells. Cells are three-way sectorized for a total of 57 base stations. Cell radii
are normalized to unity. Path loss accounts for log-normal shadowing, and an-
gular antenna pattern. The figure shows the locations of 300 random users con-
nected to a base station at the lower sector of the center cell. Other users are not
shown explicitly.

Each user uses a single omni-directional antenna. We adopt the
pass loss model with a path loss exponent of 3.7 and log-normal
shadowing standard deviation of 8.9 dB. Users are distributed
uniformly in the 19 cells and connect to the base station to which
the path loss is minimum. In all our simulations, each realiza-
tion of the network is initiated with 10 randomly selected users
in each base station sector, with a total of 570 users. We also use
aprocessing gain of 128 as in the IS-95 CDMA system [10]. The
channel gains vary at a timescale that is 40 times slower as com-
pared to an iteration of each algorithm.

In each of the cells, Algorithm RDPC is configured with ¢ in
(35), where ¢ is set such that Algorithm RDPC uses at most 33%
more total power than Algorithm DPC. Algorithm DPC/ALP is
configured with a constant € that is equal to 0.1.

First, we evaluate the network performance where users enter
and exit the same channel randomly due to mobility. New users
that do not reach their minimum SIR targets in 50 time slots are
removed from the channel. The heuristic in Expt. 3 is used on
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Fig. 12. Experiment 5. A typical numerical example of Experiment 5 for log-
normally distributed channel gains. A time slot on the x-axis of each graph refers
to a power update iteration. Evolution of received SIR when four groups of new
users enter the channel from time slot 250 to 350. The top left graph shows the
evolution of the total power. The top right graph shows the evolution of SIR for
Algorithm DPC. The bottom left graph shows the evolution of SIR for Algo-
rithm DPC/ALP (e = 0.1). The bottom right graph shows the evolution of SIR
for Algorithm RDPC.

RDPC with initial @« = 10. Fig. 12 shows a typical numerical
example illustrating the total power in a particular cell and the
SIR evolution of an existing user (with SIR target 0.25) when
there are four groups of new users entering the same channel
from time slot 250 to 350, increasing the number of users from
10to 50. As shown in Fig. 12, the user experiences SIR outage of
more than 30% when Algorithm DPC is used, whereas there is
no SIR outage in the case of Algorithm DPC/ALP and RDPC.
On the other hand, the total power in the channel can be rela-
tively high in the case of Algorithm DPC/ALP whereas Algo-
rithm RDPC adapts e such that there is at most 33% increase
in total power as compared to Algorithm DPC at equilibrium.
We also observe from Fig. 12 that when there is a substantial
number of users in the channel, the total power evolution in Al-
gorithm DPC/ALP can have a wide range of variation, while
the evolution of the total power in Algorithm RDPC is compar-
atively smoother. We also observe that the average percentage
increase in power for each user using Algorithm RDPC is ap-
proximately equal to the percentage increase in the total power
over Algorithm DPC, i.e., 33%.

Next, we compare the performance of Algorithm DPC/ALP
and RDPC by the average channel admission delay and the
average number of users that get admitted into a particular fixed
channel, which are both averaged over 10,000 random instances
of the simulation. For new users accessing the channel, we
implemented the time-out based voluntary drop-out scheme in
[2] in conjunction with Algorithm DPC/ALP and RDPC. The
voluntary drop-out scheme removes a user from the channel
after a time-out period of configurable length, which is a design
parameter to be optimized by testing. In all our simulations,
we use a fixed time-out period of 100 time slots. The user
that voluntarily drops out of the channel may access the same
channel after a back-off period [2]. The heuristic in Expt. 3
is used on Algorithm RDPC with initial @« = 0 and a = 10,
respectively.

TABLE I
ADMISSION STATISTICS OF NEW USERS
DPC/ALP | RDPC RDPC
(a=0) | (= 10)
Average admission
delay (Time slots) 69 83 37
Average no. of users admitted 15 19 28

Table I shows the average channel admission delay and the
average number of users that get admitted into the channel using
the different algorithm settings. We observe that the network ca-
pacity (number of users supported) using Algorithm DPC/ALP
can be low due to fixing €. Moreover, the average channel ac-
cess time for Algorithm RDPC using the heuristic in Expt. 3
with & = 10 can be much lower than that in DPC/ALP. A
small marginal increase in power expenditure when used ap-
propriately can yield useful power control algorithms that are
robust against different kinds of disturbance and have good per-
formance in terms of channel admission delay and network ca-
pacity.

We conclude this experiment by mentioning that the total
power expenditure for protection margin can be flexibly allo-
cated for combating against disturbances that originate from dif-
ferent causes other than new user admission or mobility. For ex-
ample, in a lightly loaded CDMA cell with highly mobile users
that are situated far away from the base station, a larger protec-
tion margin for mobility and fading can be used as compared to
a margin for guarding against admission of new users. Also, if
different amount of protection margin is associated to each user
(due to quality of service requirement), the results in Section III
can be extended to jointly optimize all the protection margins.

VII. CONCLUSION

Minimizing energy consumption and providing robustness of
SIR targets are two important yet conflicting goals of power
control in cellular networks. Built upon Algorithm DPC [1] and
Algorithm DPC/ALP [2], we develop Algorithm RDPC in this
paper to provide a flexible tradeoff between energy and robust-
ness. This tradeoff is manifested both at equilibrium and during
transient, and both are modulated by the shape of an objective
function, e.g., through the a-parameterized family of ¢(e) pro-
posed here. The algorithm is simple to implement, backward
compatible with power control module currently in use, and
contains few tunable parameters with predictive models of their
effects.

A key idea behind Algorithm RDPC is to control a
time-varying robustness parameter € by inferring the con-
gestion level in an interference-limited network, aided by an
interference price vector v that iteratively updates a pair of
nonlinear equations in both the primal and dual domain. Proofs
establish the convergence and optimality properties of Algo-
rithm RDPC, and numerical experiments verify its effectiveness
in providing both energy management and interference man-
agement and in modulating the energy—robustness tradeoffs.

In future work, we will investigate the possibility of sep-
arating the control of tradeoff during transient from that of
tradeoff at equilibrium. Another extension is to use Algorithm
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RDPC in wireless cognitive networks where the primary users
are protected from the co-channel secondary users.

APPENDIX

A. Proof of Lemma 1

First, the constraints in (10): SIR;(p) > (1+¢€)y, for all / can
be rewritten as
(1= (1+OW/p) > L+ )(Fp)/p (42
for all [, where (v); denotes the [th element of v. Next, let w; =
quy; for all [, where q and y are both strictly positive, and are
the left and right eigenvectors of F, respectively. Moreover, w
is normalized such that 1w = 1. We then raise both sides of
(42) to the power of w; in the [th constraint for all [, and multiply
all these inequalities together to obtain a single inequality:

[[a-a+amu/m)™ > 1+ ] (FEp)/p)™ . 43)

l l

Now, it is known from [21] (cf. Theorem 3.1 in [21]) that for
any irreducible nonnegative matrix F,

[T (®p)i/p)™ > o(F)

l

(44)

for all p > 0. This implies that [[,(1 — (1 + €)(v)i/p1)"* >
(1+¢€)p(F).But, [T,(1 = (1+€)(v):/pi)"™ < 1 for all strictly
positive feasible p and €, thus (1 + €)p(F) < 1. ]
B. Proof of Lemma 2

From the second derivative, the function ¢(ef) is convex if
and only if the condition in Lemma 2 is true. The constraint set
in (12) is convex since log(SIR;(p)) is concave in p for all [ (see
[22]), and log(1 + €) is convex in €. [

C. Proof of Theorem 1

We introduce nonnegative Lagrange multipliers v; for all [ for
the SIR constraints in (12), and write the Lagrangian

L(p,&v)=>_ e’ = v (log (SIR(P) /7))

+(e) + (Z 1/1> log(1 + €).

l

We can minimize the above Lagrangian to obtain the Lagrange
dual function g(») = infjs : L(p, €, »). Next, g(v) can be ob-
tained by a Lagrangian decomposition:

9V) = gaip(¥) + gape(v),

where gq1,(v) and gq,.(V) are, respectively, the optimal values
of the objective function of the following ALP subproblem:

minimize $(e°) + <Z Vl) log(1 + ¢°)
1

variables : €

(45)
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and the DPC subproblem:

minimize Z (ei” —ylog (S|Rl(f))/’Yl))
1

variables : p; VI. 46)

Solving (12) is equivalent to solving its Lagrange dual problem
over v:

maximize  gap(¥) + Gape(V)

subject to ;>0 VI. 47

The solution of the ALP subproblem is obtained by solving the
following fixed point equation for a given v:

_99(e)
Ode

1+e)=1"Tw. (48)

The subproblem DPC has a solution that is closely related to
the case where € = 0, i.e., (2). In particular, p* in (46) and v* in
(47) satisfy (20), which are the Karush-Kuhn-Tucker optimality
conditions (cf. Theorem 2):

p*=(1+€)(Fp"+v), (49)
x* = (14 e)F'x* 4+ 1, (50)

with
v =uxip; V. (51

To compute p* in (46) and v* in (47), (49)—(51) are, respec-
tively, modified to

p(k+1) = (1+¢(k)) (Fp(k) +v), (52)

x(k4+1)= (14 €k))F x(k)+1, (53)
and

vk +1)=z(k+ Dp(k+1) Vi (54)

Using Lemma 1, we note that the fixed point of (52)—(54)
must be such that (14+-¢*)p(F) < 1. Assuming that klim e(k) —

¢ in (48), and p(F) < 1/(1+ ¢*), then lim p(k) = p* and
lim »(k) — v* in (52) and (54), respectively. ]

k—o0

D. Proof of Lemma 3

To show (19), since f *(a) is differentiable, for the perturba-
tion u = te; where ¢ is small, we use Taylor series expansion
to obtain

. . df*(0
[ (te)) = f*(0)+¢ ! ~( ) + o(t). (55)

aul
From sensitivity analysis (cf. [13, Sec. 5.6]), we have
0f*(0)/0u; = —vf for all [, which we substitute in (55).
Choosing ¢ = 3;/100 yields (19). [ |

E. Proof of Theorem 2

First, (20) is obtained by applying the Karush-Kuhn-Tucker
optimality conditions to (18).

Next, by defining =} = v} /p; for all [, we can rewrite (20)
in matrix form as

I-FHx*=1 (56)
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where 1 is a vector of appropriate dimension whose entries
are all ones. Notice that we have implicitly used the fact that
SIR;(p*) = 7 for all [ in (56).

To solve for v* in (20), note that (I — F")x* = 1 can be
solved using the Perron—Frobenius theorem in a way similar to
solving the power control problem in (2) [1], [2], [11]. Simi-
larly, we propose the following algorithm, whose convergence
is based on the Perron—Frobenius theorem:

x(k+1) =Fx(k) + 1. (57)
It converges asymptotically to x* if and only if p(F) < 1,
since p(F") = p(F). Indeed, we have x(k) = (F")*x(0) +
[S2FZ2(FT)7]1, which results in the limit

k—1
: o T\k . TN\
Jim x(k) = lim (F7)*x(0) + lim TZB(F )71
=0+ |> (F')|1
7=0
=I-F") 1. (58)

Lastly, v;(k + 1) = z;(k + 1)pi(k + 1) converges to v} in (20)
for all [ if and only if p(F) < 1. ]

F. Proof of Equation (32)

From the perturbed constraint set of (17), we have u; =
1/(1+¢)foralll. Forsmalle,1/(14¢€) = 1 —¢, thusu; = 1 —¢
for all /. Next, in (18), we let u; = ¢™ ~ 1 + 7, for small (neg-
ative) ;. Hence, 4; =~ —e for all [. In Lemma 3, we let §; =
100%; ~ —100¢ for all [. As compared to the total power used
by DPC, using Lemma 3, the increase in total power is (approx-
imately) >°,(100¢*)vf /(1 Tp*) = 100(1Tw*e* /17 p*) per-
cent. [ |

G. Proof of (38) Satisfying Lemma 2

We first show that ¢;1(€) = Y.o_,(=1)*""e™"¢/n for all
positive integer « is convex in €. The second derivative of ¢ (€)

is given by

(&)

oa = (-1° > (=1)"ne™.

n=1

(59)

ne

For e € (0, 1], € is always nonpositive. Hence, the term ne™
is strictly increasing in n. For an even positive «, there is an
even number of summands in (59), which, in addition with the
increasing property of ne™"¢, implies that the summation in
(59) is positive. Thus, 92¢;(€)/9¢% > 0. Similarly, for an odd
positive «, the summation in (59) is negative, which together
with (—1)% gives 9%¢1(€)/0€? > 0. Hence, for all positive in-
teger v, 9%¢p1 (€)/0€> > 0, which implies ¢ () is convex in €.
Lastly, since 6 > 0 and the sum of convex functions is convex,
$(€) = 6(¢1(€) + log(1 + ™)) is thus convex in €.

Similarly, we can show that the first derivative of ¢1(e) =
Yoo (=1)*="e~"/n is always negative for € € (0, 1]. Hence,
¢1(€) is strictly decreasing in €, which implies ¢(e) = 6(p1(€)+
log(1 + 1/¢)) is decreasing in e. ]

H. Proof of Theorem 3

We prove the stability of Algorithm RDPC for ¢(¢) =
6log(141/€) by the Lyapunov’s first method [23, Ch. 4], which

checks the eigenvalues of the Jacobian of the nonlinear dynam-
ical system. Let A = 6/1"p* and z(k) = [p(k)" x(k)T]T.
Consider the following nonlinear system:

p(k+1) = (1+€(k)) (Fp(k) + v) (60)
and

x(k+1)=(1+¢€k)F'x(k)+1 61)

where €(k) = A/p(k) Tx(k).
First, we assume that there is a fixed point to (60) and (61),
and we can therefore rewrite the fixed point [p" x| as

p =

X
However, the inverse in the expression for p in (62) can also be
expressed as

(1+A/pTx)(I-(1+A/pTx)F) "

A%
. (62
(I—(1+A/pTx)FT) "1 (©2)

(I-(+2/p™0F) =3 (1+4A/p™0F)  (63)
i=0
and the series on the righthand side converges if and only if (14
A/p"x)p(F) < 1. Hence, the fixed point is finite if and only if
(1+A/p"x)p(F) < 1. Similarly, this same condition holds for
the inverse in the expression for x in (62) since p(F ) = p(F).
Next, to determine whether a fixed point exists, we note that the
Brouwer’s fixed-point theorem [24] guarantees that there exists
afixedpoint[p " x"]T since the iterative functions (60) and (61)
are continuous, and [p " x"]T lies in a compact and convex set
as shown in the proof of Theorem 1.

To show local stability around the fixed point, consider the
following vector of functions:

|:f1(p7X):| _ (1+ﬁ) (Fp—l—v) (64)
f2(p,%) (1 n Tﬁx) Flx+1
Taking the Jacobian (denoted by D) of (64), we have
_[ofi/op" O0fi)oxT
D= [a fofopT of)oxT || _ 65)
where
A A
T _ a8 e T
of1/op' = (1 + pTx) F (pTx)ZFpX
A T
- (pTX)QVX , (66)
A A
T_ 8 T /2 T
afl/ax - (pTX)2 Fpp (pTX)2 vp (67)
A
T_ TooT
and
A A
T _ T T T
Ofx/0x' = <1 + —pTx> F —(pTx)2F xp'. (69)
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Hence, grouping the above expressions together, we have
(omitting the superscript x for brevity):

A
AN[F o0 o 1
N G G

Do Bl

Let D denote the matrix with entries | D; ;1. Thus, from (70) and
after taking the absolute value on both sides, we have, element-

wise,
F 0 A
) o F) et

SEANENE

Next, we note that

“ [pXT PP
T
Xx' Xp

D< <1 + (71)

where

p(aram™lg gr|) =+ amT) e,

Moreover, when A — 0, we have p(D) = lima_o(1 +
A/p"x)p(F). Since A can be made arbitrarily small and
together with the condition for the existence of the fixed point,
we have

p(D) < p(D) < ((1+A/p"x) p(F). (72)

By the Lyapunov’s linearization theorem in [23, Ch. 4], the
nonlinear map in (64) is locally asymptotically stable if the map-
ping from z(k) to z(k + 1) has a Jacobian matrix D, where
p(D) < 1. By Lemma 1, we have ((1 + A/p " x)p(F) < 1,
thus Theorem 3 is proved. [ |

1. Proof of Equations (39) and (40)

We first derive (39). By taking the inner products of the con-
straint sets in (24) and (3) with p and x, respectively, and noting
that x'p = 17w, we have

vix+x Fp<1'v<1Tp+x'Fp (73)
which by strong duality (17 p* = v x*) leads to
1Tv* =17p* + x* ' Fp*. (74)

Note that (74) can also be readily obtained using Theorem 2.
Since (24) and (3) are strictly feasible if and only if p(F) < 1,
using (74), we have

1Tp*
1Tp*

X*TFp*
1Ty

=1> p(F) (75)
where each term on the left-hand side of the inequality is pos-
itive and strictly less than 1 (since these two terms sum to 1).
If p(F) approaches 1, the first and second term on the left-hand
side of the inequality decreases and increases, respectively (the
first term decreases since x > 1 and x increases as p(F) in-
creases, and the second term increases since the two terms must
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still sum to 1). Hence, if p(F') is close to but strictly less than 1,
we have

X*TFp*

o7
F
T p(F) = max min P
v

x>0 p>0 X'p

(76)
Thus, by substituting (76) in (74), an approximation for 1T v*
can be given by

1Tp*
1—p(F)’

The approximation in (40) can also be obtained similarly. ®

170 ~ (77)
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