
Exploring agile values in method configuration

Fredrik Karlsson1 and
Pär Ågerfalk2

1MELAB, Swedish Business School at

Örebro University, Sweden; 2Department of

Information Science, Uppsala University, Sweden

Correspondence: Fredrik Karlsson,
MELAB, Swedish Business School at
Örebro University, SE-701 82 Örebro,
Sweden.
Tel: þ46 19 30 39 94;
Fax: þ46 19 33 25 46;
E-mail: fredrik.karlsson@oru.se

Received: 6 May 2008
Revised: 30 September 2008
2nd Revision: 16 June 2009
Accepted: 17 June 2009

Abstract
The Method for Method Configuration (MMC) has been proposed as a method

engineering approach to tailoring information systems development methods.
This meta-method has been used on a variety of methods, but none of these

studies have focused on the ability to manage method tailoring with the

intention to promote specific values and goals, such as agile ones. This paper

explores how MMC has been used during three software development projects
to manage method tailoring with the intention to promote agile goals and

values. Through content examples of method configurations we have shown

that it is possible to use MMC and its conceptual framework on eXtreme
Programming and we report on lessons learned with regard to maintaining

coherency with the overall goals of the original method.

European Journal of Information Systems (2009) 18, 300–316.

doi:10.1057/ejis.2009.20; published online 21 July 2009

Keywords: method configuration; method tailoring; method engineering; extreme
programming; agile method

Introduction
As business requirements are changing at an ever-increasing speed, the need
for more flexible development processes has made it to the top of the agenda
for both researchers and practitioners. Agile methods with their emphasis on
‘just enough method’ are exemplars of a solution to this problem. However,
it is a well-known fact that there is no one-size-fits-all method to software
and information systems development (Henderson-Sellers & Serour, 2005;
Fitzgerald et al., 2006; Ågerfalk & Fitzgerald, 2006b). Earlier studies (Russo et al.,
1995; Tolvanen, 1998; Fitzgerald et al., 2003; Serour & Henderson-Sellers,
2004) have shown that as all projects are unique they require flexible method
support (Brinkkemper et al., 1994; Van Slooten & Hodes, 1996).

The quest for flexible and situated processes has been on the research
agenda for quite some time (Basili & Rombach, 1987; Kumar & Welke,
1992; Cameron, 2002; Fitzgerald et al., 2003). Existing inventories show
a wide range of existing approaches and computerized environments
for method tailoring (Odell, 1996; Ralyté et al., 2003; Niknafs & Ramsin,
2008; Sunyaev et al., 2008). These approaches range from selection of
methods to tailoring (e.g. Cameron, 2002; Bajec et al., 2006) and
construction of project-specific (situational) methods (Brinkkemper,
1996; Rolland & Prakash, 1996), and are supported by computerized
environments to different degrees (e.g. Plihon, 1996; Harmsen, 1997; Rossi
et al., 2004). Although agile methods seem adequately to address flexibility
in the development process, how best to adapt those methods to particular
development situations is still not well understood (Aydin et al., 2005;
Fitzgerald et al., 2006) and there are not many studies on the tailoring of
agile methods, Paige & Brooke (2005); Serour & Henderson-Sellers (2004)
and Qumer & Henderson-Sellers (2006, 2008) being notable exceptions.

Ironically, the suggestion by early agile method proponents that agile
methods must be applied in their entirety to achieve a synergistic

European Journal of Information Systems (2009) 18, 300–316

& 2009 Operational Research Society Ltd. All rights reserved 0960-085X/09

www.palgrave-journals.com/ejis/



combination of individual practices is somewhat at odds
with the spirit of flexibility (Ågerfalk & Fitzgerald,
2006b). It is also not borne out in recent research, which,
on the contrary, suggests that also agile methods need
to be tailored to the particular development context
(Fitzgerald et al., 2006). Indeed, the ability to adapt the
process to current circumstances is one of the principles
of the agile manifesto (see below).

When tailoring a method you want to achieve a
method that fits the situation and at the same time
aligns with the basic goals and values of the method.
Otherwise, the core philosophy of the method is lost. In
the case of agile methods you want to maintain agility by
adhering to agile values and goals. Method Configuration
(Karlsson & Ågerfalk, 2004, 2009) has been proposed
as an approach where one method, termed base method,
is taken as the starting point for configuring a situational
method suitable to the project at hand. This is particu-
larly useful when an organization wants to establish an
organization-wide method to be used across all projects,
thus sharing a common structure. Incentives for such an
effort include more effective communication, reduced
training costs due to common modeling languages and
the utilization of industry standards, as well as the access
to existing computerized tools. The Method for Method
Configuration (MMC) and its computerized tool support
MC Sandbox was devised as a way to carry out method
configuration in order to strike a balance between the
structure of organization-wide methods and the flexibility
required of project-specific methods (Karlsson & Ågerfalk,
2009). This approach is anchored in Activity Theory
(Korpela et al., 2004; Karlsson & Wistrand, 2006) and the
concept of method rationale (Rossi et al., 2004; Ågerfalk
& Fitzgerald, 2006a). The idea is to emphasize the
collaborative aspect of methods and to focus goals and
values during method tailoring. The use of goals can be
found also in other approaches to method tailoring
(Nilsson, 1999; Rossi et al., 2000, 2004; Ralyté et al., 2003;
Gonzalez-Perez et al., 2009). However, most of these
approaches have a method integration focus. Further-
more, when it comes to goal-driven method tailoring
approaches, no analysis has been made of the ability to
manage method tailoring with the intention to promote
specific values and goals, such as agile ones.

The aim of this paper is to explore the extent to which
MMC can support method tailoring with the intention
to preserve or even emphasize agile goals and values of
the base method. Generally, method engineering covers
both the development process and the modeling lan-
guages and constructs used in that process (e.g. Kumar &
Welke, 1992; Brinkkemper, 1996). The focus of this
paper is on the development process and the products
(deliverables) that are results of and inputs to process
activities. Consequently, modeling languages per se are
not addressed.

The paper is structured as follows: the next section
introduces a selection of key MMC concepts along with
MC Sandbox. The following section presents the research

approach adopted. The following section analyses agile
method values. With this basis, the next section reports
on empirical experience from the use of MMC during
three agile system development projects. Finally, the last
section concludes the paper and points at some future
research.

The MMC key concepts and values
The aim of the MMC is to support method configuration:
the planned and systematic adaptation of a specific
method through the use of reusable assets. The meta-
method embraces the need for both structure and
flexibility in systems development practice and is
anchored in the following design principles (Karlsson &
Ågerfalk, 2005, 2009): (1) the principle of modulariza-
tion: (1a) self-contained modules, (1b) internally consis-
tent and coherent modules, (1c) support for information
hiding; (2) the principle of method rationale for selecting
method parts: (2a) support for analysis of potential to
achieve rationality resonance (2b) support method-in-
action decisions; and (3) the principle of a multi-layered
reuse model. An additional design principle is found for
MC Sandbox: (4) involve method users in an interactive
process of tailoring the base method, together with the
method engineer. Design principle (4) is a modification
of the original view of method engineering proposed by
Kumar & Welke (1992) where the method engineer
creates a situational method and the method users are
passive information providers.

These design principles are implemented as three core
concepts that provide the possibility to work with reusable
method assets: method components (Karlsson & Wistrand,
2006), configuration packages (Karlsson & Ågerfalk, 2009),
and configuration templates (Karlsson & Ågerfalk, 2009).
The presentation below focuses on these three key concepts
in MMC/MC Sandbox. For a more comprehensive treat-
ment of all concepts and the computerized tool, see
Karlsson & Ågerfalk (2005, 2009), Wistrand & Karlsson
(2004) and Karlsson & Wistrand (2006).

On first inspection MMC may not intuitively be seen as
particularly agile. However, the basic tenet is that by
spending some time on structuring the tailoring process
early in a project, flexibility increases when the process
is actually executed. In principle, flexibility requires
structure at the process tailoring (or meta-method) stage
(Karlsson & Ågerfalk, 2009).

The method component concept
A modularization concept is needed to enable systematic
ways of working with method configuration. Several such
concepts exist in the method engineering literature
where method components (Karlsson & Wistrand,
2006), method chunks (Rolland & Prakash, 1996) and
method fragments (Brinkkemper, 1996) are perhaps the
most prominent ones. Through such concepts, specific
parts can be suppressed, added or exchanged within the
confines of a coherent method. Furthermore, through
the use of a modularization concept it is possible to

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 301

European Journal of Information Systems



achieve information hiding during method configuration
and thus avoiding irrelevant details. MMC is based on the
method component concept – a self-contained part of
a method expressing the transformation of one or
several artifacts into a defined target artifact, and the
rationale for such a transformation. This concept aligns
with the method chunk construct and can be viewed as
an aggregate of method fragments. Hence, just like in
the method chunk concept we find a ‘hard-wired’
(Henderson-Sellers et al., 2008) connection between
process and product parts of a method. However, unlike
method chunks and method fragments, a method
component is non-hierarchic. This means that method
components exist on a ‘fixed’ level of granularity. Since
a method component is defined based on the artifacts
(or deliverables) of the base method, the types of
identifiable artifacts determine its granularity.

A method component has two parts: its content and its
interface. The content describes the input, the output, the
transformation process, and the method rationale (see
below). The interface presents a selection of those parts,
to facilitate information hiding.

Method component content
The content of a method component is an aggregate of
method elements: A method element is a part of a method
that manifests a method component’s target state or
facilitates the transformation from one defined state to
another. Method elements are constituted by prescribed
actions (e.g. Detail a user story), concepts (e.g. Task),
notations (e.g. textual), artifacts (e.g. User Story) and
actor roles (e.g. Customer). A development activity is
essentially a set of prescribed actions with associated
sequence restrictions that guide project members’ actions
in specific situations. In performing these actions,
developers’ attention is directed towards specific phe-
nomena in the problem domain. These are concepts that
express an understanding of the problem domain, and
also of the method itself. Results of actions are documented
by artifacts using a prescribed notation (a modeling lan-
guage), giving the concepts a concrete representation.
Artifacts are thus both deliverables from and input to
(subsequent stages of) the process. In MMC, methods are
viewed as heuristic procedures and hence specified inputs
are only recommended inputs. Finally, actor roles
describe the functions that actors play in the method
component. The selection of actor roles is determined
by the prescribed actions that are needed for the trans-
formation process.

The rationale part of the method component consists
of two concepts: goals and values. Each method element
is included in the method component for reasons, which
are made explicit by associating method elements to
goals. These goals are anchored in values. Together the
goals and values reflect the underlying perspective of the
method from which the method component originates.
When working with MMC, method rationale is more
important than the deliverable as such. Through the

method rationale it is possible to address the goals that
are essential in order to fulfil the overall goal of a specific
project. Prescribed actions and artifacts are viewed as
a means to achieve those goals. Hence, method rationale
can help developers not to lose sight of the ultimate
result, and also help them to find alternative ways
forward.

Figure 1 illustrates the internal view of the User Story
component as it is presented in MC Sandbox, The
graphical user interface is divided into three sections.
The leftmost section contains a tree view of all included
method elements. Here we find the User Story artifact.
The middle part shows the rationale of the method
component, based on the goals of individual method
elements. Finally, the rightmost section provides links to
external sources that contain method element content.
For example, to a User Story template. These external
sources are used in the situational method depending on
the classification of the method components. As MMC
and MC Sandbox focus on modification of the develop-
ment processes on the deliverable level, no changes to
the modeling languages or the tools themselves are
required in the process.

The method component interface
The purpose of the interface is to hide unnecessary details
during method configuration. It draws on the compo-
nent construct as used in software engineering and the
fact that the primary interest during method configura-
tion is the results offered and the required inputs, not
on how a task is executed. This reduction of complexity
is achieved through the method component interface:
a reference to a selection of method elements and
rationale that is relevant to the task at hand. The
interface represents an external view of a method
component. During method configuration, the method
component’s overall goals and the artifacts are the
primary focus. The artifacts are designated as input and/
or deliverable (output), as discussed above. This is
necessary in order to deal with the four fundamental
actions that can be performed on an artifact (Gonzalez-
Perez et al., 2009): create, read, update and delete. An
artifact is classified as a deliverable when it is only created
by the method component. If the artifact can be updated
by the same method component it is classified as input as
well. Per definition, a component can take one or several
input artifacts, but has only one deliverable. Finally, the
interface expresses the method component’s overall
goals, representing the method rationale. These goals
are used to discuss possible rationality resonance in a
project with certain characteristics – the extent to which
different methods’ and system developers’ rationality
overlap (Stolterman & Russo, 1997; Ågerfalk & Fitzgerald,
2006a).

The configuration package
Method configuration is about deciding whether or not
method components in a base method are to be

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk302

European Journal of Information Systems



performed, and to what extent. In MMC this is done
through the use of method rationale, which is expressed
in the method components’ interfaces as discussed
above. The result of this selection, with respect to
particular project characteristics, is represented in a
configuration package. This selection of method compo-
nents can, if required, include components from com-
plementing methods. A characteristic is viewed as a
question about one isolated aspect of the development
situation. Such a question typically has several possible
answers that constitute the characteristic’s dimension;
one possible answer is called a configuration package. A
configuration package is thus a configuration of the base
method suitable for a characteristic’s value. Hence, each
characteristic addresses one or several method compo-
nents and their purpose. That is, a configuration package
is a classification of method components with regard to
how relevant their overall goals are for a specific answer
in a characteristic’s dimension.

Figure 2 shows the graphical user interface in MC
Sandbox when working with configuration packages. The
screen is divided into three main sections: the lower part
of the screen contains the method modeling area, and
the upper left part contains the interface and classifica-
tion status of a selected method component. For
example, in Figure 2, the interface of the Vision
component is presented. In this case the interface
contains the overall goal (selected rationale in MC
Sandbox), the recommended input (in this case none)
and the output (the Vision artifact). The upper right part
of the graphical user interface contains the complete set
of existing configuration packages based on the base
method in use. The tree structure is sorted by the
characteristics that the configuration packages belong
to. The method modeling area makes use of the external
view of method components. A method component is
presented as a rectangle. Arrows connecting method

components show the flow of artifacts between the
components, which can be one-way or two-way. For
example, in Figure 2 the result from the Vision component
is recommended as input to the User Story component.

The classification of method components is based on a
two-dimensional classification schema, as shown in
Table 1. The vertical dimension focuses on how much
attention the developers should devote to a particular
method component: ‘None,’ ‘Insignificant,’ ‘Normal’ or
‘Significant’. If at this stage a method component is
found to be unimportant, it can be classified as ‘Omit’
outright. The three aspects of the horizontal dimension –
‘Satisfactory,’ ‘Unsatisfactory’ and ‘Missing’ – cut across
the vertical dimension. This dimension is referred to as
the potential for achieving rationality resonance between
the base method’s content and the system developers’
intensions. Together, the rationality resonance dimen-
sion and the attention dimension provide different
variants of the fundamental method configuration
scenarios that need to be supported: selection, exchange
and addition. Different colors are used in MC Sandbox to
illustrate these classifications.

The configuration template
Although configuration packages and characteristics are
used to simplify analyses of the base method, there is also
a need to handle more complicated situations where
characteristics exist in combinations. This is the purpose
of the configuration template. A configuration template
is a combined method configuration that covers the
complete base method. It is based on one or more
configuration packages, for a set of recurrent project char-
acteristics. The concept allows for the reuse of combined
configuration packages that target development situation
types common within the organization. In MMC, the
selection is based on the set of available characteristics
and configuration packages. One configuration package

Figure 1 The internal view of the user story method component.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 303

European Journal of Information Systems



can be chosen per characteristic and, if a characteristic is
irrelevant, it can be left out when selecting configuration
packages. The graphical user interface used for defining
configuration templates shares basic structure with the
one used for defining configuration packages. This means
that the screen is divided into an upper and a lower part.
The upper part contains information about selected
method components. Figure 3 illustrates the lower
section, which is divided vertically. The left part contains
the functionality to select configuration packages, while
the right part shows the method modeling area with
the current version of the configuration template. This
area shares the design with the method modeling area
for configuration packages using the external view of
method components. When the relevant selection of
configuration packages has been made MC Sandbox
semi-automatically builds a configuration template based
on these selections. If conflicts arise between overlapping

configuration packages, they are listed together with the
reasons for conflict. Such conflicts have to be manually
resolved.

For reasons of efficiency, relevant configuration tem-
plates can be retrieved with a search engine based on
a selection of characteristics and configuration packages.
The situational method is based on a selected configura-
tion template and is the method delivered to the project
team for use. When this method is enacted in a project,
experiences should be fed back to the configuration
process in order to improve configuration templates and/
or configuration packages and to facilitate knowledge
sharing between projects. This is typically done contin-
uously throughout the project.

Research approach
Considering the purpose of the paper, exploring agile
method tailoring with MMC in a real world setting, this

Table 1 Classification schema for method components

Attention given to method component Potential to achieve rationality resonance

Satisfactory Unsatisfactory Missing

None Omit — —

Insignificant Perform informal Exchanges informal Added informal

Normal Perform as is Exchanges as is Added as is

Significant Emphasize as is Exchanges emphasized Added emphasized

Figure 2 Defining a configuration package.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk304

European Journal of Information Systems



study can be classified as a case study (Lee, 1989; Yin,
1994). The case unfolds the method configuration
process in a small software development company in
Sweden that builds industrial software for the global
market. They are to a large extent a virtual organization
with a philosophy to work with system development
projects on a networked basis. This means that only
certain critical competence exists in-house and that
project teams are formed through external contacts.
The company agreed to evaluate MMC through the use
of MC Sandbox in three commercial system development
projects.

The choice of industrial partner was based on the
following premises: they had to agree to provide access to
systems development projects, they had to use an agile
method, and they had agree to set aside resources to
introduce MMC. The choice of eXtreme Programming
(XP) as the base method was the industrial partner’s. They
do not use it as a true organization-wide method, but
only with some specific clients. This repeated use,
however, is similar to the use of an organization-wide
method.

The first author of this paper assumed the project
manager role in all three projects. However, he was not
responsible for the method configuration, except for
mentoring one of the system developers when introdu-
cing MMC and when building an initial version of the
base method (XP) in MC Sandbox. The latter was
necessary to enable the method configuration using
MMC. Method engineering was distributed among the

developers and the majority of the method configuration
decisions were taken together during method-user-
centred method configuration (Karlsson & Ågerfalk,
2005) workshops. In order to facilitate such workshops,
each team received an introduction to MMC and MC
Sandbox – approximately 3 h. The mentored system
developer gave this introduction. Some of the developers
participated in more than one of the projects, which
facilitated knowledge sharing. The selection of projects
was based on the industrial partner’s current project
portfolio. A summary of the projects’ characteristics is
shown in Table 2.

Data collection
This research is based on several data sources from the
three systems development projects: configurations
stored in MC Sandbox, log books from the method
configuration workshops and interviews with the devel-
opers. The method configuration workshops were carried
out along the lines of MMC and MC Sandbox. This means
that all project members were involved in the tailoring
work where configuration packages and template were
either created or reused. The starting point for the
configuration work was XP implemented as a base
method in MC Sandbox (see Figure 2) with some
additional method components, mainly taken from the
Rational Unified Process (Kruchten, 2004). In addition,
the organization could gradually add configuration
packages and templates. During the configuration work,
the project members used the external view of method

Figure 3 Defining a configuration template.

Table 2 Characteristics of projects

Project Type of information system Person-hrs Calendar months No of developers

1 Web-based inventory system 1500 4 5

2 Web-based time report system 800 2 4

3 Web-based quotation system 1100 3 5

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 305

European Journal of Information Systems



components to discuss implications of different choices
concerning method components. The internal view was
only used in cases were the method component content
was unknown to them. In the spirit of Joint Application
Development (Wood & Silver, 1995) the objective was to
strive for consensus decisions and to increase the under-
standing of each other’s method needs. Despite that one
project member was in charge of documenting the
configuration decisions in MC Sandbox, the driver role
shifted during the workshops depending on what
method parts were in focus. MC Sandbox provides the
possibility to store information about configuration
decisions made by the system developers along with
comments that explain why the decisions were made.
Information about decisions is stored in a structured
format while the comments are stored as free text. The
latter made it possible to store, for example, citations
from the configuration workshops.

The first author wrote the logbooks during the
configuration workshops. The log books contained
observations about the process such as, configuration
decisions and arguments. Hence, when it came to
configuration decisions and arguments they were possi-
ble to compare with the data in MC Sandbox, to reduce
researcher bias. However, when documenting the config-
uration process such as, data about problematic areas and
viewpoints on these areas was captured – data which are
not found in MC Sandbox.

The interviews were semi-structured using the logbooks
and data from MC Sandbox as a form of interview guide
(Patton, 1990). The interviews focused the system devel-
opers’ experiences of the method configuration process
and how and to what extent the configuration decisions
fulfilled their needs – that is if rationality resonance
was achieved. According to Stolterman & Russo (1997),
the appreciation of a method is related to how well the
rationality of that method matches the rationality of
the systems developer. They refer to this as a state of
rationality resonance, where the public rationality,
inherent in the method, is in harmony with the indi-
vidual method user’s private rationality. Hence, it is an
indicator of how well the method fits the situation from
the system developers’ perspective.

Analytical framework
The analytical framework used in this paper is based on
the concept of method rationale as laid out by Ågerfalk &
Fitzgerald (2006a). To facilitate analysis, previous work
on the concept was extended by the explicit introduction
of the actor as a framework component (see Figure 4). As
we shall see below, the actor concept is key to facilitate
analyses of rationality resonance.

The framework in Figure 4 consists of a number of
components (depicted as UML classes): actor, value, goal,
method component (in-concept and in-action) and a
number of named associations between these. The
framework draws on Weber’s (1978) notion of practical
rationality, which highlights that people, when acting

socially, choose means in relation to ends, ends in
relation to values and act in accordance with certain
ethical principles. In terms of the framework, this means
that

1. values dictate what goals are considered worthy of
achieving;

2. method components prescribe how to achieve goals;
3. ethical principles dictate what method components

are acceptable.

The term method component refers to a self-contained
part of a method that is used in MMC during configura-
tion work (see above). A method component is either
‘in-concept’ or ‘in-action’. This is used to represent that
a method component is either described as a prescription
for action (in-concept), in, for example, a method hand-
book or is a result of a method following action in
practice (in-action) (Lings & Lundell, 2004; Ågerfalk &
Fitzgerald, 2006a).

As can be seen in Figure 4, value rationale corresponds
to (1) in the list above, and goal rationale corresponds
to (2). With respect to (2), there is a distinction between
a goal that is the direct intention of a method component
and higher-level goals that the intention is a way of
supporting. For example, the goal (intention) of the
method component ‘User story’ is probably ‘to describe
a path through the system.’ This, however, is only a
means to achieve a higher-level goal, such as ‘customer
requirements understood.’ Hence, there is a goal achieve-
ment relationship between goals that represent how goals
support other goals and thus form goal hierarchies, or
networks. The same principle applies also to values. This
is in line with previous work on goal-oriented require-
ments engineering (Mylopoulos et al., 2001; Bresciani
et al., 2004; Gonzalez-Perez et al., 2009).

The value base association represents the fact that not
all values are operationalized as concrete goals but reside
as guiding principles that the actor turns to as new
situations emerge. Note that the value base is allowed to
be empty, as it represents only known explicit values.
Depending on the stage of analysis, these may still have
to be elicited. Rationality resonance occurs when two
actors share the same method rationale, that is, when
they agree to a common set of values, goals and method
components.

Analysis
Data analysis was carried out in three steps, where Step 1
is reported in the next section and steps 2 and 3 are
reported in the following section. Step 1 draws on the
relationship between values and goals of a method
component. This means tracing the goals and values of
XP as expressed in-concept. This was achieved by taking
the point of departure in the agile manifesto (see below),
in which the XP method (Beck, 2000; Bresciani et al.,
2004) is anchored. These goals are thus seen as higher-
level goals of the method and are used as input for the

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk306

European Journal of Information Systems



second step. The essence of this analysis is adapted from
a workshop paper by the second author (Ågerfalk, 2006).

The second step consists of an analysis of how the
chosen configuration corresponds to the higher-level
goals of the agile manifesto, which is the foundation of
the XP method. This is done through the use of the
method component’s public rationale, which are the
goals in the method component’s interface. (See, for
example, the User Story component in Figure 2). If it is
possible to relate the goals to goals from the agile
manifesto, these goals are presented. Otherwise, we argue
that it is not possible to establish a relationship between
the method component and the overall goals of the
method. If these goals and values are in line with the
higher-level goals and values of the base method, then
the core of the method is preserved.

The third and final step focuses on the rationality
resonance achieved between the situational method and
the system developers. This analysis is based on the
arguments provided in MC Sandbox and the interviews.
If a system developer expresses rationality resonance with
concern to a specific method component we recorded
that this part of the situational method fits the situation.
Hence, the situational method fit is traced to each actor
in the system development projects studied.

Agile method values
A number of leading agile method actors summarized the
basic principles behind agile methods in what has
become known as the ‘Agile Manifesto’ (see www.
agilemanifesto.org, last accessed 15 June 2009). The agile
manifesto is presented as a set of values and associated
goals (referred to as principles), as shown in Table 3.
Advocates of agile methods recognize the relevance of

both sides of the value statements in Table 3 but choose
to emphasize the first part of each statement more than
the second. The values of the agile manifesto are all quite
abstract, which is perhaps to expect of value statements
that are to be used to judge the suitability of specific
goals. The principles, on the other hand, are more
specific and lend themselves to be treated as goals in
the method rationale framework introduced above. The
only principle that is indeed phrased more like a value
statement than an achievable and measurable goal is that
which refers to face-to-face conversations. Arguably, the
first principle actually contains two goals with an
achievement association.

When analysing the interrelationships between the
goals, we find that there are two clusters of goals all
contributing to their own highest-level (or root) goal: one
cluster aiming for customer satisfaction and another
aiming for sustainable development – hence one
externally oriented and one internally oriented. These
clusters are depicted in Figure 5 using plus signs to
indicate goal contribution. We also find what is arguably
a goal contradiction between g3 and g7 indicated by
the minus sign.

The value rationale of the agile manifesto can be found
by relating the identified goals to the identified values
as shown by the graph in Figure 6. Apparently, all values
are operationalized into specific goals, except v5, and
all goals are grounded in at least one value, except g1. The
case of g1 seems to indicate that there is indeed a non-
expressed value of the agile manifesto: satisfied custo-
mers over, what? In the case of v5, it is unclear how the
preference for face-to-face conversations is related to the
other components of the agile manifesto. If it is treated as
a value, there are no principles that operationalize it as

Method Component

Actor

*

*
Goal

*

*

*

Value Base

Goal Rationale

{xor}

Goal Contradiction

Goal Achievement

*

*

*

*

{xor}

Value Contradiction

Value Achievement

Value

intention

In-Concept In-Action*
1..*

Value Rationale

Actor

*

*

*

Goal
*

* Goal Rationale

{xor}

*

*

*

*

{xor}

Value

*
1..*

Figure 4 Conceptual structure of method rationale (using UML notation).

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 307

European Journal of Information Systems



a goal. If it is to be regarded as a goal, possibly grounded
in v1 it is singled out as the only goal that does not
contribute to any other goal, besides g1 and g8. As such, it
would thus be valued in its own right together with

satisfied customers and sustainable development. The
most obvious is perhaps to view it as a value with a value
achievement association to v1 – preferring face-to-face
conversations can probably be traced back to valuing

g1:Customer Satisfied

g2: Valuable software delivered 
early and continuously

g3: Requirements 
changes

are welcome

g4: Working software 
delivered frequently

g5: Business people 
and developers 
work together 

daily throughout 
the project 

g6: Motivated, supported 
and trusted individuals g7: Progress measured 

by working software

g8: Sustainable development 
promoted 

g9: Continuous attention to 
technical excellence 

and good design 

g10: Simplicity is 
essential 

g11: Self-organizing 
teams 

g12: Self-reflecting teams

+

+

+ +

+ ++

+

+

+

+

+ +

+

+

Externally oriented goals

Internally oriented goals

-

5
+

+

+ +

+ ++

+

+

+

+

+ +

+

+

Externally oriented goals

Internally oriented goals

-

Figure 5 Goal clusters in the agile manifesto (based on Ågerfalk, 2006).

Table 3 Agile values and goals (principles)

Values v1 Individuals and interactions over processes and tools.

v2 Working software over comprehensive documentation.

v3 Customer collaboration over contract negotiation.

v4 Responding to change over following a plan.

v5 The most efficient and effective method of conveying information to and within a development team is

face-to-face conversation.

Goals (principles) g1 Our highest priority is to satisfy the customer

g2 Through early and continuous delivery of valuable software.

g3 Welcome changing requirements, even late in development. Agile processes harness change for the

customer’s competitive advantage.

g4 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the

shorter timescale.

g5 Business people and developers must work together daily throughout the project.

g6 Build projects around motivated individuals. Give them the environment and support they need, and trust

them to get the job done.

g7 Working software is the primary measure of progress.

g8 Agile processes promote sustainable development. The sponsors, developers and users should be able to

maintain a constant pace indefinitely.

g9 Continuous attention to technical excellence and good design enhances agility.

g10 Simplicity – the art of maximizing the amount of work not done – is essential.

g11 The best architectures, requirements and designs emerge from self-organizing teams.

g12 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior

accordingly.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk308

European Journal of Information Systems



people and interaction over processes and tools. We also
see that two separate value clusters mirror the two goal
clusters identified above. This is not surprising and
indicates that also the values are oriented mainly
internally or externally. It is important to remember that
these goals and values are those expressed by the group of
people behind the agile manifesto, who thus constitute
the actor to whom this method rationale belongs.

Empirical experiences – examples
The empirical work included method configurations in
three different projects. Due to space limitations it is
impossible to provide a detailed description of all the
method configurations. Accordingly, we make a brief
overview of the three configurations and make a selection
of examples based on three configuration packages cover-
ing the three different types of configuration situations
where potential to achieve rationality resonance is
satisfactory, unsatisfactory and missing (see Table 1).

Configuration templates
One important aspect of MMC is the idea of reuse. The
three projects shared a number of aspects, such as
involving development of web applications. Table 4
contains the characteristics and configuration packages
resulting from the method configuration work. The three
rightmost columns in the table show the combination of
configuration packages for each project; that is they

illustrate the configuration templates used. From this
table we find that the second and third project shared
one configuration template. The first project differed in
several respects, but shared the three configuration
packages concerning project risk, degree of management
commitment and modeling of ‘web aspects,’ with the
other two projects.

Configuration packages
The content of the configuration templates builds on the
configuration packages. We chose to illustrate and
exemplify the configuration content with three different
configuration packages covering the three degrees of
potential to achieve rationality resonance (see Table 1):

� ‘Knowledge about business process¼Low’
� ‘On-site customer¼No’
� ‘Project risk¼Normal (normal planning)’

The first configuration package is chosen to illustrate
how the base method has been complemented with
method support that is not present in XP – the potential
for rationality resonance is missing. The second config-
uration package is chosen to illustrate how the developers
needed to question the operationalization of a basic value
in XP (to have a high degree of interaction with the end
user) – the potential to achieve rationality resonance is
unsatisfactory. The third configuration package illustrates
when the potential to achieve rationality resonance is

g5: Business people and developers 
work together daily throughout the 

project 

v1: Individuals and interactions 
over processes and tools 

v2: Working software over 
comprehensive documentation 

v3: Customer collaboration 
over contract negotiation 

v4: Responding to change 
over following a plan 

v5: Face-to-face
conversations preferred 

g1: Customer Satisfied

g2: Valuable software delivered
early and continuously

g3: Requirements 
changes are welcome

g4: Working software 
delivered frequently

g6: Motivated, supported 
and trusted individuals 

g7: Progress measured by 
working software

g8: Sustainable development 
promoted 

g9: Continuous attention to 
technical excellence and 

good design 

g10: Simplicity is 
essential 

g11: Self-organizing teams 

g12: Self-reflecting teams

+

seulaVslaoG Value Rationale

g5: Business people and developers 
work together daily throughout the 

project 

v1: Individuals and interactions 
over processes and tools 

v2: Working software over 
comprehensive documentation 

v3: Customer collaboration 
over contract negotiation 

v4: Responding to change 
over following a plan 

v5: Face-to-face
conversations preferred 

g1: Customer Satisfied

g2: Valuable software delivered
early and continuously

g3: Requirements 
changes are welcome

g4: Working software 
delivered frequently

g6: Motivated, supported 
and trusted individuals 

g7: Progress measured by 
working software

g8: Sustainable development 
promoted 

g9: Continuous attention to 
technical excellence and 

good design 

g10: Simplicity is 
essential 

g11: Self-organizing teams 

g12: Self-reflecting teams

+

seulaVslaoG Value Rationale

Figure 6 Value rationale of the agile manifesto.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 309

European Journal of Information Systems



satisfactory. Note also that the last configuration package
was reused in all three configuration templates.

‘Knowledge about business process¼ Low’
This configuration package concerns the project teams
plan to increase their knowledge of the business process.
The developers concluded, based on their knowledge of
the base method, that business modeling is not supported
by XP. Consequently, they turned to additional methods
to find complements. Since some of the developers had
earlier experience of the Rational Unified Process they
borrowed parts of its business modeling discipline.

Table 5 shows the method components that the
developers chose to add to this configuration package.
In total four components were added. The first method
component is the Business vision. The developers
expressed the importance of ‘a high-level view’ of the
business. As one developer said ‘it [the Business vision]
can work much like the Vision [card], but for business
modeling.’ From the system developers’ comments in
MC Sandbox we find the following: ‘Necessary to provide
a comprehensive landmark, but still being fairly simple.’
Consequently, it was in line with the overall way of
working as suggested by XP.

The second component is the Business Use Case. The
project members needed a way to capture business
process details. Project members viewed the details
necessary in order to know ‘where to plug the [informa-
tion] system into the business’, or ‘not to push a cube
through a round whole.’ Hence, they expressed a need to
understand how the business was to be supported. The
third added component is the Business Use Case Model.
When examining the different voices from the workshop,
we find that this component is closely associated with the
Business Use Case component: ‘it is needed to create an
overview’, ‘you get that [the Business Use Case Model]
into the bargain when working with Business Use Cases.’

Finally, the fourth method component was the
Business Glossary. Here, opinions diverged. Two devel-
opers viewed this component as ‘unnecessary.’ However,
other developers provided counter-arguments: ‘concepts
tend to become important’ and ‘when you are unskilled
in a business, terms are difficult [to remember].’ In the
end the component was added.

Table 6 shows that three of the four added method
components have support in the overall goals of XP. The
Business Vision component is an operationalization of
goal g3 (requirements changes are welcome). All changes
in the business process and the requirements can always
be discussed in light of the business vision. The second
method component, Business Use Case, however, has
weak support for the goals of XP. XP is not concerned
with requirements for business processes. However, the
system developers found the method component impor-
tant in order to satisfy the customer (g1). The third
component, Business Use Case Model, has support in
goal g10 (simplicity is essential). The aim of this
component is to provide an overall structure of the
business use cases, to provide simplicity. Finally, the
fourth method component, the Business Glossary, can
be anchored in goal g1 (customer satisfied). The glossary
is an artifact for creating a shared understanding of
business-specific concepts, which facilitates communica-
tion both with the customer and within the project team.

When analysing rationality resonance, we find that it
exists between the first three method components and all
of the system developers in the two project teams that
used the configuration packages. This is illustrated in the
rightmost column in Table 6, where A2.1 denotes project
member one in the second project, and so forth. When it
comes to the last method component, the Business
Glossary, however, rationality resonance is not achieved
with two of the developers–one in the second team and
one in the third team.

Table 4 Overview of configurations

Characteristic Configuration package Project

1 2 3

Knowledge about business process? High �
Low � �

On-site customer? Yes �
No � �

Co-located project team? Yes � �
No �

Project risk? Normal (normal planning) � � �
High (extended planning)

Degree of management commitment? High � � �
Low

Modeling of web aspects Yes � � �
No

Type of testing Automated � �
Manual �

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk310

European Journal of Information Systems



‘On-site customer¼No’
The ‘On-site customer¼No’ configuration package focu-
ses on how the project teams plan to handle the fact that
no customer will be on-site. The developers demarcated
the configuration package to requirements aspects of XP
(the base method). Table 7 shows the method compo-
nents and their classifications. The first component is the
Vision card. The systems developers expressed that it was
important for the customer to be able to ‘depict the
future system’ and that the feasibility of this method
component ‘does not change with this kind of relation-
ship to the customer.’ Hence, the method component
was to be performed as described in the base method.

The second method component, the Metaphor, was to
be used on an informal basis. As one of the systems
developer expressed during a method configuration
workshop: ‘we use them frequently but usually we do
not document them.’ According to the MMC classifica-
tion scheme, such use is classified as ‘Perform informal.’
The last two method components in Table 7 illustrate the
replacement of User stories with Use cases. The rationale
for this exchange is captured in the statements: ‘we
need to compensate [the increased distance] with more
details’, ‘one needs tools that are not that interaction
intense’, and ‘I view it [the use case] as a more suitable
way.’ Consequently, the User story component was
suppressed for the benefit of the Use case component.

Table 8 shows the analysis of preserved goals and
experienced rationality resonance for this configuration
package. Of the three method components found in the
configuration package two of them are original method
components from XP. These method components are
operationalizations of the goals in the agile manifesto.
The Use case component, however, is used instead of the
User story component. This component is a different
operationalization of goal g5.

Rationality resonance is found between the Vision
Card component, the Metaphor component and the
developers. Everyone agreed on these two choices. When

it came to the choice to drop User Stories in favor of Use
Cases, we found that this choice was not uncontroversial
in the third project group. During the interviews two out
of five system developers expressed that they did not
agree on this modification. They expressed a feeling that
this modification would not solve the problem with
customers not being on-site.

‘Project risk¼Normal (normal planning)’
This configuration package is demarcated to the planning
activities in XP. The developers associated this configura-
tion package with the project risk characteristic, and cases
where the risk is perceived as normal. Table 9 shows six
components that were associated with planning in XP, all
of them classified as ‘Perform as is’. First, the team
members of the different projects agreed that ‘an initial
assessment is necessary.’ Second, they reflected on the
necessity ‘to discuss what actually fits into the [project]
scope’ or phrased differently ‘to set the [project] scope.’
Hence, the Prioritized user stories were included into the
configuration package. Third, the team members argued
that coordination with the customer organization and
elaboration of stage goals were essential: ‘planning is
needed despite that we know it will change’, ‘we have to
plan the content [for each release]’ and ‘if we do not plan
how can we expect the customer to take responsibility for
the delivery’. Consequently, both the Release plan and
the Iteration plan were classified as ‘Perform as is’ in the
configuration package. Finally, the Task and the Signed
task component were classified as ‘Perform as is’. The
project members expressed that these component were
needed to break down user stories into manageable tasks
and to assign responsibility for these tasks. Hence, the
developers intended to use this part of the method as
prescribed in textbooks.

Table 10 presents how the method components’ goals
in the configuration package relate to the goals of XP.
Overall this configuration package corresponds to XP
since the components are used ‘as is.’ Consequently, the

Table 5 Configuration package: ‘Knowledge about business process¼ Low’

Method component Method component’s rationale Classification

c1: Business Vision To capture and communicate very high-level objectives of a business effort Added as is

c2: Business use case To describe the value-added aspect of the business process Added as is

c3: Business use case model To provide an overview of the direction and intent of the business Added as is

c4: Business glossary To understand the terms that are specific to the project Added as is

Table 6 Analyse of preserved goals and experienced rationality resonance: ‘Knowledge about business process¼ Low’

Agile Goals Method component Actor experience rationality resonance

g3: Requirements changes are welcome c1: Business vision A2.1–A2.4, A3.1–A3.5

g1: Customer satisfied c2: Business use case A2.1–A2.4, A3.1–A3.5

g10: Simplicity is essential c3: Business use case model A2.1–A2.4, A3.1–A3.5

g1: Customer satisfied c4: Business glossary A2.1, A2.2, A2.4, A3.2–A3.5

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 311

European Journal of Information Systems



goals of XP are preserved in the configuration. In
addition, all three project teams used this configuration
package. When analysing experienced rationality reso-
nance, we see that all project members agreed with the
use of these method components.

Discussion
The research objective of this study was to explore MMC
as a tool for method tailoring with the intention to
adhere to specific goals and values – in this case agile
goals and values. With regard to the configurations made
in the three cases some notable lessons can be made.

In the examined cases, MMC was used as quality
assurance. Each method component contains the
goals that it operationalizes. This conceptual design is

anchored in the design principle that method rationale is
important during method tailoring. In practice, this
selection mechanism has worked well, both during this
study and in previous ones (Karlsson & Ågerfalk, 2009).
Irrespective of the kind of configuration decisions that
have been made during the projects above, these changes
have been mapped to agile goals. The following repre-
sents the voices of three developers: ‘we have discussed
our needs,’ ‘now everybody ought to know why these
things [the selected method components] are important’
and ‘though we did not change it [the method] we
discussed why.’ Fitzgerald et al. (2006) have stated the
importance of considering all principles in a method
before discarding them, which according to them is
rather uncommon. Consequently, MMC has actively

Table 7 Configuration package: ‘On-site customer¼No’

Method component Method component’s rationale Classification

c5: Vision card To capture the purpose of the system Perform as is

c6: Metaphor To describe the system’s likeness Perform informal

c7: User story To describe a path through the system Omit

c8: Use case To understand the system’s behavior Exchanges as is

Table 8 Analyse of preserved goals and experienced rationality resonance: ‘On-site customer¼No’

Agile Goals Component Actor

g3: Requirements changes are welcome c5: Vision card A2.1–A2.4, A3.1–A3.5

g10: Simplicity is essential c6: Metaphor A2.1–A2.4, A3.1–A3.5

g5: Business people and developers work together daily throughout the project c8: Use case A2.1–A2.4, A3.1–A3.3

Table 9 Configuration package: ‘Project risk¼Normal’

Method component Method component’s rationale Classification

c9: Estimate To estimate the amount of time required to implement a story Perform as is

c10: Prioritized user stories To prioritize functionality in the system Perform as is

c11: Release plan To schedule releases Perform as is

c12: Iteration plan To schedule the user stories for each iteration Perform as is

c13: Task To decompose user stories into tasks Perform as is

c14: Signed task To assign developers to tasks Perform as is

Table 10 Preserved goals and experience rationality resonance: ‘Project risk¼Normal’

Goals Component Actor

g2: Valuable software delivered early and continuously c9: Estimate A1.1–A1.5, A2.1–A2.4, A3.1-A3.5

g2: Valuable software delivered early and continuously c10: Prioritized user stories A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g3: Requirements changes are welcome c11: Release plan A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g3: Requirements changes are welcome c12: Iteration plan A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g4: Working software delivered frequently c11: Release plan A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g4: Working software delivered frequently c12: Iteration Plan A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g10: Simplicity is essential c13: Task A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g6: Motivated, supported and trusted individuals c14: Signed task A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

g11: Self-organizing teams c14: Signed task A1.1–A1.5, A2.1–A2.4, A3.1–A3.5

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk312

European Journal of Information Systems



contributed with a discussion of the association between
actors, method components and agile goals (see Figure 4).
This is unique for method engineering approaches that
incorporate method rationale. One important aspect in
achieving this focus has been the use of interfaces.
Henderson-Sellers et al. (2008) have questioned the
interface/body model, stating that ‘no information needs
to be hidden’. However, our study as well as earlier
accounts (Karlsson & Ågerfalk, 2005, 2009) indicate that
an interface/body model is useful when method users
take a lead role in the configuration process, which is the
case when working with MC Sandbox.

An interesting distinction between this study and
previous research on tailoring of agile methods is the
project members’ awareness of their tailoring decisions.
Fitzgerald et al. (2003, 2006) and Henderson-Sellers &
Serour (2005) provide reflections on extensions and
alliances of agile methods, but these are not discussed
at the level of method objectives. Fitzgerald et al. (2003)
discuss the common problem of a focus on ‘low-level
method steps’ instead of higher-level principles. MMC
provides two types of tailoring decisions where exten-
sions and alliances are used: when method parts are
added to the base method and when method parts are
exchanged. The empirical material shows that the
developers made well-considered choices with regard to
the higher-level principles – the agile goals and values –
during both types of decisions.

The system developers made several extensions as laid
out above. For example, XP does not contain a goal such
as ‘The value-added aspect of the business process
described’ and the base method could thus not meet
the project members’ intentions on a detailed goal
level. One of the developers expressed that ‘we needed
to tackle this problem y to agree on a modelling
technique’ and in MC Sandbox developers expressed that
‘each solution has to add [business] value’ to keep the
‘customer satisfied’. The developers made suggestions
based on their need to add method rationale. Each
suggestion was compared to the existing goals in the
method and the goals of the project. ‘Some of us had
previously worked with business modeling using [business]
use case models y they are a good complement.’ Hence,
MMC was valuable in the search for complementing
method components because it forced the developers
explicitly to state what goals they needed to achieve. Two
voices of the system developers expressed this as ‘a way to
express our problems,’ and ‘MMC guided what to search
for.’ Furthermore, MMC explicated the existing goals of
the method during these discussions. Consequently, the
system developers created an association to the root goal
in the external goal cluster (see Figure 5).

The cases also show that the system developers
introduced goal contradictions into the tailored method.
A method component with a business modeling focus are
to some extent in conflict with the agile goal ‘Valuable
software delivered early and continuously,’ which is
a lower-level goal. However, the interviews revealed that

these decisions were deliberate: ‘the method has to be
balanced,’ ‘a decisive addition in this case,’ ‘you have to
consider how to keep the customer happy.’ Such reflec-
tions by developers are not typically reported on in
method tailoring research.

When it comes to situations when method parts were
exchanged, we find that these changes were carefully
crafted with regard to the agile goals. In the specific case
above, where the customer was not on-site, the studied
projects revealed difficulties in fulfilling the ‘daily’ part
of the agile goal ‘Business people and developers work
together daily throughout the project.’ The use of goals
created an initiated discussion on how to choose a dif-
ferent operationalization, and what part of the goal that
created the problem. This is supported by such voices
from the developers as ‘it [method rationale] created
awareness,’ ‘we came to discuss how to mitigate this risk
[increased distance],’ and ‘we were able to check against
the different goals.’

Finally, the study shows that in practice, rationality
resonance is not something that can be discussed at the
project team level. The method rationale framework
provided the possibility to trace rationality resonance to
individual combinations of project members and method
components. Based on mapping of configuration deci-
sions, we found that rationality resonance was not
achieved between all system developers and the tailored
method. In other words, not all of the project members
agreed that the choices made were important goals to
achieve or a proper operationalization of a specific goal.
One of the system developers that did not want to
include a business glossary expressed: ‘Though we dis-
agree I understand what they want to achieve y I just do
not find it that important.’ Another system developer,
who disagreed with exchanging user stories for the
benefit of use cases, expressed that ‘use cases do not
compensate [for the increased distance] y I think it was
an unnecessary exchange.’ Consequently, MMC does not
always generate consensus decisions, but it creates an
awareness of different project members’ different stand-
points. Agree to disagree, as it were.

Conclusion
In this paper, we have reported on system developers’
experience from using MMC to manage method tailoring
with the intention to promote agile goals and values. The
meta-method was used during three system development
projects to tailor the agile method XP. This study has
been justified by (a) the need for method support in
tailoring agile methods to particular development set-
tings, and (b) the need to complement earlier evaluations
of MMC with more conclusive tests to determine the
effectiveness of the approach with regard to maintaining
coherency with the overall goals of the base method
during tailoring.

Through content examples of method configurations
we have shown that it is possible to use MMC and its
conceptual framework with XP. Furthermore, we have

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 313

European Journal of Information Systems



identified reuse of both configuration templates and
configuration packages between the three projects we
have studied. This corroborates earlier evaluations of
MMC. Moreover, three lessons have been learned about
MMC’s ability to maintain a coherency in the base
method’s network of goals.

The first lesson concerns MMC as a quality assurance
tool. All project members participated in the configura-
tion process and gave their view on how different parts of
the base method matched their intentions. This discus-
sion created an awareness of these goals and for whom
they were important. However, we also learned that
though awareness was created there was not always
consensus. Developers sometimes disagreed on different
modifications of the base method, but still showed an
understanding for the modifications. The second lesson
concerns the use of goals as a reference point when
extending the base method. We can report on a valuable
focus on how the added method components comple-
mented or contradicted the base method. When the
system developers introduced goal contradictions into
the situational method these decisions were well in-
formed. The system developers argued for anchoring the
added functionality in the root goal of the base method,
while creating conflicts with lower-level goals. The third
lesson concerns support for finding new ways of
operationalizing goals that exist in the base method.
During two of the three projects the developers identified
a project risk with customers not being on-site. Through
the use of MMC this risk was traced to agile methods’
confidence in daily contact between developers and
business people. The developers performed a well
thought through change to the operationalization of
that goal. Consequently, MMC contributed to the
discussion on why the goal was difficult to operationalize
and how it could be implemented differently.

The use of method rationale and the chosen level of
granularity (tailoring at the product/deliverable level) in
this study show a way forward for method engineering in
practice. This approach abstracts away from irrelevant
detail and emphasizes the fulfilment of goals and values
that the organization find important, such as agile ones.
Among other things, this allows for domain-specific
configurations. Such configurations are grounded in
method rationale that is important to the domains of
interest to an organization.

Earlier research on MMC and method configuration on
plan-based methods has shown that the use of method
rationale has been important when deciding what to
exclude from the base method. The content serves as an
encyclopaedia of possible paths to take. XP, being a
lightweight method, provides less guidance when it

comes to suggesting possible paths. Consequently, method
configuration came to focus on extension rather than
exclusion and the use of method rationale as a reference
point came to play a more important role during
extensions than in earlier studies of plan-based methods.

It is important to note that the concept of rationality
resonance by definition depends on the system devel-
opers’ pre-understanding. It thereby depends on an
ongoing learning process, especially when a paradigma-
tically different approach to system development is
introduced in an organization. Consequently, some of
the results of this study may depend on a lack of
understanding and appreciation of agile values and
techniques (the disagreement regarding use cases and
user stories could, for example, be a result of misaligned
learning curves). It is therefore of interest to in the future
conduct also longitudinal studies that investigate the
impact of individual as well as organizational learning on
method configuration and appreciation of different
method constructs.

This study has been carried out on three small system
development projects. However, we were interested to
follow the tailoring decisions and the reasoning behind
these decisions. Clearly, the sizes of the projects were
large enough to reveal many tailoring decisions. What
may have impact on our results is the choice of agile
values. We have used the Agile Manifesto as a baseline for
our analysis, but we recognize scholars promoting
different sets of values and goals (see, for example,
www.agilemodeling.com, last accessed 15 June 2009).
Further research could thus broaden the scope to
investigate also other notions of agility.

To promote system developer engagement and perso-
nal responsibility, the joint configuration decisions
elaborated in this research build on the idea of partici-
patory, or method-user-centred, method engineering
(Karlsson & Ågerfalk, 2005). This way, system developers
can become more aware of choices made than when a
method engineer creates a tailored method for them to
use. However, participation has at least two inherent and
somewhat related problems: scalability and cost. The
projects reported on in this research are fairly small
projects with regard to the number of project members.
Hence, participation was managed quite effortlessly. This
may not be possible when projects grow larger and
participation becomes more difficult to achieve, if it is to
be meaningful for all team members. Also, larger project
teams increase cost and there is likely a delicate balance
between cost and gains in engagement and understand-
ing. Hence, there is ample opportunity for more research
to explore limitations and possible trade-offs in this
respect.

About the authors

Fredrik Karlsson is an assistant professor of Informatics at
Örebro University. He received his Ph.D. in Information

Systems Development from Linköping University. His
research about tailoring of systems development

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk314

European Journal of Information Systems



methods, system development methods as reusable
assets, and CAME-tools has appeared in a number of IS
journals and conferences. He is currently heading the
Methodology Exploration Lab at Örebro University and is
Deputy Head of the Swedish Business School at Örebro
University.

Pär J. Ågerfalk is a professor at Uppsala University,
Sweden, where he holds the Chair in Computer Science
in Intersection with Social Sciences. He received his Ph.D.

in Information Systems Development from Linköping
University and has held full-time positions at Örebro
University, University of Limerick, Jönköping Interna-
tional Business School, and Lero – The Irish Software
Engineering Research Centre. His work on open source
software, global software development, method engineer-
ing, information system design, and conceptual model-
ing has appeared in a number of leading information
systems journals and conferences, including EJIS, MISQ,
CACM, ICIS and ECIS.

References
ÅGERFALK PJ (2006) Towards better understanding of agile values in global

software development. In Proceedings of the Eleventh International
Workshop on Exploring Modeling Methods in Systems Analysis and Design
(KROGSTIE J, HALPIN T and PROPER E, Eds), Luxembourg.

ÅGERFALK PJ and FITZGERALD B (2006a) Exploring the concept of method
rationale: a conceptual tool for method tailoring. In Advanced Topics in
Database Research (SIAU K, Ed.), pp 63–78, Idea Group, Hershey, PA.

ÅGERFALK PJ and FITZGERALD B (2006b) Flexible and distributed software
processes: old petunias in new bowls? Communications of the ACM
49(10), 26–34.

AYDIN MN, HARMSEN F, VAN SLOOTEN K and STEGWEE RA (2005) On the
adaptation of an agile information systems development method.
Journal of Database Management 16(4), 24–40.

BAJEC M, VAVPOTIČ D and KRISPER M (2006) Practice-driven approach for
creating project-specific software development methods. Information
and Software Technology 49(4), 345–365.

BASILI VR and ROMBACH HD (1987) Tailoring the software process to
project goals and environments. In Proceedings of the 9th International
Conference on Software Engineering, pp 345–357, IEEE Computer
Society Press, Los Alamitos, CA.

BECK K (2000) Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, MA.

BRESCIANI P, PERINI A, GIORGINI P, GIUNCHIGLIA F and MYLOPOULOS J (2004)
Tropos: an agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems 8(3), 203–236.

BRINKKEMPER S (1996) Method engineering: engineering of information
systems development methods and tools. Information and Software
Technology 38(4), 275–280.

BRINKKEMPER S, HARMSEN AF and HAN OEI JL (1994) Situational method
engineering for informational system project approaches. In Proceed-
ings of the IFIP WG8.1 Working Conference on Methods and Associated
Tools for the Information Systems Life Cycle (OLLE TW and VERRIJN-STUART

AA, Eds), pp 169–194, Elsevier, Maastricht, the Netherlands.
CAMERON J (2002) Configurable development processes. Communications

of the ACM 45(3), 72–77.
FITZGERALD B, HARTNETT G and CONBOY K (2006) Customising agile

methods to software practices at Intel Shannon. European Journal of
Information Systems 15(2), 200–213.

FITZGERALD B, RUSSO NL and O’KANE T (2003) Software development
method tailoring at motorola. Communications of the ACM 46(4), 65–70.

GONZALEZ-PEREZ C, GIORGINI P and HENDERSON-SELLERS B (2009) Method
construction by goal analysis. In Proceedings of the 16th International
Conference on Information Systems Development (BARRY C, LANG M,
WOJTKOWSKI W, WOJTKOWSKI G, WRYCZA S and ZUPANCIC J, Eds), pp 76–88,
Springer-Verlag, Galway, Ireland.

HARMSEN AF (1997) Situational Method Engineering. University of Twente,
Utrecht, the Netherlands.

HENDERSON-SELLERS B and SEROUR MK (2005) Creating a dual-agility
method: the value of method engineering. Journal of Database
Management 16(4), 1–23.

HENDERSON-SELLERS B, SEROUR MK, GONZALEZ-PEREZ C and RALYTÉ J (2008)
Comparison of method chunks and method fragments for situational
method engineering. In Proceedings of the 19th Australian Conference
on Software Engineering (HUSSAIN FK, Ed.), pp 479–488, IEEE Computer
Society, Perth.

KARLSSON F and ÅGERFALK PJ (2004) Method configuration: adapting to
situational characteristics while creating reusable assets. Information
and Software Technology 46(9), 619–633.

KARLSSON F and ÅGERFALK PJ (2005) Method-user-centred method
configuration. In Proceedings of the Situational Requirements Engineer-
ing Processes – Methods, Techniques and Tools to Support Situation-
Specific Requirements Engineering Processes (SREP’05) (RALYTÉ J, ÅGERFALK

PJ and KRAIEM N, Eds), pp 31–43, University of Limerick, Paris, France.
KARLSSON F and ÅGERFALK PJ (2009) Towards structured flexibility in

information systems development: devising a method for method
configuration. Journal of Database Management 20(3), 51–75.

KARLSSON F and WISTRAND K (2006) Combining method engineering with
activity theory: theoretical grounding of the method component
concept. European Journal of Information Systems 15(1), 82–90.

KORPELA M, MURSU A, SORIYAN A, EEROLA A, HäKKINEN H and TOIVANEN M
(2004) Information systems research and development by activity
analysis and development: dead horse or the next wave? In IFIP
International Federation for Information Processing (KAPLAN B, TRUEX III D,
WASTELL D, WOOD-HARPER A and DEGROSS J, Eds), pp 453–471, Springer,
Boston.

KRUCHTEN P (2004) The Rational Unified Process: An Introduction.
Addison-Wesley, Reading, MA.

KUMAR K and WELKE R (1992) Methodology engineering: a proposal for
situation specific methodology construction. In Challenges and
Strategies for Research in Systems Development (COTTERMAN WW and
SEEN JA, Eds), pp 257–269, John Wiley & Sons, Washington, USA.

LEE AS (1989) A scientific methodology for MIS case studies. MIS
Quarterly 13(1), 33–51.

LINGS B and LUNDELL B (2004) Method-in-action and method-in-tool:
some implications for CASE. In Proceedings of the 6th International
Conference on Enterprise Information Systems (SERUCA I, CORDEIRO U,
HAMMOUDI S and FILIPE J, Eds), pp 623–628, INSTICC Press, Porto.

MYLOPOULOS J, CHUNG L, LIAO S, WANG H and YU E (2001) Exploring
alternatives during requirements analysis. IEEE Software 18(1), 92–96.

NIKNAFS A and RAMSIN R (2008) Computer-aided method engineering:
an analysis of existing environments. In The 20th International
Conference on Advanced Information Systems Engineering (BELLAHSNE Z
and LÉONARD M, Eds), pp 525–540, Springer, Montepellier, France.

NILSSON AG (1999) The business developer’s toolbox: chains and alliances
between established methods. In Perspectives on Business Modelling:
Understanding and Changing Organisations (NILSSON AG, TOLIS C and
NELLBORN C, Eds), pp 217–241, Springer-Verlag, Heidelberg.

ODELL JJ (1996) A primer to method engineering. In method engineering:
principles of method construction and tool support. In Proceedings of IFIP
TC8, WG8.7/8.2 Working conference on method engineering (BRINKKEMPER

S, LYYTINEN K and WELKE RJ, Eds), pp 1–7, Springer, Atlanta, U.S.A..
PAIGE R and BROOKE P (2005) Agile formal method engineering. In

Proceedings of the Fifth International Conference on Integrated Formal
Methods (ROMIJN JMT, SMITH GP and VAN DE POL JC, Eds), pp 109–128,
Springer, Eindhoven, the Netherlands.

PATTON MQ (1990) Qualitative Evaluation and Research Methods. Sage,
Newbury Park, CA.

PLIHON V (1996) MENTOR: an environment supporting the construction
of methods. In Proceedings of the 3rd Asia-Pacific Softeware Engineering
Conference, p 384, IEEE Computer Society, Washington DC.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk 315

European Journal of Information Systems



QUMER A and HENDERSON-SELLERS B (2006) Measuring agility and
adaptability of agile methods: a 4-dimensional analytical tool. In
Proceedings of the IADIS International Conference Applied Computing
2006 (GUIMARÃES N, ISAIAS P and GIOIKOETXEA A, Eds), pp 503–507, IADIS
Press, San Sebastian, Spain.

QUMER A and HENDERSON-SELLERS B (2008) An evaluation of the degree of
agility in six agile methods and its applicability for method engineer-
ing. Information and Software Technology 50(4), 280–295.

RALYTÉ J, DENECKÈRE R and ROLLAND C (2003) Towards a generic model for
situational method engineering. In Proceeedings of 15th International
Conference on Advanced Information Systems Engineering (EDER J and
MISSIKOFF M, Eds), pp 95–110, Springer, Berlin.

ROLLAND C and PRAKASH N (1996) A proposal for context-specific method
engineering. In Proceedings of the IFIP TC8, WG8.1/8.2 Working
Conference on Method Engineering on Method Engineering
(BRINKKEMPER S, LYYTINEN K and WELKE R, Eds), pp 191–208, Chapman
& Hall, Atlanta, U.S.A.

ROSSI M, RAMESH B, LYYTINEN K and TOLVANEN J-P (2004) Managing
evolutionary method engineering by method rationale. Journal of
Association of Information Systems 5(9), 356–391.

ROSSI M, TOLVANEN J-P, RAMESH B, LYYTINEN K and KAIPALA J (2000) Method
rationale in method engineering. In Proceedings of the 33rd Hawaii
International Conference on System Sciences, pp 1–10, IEEE Computer
Society Press, Maui, U.S.A.

RUSSO N, WYNEKOOP J and WALZ DB (1995) The use and adaptation
of system development methodologies. In Proceedings of the Interna-
tional Conference of International Resources Management Association
(KHOSROWPOUR M, Ed), p 162, Idea Group Publishing, Atlanta, USA.

SEROUR MK and HENDERSON-SELLERS B (2004) Introducing agility: a case
study of situational method engineering using the open process

framework. In Proceedings of the 28th Annual International Computer
Software and Application Conference, pp 50–57, IEEE Computer Society,
Hong Kong.

STOLTERMAN E and RUSSO NL (1997) The paradox of information systems
methods – public and private rationality. In Proceedings of the British
Computer Society 5th Annual Conference on Methodologies. Lancaster,
England.

SUNYAEV A, HANSEN M and KRCMAR H (2008) Method engineering:
A formal description. In Proceedings of the In Information Systems
Development: Towards a Service Provision Society (PAPADOPOULUS GA,
WOJTOWSKI W, WOJTOWSKI WG, WRYCZA S and ZUPANIC J, Eds),
Springer-Verlag, New York.

TOLVANEN J-P (1998) Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence. University of Jyväskylä,
Jyväskylä, Finland.

VAN SLOOTEN K and HODES B (1996) Characterizing IS development
projects. In Proceedings of the Proceedings of the IFIP TC8, WG8.1/8.2
Working Conference on Method Engineering on Method Engineering:
Principles of Method Construction and Tool Support (BRINKKEMPER S,
LYYTINEN K and WELKE R, Eds), pp 29–44, Chapman & Hall, Atlanta, USA.

WEBER M (1978) Economy and Society. University of California Press,
Berkeley, CA.

WISTRAND K and KARLSSON F (2004) Method components – rationale
revealed. In The 16th International Conference on Advanced Information
Systems Engineering (CAISE 2004) (PERSSON A and STIRNA J, Eds),
Springer, Berlin.

WOOD J and SILVER D (1995) Joint Application Development. John Wiley &
Sons Inc, New York.

YIN RK (1994) Case Study Research: Design and Methods. SAGE, Thousand
Oaks, CA.

Exploring agile values in method configuration Fredrik Karlsson and Pär Ågerfalk316

European Journal of Information Systems


