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This paper presents a comparison of degree of freedom (DOF) based math models, viz.,
tolerance-maps, deviation domain, and TTRS, which have shown most potential for retro-
fitting the nuances of the ASME/ISO tolerance standards. Tolerances specify allowable
uncertainty in dimensions and geometry of manufactured products. Due to these charac-
teristics and application of tolerances, it is necessary to create a math model of toleran-
ces in order to build a computer application to assist a designer in performing full 3D
tolerance analysis. Many of the current efforts in modeling tolerances are lacking, as
they either do not completely model all the aspects of the ASME/ISO tolerance standards
or are lacking the requisite full 3-D tolerance analysis. Some tolerance math models
were developed to suit CAD applications used by the designers while others were devel-
oped to retrofit the ASME/ISO tolerance standard. Three math models developed to retro-
fit the ASME/ISO standard, tolerance-maps, deviation domain, and TTRS are the main
focus of this paper. Basic concepts of these math models are summarized in this paper,
followed by their advantages and future issues. Although these three math models repre-
sent all aspects of the ASME/ISO tolerance standard, they are still lacking in one or two
minor aspects. [DOI: 10.1115/1.3593413]

1 Introduction

1.1 Background and Importance of Tolerances. Manu-
facturing invariably leads to uncertainty in dimensions and geom-
etry of manufactured products. Usually, products with higher
precision (dimensional and geometric) cost more than the prod-
ucts with lower precision. A designer specifies the dimensions and
geometry of the manufactured product, while satisfying functional
and other constraints for the product. Therefore, the designer must
also specify the amount of uncertainty in dimensions and geome-
try of the manufactured product. The amount of uncertainty in
dimensions and geometry of the manufactured product is specified
through tolerances.

The modern method of specifying tolerances is through geomet-
ric dimensioning and tolerancing (GDT), as indicated in the ASME
Y14.5 and ISO 1101 standards [1,2]. According to the Standards
[1,2], the variations of a feature are bounded within tolerance zones
that permit locational, orientational, form, profile, runout, and sym-
metry variations of the feature in 3-dimensions. Figure 1 shows dif-
ferent classes of tolerances and associated symbols.

In the present era, tolerances affect the cost of production,
inspection procedure, assemblability, performance, sensitivity,
selection of process, process related tools, and fixtures. The selec-
tion of type and value of tolerances for a part or an assembly is an
important issue for any manufacturing firm as it affects decision-
making processes at all the echelons of a production cycle. There-
fore, a designer should discern the need and the effect of tolerances
that he/she selects.

Usually, a designer can arrive at initial/preliminary set of toler-
ances by utilizing (a) design history from similar products and (b)
trial and error. The initial value of tolerances can be optimized for
cost and function of the product using one of two approaches: (a)
tolerance analysis or (b) tolerance synthesis [3]. With analysis, the

designer estimates values for individual tolerances on a target fea-
ture for each dimension in a “stackup,” and then uses an analysis
tool, often automated on a computer, to determine the contribution
from each of these tolerances to the accumulation of variations at
one or more functional target features of the entire stackup. (Note
that a “stackup” is a dependent relationship among dimensions that
may all reside on one part or be distributed over several parts in an
assembly.) With synthesis, often called tolerance allocation, the
desired control (e.g., a range of clearance to ensure proper lubrica-
tion or control of noise) at the target feature is chosen, and often
ratios among tolerances are also chosen, to minimize cost of manu-
facture. Then, the tolerances are generated from the math model to
meet these choices. Tolerance analysis and allocation can be done
using a worst-case method or a statistical method. With the worst-
case approach, the tolerances chosen will ensure 100% acceptabil-
ity of the assemblies; with the statistical method, the tolerances
chosen will ensure acceptability of a certain large percentage of
assemblies. The statistical method allows a tradeoff between big-
ger variations at all the parts, and a correspondingly lowered cost
of their manufacture, and a small number of assemblies for which
the variations at the target features are not within acceptable limits.

1.2 Need for Math Model of Tolerances. Current tools for
assisting designers in assigning satisfactory set of tolerances (toler-
ance analysis) are neither comprehensive nor accurate. The designer
either uses manual/automated tolerance charts or simulation based
commercial tolerance analysis tools. Tolerance charting is consist-
ent with ASME/ISO standards [1,2], but limited to 1-D worst case
analysis only. Simulation based commercial tolerance packages
typically perform both worst case and statistical analysis, but they
are based on point-to-point constraint solving and, therefore, incom-
patible with the tolerance standards that specify variation within tol-
erance zones. Comprehensive 3D analysis of stack-ups involving
all types of dimensional and geometric variations is only possible if
a mathematical model of such variations exist.

The current international standards are created by collecting
knowledge from years of engineering practice and are, therefore,
case-based for each individual feature type and tolerance type.
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Emerging methods are attempting to address the challenge to
build a math model of geometric variations that are consistent
with the already existing tolerance standards and are capable of
supporting comprehensive 3D analysis of stack-up conditions.

Many different methods for math models of the standard for tol-
erance analysis have been approached in the literature, which will
be discussed in brief in Sec. 2.2. For a detailed and comprehensive
review of tolerance analysis methods, please refer to other review
articles [3–8]. Three spatial math models for tolerance analysis
have seen the most development and have been pursued consis-
tently, by the researchers, in the last decade. The only focus of
this paper is these three spatial math models for tolerance analy-
sis, viz., tolerance-map, deviation domain, and technologically
and topologically related surfaces (TTRSs) model. Section 2
presents basics of tolerance analysis and various research efforts
related to tolerance analysis. Section 3 provides an overview of
three math models for tolerance analysis, while Sec. 4 compares
the three math models.

2 Tolerance Analysis

2.1 Basics of Tolerance Analysis. The objective of tolerance
analysis is to check the extent and nature of the variation of an an-
alyzed dimension or geometric feature of interest for a given GDT
scheme. The variation of the analyzed dimension arises from the
accumulation of dimensional and/or geometric variations in the
tolerance chain. The analysis include: (1) the contributors, i.e., the
dimensions or features that cause variations in the analyzed
dimension, (2) the sensitivities with respect to each contributor,
(3) the percent contribution to variation from each contributor,
and (4) worst case variations, statistical distribution, and accep-
tance rates.

For example, consider the assembly of three parts shown in
Fig. 2. Dimensions d1, d2, and d3 are known dimensions with asso-
ciated dimensional tolerances (6t1/2, 6t2/2, and 6t3/2). Dimen-
sion df is the dimension of interest for the assembly. It is quite
evident that

df ¼ d1 � d2 þ d3ð Þ (1)

Correspondingly, the worst cast variation of dimension df can be
identified by the tolerance tw

tw ¼ t1 þ t2 þ t3 (2)

The contributors are dimensions d1, d2, and d3. All the three
dimensions have equal sensitivities (1) and equal contribution
(0.33). The worst case variation is dfþ tw/2 and df �tw/2. For sta-
tistical tolerance analysis, root sum of squares method from statis-
tics is utilized leading to Eq. (3) under the following assumptions:

(1) di parameters are independent random variables
(2) the index capability Cp¼ ti/(6 SDi) has the same value for

all ti and ts. SDi are the standard deviations of di and df.

t2
s ¼ t21 þ t2

2 þ t2
3 (3)

The above scheme is only suitable for such simple linear chains
with only dimensional tolerances. Addition of geometric toleran-
ces, with their nuances, and nonlinear chains complicates the tol-
erance analysis procedure. Although, some simple linearization or
rule based methods have been developed to tackle tolerance anal-
ysis, but these methods fall short in achieving full 3D tolerance
analysis with geometric tolerances.

Fig. 1 Different classes of tolerances in the standards [1]

Fig. 2 A simple 1-dimensional example showing tolerance
analysis with only dimensional tolerances
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2.2 Various Research Efforts in Tolerance Analysis. Vari-
ous research efforts in tolerance analysis can be classified into two
major categories. Tolerance representations retrofitted for com-
puter aided design (CAD) and retrofitted to model variations, as
specified by the standards. Furthermore, the classification of
research efforts for developing a math model of standard as given
by Davidson et al. [9] can be reclassified into the two categories
of research efforts in tolerance analysis. Parametric models, offset
zone models, and variational surfaces based models are represen-
tations retrofitted for CAD, while kinematic models and degrees
of freedom (DOF) based models are representations retrofitted for
variations as specified by the standards. Other recent reviews in
tolerance analysis have been conducted for Jacobean and torsor
models [10] and matrix and vector models [11]. A brief descrip-
tion of these research efforts is presented below.

2.2.1 Tolerance Models Retrofitted for CAD. Initial efforts,
during 1980’s, utilized parametric CAD to develop models for tol-
erance analysis. These models can be called parametric models
for tolerance analysis. Parametric CAD utilizes a set of explicit
dimensions and constraints to represent nominal shape and size.
These explicit dimensions and constraints can be used to obtain a
set of equations relating the dimension of interest to individual
chain of dimensions. Tolerances are incorporated by
allowing 6 variations in the dimensions [12,13].

As is evident, this method is similar to the one-dimensional tol-
erance analysis discussed in Sec. 2.1. Limitations of attributed to
parametric methods include inability (a) to incorporate to all geo-
metric tolerances in the standard and their interactions and (b) to
conduct full 3D tolerance analysis.

About the same time, researchers attempted to model the con-
cept of tolerance zone for tolerance analysis, by creating zones for
the toleranced features in a CAD model. The main idea was to
model tolerance zone as Boolean subtraction of maximal and min-
imal object volumes that are obtained by offsetting the object by
amounts equal to the tolerances on either side [14–16]. These
models are called offset zone models for tolerance analysis. The
construction of such a composite tolerance zone from boundary
surfaces of the part (a) does not allow one to model each type of
geometric variation separately and (b) to study their interactions
as specified in the standard [1]. Various issues related to these
models are also discussed in Ref. [17].

Extending the same idea of offset zone for simulating the varia-
tions of features in CAD models, variational surfaces based mod-
els for tolerance analysis were developed in early 1990’s. Each
surface is varied independently by changing the values of model
variables from which surface coefficients are calculated [18,19];
positions of the vertices and edges are computed from the surface
variations. When using this concept in CAD tools, it leads to
some topological problems, such as (a) maintenance of tangency
and (b) incidence conditions. This model too is incompatible with
the ASME Standard [1]. A modified version of this method, which
uses abstracted geometry instead of the CAD model itself is uti-
lized in various simulation based tolerance analysis (VSA) tools.

2.2.2 Tolerance Models Retrofitted to Represent Variations
as Specified in the Standard. A different approach was adopted
by Chase et al. [20] that incorporated kinematics to model assem-
bly and tolerances for tolerance analysis. Such models can be clas-
sified as kinematics based model for tolerance analysis. Initially,
Rivest et al. [21] utilized transformation matrices to analyze toler-
ance stack-up in mechanisms. Based on the idea, Chase and
co-workers. [5,20,22,23] developed a kinematic approach to toler-
ance analysis. In this approach, three types of variations (dimen-
sional, kinematic, and geometric) are modeled in the vector loop.
In a vector loop, dimensions are represented by vectors, in which
the magnitude of the dimension is the length (Li) of the vector.
Kinematic variations are small adjustments between joints (mat-
ing relations), which occur at the assembly time in response to the
dimensional and geometric variations. Geometric tolerances are

considered by adding micro DOFs to particular ones of the joints.
Not all interactions of geometric tolerances have been incorpo-
rated in the model.

Extending the idea behind kinematic models, degrees of freedom
allowed by each tolerance type to each feature was being utilized
by several researchers. Such models can be classified as Degree of
Freedom based models for tolerance analysis. Kramer [24] used
symbolic reasoning to demonstrate the determination of degrees of
freedom of parts in an assembly and to determine assembly feasi-
bility based on nominal dimensions. The three math models (toler-
ance-maps, deviation domain, and TTRS) discussed in Sec. 3, use
the concept of DOF to model geometric tolerances and then utilize
kinematics or transformations to assist in tolerance analysis.

3 Math Models for Tolerance Analysis

Although there are many different math models for tolerance
analysis (see Sec.2.2), this paper discusses tolerance-maps, devia-
tion domain, and TTRS briefly. All these models use substituted
surfaces having no form errors and variations are represented by
real variables. For details of each method, refer to the cited refer-
ences in each section below.

3.1 Tolerance-Maps. A Tolerance-Map
VR

(T-Map
VR

) is a hy-
pothetical Euclidean point-space, the size and shape of which
reflects all variational possibilities for a target feature. It is the
range of points resulting from a one-to-one mapping from all the
variational possibilities of a feature, within its tolerance-zone, to
the Euclidean point-space. These variations are determined by the
various tolerances that are specified on the feature.

3.1.1 Areal Coordinates. The T-MapVR for any combination
of tolerances on a feature is constructed from a basis-simplex in a
space of dimension n, the value of n corresponding to the freedom
of movement of the feature within the tolerance-zone; it is
described with areal coordinates. A classical description of this
subject, a form of affine geometry, is in Coxeter [25]. To construct
an n-dimensional space and its simplex, nþ 1 basis points are
needed. Therefore, for three-dimensional variations of a feature,
the corresponding T-Map is constructed from four basis points
that define its basis-tetrahedron. We choose to position the four
basis-points r1, r2, r3, and r4 as shown in Fig. 3. At the four ba-
sis-points, we place four masses k1, k2, k3, and k4 that may be pos-
itive or negative. So long as k1þ k2þ k3þ k4 = 0, the position of
r, the centroid of these masses, is uniquely determined by the lin-
ear combination

k1 þ k2 þ k3 þ k4ð Þr ¼ k1r1 þ k2r2 þ k3r3 þ k4r4 (4)

and we can make r assume any position in the space of r1…r 4

by varying k1, k2, k3, and k4. For example, for k1…k4 all positive,
r identifies any point inside tetrahedron r1r2r3r4.

The four masses k1…k4 are the barycentric coordinates of r,
yet we note that the position of r depends only on three independ-
ent ratios of these magnitudes. Consequently, the four ki’s can be
normalized by setting

Fig. 3 The basis tetrahedron with its basis points
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k1 þ k2 þ k3 þ k4 ¼ 1 (5)

then they are areal coordinates and

r ¼ k1r1 þ k2r2 þ k3r3 þ k4r4 (6)

The shape of the basis-tetrahedron was chosen to simplify inter-
pretation of T-Maps, particularly to decouple rotational and trans-
lational displacements in the tolerance-zone [9].

3.1.2 Tolerance-Map for a Face With Size Tolerance. Figure
4 shows the end of a rectangular bar of cross-sectional dimensions
dx� dy (dx< dy). The length of the part shown is ‘ with an exag-
gerated tolerance t. According to the ASME Standard Y14.5 [1],
all points of the end-face must lie between the limiting planes r1

and r2 and within the rectangular limit of the face. The region
(ABCDEFGH) defined by the limiting planes and the rectangular
limit of the face is the tolerance-zone for the planar face. The
same tolerance zone can be obtained with profile tolerance, t,
specified for the planar face with respect to the opposite end (not
shown in the Fig. 4) of the bar.

In order to build the T-Map, it is assumed that the variations of
the toleranced face in Fig. 4 are rotations about x and y and trans-
lations along z. The shape or form of the face is assumed to be
perfectly planar. A coordinate frame is located in the tolerance
zone with its origin O at the geometrical center of the tolerance
zone as shown in Fig. 4(c). This coordinate frame has its axes par-
allel to the edges of the part. Presuming the face at first to be of
perfect form, i.e., a rectangular segment of a plane, the possible
placement of this face is against any one of a three-dimensional
set of planes. The planes r 1 and r 2 are located at maximum dis-
tance from the origin of the coordinate frame in the tolerance
zone. The planes r 3 and r 7 are rotated by the greatest allowable
amount about the x-axis in the tolerance zone. Since dx< dy, the
permitted angular variation about the y-axis can be greater than
that about the x-axis. The planes labeled r4 and r8 are rotated
about the y-axis by the same amount as the planes r3 and r7 are
about the x-axis. The planes r4

0 and r8
0 are rotated the maximum

amount about the y-axis in the tolerance zone. Each of these
planes in the tolerance zone is then mapped to a specific point in
the T-Map, as shown in Fig. 5. Therefore, the construction of a T-
Map ensures that each point inside it represents a single valid con-
figuration of the perfect-form feature within its tolerance-zone.

The T-Map for a planar face faithfully represents the 3D varia-
tions permitted by the tolerance-zone: translation perpendicular to
the plane and rotations about the x- and y-axes (Fig. 4(c)). Meas-
ures along the s-axis of the T-Map represent parallel variations of
the plane negatively along the z-axis in the tolerance zone, while

the p0- and q0-axes represent the orientational variations of the
plane about the y- and x-axes, respectively.

If the toleranced face in Fig. 4 is not assumed to be perfectly
planar, then the shape or form variations of the face are modeled
as subsets of T-Map as shown in Fig. 6. The T-Map for size tol-
erance t on the length of the bar remains the same as in Fig. 5,
but now there are two internal subsets, each of the same shape as
in Fig. 5 but of different sizes. The form variation is zero (per-
fect form and no warp) for the large shaded T-Map at the far left
in Fig. 6. As we move from left to right, the subset for size toler-
ance (lower shape) shrinks while the subset for form tolerance
(upper shape) enlarges. This tradeoff represented through these
subsets basically models Rule#1 from the ASME Y14.5 standard
[1]. Further details about the T-Map model for different types of
tolerances and features can be found in Refs. [9, 26–31].

3.1.3 Tolerance Analysis. Worst case tolerance analysis for
assemblies with open chain and not consisting of any clearances,
can be performed using the following steps

(1) Identify the chain of dimensions and tolerances from the
datum to the target of the assembly.

(2) Create T-Maps for all the toleranced features in the chain.
(3) Using transformation matrices, conform each T-Map to rep-

resent the variations at the target feature of the assembly.
(4) Combine the T-Maps using Minkowski Sum to identify the

accumulated T-Map for the target feature.
(5) Create a T-Map for the functional requirement of the

assembly. This T-Map is called functional T-Map.
(6) Fit the accumulation T-Map within the functional T-Map.

(a) To verify if the assigned tolerances meet the functional
requirement, the accumulation T-Map should be com-
pletely inside the functional T-Map.

Fig. 4 (a) Rectangular part with size tolerance and (b) rectangular part with profile tolerance on rectangular surface. (c)
The tolerance zone on size (specification of (a)) or profile (specification of (b)) for a rectangular bar and a coordinate
frame centered within it.

Fig. 5 The T-Map for the tolerance zone shown in Fig. 4(c)
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(b) To identify the stack up equations, scale the functional
T-Map homogeneously until at least one of the bound-
ary points of the accumulation T-Map comes in contact
to the boundary of the functional T-Map. Utilizing the
geometry of the functional and accumulation T-Map,
create the stack up equations.

(c) To optimize the assigned tolerances, change the types
and values of tolerances on each feature such that the
accumulation T-Map can fill as much space as possible
while remaining confined within the functional T-Map
and satisfying other design criteria.

3.2 Deviation Domain

3.2.1 Small Displacement Torsors. Each tolerance zone,
allows a small amount of variations of the feature within the toler-
ance zone. These small amounts of variations are represented as
small displacement torsor (SDT). A torsor basically represents
three translations and three rotations of a feature with respect to a
coordinate system. For example, a SDT for a planar surface (Fig.
4(c)) would be represented as

SDTplanar ¼ tx; ty; tz; rx; ry; rz

� �

tx ¼ ty ¼ rz ¼ 0
(7)

The first three elements of Eq. (4) represent the translations about
x, y, and z axis in the tolerance zone (Fig. 4(c)) while the last three
elements represent rotations about x, y, and z axis in the tolerance
zone. Because of the nature of the feature (planar surface), and the
tolerance zone, translations along the x and y axis and the rota-
tions about z axis are considered invariant.

3.2.2 Deviation and Clearance Domain. In order to represent
the variations of a feature within its tolerance zone, a deviation
space is created using the noninvariant components of the SDT.
For the example considered in Sec. 3.1.1, a deviation domain is
created using tz, rx, and ry parameters of the SDT. Since, the devi-
ation domain is created for the three parameters of SDT; the do-
main is three-dimensional. Furthermore, observing the tolerance
zone, toleranced feature and the parameters of the SDT, inequal-
ities representing the bounds of the tolerance zone are created.
These inequalities are then used to create a bounded deviation do-
main. Figure 7 shows the deviation domain for the planar surface
shown in Fig. 4.

As is evident from Eq. (7), there are six parameters in a torsor.
Therefore, the dimensionality of a deviation domain can be six.
The clearance in a joint between two parts can also be modeled by
SDT called clearance torsor. A coordinate frame is attached to the
two parts forming a joint with clearance. The clearance is repre-
sented as a SDT of variations of one frame with respect to
another. The possible variations in clearance, when represented in
the deviation space (using SDT), is called a clearance domain.

Form or shape variations are modeled using vibration modes of
the toleranced feature. These vibration modes are then used to
modify the deviation domain in order to represent form variations.
For further details about the deviation domains models please
refer to Refs. [32–38].

3.2.3 Tolerance Analysis. Worst case tolerance analysis, for
assemblies

(a) with open chain and not consisting of any clearances, can
be performed using the following steps:
(1) Identify the chain of dimensions and tolerances from

the datum to the target of the assembly.
(2) Create deviation domains for all the tolerance features

in the chain.
(3) Combine the deviation domains using Minkowski Sum

to identify the accumulated deviations for the target
feature.

(4) Create a deviation domain for the functional require-
ment of the assembly. This deviation domain is called
functional domain.

(5) Align the torsor parameters of the accumulated and
functional domain to obtain the stack up equation for
the assembly

(b) with closed chain and consisting of clearances, can be per-
formed using the following steps:
(1) Identify the chain of dimensions and tolerances from

the datum to the target of the assembly.
(2) Create deviation domains for all the tolerance features

in the chain.
(3) Combine the deviation domains using Minkowski Sum

to identify the accumulated deviations for the target
feature.

(4) Create a minimal clearance domain (accumulated) for
each joint of the chain.

(5) The assembly is possible when the accumulated devia-
tion domain remains within the accumulated clearance
domain.

3.3 Technologically and Topologically Related Surfaces.
The TTRS method utilizes several different concepts from con-
straints and rigid body motions to model tolerances. In classical
kinematics, the constraints between the features of a point, a line,
and a plane form six lower pairs of classical kinematics [39]. Hunt
[40] drew attention to their use in both partial and sufficient
constraint of a rigid body. Later, Desrochers and Clément [41] in-
dependently formulated the idea as six TTRSs for the use in appli-
cations of dimensioning and tolerancing. The surfaces as derived
from kinematic joints are spherical, planar, cylindrical, helical,
rotational, and prismatic. Some authors add another surface called
“any surface” to create seven TTRSs.

3.3.1 MGDE/MGRS. Desrochers [42] and Clément et al. [43]
have integrated TTRS to model the variations in a tolerance-zone
with the use of the constraints between a point, line and plane, called
“minimum geometric datum elements” (MGDE) or “minimum geo-
metric reference surface” (MGRS). Thirteen different constraints
have been proposed in Ref. [43], as shown in Table 1.

3.3.2 Modeling Tolerances. In the TTRS model, various
researchers have used tensors or torsors or screws combined with
some internal parameters to represent tolerances. Since, the torsor

Fig. 6 The tradeoff between the array of sub-sets for form and
their companion locations within the T-Map of Fig. 5

Fig. 7 Deviation domain for the planar surface in Fig. 4(c)
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has been discussed in Sec. 3.2.1; this section presents the screw
parameters used to model tolerances.

General motion of a rigid body is defined by a screw motion
about screw axis. The screw motion, also called a twist, is repre-
sented by three angular velocities x and three linear velocities v.
A general representation of screw is given below

T ¼ xx;xy;xz; vx; vy; vz

� �
(8)

In the manner similar to torsors, the screw parameters are then
used to represent small displacement screws within the tolerance
zone for modeling variations of each MGDE. For further details
please refer to Ref. [44].

3.3.3 Tolerance Analysis. Worst case tolerance analysis for
assemblies with open and parallel stack ups can be performed
using the following steps:

(1) Create TTRS graph for the assembly with MGDE/MGRS
surfaces identified.

(2) Create Geometric tolerance TTRS graph, including the
TTRS datum and toleranced TTRS (tolerance element and
tolerance zone).

(3) The toleranced TTRS will lead to the modeling of toleran-
ces based on tensors, torsors, or screws and several internal
parameters.

(4) Combine the tensors/torsors/screws parameter limits of all
the toleranced TTRS along the stack path/paths in the
assembly.

(5) Using the target features tolerance TTRS, identify the limit-
ing parameter direction.

(6) The sum of all the parameters in the combined tensors/tor-
sors/screws along the limiting parameter direction will lead
to worst case tolerance for the target feature.

4 Comparison of the Three Math Models

In order to compare the three math models discussed in Sec. 3,
the most important criteria is modeling GDT in a manner that
completely includes every aspect or nuance of the standard for tol-
erances. These aspects include representing (a) all tolerance types
in relation to the valid feature type, (b) all valid and possible inter-
actions, and (c) datum precedence and order of datum are identi-
fied in the specified feature control frame. Other aspects include
the procedure for worst case and statistical case tolerance analysis.
Table 2 shows the comparison of the three math models based on
these criteria.

Although TTRS and deviation domains both use torsors to model
geometric tolerances, TTRS also utilizes intrinsic parameters. Tol-
erance-map does not utilize torsors and uses areal coordinates to
create the hypothetical space and then overlays homogenized coor-
dinates from the allowable DOF of a feature within the tolerance
zone. A very important difference between the tolerance-maps and
deviation domains is that T-Maps have all the axes (in the hypothet-
ical Euclidean space) of the same units (length units) while devia-
tion domains can have axes of different units (angle and length
units). Such homogenization of the axes, allows the T-Map model
to compare two different specifications on the same feature in terms
of the volume of the T-Map [28]. The larger the volumes of the
T-Map, the greater number of variations are allowed by the
specification.

In the TTRS model, interactions of tolerances as prescribed in
ASME and ISO standard has not been represented, while in the T-
Map and deviation domain model, profile tolerances have not
been modeled. Datum precedence has been successfully character-
ized in all three models.

Worst-case tolerance analysis in the TTRS and deviation
domain model has been demonstrated for series and parallel stack
ups, while T-Map model has been demonstrated for series stack
ups with limited application for parallel stack ups. Statistical anal-
ysis in the TTRS model is conducted using RSS of the stack
dimensions. In the deviation domain model, statistical clearance
domains are identified, which are then used to conduct statistical
tolerance analysis. In the T-Maps model, each T-Map in the stack
up is converted into a probabilistic T-Map. These T-Maps are
then convolved together to obtain a convoluted accumulation
T-Map. A surface for the dimension of interest is identified and
intersected with the convoluted accumulation T-Map to obtain
frequency distribution of the dimension of interest. The frequency
distribution for the dimension of interest is used to provide results
for statistical tolerance analysis. Furthermore, TTRS and devia-
tion domain models have shown the ability to represent rigid as

Table 1 Thirteen different constraints for the MGDE=MGRS
(adopted from Ref. [43])

Point Line Plane

Point C1: coincidence C4: coincidence C3: distance
C2: distance C5: distance

Line C4: coincidence C11: coincidence C8: perpendicularity
C5: distance C12: parallel=distance C9: parallel=distance

C13: angle and distance C10: angle
Plane C3: distance C8: perpendicularity C6: parallel=distance

C9: parallel=distance C7: angle
C10: angle

Table 2 Comparison of Math models for tolerance modeling and analysis

TTRS T-Maps Deviation space

Modeling GDT Intrinsic parameters and small
displacement torsors

Homogenized multidimensional
parameter space using areal coordinates

Domains in the space of the torsors
(six dimensions maxi)

Tolerance types Modeled individual tolerance
zone types related to
each feature type and
not tolerance types

Except profile all modeled including
pattern tolerances

Except profile all modeled including
pattern tolerances

Interactions Not modeled Rule#1, MMC, LMC, RFS, bonus, shift, and
interaction of orientation, form
and location also modeled

Interaction of orientation, form and location,
MMC, LMC, and projected tolerance
zone is also modeled.

Datum precedence Successfully modeled Successfully modeled Successfully modeled
Worst-case analysis Parameter inequalities along

particular SDT parameter
axis directions for analysis

Conformation of maps to target,
Minkowski sum, fitting with functional T-Map

Serial and parallel mechanism analysis

Statistical-analysis RSS method along the SDT
parameter axis
selected in worst-case

Convolution of probabilistic T-Maps and
then intersection with a surface
(representing dimension of interest) to generate
frequency distribution for dimension of interest.

Statistical clearance-domains for parallel
assemblies

References [41,42,45–47] [9,26–31,48–51] [32–38]
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well as elastic or flexible parts/components, whereas in the
T-Maps model, all parts are assumed to be rigid. T-Maps model
has shown the capability to representing floating assembly con-
straints in tolerance analysis [52], while deviation domain model
has shown the capability to represent nonrigid parts/components.

5 Discussion and Future Issues

Each of the models discussed in this paper represents an advant-
age over the other in at least one aspect or another.These three
models are similar, having quite the same assumptions, even if they
use different mathematical formalism. Although, none of the mod-
els are complete, as yet, in representing all geometrical tolerances
specified in the standard, the models assist a designer in bringing
forth nuances from the standard as applicable to tolerance analysis.

Recent publications in tolerances have concentrated on methods
for simulating manufacturing variations for specified tolerances
[53], tolerance synthesis methods [54–56], and flexible or elastic
components [57]. Therefore, the issues that need to be addressed
in these models are (a) representing profile and symmetry toleran-
ces, (b) multiple stack up chains (in T-Maps model), (c) elastic or
flexible components (in T-Maps model), (d) represent tolerance
interactions completely (TTRS and deviation domains), (e) float-
ing mating conditions, and (f) candidate Datum or derived datum
sets. Floating mating conditions represent assembly of two parts
when the parts are not rigidly fixed to one another, but can float
(move) while satisfying assembly constraints. Candidate datum or
derived datum is defined in the ASME Y14.5 standard [1] as “the
set of all candidate data that can be established from a datum
feature.” The candidate datum or derived data are needed as the
data themselves are not of perfect form/shape. Therefore, the real
data are replaced by simulated perfect data in order to conduct tol-
erance analysis. These issues have not been addressed by the three
spatial models discussed in this paper. Of the three models dis-
cussed in this paper, deviation domain model has the potential to
address this issue by utilizing the modes of vibrations of a surface
to represent the form variations.

A larger issue is integration of tolerances in design, manufac-
turing and inspection (tolerance evaluation). Although, some
efforts [42,56] have been made in these three models for integrat-
ing design, manufacturing and inspection from tolerancing per-
spective, but a holistic approach needs to be developed that can
incorporate the nuances of tolerancing from design, manufactur-
ing and inspection in a homogeneous manner.
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