
Design and Evaluation of a

Low-Latency Checkpointing Scheme

for Mobile Computing Systems

Guohui Li
1
and LihChyun Shu

2,�

1School of Computer Science and Technology, Huazhong University of Science

and Technology, P. R. China
2Department of Accountancy, National Cheng Kung University, Taiwan 701, ROC

�Corresponding author: shulc@mail.ncku.edu.tw

Fault-tolerant mobile computing systems have different requirements and restrictions, not taken

into account by conventional distributed systems. This paper presents a coordinated checkpointing

scheme which reduces the delay involved in a global checkpointing process for mobile systems.

A piggyback technique is used to track and record the checkpoint dependency information among

processes during normal message transmission. During checkpointing, a concurrent checkpointing

technique is designed to use the pre-recorded process dependency information to minimize process

blocking time by sending checkpoint requests to dependent processes at once, hence saving the time

to trace the dependency tree. We show that our checkpoint algorithm forces a minimum number

of processes to take checkpoints, which is an important property for checkpointing mobile

applications. Via probability-based analysis, we show that our scheme can significantly reduce

the latency associated with checkpoint request propagation, compared with traditional coordinated

checkpointing approaches. Experimental results indicate that we have <2% overhead in trans-

mitting piggybacked information during normal runtime. However, we can achieve up to a 60%

reduction in checkpoint latency time.

Keywords: Fault tolerance, mobile computing systems, rollback recovery, causal dependency,

coordinated checkpointing

Received 1 September 2005; revised 5 January 2006

1. INTRODUCTION

Although checkpointing techniques for distributed computing

systems have been extensively studied in the last two decades,

most of the previous works assumed that systems were built

on wired networks. Lately, we have witnessed tremendous

research interests in mobile computing systems. Research

on the problem of devising efficient checkpointing algorithms

for mobile computing systems has started to emerge [1, 2, 3].

It is well recognized that fault-tolerant solutions developed

for conventional distributed systems are not appropriate

in the mobile environments due to the characteristics of

mobile networks and devices. For example, because mobile

appliances are vulnerable to physical damages, mobile clients’

storage is considered to be unreliable. Hence, the checkpoint

state of a process will need to be transferred to stable storages,

e.g. those on the mobile support stations (MSSs) [4]. Since

wireless network has limited bandwidth and mobile clients

have limited computation power, it is most desirable that a

coordinated checkpoint algorithm forces a minimum number

of processes to take checkpoints.

In the mobile environment, mobile hosts (MHs) relocate

from time to time. In order to reduce the overhead associated

with locating a mobile client, it becomes critical to reduce

the checkpoint latency from the time a process initiates a

checkpoint request to the time the global checkpointing

process completes. This requirement makes sequential

coordinated schemes, e.g. Koo and Toueg’s algorithm [5],

inappropriate. With such an algorithm, a checkpoint initiating

process notifies other processes which are directly checkpoint

dependent on it. These other processes then in turn notify

processes which are directly dependent on these other

processes. This global checkpointing operation essentially

walks through a checkpoint dependency tree, from the root

to the leaves, one level at a time until all relevant processes

The Computer Journal Vol. 49 No. 5, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on February 17, 2006 doi:10.1093/comjnl/bxk004

have been informed. Furthermore, the acknowledgement

procedure is also sequential from the processes at the leaf

levels through their ancestors, one level at a time, until the root

(initiating) process receives all responses.

In the mobile environment, it is also desirable to minimize

the number of synchronization messages that must be

transmitted when checkpointing is in progress due to mobile

environment’s low communication bandwidth constraint and

energy conservation requirement. However, this goal is not

easy to achieve without incurring additional overhead. In

particular, it is sometimes a trade-off between reducing the

number of synchronization messages and reducing the amount

of information carried on each synchronization message.

In this paper, we propose a concurrent checkpointing

technique which aims to reduce the checkpoint latency in

the mobile environment. The central idea is to identify

checkpoint-dependencies during regular (non-checkpointing)

operation, by tagging all computational messages with

dependency information. Having this dependency information

at hand, a checkpoint initiator can simultaneously inform all

of its dependents to take their checkpoints. In addition, we

propose an acknowledgement scheme so that each dependent

process can directly reply to the initiator.

Besides reducing checkpoint latency, our protocol is shown

to force a minimum number of processes to take checkpoints,

which is a very desirable property for mobile applications. We

have evaluated our scheme both analytically and experiment-

ally. Results show that our scheme can significantly reduce

the checkpoint latency, compared with traditional coordinated

checkpointing approaches. The overhead incurred in trans-

mitting piggybacked information is, however, rather small.

We organize the remainder of the paper as follows. Related

work is provided in Section 2. Section 3 introduces the notion

of checkpoint dependency. We describe the main problem

associated with existing coordinated checkpointing tech-

niques, which motivates our work. In Section 4, we describe

our idea of concurrent checkpointing approach as a way to

efficiently enforce global checkpoint consistency. We also

describe a technique to cope with tardy messages that could

arise during message transmission. In Section 5, we discuss

correctness properties and expected performance of our con-

current checkpoint algorithm. Section 6 presents the perform-

ance evaluation of our approach via simulation experiments.

Section 7 concludes the paper.

2. RELATED WORK

Rollback recovery in distributed systems is an extensively

researched area, as evidenced in a recent ACM Computing

Surveys article [6]. Additional comparisons from the pers-

pectives of failure-free operation cost and failure recovery cost

on various recovery schemes, including checkpointing and

logging, can be found in [2]. It is well recognized that fault-

tolerant solutions developed for conventional distributed

systems are not appropriate in the mobile environments

due to the characteristics of mobile networks and devices.

To our knowledge, the earliest work on checkpointing mobile

applications is due to Acharya and Badrinath [4]. Their

uncoordinated checkpointing approach requires a MH to

take a local checkpoint whenever a message reception

is preceded by a message sending event by the MH. It is

not hard to see that this approach could incur significant

checkpoint overhead if the message sending and reception

events are interleaved. Pradhan et al. [7] discussed the

limitations of the mobile environment, and its effects on

recovery protocols. They found that the performance of a

recovery scheme mainly depends on three parameters: the

failure rate of the MHs, the mobility of the hosts and the

wireless bandwidth.

Cao and Singhal [9] proposed a blocking algorithm

for mobile systems which exploits the computational

capabilities of MSSs. When an MH initiates a checkpoint

operation, the checkpoint request is first sent to its current

MSS, say MSSq, which then becomes the proxy of the

checkpoint operation. MSSq will broadcast request

messages to all other MSSs to retrieve corresponding data

structures and perform a matrix multiplication to determine

which processes should take checkpoints. The problem

associated with this approach is that when the number of

MHs and processes in the system becomes large, the matrix

can be very large and the computation cost can be very

expensive. In other words, this approach may not scale well.

Cao and Singhal [1] recently proposed an algorithm which

leverages the advantages of non-blocking schemes, and at

the same time reduces the number of possibly redundant

checkpoints (an unavoidable property of non-blocking algo-

rithms proved in [9]), called mutable checkpoints. Mutable

checkpoints can be saved on MHs, hence avoiding the

overhead of transferring large amount of data to the stable

storage at MSSs. While Cao and Singhal [1] showed that their

approach forces a minimum number of processes to take

permanent checkpoints, it has been observed by Kumar et al.

[10] that many of the mutable checkpoints may be useless,

leading to increased checkpoint overhead to MHs.

Manabe [11] proposed a checkpointing approach which

specifically addresses the handoff situation in wireless

networks. When a handoff occurs, the process experiencing

the handoff takes a checkpoint when the process reconnects.

While taking handoff checkpoints is due to higher failure

probability at handoff time, this design implies significant

checkpoint overhead should the mobile device on which the

process executes keeps moving from cell to cell. Chen et al.

[8] addressed failure recovery of client–server applications

in the mobile environment. They derived closed-form expres-

sions for the recovery time probability distribution with

respect to different handoff strategies. This allows a designer

to select an appropriate handoff strategy for a failure recovery

scheme under different system characteristics.

528 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

To avoid coordination messages in coordinated check-

pointing protocols, time-based protocols have been proposed

for mobile systems [3, 12]. These protocols operate by using

synchronized clocks. The protocol proposed by Lin et al. [3]

tries to reduce the number of checkpoints compared with

the traditional time-based protocols. Their idea is in some

sense similar to Cao and Singhal’s mutable checkpoints: a soft

checkpoint is taken by every process during a checkpointing

process. A soft checkpoint is discarded if the owning process

is found to be irrelevant; otherwise, it is saved in the stable

storage.

A rollback recovery protocol based on optimistic message

logging, rather than checkpointing, was recently proposed

for mobile systems in [2]. Compared with the checkpointing

schemes, message logging schemes require higher stable

storage access overhead. However, the recomputation cost

in the optimistic logging schemes is much smaller and

asynchronous recovery is possible. Hence, such schemes

should be a good choice for mobile applications when

speedy recovery is necessary. Yao et al. [13] proposed a

receiver-based pessimistic message logging protocol. Similar

to [2], this protocol permits quick asynchronous recovery for

processes running on MHs. However, its storage access

overhead can be even higher than that for optimistic logging.

3. SYSTEM MODEL AND BACKGROUND

In this section, we first describe our system model and

the notion of checkpoint dependency in Section 3.1. In

Section 3.2, we describe the main problem associated with

existing coordinated checkpointing techniques, which moti-

vates our work.

3.1 Notations and checkpoint dependency

We consider a set of processes running concurrently on fail-

stop MHs or mobile support stations MSSs in the network.

Message passing is the only way for processes to communicate

with each other. Each process executes at its own pace and

messages are exchanged through reliable communication

channels whose transmission delays are finite but arbitrary.

As a result of inter-process communications, the state

of a process may depend directly or indirectly on other

processes. If a process P has to roll back due to a failure,

the processes that directly or indirectly depend on P’s state

must also roll back. During recovery, it is important that

the system is recovered to a global consistent state and then

continues its operations from this consistent state. A global

state consists of the local states of all the processes, with each

local state coming from an active process. A global state is

consistent if it contains no orphan message, i.e. a message

whose received event is recorded in the local state of the

destination process, but its send event is lost in the local state

of the source process [14].

We assume each checkpoint is associated with a unique

sequence number. The sequence number of a process Pi

increases monotonically. The checkpoint with sequence

number m of a process Pi is denoted as Ci,m. The send and

receive events of message M are denoted as send(M) and

receive(M) respectively. The following definitions depict

the relations between checkpoints and messages.

DEFINITION 1. If message M is sent by process Pi before it

takes the checkpoint Ci,m, then we say that send(M) 2 Ci,m.

If process Pi takes checkpoint Ci,m before it sends out message

M, we say that send(M) =2 Ci,m.

DEFINITION 2. If message M is received and processed by Pj

before Pj takes checkpoint Cj,n, then we say that receive

(M) 2 Cj,n. If Pj takes checkpoint Cj,n before it receives the

message M, we say that receive(M) =2 Cj,n.

Given two processes Pi and Pj, suppose the latest (newest)

checkpoints of the two processes are Ci,m and Cj,n respectively.

Pj is directly checkpoint dependent on Pi if and only if

there exists a message M such that receive(M) =2 Ci,m and

send(M) =2 Cj,n. The transitive closure of the direct checkpoint

dependency relation is the transitive checkpoint dependency

relation. In the remainder of the paper, we do not distinguish

between direct and transitive dependency if the context is

clear.

It has been shown in [5] that if Pj is checkpoint-dependent

on Pi, then when Pi initiates a checkpoint, Pj must also take its

corresponding checkpoint in order to ensure global checkpoint

consistency.

Among the various approaches to rollback recovery,

coordinated checkpointing has been found to be relatively

more practical than other techniques due to its simplicity of

recovery [15]. Coordinated checkpointing typically operates in

three phases. In the first phase when a process P initiates a

checkpoint request, P asks all the relevant processes to take

their tentative checkpoints. In the second phase, P collects the

responses from the relevant processes. In the third phase, if

all the relevant processes respond positively by taking their

tentative checkpoints, then P sends a final decision to all the

relevant processes to turn their tentative checkpoints into

permanent ones. Otherwise, the checkpointing operation

is aborted and all tentative checkpoints are discarded. A

challenging task in this operation is to accurately identify

relevant processes. It is most desirable that a checkpoint

initiator can identify all the relevant processes at checkpoint

time, so that it can inform all of them simultaneously. In

Section 4.2, we will describe a technique to address this issue.

Due to the vulnerability of mobile devices, we assume the

dependency information among processes is maintained on

the fixed hosts. In particular, we store such information for all

processes executing in an MH in the stable storages of the

MSS which is currently responsible for the MH. We assume

all communications to and from an MH pass through its

A Low-Latency Checkpointing Scheme 529

The Computer Journal Vol. 49 No. 5, 2006

supporting MSS. Whenever a hand-off occurs for an MH, the

dependency information for all the processes in the MH is

forwarded to the destination MSS.

3.2 Problems with coordinated checkpointing

As we noted above, the coordinated approach must identify

which processes are involved in a global checkpoint when

a process initiates a checkpoint request. For example, with

Koo and Toueg’s algorithm [5], when a process P takes a

checkpoint, it sends checkpoint requests to all other processes

which have sent messages to P since its latest checkpoint.

These processes then in turn force other relevant processes to

take their checkpoints. As an illustration, consider the four

processes shown in Figure 1.

In the beginning, each process Pi, 1 � i � 4, takes its initial

checkpoints Ci,0. P1 sends a message to P2. Then, P2 sends a

message to P3. Finally, P3 sends a message to P4. Suppose P4

plans to take a new checkpoint after receiving a message from

P3. Because P4 receives P3’s message after C4,0, it must send a

checkpoint request to P3, which forces P3 to take a tentative

checkpoint. Because P3 receives P2’s message after C3,0, P3 in

turn must ask P2 to take a tentative checkpoint. By the same

token, P2 must ask P1 to take a checkpoint after receiving P3’s

request. The checkpoint dependency tree in this case is a

straight line with four nodes, hence a depth of three.

When P1 makes a decision regarding its tentative check-

point, it forwards its decision to P2. P2 then sends its own

decision to P3, taking P1’s decision into consideration. Finally,

the decision of P3 is received by P4. Clearly, this sequential

receive-and-forward scheme can result in long checkpoint-

ing latency. This problem is particularly serious in a mobile

environment in which the bandwidth of the mobile network

could be limited. Furthermore, an MH could move from one

cell to another; sending a checkpoint request to a process in an

MH will need to locate the MH first. This host searching

requirement can further increase the time latency for com-

pleting a global checkpoint operation.

It is thus our aim to design a coordinated scheme such that

each process involved in a global checkpoint can be informed

directly by the checkpoint initiator, and every involved

process can send its own decision directly to the checkpoint

initiator. Hence, the latency time involved in a global

checkpointing operation can be greatly reduced. In addition,

we want our algorithm to enforce a minimum number of

processes to take checkpoints. This property is particulary

important for mobile applications again because wireless

network has relatively low bandwidth andMHs have relatively

low computation power.

4. CONCURRENT CHECKPOINTING

4.1 Main idea

Our primary design goal is to minimize the latency of global

checkpointing operation. When a process P initiates a check-

point, all other processes which are checkpoint dependent

upon P must also take their checkpoints in order to maintain

global checkpoint consistency. Our algorithm tries to make

the checkpoint dependency information available right at the

time when a process initiates a checkpoint request.

Our idea is to use a piggyback technique: during normal

message transmission, checkpoint dependency information of

the sending process is attached with the computation message

and sent to the destination process. We associate each process

Pj with a set variable RMFj. When Pj begins execution,

RMFj is initialized to be an empty set. A process Pi is included

in RMFj if there is a sequence of one or more message

transmissions from Pi to Pj. In other words, when Pi sends

a message to Pj, RMFj is updated to be RMFj [RMFi [{Pi}.

Suppose there are n � 2 processes P1, P2, . . . ,Pn, and

assuming 8 k, 1 � k � n � 1, there is a message mk sent from

Pk to Pk+1. Also assuming RMFn ¼ {P1, P2, . . . ,Pn�1}. Based

on the definition of checkpoint dependency, we have the

following observation:

OBSERVATION 1. Pi, 1 � i � n � 1, is checkpoint-dependent

on Pn unless one of the following conditions holds: (i) some

process Pk, i � k � n �1, takes a checkpoint after it sends out

mk; (ii) some process Pk+1, i � k � n� 1, takes a checkpoint

after it receives mk.

Note that if the second condition in Observation 1 holds for

some process Pi+1, 1 � i � n � 1, then the first condition must

also hold for process Pi, otherwise mi becomes an orphan

message, and the global state becomes inconsistent. This

implies that each element in RMFn is a potential candidate

to take a checkpoint when Pn takes its checkpoint. In

Section 4.2, we will describe a technique to determine if an

element of RMFn is truly checkpoint dependent on Pn.

Hereafter, if Pi 2 RMFj, we say Pi is potentially checkpoint

dependent on Pj or Pi is a potential checkpoint dependent of Pj.

It is important to note that RMFj does reflect accurate

information on Pj’s potential checkpoint dependents if there

FIGURE 1. An example that illustrates the problem with the

sequential checkpointing algorithm of Koo and Toueg [5].

530 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

is no tardy message in the system. A message is tardy if it is

received by a process P after P has sent out at least one

message. The example shown in Figure 2 explains the problem

with using RMF to identify potential checkpoint dependents

when there are tardy messages in the system.

P2 first sends a message m2 to P3, then P3 sends a message

m3 to P4, finally P1 sends a message m1 to P2. Clearly, P1, P2

and P3 are all checkpoint dependent upon P4. Hence, when

P4 initiates a checkpoint, all of the three processes should

take their checkpoints in order to maintain global checkpoint

consistency. However, when P4 initiates a checkpoint,

RMF4 is equal to {P2, P3}, rather than {P1, P2, P3}. This is

because the fact that P1 has sent a message to P2 is only

recorded in RMF2, rather than RMF4, by the time P4 initiates a

checkpoint. In other words, the message m1 in Figure 2 is a

tardy message. This example illustrates that the piggyback

technique described above must be enhanced because

RMFi may not include all the processes that are potentially

checkpoint dependent on Pi. In the following section, we will

describe a technique which allows us to accurately identify

all the processes potentially involved in a global checkpoint,

even in the presence of tardy messages.

4.2 Dealing with tardy messages

We associate with each process P a message sequence number,

msn(P). msn(P) is initialized to zero when P starts, and is

incremented by one each time P sends out or receives a

message. Hence, msn(P) denotes the number of messages

received by P or sent out by P. As we explained in Section 4.1,

each Pi 2 RMFj is a potential dependent of Pj. To determine if

Pi is a true dependent of Pj, we associate Pi with a variable

msn_ckpt(Pi). msn_ckpt(Pi) is updated to its current msn(Pi)

whenever Pi takes a checkpoint. Because we assume each

process Pi takes a checkpoint when it starts, msn_ckpt(Pi) is

initialized to zero.

We suppose the same assumptions for processes P1,

P2, . . . ,Pn as given in Section 4.1. Let msn(Pk, send(mk))

and msn(Pk, before_send(mk)) denote the message sequence

numbers of Pk right after and just before Pk sent out mk to Pk+1,

1 � k � n � 1, respectively. Assuming msn(Pk, send(mk)) ¼
msn(Pk, before_send(mk)) + 1. Let msn(Pk+1, receive(mk)) and

msn(Pk+1, before_receive(mk)) denote the message sequence

numbers of Pk+1 right after and just before Pk+1 received mk

from Pk+1, 1 � k � n � 1, respectively. We assume msn(Pk+1,

receive(mk)) ¼ msn(Pk+1, before_receive(mk)) + 1. We can be

assured that process Pk does not take a checkpoint after

it sends out mk provided msn_ckpt(Pk) is smaller than

msn(Pk, send(mk)). Similarly, if msn_ckpt(Pk+1) is smaller than

msn(Pk+1, receive(mk)), then we know Pk+1 does not take a

checkpoint after it received mk. Based on Observation 1, we

have the following observation:

OBSERVATION 2. Pi, 1 � i � n � 1, is a true dependent of

Pn if 8 k, i � k � n � 1, msn_ckpt(Pk) < msn(Pk, send(mk))

and msn_ckpt(Pk+1) < msn(Pk+1, receive(mk)).

During normal message transmission, each transmitted

message is still attached with an RMF. However, each element

of RMF is changed to a different format: if a 3-tuple hk, m, ni
is included in RMFj then Pk is potentially checkpoint depend-

ent on Pj. To facilitate the description of our algorithm, if

hk, m, ni is in RMFj, we also say Pk is included in RMFj.

Figure 3 shows the algorithm that is executed when Pi sends a

message to Pj. When Pj receives a message from Pi, Pi

becomes a potential dependent of Pj. As shown in Figure 3,

we check if such dependency has occurred before, i.e. some

3-tuple hi, m, ni is already in RMFj. If so,we replace it with the

newest dependency information, i.e. with current message

sequence numbers of Pi and Pj. Otherwise, we simply record

the newest dependency information in RMFj.

As one can see in Figure 3, we also check if there is any

other process Pk who will become potentially dependent on

Pj because some 3-tuple hk, m, ni is in RFMi and Pi sends a

message to Pj. For each such process, we check if such

FIGURE 2. An example that illustrates the problem with tardy

messages.

When Pi is about to send out a meassage to Pj

++msn(Pi);

Pi sends out its message together with msn(Pi) and RMFi;

When Pj receives a message from Pi

++msn(Pj);

if 9 hi, m, ni 2 RMFj then

replace hi, m, ni with hi, msn(Pi), msn(Pj)i;
else RMFj ¼ RMFj [hi, msn(Pi), msn(Pj)i;
for each hk, m, ni 2 RMFi

if 9 hk, m0, n0i 2 RMFj then

replace hk, m0, n0i with hk, max(m, m0), msn(Pj)i;
else RMFj ¼ RMFj [{hk, m, msn(Pj)i};
end for;

FIGURE 3. Algorithm executed when Pi sends a message to Pj.

A Low-Latency Checkpointing Scheme 531

The Computer Journal Vol. 49 No. 5, 2006

dependency has occurred before, i.e. some 3-tuple hk, m0, n0i
exists in RMFj. If so,we replace it with the newest dependency

information. As shown in Figure 3, we store the current

message sequence number of Pj in RMFj (as its third attribute).

But note that we record the maximum of old and new message

sequence numbers of Pk in RMFj (as its second attribute). This

is because the new message sequence number of Pk, i.e. m, is

not necessarily larger than the old message sequence number

of Pk, i.e. m0. If we do not record the larger of the two, then a

non-tardy message could be wrongly interpreted as a tardy one

by our checkpointing algorithm shown in Figure 6. As one can

see in Figure 3, if this is the first time that the dependency of Pk

on Pj occurs, we simply store the newest dependency informa-

tion in RMFj, i.e. with the message sequence numbers of Pk

and Pj.

Our checkpointing algorithm requires a number of system

variables, which we show in Figure 4. Whenever a process

Pi initiates a checkpoint request, the algorithm shown in

Figure 5 is executed. Pi needs to inform its potential depend-

ents regarding this request. Each process informed by Pi will

reply with one of the following three responses: willing to

take a checkpoint, not willing to take a checkpoint, or not a

dependent of Pi. For each replied process, we record it in one

of the following initially empty variables: Willing_Processes,

Not_Willing_Processes1 and Non_Dependent_Processes.

As we discussed in Section 4.1, if hj, m, ni is in RMFi,

then Pj is known to be potentially checkpoint-dependent on Pi.

As shown in Figure 5, Pi sends a checkpoint request to each

such process. When Pi sends a request to a potentially

dependent process, it also attaches the request message

with a weight of 1/|RMFi|, where |RMFi| is the number of

elements in RMFi. If each potential dependent responds to Pi

with its received weight and the total weights received by Pi

accumulate to one, then Pi knows that all relevant processes

have responded. At that time, if all dependent processes are

willing to take checkpoints (Not_Willing_Processes ¼ ;),
then each such process is given the instruction to take a

checkpoint. If one of the dependent processes replied negat-

ively, then the checkpointing procedure is aborted.

A distinguishing characteristic of our checkpoint approach

is that checkpoint requests are concurrently propagated to

all potentially dependent processes from the global initiator.

When receiving a checkpoint request, process Pj executes the

algorithm shown in Figure 6. It is possible that Pj inherits

requests from more than one other process. When this occurs,

it can invoke more than one copy of the algorithm, which

implies proper synchronization must be utilized.

In order to maintain correct checkpoint state, Pj is first

blocked from receiving computation messages until current

global checkpointing procedure completes. This is done by

setting the variable CheckpointInProgressj to TRUE. As we

explained in Observation 1, we must check if the process

receiving a checkpoint request is a true dependent of the

global checkpoint initiator. This is verified via the check

‘msn_ckpt(Pj) < m’ in our algorithm. Observation 1 includes

other conditions, besides ‘msn_ckpt(Pj) < m’, which we will

show in Section 5.1 (Lemma 1) can be safely ignored. If Pj is

found to be not a dependent of Pi, then Pj lets Pi know that

it can be skipped in the checkpointing process.

If Pj is indeed a dependent of Pi and Pj is willing to take a

checkpoint, we need to see if there is any process not listed in

RMFi that is dependent on Pi. This situation will arise when

there is a dependent process Pj who receives a checkpoint

1After all relevant processes reply to Pi, the union of Willing_Processes

and Not_Willing_Processes equals the set of processes that are actually

dependent on Pi.

Checkpoint initiator Pi:

Begin

Willing_Processes ¼ Not_Willing_Processes ¼
Non_ Dependent_Processes ¼ ;;

for each <j, m, n> 2 RMFi

Pi sends a checkpoint request <i,1/| RMFi |, m> to Pj

end for;

accu_weight ¼ 0;

while accu_weight < 1 do

upon receipt of (w, j, Response) DO

accu_weight ¼ accu_weight + w;

record Pj in Non_Dependent_Processes, Willing_

Processes, or Not_Willing_Processes,

dependent on Response being IGNORE,

TRUE, or FALSE:

OD:

end while:

if Not_Willing_Processes ¼ ¼ ; then

send ‘‘Take a checkpoint’’ to each Pj 2 Willing_

Processes;

Pi itself takes a checkpoint;

else

send ‘‘Abort the checkpointing’’ to each Pj 2
Willing_Processes [Not_Willing_Processes;

end if:

send ‘‘No need to take a checkpoint’’ to each Pj 2
Non_Dependent_Processes –

(Willing_Processes [Not_Willing_Processes);

End

FIGURE 5. Checkpoint algorithm for initiator Pi.

Each process Pk:

CheckpointInProgressk ¼ FALSE;

NotifyOthersk ¼ FALSE;

WillingToCheckpointk ¼
(
TRUE if Pk is willing to take

a checkpoint

FALSE otherwise

FIGURE 4. Initialization of system variables.

532 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

request hi, w, mi, and its RMFj contains a 3-tuple hk, m0, n0i
such that n0 > m. n0 > m implies that some message m1 must be

received by Pj after another message m2 was sent out by Pj,

and m2 eventually leads to the 3-tuple hi, w, mi being recorded
in Pi or some other process. Hence, m1 is a tardy message. In

this case, Pj will serve as an agent for Pi by notifying

other potentially dependent processes. We divide the weight

received by Pj, i.e. w, among Pj and all other processes notified

by Pj. This divided weight, denoted as WTj in Figure 6, is sent

together with the request to each potential dependent.

Note that when Pj receives two or more requests, the

algorithm in Figure 6 will be invoked more than once. In

this case, those potential dependents of Pj are notified more

than once. We avoid this by using a TestAndSet instruction

[16] which checks and modifies the variable NotifyOthersj

atomically. This scheme also tackles the problem of cyclic

checkpoint dependency, which occurs when a process is

transitively dependent on itself. In this case, a checkpoint

request can be forwarded from one process back to itself. If

Pj is involved in a cyclic dependency, it sets NotifyOthersj

to TRUE the first time it notifies its potential dependents.

When the request is propagated back to Pj, it can avoid

another round of the notification process by checking the

value of NotifyOthersj.

As shown in Figure 6, each notified process responds to the

checkpoint initiator Pi directly, instead of forwarding their

responses through a chain of intermediary processes as in

[5]. This is another characteristic of our approach, which

potentially reduces the latency of the entire checkpointing

process. When the weights received by the global initiator

accumulate to one, it knows all relevant processes have

replied. As shown in Figure 5, if all dependent processes

are willing to take checkpoints (Not_Willing_Processes is ;),
then the global initiator tells them to act accordingly;

otherwise, the checkpointing procedure is aborted. Finally,

all non-dependent processes are also informed. Note that a pro-

cess could receive multiple checkpoint requests along differ-

ent message transmission paths and reply to the global initiator

with different responses (mainly because a checkpoint has

been takenwith respect to a particular path between the process

and the global initiator). As long as one of the responses is

either willing or not willing to take a checkpoint, then the

process is dependent on the global initiator, hence excluded

from Non_Dependent_Processes as shown in Figure 5.

5. DISCUSSIONS

In this section, we first discuss a few correctness properties

of our concurrent checkpoint algorithms in Section 5.1.

We then consider the expected performance of our algorithm

in terms of the expected length of checkpoint request path

in Section 5.2.

5.1 Correctness proofs

In order to better understand the characteristics of our

algorithms, we describe a way to group checkpoint dependent

processes. Given n processes P1, P2, . . . ,Pn, we assume there

is a message transmission path2: a message mk is sent from

Pk to Pk+1, 8k, 1 � k � n � 1. Hence, Pk is potentially

checkpoint dependent on Pk+1, 1 � k � n � 1. We partition

these n processes into one or more groups according to how

each message is sent from one process to another. We place

P1 and P2 in the first group. We then place P3 in the same

group of P1 and P2 if m2 is sent after P2’s receiving of m1;

otherwise (i.e. m1 is a tardy message), we place P3 in a new

group. Similarly, we place P4 in the same group of P3 if m3 is

sent after P3’s receiving of m2; otherwise (i.e. m2 is a tardy

message), we place P4 in a new group. We continue this

grouping procedure for all the remaining processes.

Suppose we end up with l groups of processes. The two

extreme cases are when l ¼ 1 or l ¼ n � 1. The first case

corresponds to the situation when none of the n �1 messages

2In reality, there can be multiple messages transmitted from Pk to Pk+1.

With our piggyback algorithm shown in Figure 3, it is the last message sent

from Pk to Pk+1 which determines the 3-tuple to be included in RMFk+1.

Whenever a process Pj receives a checkpoint request

hi, w, mi;
Begin

if not CheckpointInProgressj then

CheckpointInProgressj ¼ TRUE; //Signal blocking of Pj

end if;

if msn_ckpt(Pj) < m then // Pj is a true dependent of Pi

if WillingToCheckpointj then

if not TestAndSet(NotifyOthersj) then //Ensure Pj

notifies its dependents at most once

for each 3-tuple <k, m0, n0> 2 RMFj and n0 > m do

Pj forwards a checkpoint request to Pk

with a weight WTj;

end for;

end if;

Pj responds to Pi with (WTj, j, WillingToCheckpointj);

else //Pj is not a dependent of Pi

Pj responds to Pi with (w, j, IGNORE);

end if;

End

When Pj receives the final decision:

Act according to received instruction;

if Pj takes a checkpoint then

msn_ckpt(Pj) ¼ msn(Pj)

end if;

NotifyOthersj ¼ FALSE;

CheckpointInProgressj ¼ FALSE;

FIGURE 6. Checkpoint algorithm for all potentially dependent

processes.

A Low-Latency Checkpointing Scheme 533

The Computer Journal Vol. 49 No. 5, 2006

is tardy, and the second case indicates that every of the n � 1

messages except the last message mn�1 is tardy. In general,

we have l groups of processes denoted as (P1, . . . ,PG1
),

(PG1+1, . . . ,PG2
), . . . , (PGl�1

+ 1, . . . ,PGl
¼ Pn), where each

Gj, 1 � j � l, is an integer that lies between 2 and n. As an

example, the four processes shown in Figure 2 are partitioned

into two groups: (P1, P2) and (P3, P4). With our algorithm

shown in Figure 3, we have the following observation:

OBSERVATION 3. RMFGj
, 2 � j � l, includes PGj�1

and all

processes in group j except PGj
. RMFG1

includes all processes

in group 1 except PG1
.

Furthermore, because the message sent from PGj�1�1 to

PGj�1
, 2 � j � l, is tardy, we obtain the following observation:

OBSERVATION 4. If hGj�1, m, ni is a 3-tuple in RMFGj
, then

for every 3-tuple hk, m0, n0i in RMFGj�1�1 it must be the case

that n0 > m.

Based on our checkpoint algorithms shown in Figures 5

and 6, if Pn is the process which initiates a checkpoint request,

then the following observation can be made:

OBSERVATION 5. Pn simultaneously informs all processes

in RMFn (i.e. RMFGl
) to take their tentative checkpoints.

PGj, 1 � j � l � 1, is the process which on Pn’s behalf

simultaneously informs all processes in RMFGj
to take their

tentative checkpoints. PGj
, 1 � j � l � 1, does not start

its notification of processes in RMFGj
until it is informed

by PGj+1
.

We call PGj
the group checkpoint initiator for group j,

and Pn the global checkpoint initiator. Consider the example

in Figure 2 again, if P4 issues a checkpoint request, then P2

and P4 will act as group initiators for the first and second

groups of processes respectively. At checkpoint time, RMF4

contains a 3-tuple h2, 1, 1i whose second attribute is smaller

than the third attribute of the 3-tuple h1, 1, 2iwhich is included
in RMF2. Hence, P2, after receiving a request from P4, will

notify P1 on behalf of P4.

Note that if there exist other messages besides the n � 1

messages described above, then a process may be notified by

more than one other process. Specifically, if a process appears

in more than one group initiator’s RMF, then that process

will inherit requests from more than one group initiator. This

situation can occur if, on a message transmission path, an

additional message is sent from one process in a group to

another process in a different group. More generally, there

could exist more than one message transmission path between

a process and the global initiator. Hence, a process could

inherit requests forwarded along different paths from the

global initiator. Whenever a request is received by a process,

it will reply to the global initiator with a proper response,

together with its received weight. Each process, upon receiv-

ing the final decision from the global initiator (made after

the total weights received by the global initiator sum to one),

will take at most one checkpoint during a global checkpointing

operation.

When Pn initiates a global checkpoint request, the

algorithm shown in Figure 6 executes the check

‘msn_ckpt(Pj) < m’ to determine if Pj is a true dependent

of Pn. Note that m is equal to msn(Pj, send(mj)), i.e. the

message sequence number of Pj when Pj sent out mj. Accord-

ing to Observation 2, we should also verify ‘msn_ckpt(Pk) <
msn(Pk, send(mk))’ and ‘msn_ckpt(Pk+1) < msn(Pk+1, recei-

ve(mk))’, 8k, j + 1 � k � n � 1. The following lemma tells us

that if msn_ckpt(Pj) < msn(Pj, send(mj)), then we can be

assured of the following two facts: (i) msn_ckpt(Pk) < msn(Pk,

send(mk)), 8k, j + 1 � k � n � 1; and (ii) msn_ckpt(Pk+1) <
msn(Pk+1, receive(mk)), 8 k, j � k � n � 1.

LEMMA 1. When Pj is requested to respond because Pn

initiates a global checkpoint request, it is sufficient to check

msn_ckpt(Pj) < msn(Pj, send(mj)) in order to verify that Pj is a

true dependent of Pn.

Proof. We prove by contradiction. Suppose msn_ckpt(Pj) <
msn(Pj, send(mj)), but msn_ckpt(Pk) � msn(Pk, send(mk))

for some process Pk, j + 1 � k � n � 1. This means that

Pk has taken a checkpoint after sending out mk. If none of the

messages mj, mj+1, . . . ,mk�1 is tardy, then all of the processes

Pk�1,Pk�2, . . . ,Pj must have been requested to take their

checkpoints when Pk took its checkpoint after sending

out mk. This means that msn_ckpt(Pj) � msn(Pj, send(mj)),

which contradicts our assumption. Suppose a message ml,

k � 1 � l � j, is tardy. Pl+1 should have been requested to

take a checkpoint when Pk took its checkpoint after sending

out mk. This means that Pl+1 will not send out checkpoint

request when Pn initiates its checkpoint request. This implies

that Pj should not have received a checkpoint request, which

again contradicts our premise.

Using similar reasoning, we can show that if msn_

ckpt(Pj) < msn(Pj, send(mj)), then msn_ckpt(Pk+1) < msn(Pk+1,

receive(mk)), 8k, j � k � n � 1. &

Note that if Pj receives checkpoint requests from more

than one initiator, then the condition ‘msn_ckpt(Pj) < msn(Pj,

send(mj))’ must hold for at least one message transmission

path (from Pj to Pn) in order for Pj to be dependent on Pn.

LEMMA 2. Every process terminates its execution of the

checkpoint algorithms shown in Figures 5 and 6.

Proof. Two situations can prevent a process from terminating:

(i) it keeps on receiving and forwarding checkpoint requests;

(ii) it waits for the global initiator’s decision ad infinitum.

The first case may occur when a process is involved in a cyclic

checkpoint dependency. However, our algorithm shown in

Figure 6 avoids this because it allows a process to forward

requests to its potential dependents at most once. When a

process initiates a checkpoint request, each process that is

potentially dependent on the global initiator will receive a

portion of a weight that is initialized to one. Each such process

534 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

will directly reply to the global initiator with its received

weight. When the weights received by the global initiator

sum to one, an appropriate instruction will be sent to each

replied process. All these messages will be delivered to the

corresponding processes, because we assume messages are

exchanged through reliable channels. Thus processes do not

wait forever for replies from the global initiator. &

Let DependentProcessesn denote the set of processes that

are checkpoint dependent on Pn. Suppose all processes in

DependentProcessesn are willing to take checkpoints when

Pn initiates a checkpoint request. The following theorem

describes an important characteristic of our checkpoint

algorithms shown in Figures 5 and 6:

THEOREM 5.1. Process Pj will take a checkpoint when

Pn initiates a checkpoint request if and only if Pj 2
DependentProcessesn.

Proof. (The if part) Based on Observations 3, 4 and 5, we

know Pj will be requested by some group initiator PGk to take

a checkpoint when Pn initiates a checkpoint request. Based

on Observation 2, we have 8h, j � h � n � 1, msn_ckpt(Ph) <
msn(Ph, send(mh)) and msn_ckpt(Ph+1) < msn(Ph+1,

receive(mh)). Since msn_ckpt(Pj) < msn(Pj, send(mj)), Pj

will reply to Pn with a response ‘willing to take a checkpoint’,

and will take a checkpoint when it receives the final decision

from Pn.

(The only if part) If Pj takes a checkpoint after Pn initiates

a checkpoint request, then the following two conditions must

hold: (i) Pj must appear in RMFGk
for some group initiator

PGk
; (ii) msn_ckpt(Pj) < msn(Pj, send(mj)). Based on Lemma 1,

we know msn_ckpt(Ph) < msn(Ph, send(mh)), 8h, j + 1 � h �
n � 1, and msn_ckpt(Ph+1) < msn(Ph+1, receive(mh)), 8h,

j � h � n � 1. Based on Observation 3, there exists a sequence

of group initiators, PGk
, PGk+1

, . . . ,PGl
, such that PGh

appears in

RMFGh+1
, 8h, k � h � l � 1, and PGl

is Pn. According to

Observation 2, we know processes in RMFGh
are dependent

on PGh
, 8h, k � h � l. Because PGh

is in RMFGh+1
, 8h, k � h �

l � 1, Pj is dependent on Pn as was to be proved. &
Owing to Theorem 5.1 and the fact that each process

notified by the global initiator takes at most one checkpoint,

the following two corollaries follow.

COROLLARY 1. The number of processes that take new

checkpoints during the execution of our checkpoint algorithms

is minimal.

COROLLARY 2. If the set of checkpoints in the system is

consistent before the execution of our checkpoint algorithms,

then set of checkpoints in the system is consistent after the

algorithms terminate.

5.2 Expected performance analysis

Based on our discussions in Section 5.1, we know it is the

number of group initiators on a message transmission path

which determines the latency in propagating a checkpoint

request from the global initiator to a potentially dependent

process. When there are multiple paths between a process

and the global initiator, the path with the largest number of

group initiators requires the longest time for request pro-

pagation if all other conditions for the paths are identical. In

this section, we study the expected performance of our

concurrent checkpoint algorithm, and compare that with the

performance of Koo and Toueg’s sequential checkpointing

algorithm [5]. Consider again the same message transmission

patterns among the n processes P1, P2, . . . ,Pn as described in

Section 5.1. Suppose Pk is dependent on Pk+1, 1 � k � n � 1.

Recall that with Koo and Toueg’s algorithm, if Pn initiates a

checkpoint request, then the request will be propagated from

Pn to P1, passing through all intermediary processes Pn�1,

Pn�2, . . . ,P3, P2. In this case, the relationships among the

processes form a checkpoint request path, with the n processes

being the vertices on the path. Hence, the length of the path is

n � 1, which we denote as Lkt(n).

Now we consider the length of the checkpoint request

path for our algorithm, which we denote as Lc(n). Consider

the message mn�1 that is sent from Pn�1 to Pn, and mn�2 that

is sent from Pn�2 to Pn�1. If Pn�1 sends mn�1 to Pn after Pn�1

receives mn�2 from Pn�2, then Lc(n) ¼ Lc(n�1). This is

because in this case Pn, Pn�1 and Pn�2 will be placed in

the same group, and will be notified simultaneously by the

same group initiator. Hence, the checkpoint request path

when Pn initiates a checkpoint request and the check-

point request path when Pn�1 initiates a checkpoint request

must have the same length. However, If Pn�1 sends mn�1 to

Pn before Pn�1 receives mn�2 from Pn�2, then Lc(n) ¼
Lc(n � 1) + 1. Assuming p is the probability that Pk�1

sends mk�1 to Pk after Pk�1 receives mk�2 from Pk�2, and

1� p is the probability that Pk�1 sends mk�1 to Pk before Pk�1

receives mk�2 from Pk�2, 8k, 3 � k � n. We derive the

expected value of Lc(n), denoted as E[Lc(n)], as follows:

E½LcðnÞ�
¼ p · Lcðn� 1Þ + ð1� pÞ · ðLcðn� 1Þ + 1Þ
¼ Lcðn� 1Þ + ð1� pÞ
¼ p · Lcðn� 2Þ + ð1� pÞ · ðLcðn� 2Þ + 1Þ
¼ Lcðn� 2Þ + ð1� pÞ · ð1� pÞ ¼ . . .
¼ Lð2Þ + ðn� 2Þ · ð1� pÞ
¼ 1 + ðn� 2Þ · ð1� pÞ

Note that when p approaches 1, i.e. most messages are

non-tardy, E[Lc(n)] � 1. This certainly is the condition under

which our algorithm performs best. We compare the perform-

ance of our algorithm and Koo and Toueg’s algorithms

by computing the ratio: E[Lc(n)]/E[Lkt(n)] ¼ [1 + (n � 2) ·
(1� p)/n � 1. When n is very large, the ratio approaches 1� p.

If p is 0.5, then our algorithm is expected to outperform

Koo and Toueg’s by reducing the latency associated with

checkpoint request propagation by 50%. On the other hand,

if p approaches 1, then E[Lc(n)]/E[Lkt(n)] ¼ 1/(n � 1). In this

A Low-Latency Checkpointing Scheme 535

The Computer Journal Vol. 49 No. 5, 2006

case, the longer the checkpoint request path, the larger the

difference between the performance of our and Koo and

Toueg’s algorithms.

6. EXPERIMENTAL EVALUATION

This section presents the performance evaluation of our

approach via simulation experiments. We implemented an

event-driven simulator so that we could perform experiments.

The simulator is written in C and runs on a Windows PC.

System settings are controlled by the parameters listed in

Table 1.

6.1 Simulation model and performance metrics

Our simulation environment comprises a number of MSSs and

MHs. We assume there is one process running on each MH.

The MSSs are connected by a wired network with a bandwidth

of 10 Mbps. Each MH has a wireless connection with its

supporting MSS with a bandwidth of 100 Kbps. The size of

each computation message is assumed to be 2 KB. The size of

an RMF 3-tuple, i.e. the control information piggybacked on a

computation message, is 10 bytes. During checkpointing,

there are coordination messages transmitted among processes

for checkpoint requests and responses. Each coordination

message is assumed to be 100 bytes. We assume the time

needed to save a tentative checkpoint in main memory to be

2.5 ms.

To model the processes’ sending of computation messages,

the Poisson process is used. In other words, if t is the time

between two successive message sending events, then t is an

exponentially distributed random variable. Both the sender

and the receiver are selected at random. When a computation

or coordination message is sent from one process to another,

the message is received and then forwarded to the destination

host by the supporting MSSs. Thus, the transmission delay for

a computation message is 2 · [8 · (Scm/Bwl) + 8 · (Scm/Bwired),

i.e. 2 · (8 · 2/100) + 8 · 2/10 000 ¼ 322 ms, where Scm, Bwl

and Bwired are the size of a computation message, wireless

bandwidth and wired bandwidth, respectively. The time

needed to send a checkpoint coordination message is 2 ·
[8 · (Ssm)/(Bwl) + 8 · (Ssm)/(Bwired), i.e. 2 · (8 · 0.1/100) + 8 ·
0.1/10 000 ¼ 16 ms, where Ssm is the size of a coordination

message. We assume the time between two successive global

checkpoints to be constant (1000 s). At scheduled check-

pointing time, an active process is randomly selected as the

global checkpoint initiator.

The primary performance metric in our simulation is

blocking time, which is the time duration from a global

checkpoint initiation until its completion. Because our

approach achieves lower blocking by having processes

carry extra control information, we also measure these over-

heads, which we call the control information overheads. These

overheads are calculated as the ratio of the amount of

piggybacked information to that of normal computation mes-

sages. During checkpointing, coordination messages are trans-

mitted among processes. We measure the coordination

message overheads as the average of such messages per global

checkpoint.

Our scheme is designed mainly to improve the check-

pointing latency experienced in Koo and Toueg’s protocol

[5]; their approach naturally becomes our comparison target.

In addition, we also compare with the checkpointing protocol

of Kim and Park [17]. Unlike other coordinated checkpointing

protocols, in which the checkpoint initiator collects the status

information of its dependent processes and delivers its

decision, the process in Kim and Park’s protocol takes a

checkpoint when it knows that all its dependent processes

took their checkpoints. With this approach, the initiator does

not always have to deliver its decision after it collects the

status of the dependent processes, hence partially eliminating

the third phase of the notify–respond–react three phases

commonly seen in other coordinated approaches. As a result,

its blocking time can be shortened in certain cases. However,

because Kim and Park’s protocol still sends checkpoint

request and response messages in a sequential receive-and-

forward fashion as in Koo and Toueg’s protocol, its overall

performance must be seen via experiments, which we present

in Section 6.2.

For each approach tested in our experiments, 20 simulation

runs with different random number seeds are conducted and

performance statistics are collected and averaged over the

20 runs. Each simulation run lasts for 1 000 000 s, during

which 999 global checkpoints are taken. With this number

of checkpoints taken, performance results were observed to

stabilize.

6.2 Experimental results

In this section, we present our experimental results. For ease of

illustration, we use the abbreviation KT for Koo and Toueg’s

protocol and KP for Kim and Park’s protocol. In our first

TABLE 1. System parameters and default settings.

Parameter Setting Meaning

Nmh 16 Number of MHs

Bwl 100 Kbps Wireless bandwidth

Bwired 10 Mbps Wired bandwidth

Ic 1000 s Time between two successive global

checkpoints

Imt 500 s Time between two successive

transmissions of computation messages

Scm 2 KB Size of a computation message

Ssm 100 bytes Size of a checkpoint coordination message

Srmf 10 bytes Size of an RMF 3-tuple

Tsc 2.5 ms Time to save a tentative checkpoint

in main memory

536 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

experiment, we focus on how different approaches fare in the

blocking time metric. We first vary the interval between two

successive transmissions of computation messages from 500

to 5000 s in 500 s increments. The other parameters have

the base values given in Table 1. The result is illustrated in

Figure 7. Observe that for an interval of 500 s, the average

blocking times for KT, KP and our algorithm are 175.8, 124.5,

and 64.3 ms respectively. Much to our expectation, KT

performs worst because it informs the dependents of a global

checkpoint initiator in a sequential receive-and-forward fash-

ion. The responses from the dependents follow the same

pattern, albeit in the reverse direction. Hence, the blocking

time is determined by the longest path from the initiator to its

descendants in the checkpointing tree.

KP performs better than KT. This is due to its ability to

commit processes located in a subtree locally. However, like

KT, KP also uses the sequential notification policy, hence its

improvement in blocking time is limited. In contrast to KT

and KP, our algorithm simultaneously informs an initiator’s

dependents, and the dependents directly reply to the initiator,

hence the blocking time is reduced significantly. Note in

Figure 7 that as the interval becomes larger, the difference

among the three approaches becomes less obvious. This can be

observed as follows. As the interval increases, the number of

messages transmitted among the processes decreases. In this

case, the depth of the checkpointing tree is likely to reduce. As

a result, the blocking time reduces for all three approaches.

Note that the slope of reduction in blocking time for our

approach is not as large as that for the other two approaches.

This is certainly because our approach is not so sensitive to

the depths of the checkpointing trees.

Figure 8 shows that our approach outperforms KT and KP

in blocking times with varying number of MHs. As one can

see, when the number of MHs increases, the blocking times

increase for all three algorithms. Larger number of MHs

implies that longer paths could form in the checkpointing

tree, which in turn leads to larger blocking times. KT is again

more sensitive than KP in this aspect. Our algorithm scales

well as the number of MHs increases.

Our algorithm does not achieve reduced blocking for free.

During normal message transmission, processes must carry

extra control information in the form of 3-tuples. In the

following two experiments, we measure control information

overheads as the ratio of the amount of piggybacked informa-

tion to that of normal computation messages. Figures 9 and 10

illustrate these costs from two different angles. KT carries

no extra control information. With KP, a couple n-bit arrays

(n is the number of processes in the system) must be kept

FIGURE 9. Control information overheads versus message sending

interval.

FIGURE 7. Average blocking times versus computation message

sending interval.
FIGURE 8. Average blocking times versus number of MHs.

A Low-Latency Checkpointing Scheme 537

The Computer Journal Vol. 49 No. 5, 2006

for housekeeping information, and must be sent along with

normal computation messages. Because this cost is rather

small, we assume it is negligible in our simulation.

In Figure 9, the overheads in our algorithm decrease as

the interval between two successive transmissions of com-

putation messages increases. This is certainly because less

computation messages are sent when the interval increases,

which implies less RMF 3-tuples will be transmitted. Figure 10

shows that the overheads increase as the number of MH

increases. Both figures indicate that our algorithm incurs <2%
overheads in carrying extra control information for different

parameter settings we consider.

One common characteristic of coordinated protocols is that

redundant checkpoint request messages are possible. This

situation occurs when there are multiple transmission paths

from a dependent process to the global initiator. In this

case, the dependent process can receive more than one

request from other processes, albeit at most one checkpoint

will be taken by the dependent process. Compared with KT

and KP, our algorithm can induce more of such messages,

particularly when a special type of tardy message exists in the

system.

Consider Figure 2 once again. m1 is a tardy message in that

example. If P2 receives an additional message m4 from P1

before P2 sends out m2, then both P2 and P4, rather than just P2

or P4, will inform P1 when P4 initiates a checkpoint by using

our algorithm. By contrast, only P2 will inform P1 by using

either KT or KP. We want to point out that our algorithm can

be revised to avoid this problem by having each group

checkpoint initiator to transmit the information concerning

the set of processes the group initiator is going to inform on

each checkpoint request message. When a process receives a

checkpoint request from a group initiator, it can ignore

notifying those processes appearing in the set of processes

received from the initiator. It is not hard to see that this then

becomes a trade-off between reducing the number of request

messages and reducing the amount of information carried on

each request message.

To understand the behavior of the three algorithms in this

respect, we conduct two experiments below. The performance

index we use is the average number of coordination messages

(including checkpoint requests, responses and final decision)

transmitted per global checkpoint, which we call the coordina-

tion message overheads.

Figure 11 shows the coordination message overheads for

all three algorithms with varying message sending interval. KP

has a little performance gain over KT because some processes

can locally commit as a group, meaning that they need not wait

for the decision from their parents in the checkpointing tree.

Compared with KT and KP, our algorithm sends about

40 more coordination messages per global checkpoint when

the message sending interval is 500 s. Our overheads become

comparable with those of KT and KP when the interval is

>1000 s.

Figure 12 shows the coordination message overheads for

all three algorithms with different number of MHs. As the

figure illustrates, when the number of MHs increases, the

overheads increase for all three algorithms. Our algorithm is

more sensitive in this case. Note that these extra checkpoint

requests do not appear to affect much our algorithm’s

performance in checkpoint latency, as Figure 8 illustrates.

This is because checkpoint latency mainly depends on how

coordination messages are transmitted on a checkpoint tree.

As we explained in Section 5.1, it is tardy messages that

determine overall checkpoint latency in our algorithm. Con-

sider again the example we discussed above. If there were no

FIGURE 11. Coordination message overheads versus message

sending interval.

FIGURE 10. Control information overheads versus number of MHs.

538 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

message m4 sent from P1 to P2 (i.e. we are back to the situation

shown in Figure 2), then there will not be any redundant

requests when P4 initiates a checkpoint request. However,

the length of the longest checkpoint request path in this case

is still 2. While sending redundant requests requires extra

communication bandwidth, it affects our algorithm’s perform-

ance in checkpoint latency to a limited degree.

7. CONCLUSIONS

This paper presents a coordinated checkpointing scheme

which reduces the delay involved in a global checkpointing

process for mobile computing systems. Reducing such delay

is important in all kinds of distributed systems; it is critical

in mobile systems due to the mobility of MHs and the

limited bandwidth of wireless network. The idea is to collect

and store process dependency information when processes

exchange computation messages. Processes then use such

information at checkpointing time to propagate checkpoint

requests to dependent processes without having to trace

the dependency tree. The number of processes that take

new checkpoints during the execution of our checkpoint

algorithm is shown to be minimal. This property is particulary

important for mobile applications because the wireless net-

work has low bandwidth and the MHs have relatively low

computation power. Via probability-based analysis, we show

that our scheme can reduce the latency associated with

checkpoint request propagation by 50%, compared with

traditional coordinated checkpointing approaches. Experi-

mental results indicate that we have <2% overhead in trans-

mitting piggybacked information during normal runtime.

However, we can achieve up to a 60% reduction in checkpoint

latency time.

ACKNOWLEDGEMENTS

This paper is an extended and revised version of a paper that

appeared in the Proceedings of the 29th IEEE Annual Inter-

national Computer Software and Applications Conference,

2005. This work was supported, in part, by NSC grant

93-2213-E-006-097 and NSF grant 60203017. We thank

Hongya Wang at Huazhong University of Science and

Technology for implementing the simulation programs and

performing the experiments. We also thank the anonymous

referees for their valuable comments.

REFERENCES

[1] Cao, G. and Singhal, M. (2001) Mutable checkpoints: a new

checkpointing approach for mobile computing systems. IEEE
Trans. Parall. Distr. Syst., 12(2), 157–172.

[2] Park, T., Woo, N. and Yeom, H. Y. (2002) An efficient

optimistic message logging scheme for recoverable mobile

computing systems. IEEE Trans. Mobile Comput., 1(4),

265–277.

[3] Lin, C. Y., Wang, S. C. and Kuo, S. Y. (2003) An efficient time-

based checkpointing protocol for mobile computing systems

over mobile IP. Mobile Netw. Appl., 8, 687–697.

[4] Acharya, A. and Badrinath, B. R. (1994) Checkpointing dis-

tributed applications on mobile computers. In Proc. 3rd Int.

Conf. Parallel and Distributed Information Systems,

Austin, TX, September, pp. 73–80, IEEE.

[5] Koo, R. and Toueg, S. (1987) Checkpointing and roll-back

recovery for distributed systems. IEEE Trans. Softw. Eng.,
SE-13(1), 23–31.

[6] Elnozahy, E. N., Alvisi, L., Wang, Y. M. and Johnson, D. B.

(2002) A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surv., 34(3), 375–408.

[7] Pradhan, D. K., Krishna, P. and Vaidya, N. H. (1996) Recov-

erable mobile environment: design and trade-off analysis. Proc.

26th Int. Symp. Fault-Tolerant Computing Systems, Sendai,

Japan, June, pp. 16–25, IEEE.

[8] Chen, I.-R., Gu, B., George, S. E. and Cheng, S.-T. (2005) On

failure recoverability of client–server Applications in mobile

wireless environments. IEEE Trans. Reliab., 54(1),

115–122.

[9] Cao, G. and Singhal, M. (1998) On the impossibility of

min-process non-blocking checkpointing and an efficient

checkpointing algorithm for mobile computing systems.

Proc. 27th Int. Conf. Parallel Processing, Minneapolis, August,

pp. 37–44, IEEE.

[10] Kumar, L., Mishra, M. and Joshi, R. C. (2003) Low overhead

optimal checkpointing for mobile distributed systems. Proc.

19th Int. Conf. Data Engineering, Bangalore, India, March,

pp. 686–688, IEEE.

[11] Manabe, Y. (2001) A distributed consistent global checkpoint

algorithm for distributed mobile systems. Proc. 8th Int. Conf.

Parallel and Distributed Systems, KyongJu City, Korea, June,

pp. 26–29, IEEE.

[12] Neves, N. and Fuchs, W. K. (1997) Adaptive recovery for

mobile environments. Commun. ACM, 40(1), 68–74.

FIGURE 12. Coordination message overheads versus number

of MHs.

A Low-Latency Checkpointing Scheme 539

The Computer Journal Vol. 49 No. 5, 2006

[13] Yao, B., Ssu, K. F. and Fuchs, W. K. (1999) Message logging

in mobile computing. Proc. 29th Int. Symp. Fault-Tolerant

Computing Systems, Madison, Wisconsin, June, pp. 294–301,

IEEE.

[14] Randell, B. (1975) System structure for software tolerance.

IEEE Trans. Softw. Eng., 1(2), 220–232.

[15] Elnozahy, E. N. and Plank, J. S. (2004) Checkpointing for

peta-scale systems: a look into the future of practical

rollback-recovery. IEEE Trans. Dependable Secure Comput.,
1(2), 97–108.

[16] Silberschatz, A., Galvin, P. B. and Gagne, G. (2002)

Operating System Concepts. 6th ed. John Wiley & Sons,

Inc., New York.

[17] Kim, J. L. and Park, T. (1993) An efficient protocol for

checkpointing recovery in distributed systems. IEEE Trans.
Parall. Distr. Syst., 4(8), 955–960.

540 G. Li and L. C. Shu

The Computer Journal Vol. 49 No. 5, 2006

