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1. INTRODUCTION

In recent years, research on 2D image manipulation has received
a huge amount of interest. Very powerful solutions for problems
such as matting [Sun et al. 2004], image completion [Drori et al.
2003], texture synthesis [Efros and Leung 1999], and rigid image
manipulation [Igarashi et al. 2005] have been presented. Based on
these and similar methods, it has now become possible to explore
interesting new ideas to reanimate still pictures, for example, as done
by Chuang et al. [2005] in their article on animating pictures using
stochastic motion textures. They animate passive elements, such
as water and trees, that are subject to natural forces like wind. In
this article, we want to take the idea of creating animations directly
in image space one step further by making photographed persons
move.

One possible approach to address this problem would be the re-
construction of a textured 3D model, and to animate this model
using classical animation techniques. This, however, would require
complex, fully textured 3D models which have to be created and
adapted per image. In particular, for highly detailed characters such
as the Scarecrow example shown in Figures 2 and 7, the required
manual model-adaption process would be impractical. Moreover, it
would be necessary to apply very sophisticated 3D rendering tech-
niques to realistically embed the 3D model into the 2D image so
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as to preserve the photorealism or style of the original input image.
By contrast, even simple 2D morphing and blending often leads to
more convincing results than using sophisticated 3D reconstruction
and rendering. For instance, methods such as Poisson-matting or
2D image completion allow for a smooth and realistic combination
of different image contents, which is much harder to achieve when
trying to augment 2D images with 3D models.

Hence, we present a purely image-based approach to combine
realistic images with realistic 3D motion data in order to gener-
ate visually convincing animations of 2D characters. This is moti-
vated by the intention to preserve the realism or style of the original
image data, without losing quality due to intermediate conversion
steps into a 3D representation. Several recent articles [Barrett and
Cheney 2002; Igarashi et al. 2005; Chuang et al. 2005] have shown
the promising potential of such solely image-based animation ap-
proaches.

The contribution of this article is a method to generate anima-
tions of photographed or painted 2D characters based on 3D mo-
tion data. For arbitrary input images, our method robustly recon-
structs the camera and 3D model pose corresponding to the depicted
subject. Using generic shape templates, the character is decom-
posed into animation layers. Occluded regions and the background
are reconstructed by texture synthesis. We show how the resulting
character-shape can be animated using an augmented version of the
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Fig. 1. Given only a single input image (left), our method generates 2D
animations from 3D motion data (right).

as-rigid-as-possible shape manipulation technique [Igarashi et al.
2005], which correctly handles projective distortion effects such as
foreshortening. In combination, these techniques enable us to realis-
tically change the pose of a character or create animations from sin-
gle input images of arbitrary human and nonhuman subjects based
on 3D motion data.

2. RELATED WORK

Our work is inspired by a diverse set of interesting methods for
augmenting and animating 2D images. When manipulating images,
inevitable prerequisites are tools to generate proper segmentations or
alpha mattes [Sun et al. 2004] and the completion of missing image
information [Drori et al. 2003; Sun et al. 2005; Pavić et al. 2006].

These techniques have paved the way for different kinds of im-
age manipulation approaches. Corrêa et al. [1998] present a warp-
ing technique to augment cel animations with texture. A complete
image-based modeling and editing system has been presented by Oh
et al. [2001], which contains, among other things, custom-tailored
algorithms to reconstruct approximate camera positions for differ-
ent types of images. Bregler et al. [2002] capture the motion and
style of cartoons and retarget this onto 2D images and 3D models.
Barrett and Cheney [2002] present algorithms for manually deform-
ing objects in 2D space by affine, warping-, or curve-based editing.
Thorne et al. [2004] implemented a curve-based system which al-
lows the user to animate characters by drawing motion lines. [Liu
et al. 2005] decompose video sequences into different motion layers
and show how the subtle motion of these layers can be emphasized.
Chuang et al. [2005] present a method to animate passive objects
in a picture (such as trees or water, for instance), which are subject
to stochastically modeled natural forces. An object-space morph-
ing technique for as-rigid-as-possible shape interpolation was first
introduced by Alexa et al. [2000]. Igarashi et al. [2005] reformu-
late this problem and present an interactive method for rigid shape
deformation in 2D. They simulate as-rigid-as-possible 2D shapes
which can be arbitrarily deformed by the user in real time. This is
achieved by imposing shape-preserving energy functionals on the
interior of the shape. Our work is based on this method and extends
it to the context of deforming multilayered shapes with perspective
correction in order to simulate 3D deformations.

Further related to our work, Rademacher [1999] shows that view-
dependent appearance changes in 3D rendered cel animations can
be effectively simulated using a set of interpolated geometries.
Ono et al. [2004] generate 3D character models from user-specified
strokes, which allow them to add illumination and perspective tex-
turing effects to 2D cel animation. In this work we use similar ideas
by providing a set of “inflated” 2D shape templates used for generic
character animation directly in image space.

The second class of important results in the context of our work
can be found in the analysis and synthesis of human poses and
motion. In 3D, motion-based deformation and animation of avatars
has, for example, been discussed by Lewis et al. [2000] and Lee
et al. [2002]. Different methods for motion analysis and video-based
motion synthesis have been described by Jojic and Frey [2001] and
Mori et al. [2004]. However, our work is more closely related to
single pose analysis than the analysis of motion sequences, since
our aim is the transfer of 3D human motion into a still image of a
2D shape, instead of video sequences.

Two problems we are faced with in our work are the unknown
subject pose on the one hand, and the unknown camera model, on the
other. Several publications have been presented to recover the pose
of a human 3D model from an image. Taylor [2000] presents a so-
lution to reconstruct articulated objects from point correspondences
for orthographic camera models, which, however, leads to ambigu-
ous configurations. Parameswaran and Chellappa [2004] solve the
same problem, accounting for projective foreshortening effects of
a simplified skeleton model. Different methods for recovering 3D
human body poses from single images or video are discussed in
Gavrila [1999] and Moeslund and Granum [2001]. While existing
automatic methods for pose estimation, such as Agarwal and Triggs
[2006], would possibly reduce the amount of user interaction, they
generally require, for example, segmented input images or other
prior knowledge about the depicted subject. But more importantly,
such methods could also restrict the user’s degrees of freedom for
creating animations, as we will discuss in Section 4.

The problem of estimating a camera position from 2D to 3D
correspondences is one of the central problems in computer vision.
The two resources most important for our work are Hartley and
Zisserman [2003] and Triggs et al. [2000], which we will discuss in
detail in Section 5.

3. OVERVIEW

In this section we describe the prerequisites of our method and
provide a high-level description of the algorithm.

As mentioned in the introduction, the central idea of our method
is to deform the 2D shape of an arbitrary character directly in image
space using 3D motion data (publicly available from, e.g., CMU
Graphics Lab Motion Capture Database [2007]). The 3D motion
data consists of a sequence of poses of a predefined human skeleton
model. Each pose contains the respective positions and orientations
of the skeleton bones and joints in 3D space.

The first step maps the 3D data to the 2D image by reconstructing a
proper camera model and a model pose that best fits the 2D character
in the image. We achieve this by letting the user manually specify
correspondences between 2D and 3D, simply by selecting the joint
positions in the 2D image that correspond to the joints of the given
3D human model. This joint selection step is explained in more
detail in Section 4.

Based on these 2D to 3D correspondences, we automatically com-
pute a camera projection matrix and a best-matching pose from the
3D motion data repository, which provides the closest possible fit
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Fig. 2. The user-selected pose for the Skater and the Scarecrow example.
The user simply drags the joint positions of a predefined human skeleton
structure to their approximate 2D positions in the input image. Our method
then (see Section 5) reconstructs an approximate camera position and a best-
fitting model pose from the 3D motion data (overlayed images).

to the user-selected pose in 2D. This camera and model pose deter-
mination step is described in Section 5.

The next phase prepares the subsequent animation by an initial
model fitting of a generalized shape template to the user-selected
pose of the character. Each template consists of a set of layers cor-
responding to different parts of the character’s body, combined into
a single nonmanifold triangular mesh. To account for occlusion,
textures and alpha mattes are pulled off the input image for each
layer, using Poisson-matting. Missing parts of the background are
synthesized by standard image completion (Section 6).

The final animation (Section 7) is rendered in real time using pro-
jected 3D joint positions from different poses in the motion sequence
to control deformation of the 2D shape in image space. We demon-
strate that the original as-rigid-as-possible (ARAP) shape manipula-
tion is not sufficient for creating proper character animations, since
it does not account for projective distortions, such as foreshortening,
which naturally occur when projecting 3D motion data. We there-
fore propose an augmentation called as-similar-as-possible (ASAP)
shape deformation, which properly takes these perspective effects
into account.

This overall approach allows us to transfer inherently realistic 3D
motion-captured data to 2D shapes of arbitrary human-like charac-
ters, while preserving the photorealism of the original image. The
following sections explain each of these steps in detail.

4. JOINT SELECTION

To establish the necessary correspondences between the subject’s
2D shape and the 3D skeleton model, we let the user manually select
joint positions in the input image.

This is done by a simple interface, where the user can move the
joints of a stylized skeleton having a structure compatible to our
3D data (see Figure 2). We preferred a manual user interaction over
automatic procedures because this step generally takes just a few
minutes to complete, and leads to superior results in poses which
are ambiguous for automatic human-pose estimators, or which are
difficult to estimate due to occlusions, for example. Furthermore,
such methods would require a diverse dataset of example poses to

work for arbitrary images. Hence, our manual method gives us more
degrees of freedom to animate uncommon poses or perspectively de-
formed subjects, as in photographed paintings, and even nonhuman
characters (see Figure 7).

Subsequently, the user chooses the type of motion which should
be performed by the subject. Although it would be possible to esti-
mate a “most likely movement” from the selected pose alone using
the procedure explained in the next section, we believe that this addi-
tional user input is necessary to allow the user a controlled creation
of a specific animation.

5. CAMERA AND MODEL POSE DETERMINATION

Since we want to use 3D motion data to animate the 2D shape, we
have to compute a camera projection model P which describes the
mapping from 3D joint positions of the skeleton to 2D image space.
Furthermore, we need to find an optimal 3D pose Xo in our motion
sequence that is closest to the manually selected 2D pose, so that we
have a reasonable starting solution for the subsequent animation.

For the computation of the projection P, suppose we have a 3D
pose given by a vector of joint positions X = (. . . , XT

i , . . .)T which
exactly correspond to the user-selected 2D joints xi . The unknown
camera projection P can then be estimated from these world-to-
image correspondences. A variety of linear and nonlinear algorithms
exist for this problem [Hartley and Zisserman 2003; Triggs et al.
2000], which estimate P by minimizing, for example, the reprojec-
tion error from 3D to 2D:

∑
i, j ‖P j Xi/P3Xi −xi, j‖2, with j ∈ {1, 2}

referring to the j th row of P and xi , respectively. However, since
these methods often do not impose any constraints on P, the re-
sulting projection generally does not correspond to a geometrically
plausible Euclidean camera model. While such an unconstrained
projective camera provides an optimal fit for the corresponding pose
X, it might lead to very unnatural deformations of the projected 3D
model during the actual animation with different poses.

Instead, we would like to compute a parameterized camera pro-
jection P = KR[Id| − C] consisting of an intrinsic calibration K,
an extrinsic righthanded orientation R, and a world-space camera
center C. To impose the nonlinear orthonormality constraints on
the extrinsic orientation, R has to be parameterized, for example,
using Euler angles or quaternions. This yields a projection matrix
consisting of 11 unknowns:

P =
⎛
⎝ δx s px

δy py
1

⎞
⎠ R(α, β, γ )

⎡
⎣ Id

∣∣∣∣∣∣−
⎛
⎝ cx

cy
cz

⎞
⎠

⎤
⎦ . (1)

When computing a camera projection matrix using the preceding
parameterization, a remaining problem, however, is the fact that an
unconstrained optimization of the intrinsic calibration K still leads
to undesired distortion effects during animation. The reasons for
this are that we generally have to compute an initial (unconstrained)
linear starting solution of P, and that it is unclear how to impose
any meaningful constraints on K during the subsequent nonlinear
optimization. This problem is complicated by the fact that the user-
selected joint positions are generally relatively inaccurate, and be-
cause we are not guaranteed to have a perfectly matching pose in our
3D database in the first place. Hence, we have to constrain the opti-
mization process to robustly converge to a reasonable estimate of P,
despite the mismatch between the user input and the 3D motion data.

We found that, in the context of this work, a very stable method
to estimate a camera P with the desired properties can be achieved
by fixing the elements of K, except for the focal length during the
optimization, and by providing a proper starting solution for the ex-
ternal data, instead of an unconstrained linear solution. Reasonable
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assumptions for the intrinsic data of most cameras are a zero-skew
factor s, the principal point (px , py) at the image center and scaling
factors δx and δy based on the image resolution, a unit aspect ratio,
and a typical field-of-view (e.g., similar to an OpenGL projection
matrix). Hence we set:

s = 0, px = width − 1

2
, py = height − 1

2
, δx = −δy

= � f
width

2 tan(φ/2)
, with φ = π/8 and � f = 1 . (2)

The factor � f allows us to adjust the predefined field-of-view φ dur-
ing the nonlinear optimization process. The extrinsic data is simply
initialized with R = Id and a camera center at safe distance from
the root of the 3D skeleton model, for example, a multiple of the
bounding box diagonal d of the model:

α = β = γ = 0, C = (0, 0, 5d)T . (3)

To compute an optimized projection matrix P(� f, α, β, γ, C)
based on the remaining seven free parameters, we use an itera-
tive Levenberg-Marquardt solver to minimize the reprojection error∑

i, j ‖P j Xi/P3Xi − xi, j‖2 with the aforementioned starting solu-
tion. Since this initial solution corresponds to a geometrically plau-
sible camera model, and since the optimization process also works
solely on the preceding parameterization of P, the resulting camera
is guaranteed to preserve all desired intrinsic and extrinsic con-
straints. In all our experiments, this approach converged robustly to
the desired optimum, without the necessity for any parameter adjust-
ments. Moreover, it showed to be insensitive to parameter changes,
that is, φ or C.

To find the optimal 3D pose Xo for the current user selection,
we couple the camera and model pose estimation into a single opti-
mization problem with eight degrees of freedom by simply running
the earlier algorithm over all poses contained in the motion data se-
quence, and set the pose resulting in the minimal reprojection error
as Xo (see Figure 2). In contrast to other pose estimation techniques,
we can drastically reduce the search domain for valid poses to one
degree of freedom, since we only want to find the best solution in
our existing sequence of poses for the subsequent animation phase.
For a typical 3D motion sequence of about 300–500 animated poses,
the optimization procedure takes less than one second to compute.

We have to stress that this algorithm does not solve the gen-
eral camera calibration problem, but provides a specific solution
aiming at reconstructing an approximate, but “plausible,” camera
model for a given image with user-selected 2D joints and a pre-
defined 3D skeleton model, which is robust with respect to dis-
crepancies between user-selected joints and the 3D data. Our al-
gorithm might fail to converge to a proper solution in cases where
the user-defined pose is too different from any pose within the se-
lected 3D motion data sequence. In such cases, the user has the
option to deactivate model joints, and to choose a specific, fixed
field-of-view (which then influences the amount of foreshortening
during animation). In some cases, such a user-controlled field-of-
view can even be of advantage to emphasize perspective effects.
On the other hand, our method proved to work quite robustly even
on animal shapes that are quite different from a human shape (see
Figure 7).

At the end of this step, we have computed the most likely camera
projection matrix P and the best-matching 3D pose Xo which most
closely approximates the user-selected joint positions. Based on this
data, we initialize our algorithm for 2D shape animation.

Fig. 3. Set of three shape templates generated by cycling in 45 degree steps
around a person; (a) frontal view with one animation layer; (b) and (c) half-
profile view and a side view with four layers each: foremost arm, body and
front leg, and one for the leg and the arm at the back, respectively.

6. INITIAL MODEL-FITTING

To create convincing animations of a 2D character, we would like
to deform its shape in a plausible way, while keeping the effort
for generating animations on a minimal level. Our basic idea is
to use a set of generic shape templates T, which represents the
topological changes of a generalized character model for different
viewpoints of the camera (see Figure 3). These templates are fitted in
a semiautomatic approach to the character. In our context, we define
a shape template as a 2D nonmanifold triangle mesh which allows for
the representation of different animation layers. For example, when
animating characters from a side view, we have to consider different
layers for separately moving parts of a body, for example, one layer
for the foremost arm, one for the body and the foremost leg, and
one for the remaining arm and leg, respectively (see Figure 3 (c)).
Moreover, these layers cannot move independently, but have to be
“stitched” together to convey the impression of a connected body
when animated. Hence, each layer of a template T consists of a
triangulated set of vertices representing the shape boundary and
skeleton joints. The different layers of each template are connected
by shared boundary vertices. Additional vertices are added inside
each layer, which allows us to generate more realistic animations
by “inflating” the shape templates prior to animation. This fact,
however, is not important for the discussion of our initial model-
fitting step in this section and will be explained in Section 7.

For a given image, a shape template can be automatically selected
by exploiting the reconstructed extrinsic camera data R and C in
relation to the best-matching model pose Xo. In the following, we
will explain how this generic shape can be fitted to the user-selected
pose and employed to resolve occlusions for reconstructing a proper
texture and alpha matte for each template layer.

For the deformation of T, we use an as-rigid-as-possible (ARAP)
shape manipulation technique, similar to Igarashi et al. [2005],
which on the one hand allows for flexible deformations of the char-
acter’s shape, and on the other, preserves the size and aspect ratios
of the character’s body to bound the distortion.

The ARAP algorithm transforms a shape template T (see
Figure 4 (a)) into a deformed shape D, while satisfying a set of vertex
position constraints. To ensure an as-rigid-as-possible deforma-
tion, the algorithm consists of three steps which aim at preserving
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Fig. 4. The as-rigid-as-possible shape manipulation technique, used for computing deformed characters, consists of three steps: A triangulated shape T is
converted into an intermediate mesh I which satisfies a set of vertex constraints. The original faces of T are rigidly fitted to the faces in I, resulting in a
disconnected mesh F. A final averaging step then creates the desired deformed shape D, which satisfies the joint constraints while preserving the rigidity of
each triangle. Note the much more realistic shape deformation of D in comparison to I, for example, around the legs and arms.

the shape of the original triangle faces f ∈ T. In a first
step, an intermediate shape I is computed for the given vertex
constraints using, for example, a Laplace-based deformation
[Sorkine et al. 2004] (see Figure 4 (b)). Since this step does not
prevent an arbitrary scaling of the triangles f ∈ T, a second scale-
adjustment step rigidly fits each face f in a least-squares sense to
the corresponding face in the intermediate shape, using translation
and rotation only. This results in an unconnected set F of triangles
(see Figure 4 (c)). This set is then converted into the final deformed
shape D (see Figure 4 (d)) by computing the average of correspond-
ing vertex positions in F (see, e.g., Igarashi et al. [2005] for details).
Since all computations for the intermediate and fitted, as well as the
final deformed shape, are either done on a per vertex or per triangle
basis, this algorithm is fully compatible with our nonmanifold shape
templates T.

A deformed shape D can now easily be generated by specifying
updated positions for inner-joint vertices of T. To ensure that the
limbs of a character are truly rigid during deformation, and that the
shape deformation is mainly restricted to triangles located at joints,
we place additional constraint vertices along each skeleton bone,
and refine the template triangulation accordingly.

The remaining steps to generate a final shape used for animation
then proceed as follows. The shape template for a given image is
first fitted to the user-selected joint positions using a single ARAP
deformation step T → I → F → D. Depending on the mismatch
between the contour of the template and the character in the input
image, the boundaries of D are “snapped” to the character’s silhou-
ette using a 2D-snakes approach [Kass et al. 1987]. Those parts of
the silhouette which do not contain enough information for a stable
convergence, such as occluded regions of the body, can be manu-
ally improved by the user. This refined shape is defined as the final
aligned shape T

′.
To generate textures for each animation layer, we decompose T

′

by a front-to-back depth-peeling algorithm. For each of these layers,
including the background, we complete disoccluded texture regions
using an interactive method for image completion [Pavić et al. 2006].
Poisson-matting [Sun et al. 2004] is used to extract an alpha matte
for each layer.

The initial model-fitting is concluded by applying a final
ARAP manipulation step T

′ → I → F → To, transform-
ing the character’s image pose, as defined by the user-selected
joints, into the best-matching 3D pose by using the projected

joint positions PXi , Xi ∈ Xo as vertex constraints. The result-
ing shape yields the initial starting shape used for the subsequent
animation.

7. ANIMATION

Using the ARAP technique of Igarashi et al. [2005], we could easily
animate the textured shape template To by constraining the bone
vertices to the 2D positions obtained by sequentially projecting the
poses X t from the motion dataset into the image plane. However,
since ARAP is aiming at the rigid preservation of the original 2D
triangle shapes, this will not lead to plausible deformations because
perspective scaling and distortion effects are completely ignored.
This leads to unrealistic distortions, such as thinning or thickening
of the character’s limbs when they are changing their orientation
relative to the image plane (see Figure 5).

Our solution is to generalize the ARAP technique to an as-similar-
as-possible (ASAP) technique. Here, we still perform a sequence
of deformation steps To → I → F → D for every animation
frame and pose X t , but instead of rigidly fitting the original triangles
f ∈ To to the intermediate shape I to obtain F, we estimate their
perspective distortion, and fit the distorted triangles f ′ to I. By this
process, we eventually generate a deformed shape D whose faces
are as similar as possible to the perspectively distorted triangles f ′.

To estimate the perspective distortion of a triangle f ∈ To, we
exploit the 3D information given by the motion data. With each bone
b = Xi − X j defined by two neighboring joints in a pose X, we
associate a local coordinate frame L, which changes according to the
bone’s movement. This change of the bone’s orientation provides
the necessary information to compute the triangle’s perspective
distortion.

Let bo be a bone’s orientation in the initial pose Xo. Its local
frame Lo is defined by three vectors: lx = (C − Xi,o) × bo, ly = bo,
and lz = lx × ly , with C being the camera center (see Section 5).
Likewise, we define the local frame Lt for the same bone as it is
oriented in the target pose X t .

We first consider the triangles in To which are uniquely associated
with a single bone bo. The 2D vertices v of such a triangle are
unprojected to 3D by mapping them to a point Vo on the plane
spanned by the vectors, lx and ly , of bo’s local frame Lo. In order to
avoid a cardboard effect in the photo animation at grazing viewing
angles (see Figure 5), we “inflate” the shape templates by adding
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Fig. 5. When animating 2D shapes with 3D motion data, the original ARAP shape manipulation leads to unnatural results, since it cannot handle size changes
and other perspective distortion effects. The left part of this figure shows the original Skater model, and an enlarged version after a few animation frames of
forward motion without ARAP and with ASAP, our perspective triangle correction step. The ARAP approach tries to preserve the size of the original triangles,
leading to significant thinning of the overall character. Our ASAP approach resolves this problem by recomputing corrected triangles. The righthand-side
visualizes the difference of using simple planar shape templates versus inflated templates. When seating the originally standing Engels statue, the arms come
to rest on the legs at a grazing viewing angle with respect to the viewer. With flat shape templates, this leads to a noticeable “cardboard” effect. In contrast, our
inflated shape templates lead to a more natural deformation.

Fig. 6. Projective triangle correction step in 2D; (a) cross-section of the leftmost shape template in Figure 3. A curved surface is simulated by “inflating” the
vertices of the shape templates along the normal direction of each bone’s supporting plane. Each face f ∈ To is then projected from image space into the local
coordinate system Lo of the corresponding bone in the initial pose Xo; (b) then, a projectively deformed triangle f ′ is generated by updating Lo → Lt , and
reprojecting the corresponding triangle vertices back into the image (c).

an offset αlz to the 3D position Vo, where the factor α is zero for
boundary vertices of the template To, and increases for vertices
closer to the bone (see Figures 6 (a) and (b)). Then, Vo is expressed
in local coordinates with respect to bo, that is, Ṽo = L−1

o (Vo −Xi,o).
For another frame X t of the motion data, we obtain the 3D position

of a particular vertex by transforming its local coordinates Ṽo back
to global coordinates Vt = Lt Ṽo + Xi,t , and then projecting this
point back to the image plane v′ = PVt . Applying this procedure
to all three vertices of a triangle f yields the correctly distorted
triangle shape f ′, which we can use for the ASAP deformation.

For triangles near a skeleton joint which are not associated
with a single bone, we apply the same procedure for each as-
sociated bone and then compute a weighted average position
in 3D.

As an alternative to the original approach described in Igarashi
et al. [2005], we simplify the rigid fitting step I → F by computing
a closed form solution for the optimal rotation which minimizes
the squared error

∑
i ‖pi − qi‖2 over the vertices pi ∈ f ′ and the

vertices qi of the corresponding triangle in I. First, we translate f ′

into the center of gravity of the vertices qi . Then we compute the

optimal 2D rotation angle ψ for f ′ using Horn [1987]:

R̃ =
∑

i

(< pi , qi >, < pi , q⊥
i >), (cos ψ, sin ψ) = R̃

‖R̃‖ . (4)

This fitting step is computed for each triangle, and the resulting
deformed shape F → D is computed as in Igarashi et al. [2005] by
averaging the unconnected triangle vertices.

To summarize, the final animation can now be generated by sim-
ply updating 2D joint positions xi = PXi for subsequent poses X t
from the user chosen 3D motion sequence. The corresponding skele-
ton vertices of the shape template are used as constraints to com-
pute an intermediate shape To → I. Projectively corrected triangles
computed by the preceding algorithm are used to generate a final
as-similar-as-possible deformed mesh I → F → D. For rendering,
we simply use textured OpenGL triangle meshes with enabled al-
pha blending. Triangle depths for proper occlusion handling can be
derived directly from the corresponding 3D pose. This enables us
to generate and view the resulting animation in real time.
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Fig. 7. Our method enables the animation of a variety of 2D characters with realistic 3D motion. In these examples, the respective lefthand-side of an image
pair shows the original input picture, while the righthand-side is a frame from an animation generated with our system. In the first row, we animate the
photograph of a Skateboarder painted on a wall with walking motion, and let Philipp perform the “Chicken-Dance.” The middle row shows a Scarecrow model
jumping and waving on an office desk, and a Meerkat dancing the Lambada. The last row shows a statue of Engels having a rest beside Marx. Please refer to
the accompanying video available at http://www.rwth-graphics.de/downloads/CharAnim.avi for the full animations.

As a final note, we have to mention that new animations can be
generated trivially by simply exchanging the 3D motion. All previ-
ously computed steps, such as the boundary snapping and texture
generation, do not have to be recomputed. Since the camera and
model pose can be computed on-the-fly, applying a different mo-
tion to a character is generally a matter of seconds.

8. RESULTS

Figures 1 and 7 show selected keyframes of image animations
generated with our system. We animate a painting of Napoleon
and the photograph of a painted Skater with walking motion,
and let Philipp perform the “Chicken Dance.” The image of a
Scarecrow model is animated with jumping and waving motion, and
a Meerkat dances the Lambada. Finally, we let a standing statue of
Engels take a seat beside Marx. Please refer to the full animations

shown in the accompanying video available at http://www.rwth-
graphics.de/downloads/CharAnim.avi. Our results show that it is
possible to animate a variety of images from photographs and paint-
ings of people to animals with a wide range of 3D motions, although
the actual image texture remains static and does not change with the
motion. However, competing with “ground truth data”, that is, a
comparison to video sequences of moving persons, has explicitly
not been the goal of this work. Rather, we see the strength of our
method as the possibility of convincingly posing or animating any
kind of character which has a structure roughly corresponding to
the available 3D motion data.

Our set of predefined shape templates and the corresponding num-
ber of layers are shown in Figure 3. While we can generally use this
set for animating frontal views of humans, we applied slight modi-
fications to our standard shapes for animating the Meerkat, since it
has significantly shorter legs in our example. For the Napoleon ex-
ample, we simply removed the layer for the hindmost arm. However,
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creating a modified base shape is as easy as the joint selection and
boundary snapping step during the initial model-fitting.

The user interaction times for all the examples shown in this
article were between 15 to 30 minutes for the skeleton joint selection
and the boundary snapping. As already mentioned in previous work
on similar image processing tasks (e.g., Chuang et al. [2005]), the
texture completion and alpha-matting turns out to be most time-
consuming step. However, by using interactive methods, such as
Pavić et al. [2006], results with good quality can be produced in
about 10 to 20 minutes. Overall, even high-quality photo animations
of complex images (including optional postprocessing of the image
completion and matting results) generally do not take much longer
than one hour to prepare.

9. CONCLUSION

In this article, we presented a complete, easy-to-use system for
animating 2D images of arbitrary characters with 3D motion. We
showed how simple user interaction, namely the selection of a few
2D joint positions, can be exploited to automatically reconstruct
a geometrically plausible camera calibration and model pose from
3D motion data. We presented an initial model-fitting step using
a generic set of shape templates to animate arbitrary human char-
acters. Finally, we introduced an as-similar-as-possible shape de-
formation algorithm to deform these shapes in a projectively more
correct manner, allowing us to generate still frames and animations
of a large variety of characters from different types of 3D motion.

We believe (this is also mentioned in previous work in this area)
that methods working solely on a single image have certain natural
restrictions as to what kind of modifications, or even animations,
can be achieved. One restriction of our technique is the fact that it
obviously does not work for motions where the character changes
its moving direction, or where it turns its head, for example. This
would imply on-the-fly switching of the shape template, and even
more importantly, resynthesizing occluded textures would be much
more difficult. Nevertheless, in many application scenarios, there is
just one single image available, hence, we have to do our best based
on this restricted information. We think that our method provides a
good basis for future work, since it identifies the involved problems
and presents a first complete and flexible solution to this problem
domain. In combination with other techniques mentioned in our
related work section, these methods could eventually be integrated
into a powerful toolkit for computer animation from single pictures.

Besides the aforementioned restrictions, there is quite a number
of points which we would like to investigate in our future work.
Methods for automatic pose estimation would reduce the amount
of user interaction in cases where the 2D character is in a relatively
common pose, such as standing or walking. Furthermore, we would
like to generate smooth transitions from the user-selected pose to
the best-matching pose of the 3D motion, or allow for transitions
between different 3D motions. It would also be very interesting to
integrate global effects such as shadows or reflections to improve
the visual appearance of some scenes. Finally, a larger set of 3D
motions would allow us to animate animals, or even plants. These
issues provide an interesting basis for future research.
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