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Abstract: This paper contains a new analysis for the Generalized Pattern Search
(GPS) methods of Torczon and Lewis and Torczon. The two novel aspects are
that the proofs are much shorter, and they use weaker continuity assumptions.
Specifically, under very mild conditions, the method finds an interesting limit
point even if the objective function is not continuous and is even extended val-
ued. If the objectiveis Lipschitz near the limit point, then appropriate directional
derivatives of the objective are nonnegative. If the objective is strictly differen-
tiable at the limit point, then the gradient exists and is zero. The results here
show the power of GPS on some classes of real problems better than the previous
analysis for continuously differentiable objectives.
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1 Introduction

GPS is a flexible class of generalized pattern search algorithms defined by Torczon [15] for
derivative-free unconstrained optimization. Lewis and Torczon extended the GPS framework
to bound constrained optimization [13] and more generally for problems with a finite number
of linear constraints [14]. Our purpose here is to provide an alternative to their analysis for
all these cases by providing a simple analysis for the last case.

This new analysis is more satisfying mathematically, and it shows more clearly the power
of the methods. For example, these methods find their greatest utility in problems where
smoothness properties of the objective are problematic. Here, we show the existence of an
interesting limit point for any GPS iteration without assuming that the function is continuous
or finite valued. Then we add progressively stronger smoothness assumptions to obtain
correspondingly stronger results. We obtain the same conclusions for the same algorithms
as Torczon and Lewis-Torczon without assuming more than local smoothness at the limit.

The optimization problem considered in this paper is:

min f(x)

€L

but for convergence, we assume only that the objective function f: R" — RU{oo}. In fact,
this generality is not merely a mathematical conceit. For many practical problems, a call to
the subroutine that evaluates f(x) may result in no value being returned, which we model as
f(z) = oco. This issue is discussed in detail and the effectiveness of GPS for such problems is
illustrated in [3]. The issue is discussed as well in [5], [6]. This paper provides the analysis
to back up the observation, given for example in Hough, Kolda and Torczon [12], that “even
if the theory for GPS requires continuous differentiability of the objective function, these
methods can be effective on nondifferentiable problems since they do not rely explicitly on
derivatives.”

The way of handling constraints here, and indeed the entire algorithm, will be the same
as in [13] and [14]. Specifically, we will apply the algorithm not really to f, but to the
function fo = f + ¥q, where ¥gq is the indicator function for . It is zero on € and oo
elsewhere. We will assume as in [14] that 2 is the feasible region defined by a finite set of
linear constraints: = {z € R" : { < Az < u} where A € Q"*™ [ u € R™ U {f+oo} and
{ < u. We can prove some results in a more general context, but we will treat those as asides
when we think they are appropriate.

The point is that to get the really strong conclusions requires conditions on the conformity
of the geometry of the algorithm with the geometry of . Sticking with Q considered by
Lewis and Torczon will allow us to invoke a version of the conditions they worked out in a
very satisfying way for a finite number of linear constraints. These conditions are unlikely
to be realized for more general constraints, the key restriction being that there must be a
single finite set of generators for all the tangent cones to the boundary of the feasible region.
Still, understanding linear constraints is a first step, as is understanding these are probably
the most general constraints for which the appealing fq approach is effective.
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The remainder of the paper is as follows: in the next section, we will give a brief descrip-
tion of the GPS algorithm class. We adhere to a slightly different, but equivalent version
of the Lewis and Torczon algorithm, because our major interest in these algorithms is for
problems where they are used with inexpensive surrogates for the expensive objectives they
are to be applied to. To see how this is organized, see [3] and [4]. In Section 3, we give the
key result and an easy corollary for unconstrained problems before we go on to results for
the Lewis and Torczon algorithm. We end with some acknowledgments and conclusions.

2 Generalized Pattern Search Algorithms

Generalized pattern search algorithms for unconstrained or simply constrained minimization
generate a sequence of iterates {x;} in R” with non-increasing objective function values.
Because of our interest in surrogate-based optimization, we like to view each iteration as
being divided into a SEARCH and a POLL phase. For each SEARCH, the objective function is
evaluated at a finite number of points on a mesh (a discrete subset of R™ defined below) to
try to find one that yields a lower objective function value than the incumbent. Any strategy
may be used to select the mesh points that are to be candidates for the next iteration, as long
as only a finite number of points (including none) are selected. Before declaring the iteration
unsuccessful, refining the mesh, and setting x5y = g, it is required that the neighboring
mesh points be POLLED to see if any one yields a lower function value. Only after a failed
poll of the neighbors can an iteration be declared unsuccessful.

If the iteration is successful, then the new point a1y # x; has a strictly lower objective
function value, the mesh size parameter is kept the same or increased, and the process is
reiterated. Indeed, as long as the SEARCH steps are succeeding, one would likely choose trial
points on a coarser submesh than the current mesh. Our experience with surrogate-based
SEARCH steps [3], [4] is that a great deal of progress can be made with few function values,
and O(n) function values are needed only for unsuccessful POLL steps, which indicate that
the mesh needs to be refined.

Pattern search algorithms are defined through a finite set of matrices &, each of whose
columns are a positive spanning set in R”, i.e., the nonnegative linear combinations of the
columns of any such set S in § span R"”. Moreover, for technical convergence reasons
(Torczon’s [15] proof of Theorem 3.2) every column s of each matrix must be generated from
a single matrix G € R"*" and from a finite set of integer generating matrices GG, € Z"*" for
0=1,2,... ,lae as follows: s = GBGyz for some z € Z*. The current mesh M), is defined
through the lattices spanned by the elements of §: My = {ap + ApSz : 2z € 2755 € S},
where Ay > 0 is the mesh size parameter, and ng is the number of columns of the matrix S.

Before declaring an iteration unsuccessful, the objective function must be tested at the
mesh points that neighbor xj, the current iterate. This defines the poll set {z; + Ags :
s is a column of Sy} for some positive spanning matrix Sy € S. The points of the poll set
are thus the neighbors of zj on its current mesh with respect to the spanning set Si. If the
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iteration is unsuccessful, then the mesh is refined. More precisely, Ay, is set to 77 Ay for
0 < 7™ < 1 where 7 > 1 is a rational number that remains constant over all iterations and
m; < —1 is an integer bounded below by —m .. < 0.

If the iteration is successful, then one may choose to coarsen the search to carry out far
reaching and inexpensive SEARCH steps. In this case, one searches on a submesh coarsened by
the rule 774 A}, for some e > 1 where m: > 0 is an integer bounded above by m,,,. > 0.
By modifying the mesh size parameters this way, it follows that for any & > 0, there exists
an integer r; € Z such that Ay = 7"%*Ay, and the next iterate x11 can always be written as
To + Ele A;S;z; for some z; in Z"5. This observation, together with the definition of the
positive spanning sets through G® and (i, are essential to the proof of Theorem 3.2.

A Basic GPS Algorithm

o INITIALIZATION:
Let xg € Q be such that f(xg) is finite, and let My be a mesh on R™ defined by Ag > 0

and zg. Set the iteration counter &k to 0.

e SEARCH AND POLL STEPS:
Perform the SEARCH and possibly the POLL steps (or only part of the steps) until a
trial point xx,y with a lower objective function value is found, or when it is shown that
no such trial point exist.

— SEARCH STEP: Evaluate the objective function on a finite subset of feasible trial
points on the mesh M}, (the strategy that gives the set of points is usually provided
by the user).

— PoOLL STEP: Evaluate the objective function on the poll set around x}, defined by
Sk and Ak

o PARAMETER UPDATE:
If the SEARCH or the POLL step produced a feasible iterate xp1; € My N Q for which
flzrs1) < f(ak), then declare the iteration successful and update Appq > Ay.
Otherwise, set 11 = x, declare the iteration unsuccessful and update Appq < Ayg.
Increase k < k + 1 and go back to the SEARCH and POLL step. n

The SEARCH strategy is the key to effectiveness. The POLL step, as we will see, guarantees
some minimizer necessary conditions at least.
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3 Key Convergence Results

The main result in this section uses no special assumptions about the feasible region{). This
confirms our claim about the ability of the algorithm to do as much as one could reasonably
expect for quite general problems (see also the remark following Theorem 3.7). To illustrate
the power of this result, we obtain as an immediate corollary (Theorem 3.5) the strongest
result yet for the unconstrained case.

Our convergence analysis of GPS algorithm is based on the standard (see [2], [§], [9], [10]
and [11]) assumption that all iterates produced by the algorithm lie in a compact set. A nice
sufficient condition for this to hold for pattern search methods is given in [14]: the level set
{z € Q: f(x) < flxo)} is compact. We can not assume that the set is compact because we
allow discontinuities and even f(x) = oo sometimes, and so we do not know that the set is
closed. However we can assume that the set is precompact or bounded.

Whatever we assume to ensure that the iterates are in a compact set, this already means
that there are convergent subsequences of the iteration sequence, but we will identify an
interesting set of subsequences using the behavior of the algorithm. Specifically, we will be
concerned here with the iterates x; about which unsuccessful poll steps were conducted. It
is only when an iteration is unsuccessful that Ay is reduced. This is not to say that other
subsequences may not exhibit interesting behavior, but we can prove that these do.

Our first result is that there is a subsequence of such iterations for which the mesh size
parameter goes to zero. In order to prove it we require the following lemma. Neither proof
depends at all on the smoothness of the objective, rather they use just the definition of the
algorithm and rationality of the polling sets.

Lemma 3.1 The mesh size parameters Ay are bounded above by a positive constant inde-
pendent of the iteration number k.

Proof. Let X be a compact set in R” that contains all the iterates. Choose A in R large
enough so that the set {&# + ASz # x| 2 € X, 5 € S,z € Z"5} contains no points of A'.
Therefore, if any Ay were as large as A then since all the trial points would lie outside while
all the iterates lie inside X', the k™ iteration must have been unsuccessful and the mesh size
parameter reduced. Hence, A; may never exceed Ag7”¢, for some M, qz. "

This lemma, combined with the assumption that all iterates lie in a compact set, is
sufficient to show the following result. Its proof is omitted since it is identical to that of the
same result in Torczon [15].

Theorem 3.2 The mesh size parameters satisfy 1,1m inf Ap = 0.
— 40

Since the mesh size parameter shrinks only at unsuccessful iterations, Theorem 3.2 guar-
antees that there are infinitely many unsuccessful iterations. Now we can specify the iteration
subsequences we can show possess interesting properties:
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Definition 3.3 A convergent subsequence of iterates {xytrer (for some subset of indices
K ) of unsuccessful iterations is said to be a refining subsequence if limgex Ay = 0.

Clearly there are refining subsequences, and we will show that the limit of any of them is
an interesting point. We use & to denote a given limit point. It is our experience that using
x4 or ™ to denote a limit point of a GPS iteration sometimes confuses people into thinking
that the entire iteration converges, which is not generally true [1].

Lemma 3.4 [f & is the limit of a refining subsequence, and if s is any direction for which a
poll step was evaluated for infinitely many iterates in the subsequence, and if f is Lipschitz
in a neighborhood of &, then the generalized directional derivative of f at & in the direction
s is nonnegative, i.e., f°(&;s) > 0.

Proof. Let {x)}rex be a refining subsequence and & its limit point. ;From Clarke [7], we
have by definition that:

fo(&;8) = limsup fly+ts) = fly) > lim sup Fan + Ais) = flar) )
y—i, 10 l k Ag

First note that since f is Lipschitz near &, it must be finite near . Note also that since
a main point of the paper is to investigate the expedient of dealing with constraints by
declining to evaluate f at infeasible points, we made the hypothesis that each term was
actually evaluated infinitely many times. Thus, we have that infinitely many terms of the
right hand quotient sequence is defined, and all of them must be nonnegative or else the
corresponding poll step would have been successful (recall that refining subsequences are
obtained from unsuccessful iterations). Of course, there may be no such s if S) were defined
in a way incompatible with the geometry of the constraints. .

The preceding easy result is the key to our analysis. Before we add the complication of
dealing with constraints, we give the following quick corollary, which strengthens Torczon’s
unconstrained result. In this corollary, we will assume still that f is Lipschitz near 2, and
in addition, we will assume that the generalized gradient of f at & is a singleton. This
is equivalent to assuming that f is strictly differentiable at &, i.e., that V f(x) exists and

lim L=/ V f(x)Tw for all w € R" (see [7], Proposition 2.2.1 or Proposition 2.2.4).

y—ax,tl0 t

Theorem 3.5 Let Q = R" and & be the limit of a refining subsequence. If f is strictly
differentiable at & then Vf(#) = 0.

Proof. Again from [7], if f is strictly differentiable at &, then for any direction w # 0,
fo(z;w) = VF(2)Tw. Now let S be any positive spanning set that is used infinitely many
times in the refining subsequence, there must be at least one since S is finite. Then by
Lemma 3.4, for each s; € S, 0 < Vf(2)s;. Thus, if we write w as a nonnegative linear
combination of the elements of 5*7 then we see immediately that Vf(2)Tw > 0. But the
same construction for —w shows that —V f(#)Tw > 0 and so Vf(2) = 0. .
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3.1 Linearly Constrained Convergence Results

In this section, we will consider only the case where €2 is defined through a finite set of linear
constraints. In order to prove the relevant optimality results, we will have to assume that
S, even though finite, is rich enough to generate POLL sets that conform to the geometry
of the boundary of €). Furthermore, to apply our proof technique, we must ensure that the
spanning sets that reflect this geometry get used infinitely many times as we converge to a
point on the boundary. This implies a prescience with respect to the boundary geometry for
points near the boundary, and it is a tall order. Fortunately, Lewis and Torczon [14] have
built the exactly machinery we need to generate the positive spanning matrices S; € S.

We pause to remind the reader that for © € , the tangent cone to Q at x is To(z) =
c{p(w —2) :p > 0,w € Q}. The normal cone to  at = is No(z) and can be written as
the polar of the tangent cone: Ng(x) = {v € R" : Vw € T(x), vTw < 0}. It is the positive
span of all the outwardly pointing constraint normals at x.

It would add unnecessary length to this paper to rewrite the careful construction given
by Lewis and Torczon for & and the choice rule for Sj from & at each iteration (their
notation for Sy is I'y). The construction is presented there quite succinctly in Section 8 where
they consider implementation issues. They also mention difficulties inherent to degenerate
constraints. We will use the a simpler abstracted version here. We will summarize the
properties we need in the following definition.

Definition 3.6 A finite set S of positive spanning sets for R™ conforms to £ for some
e > 0, if there ts @ mapping S : Q0 — § such that for every y is in the boundary of 0, with
lly — x| <€, some subset Sy(x) of columns of S(x) generate To(y).

This definition allows positive bases with fewer directions than the construction in Section
8 of [14]. Consider for example the linear programming problem given in [13]

min —a — 2b
z=(a,b)T
st. 0<a<]
b<0.
The optimal solution is & = (1,0)". Their construction of the spanning set Sj near the

optimal solution contains a total of four directions (none for the null space, two for the
tangent cone, and two for its negative). Definition 3.6 does not say how to construct the
spanning set, but it does allows us to use fewer directions: two, (—1,0)7 and (0, —1)T, for
the tangent cone and only one more, for example (1,1)T, to complete S; into a positive
spanning set.

With this definition, we are ready for our convergence result. Note that if z € ) is not
near the boundary, then S(z) need only provide a positive spanning set for R", which is
completely sensible.
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Theorem 3.7 Let & be the limit of a refining subsequence. If f is strictly differentiable at
&, and if S conforms to Q for an ¢ > 0, then Vf(2)Tw > 0 for w € Ta(%), and =V f(2) €
Na(z). Thus, & is a KKT point.

Proof. If # is interior to ), then the result is just Theorem 3.5, and so we can proceed
directly to the case where & is on the boundary of Q. Since § conforms to ) for an € > 0,
we have from Lemma 3.4, that Vf(2)Ts > 0 for every column s of S;(#). But since every
w € Tq(#) is a nonnegative linear combination of the columns of S;(2), Vf(#)Tw > 0. To
complete the proof, we multiply both sides by —1 and conclude that —V f() is in Ng(&). m

Remark 3.8 If f were only assumed to be Lipschitz near &, then we could still conclude
from Lemma 3.4, that f°(&;s) > 0 for every column s of Sz(&)

4 Concluding Remarks

This paper puts together algorithmic contributions by Lewis and Torczon, some observations
of ours about what is really needed to obtain convergence of those algorithms, and elements
of nonsmooth analysis set forth by Clarke. Clarke’s analysis is perfectly suited to expose the
powerful behavior of certain subsequences of the GPS iterates under weakened assumptions
that more closely correspond to the class of real problems for which GPS is a likely choice.
Since we appreciate good technical writing, we take this opportunity to acknowledge the
work of these authors.

We believe that this analysis helps confirm that GPS methods for general constraints will
not be based on the appealingly simple “barrier” strategy of placing a high function value
on infeasible trial points. We have in preparation a paper suggesting and analyzing a GPS
algorithm for general constraints based not on a single objective, but on the filter approach

of Fletcher and his coauthors [9], [10] and [11].

References

[1] AUDET C. (1998), “Convergence results for patterns search algorithms are tight,”
TR98-2/ Department of Computational & Applied Mathematics, Rice University,
Houston Texas.

[2] AUDET C. and DENNIS J.E.Jr (1998), “On the convergence of pattern search algo-
rithms with mixed variables,” TR99-02, Department of Computational and Applied
Mathematics, Rice University, Houston Texas.

[3] BOOKER A.J., DENNIS J.E.JR, FRANK P.D.; SERAFINI D.B., TORCZON V. and
TROSSET M.W.(1999), “A rigorous framework for optimization of expensive functions
by surrogates,” Structural Optimization Vol.17 No.1, 1-13.



February 10, 2000 8

[4]

[5]

[6]

7]

3]

[9]

[10]

[11]

[12]

Booker A.J., DEnNIS J.E.Jr, FrRaANK P.D., MOORE D.W. and SERAFINI

D.B.(1999), “Managing Surrogate Objectives to Optimize a Helicopter Rotor Design
- Further Experiments,” ATAA Paper 98-4717, St. Louis, September 1998.

Cuor T.D., EsSLINGER O.J., KerLrLey C.T., Davib J.W. and ETHERIDGE
M.(1998), “Optimization of automotive valve train components with implicit filter-
ing,” to appear in Optimization and FEngineering.

Cuot T.D. and KELLEY C.T.(1999), “Superlinear convergence and implicit filtering,”
to appear in SIAM Journal on Optimization.

CLARKE, FRANK H.(1990) “Optimization and Nonsmooth Analysis,” STAM Classics
in Applied Mathematics Vol.5, Philadelphia.

ConNN A.R., Gourdp N.I.M. and ToINT PH.L.(1991) “A globally convergent aug-
mented Lagrangian algorithm for optimization with general constraints and simple

bounds,” SIAM Journal on Numerical Analysis 28, 545-572.

FLETCHER R. and LEYFFER S.(1997), “Nonlinear Programming without a penalty
function,” Dundee University, Dept. of Mathematics, Report NA/171.

FLETCHER R, LEYFFER S. and TOINT PH.L.(1998), “On the global convergence of
an SLP-Filter algorithm,” Dundee University, Dept. of Mathematics, Report NA/183.

FLETCHER R, GouLD N.I.M., LEYFFER S. and TOINT PH.L.(1999), “On the global
convergence of trust-region SQP-Filter algorithms for general nonlinear programming,”

Department of Mathematics, FUNDP, Namur (B), Report 99/03.

Houan P.D., KoLpa T.G. and TORCZON V.(2000), “Asynchronous parallel pattern
search for nonlinear optimization,” Sandia National Laboratories, Report SAND2000-

8213.

Lewis R.M. and TORCZON V.(1999), “Pattern search algorithms for bound con-
strained minimization,” SIAM Journal on Optimization, Vol.9 No.4, 1082-1099.

Lewis R.M. and TorczoN V.(1998), “Pattern search methods for linearly con-
strained minimization,” ICASE NASA Langley Research Center TR 98-3, to appear
in SIAM Journal on Optimization.

TORCZON V.(1997), “On the Convergence of Pattern Search Algorithms,” STAM Jour-
nal on Optimization Vol.7 No.1, 1-25.



