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February 10, 2000 11 IntroductionGPS is a exible class of generalized pattern search algorithms de�ned by Torczon [15] forderivative-free unconstrained optimization. Lewis and Torczon extended the GPS frameworkto bound constrained optimization [13] and more generally for problems with a �nite numberof linear constraints [14]. Our purpose here is to provide an alternative to their analysis forall these cases by providing a simple analysis for the last case.This new analysis is more satisfying mathematically, and it shows more clearly the powerof the methods. For example, these methods �nd their greatest utility in problems wheresmoothness properties of the objective are problematic. Here, we show the existence of aninteresting limit point for any GPS iteration without assuming that the function is continuousor �nite valued. Then we add progressively stronger smoothness assumptions to obtaincorrespondingly stronger results. We obtain the same conclusions for the same algorithmsas Torczon and Lewis-Torczon without assuming more than local smoothness at the limit.The optimization problem considered in this paper is:minx2
 f(x)but for convergence, we assume only that the objective function f : <n ! <[f1g. In fact,this generality is not merely a mathematical conceit. For many practical problems, a call tothe subroutine that evaluates f(x) may result in no value being returned, which we model asf(x) =1. This issue is discussed in detail and the e�ectiveness of GPS for such problems isillustrated in [3]. The issue is discussed as well in [5], [6]. This paper provides the analysisto back up the observation, given for example in Hough, Kolda and Torczon [12], that \evenif the theory for GPS requires continuous di�erentiability of the objective function, thesemethods can be e�ective on nondi�erentiable problems since they do not rely explicitly onderivatives."The way of handling constraints here, and indeed the entire algorithm, will be the sameas in [13] and [14]. Speci�cally, we will apply the algorithm not really to f , but to thefunction f
 = f +  
, where  
 is the indicator function for 
. It is zero on 
 and 1elsewhere. We will assume as in [14] that 
 is the feasible region de�ned by a �nite set oflinear constraints: 
 = fx 2 <n : ` � Ax � ug where A 2 Qm�m, `; u 2 <m [ f�1g and` < u. We can prove some results in a more general context, but we will treat those as asideswhen we think they are appropriate.The point is that to get the really strong conclusions requires conditions on the conformityof the geometry of the algorithm with the geometry of 
. Sticking with 
 considered byLewis and Torczon will allow us to invoke a version of the conditions they worked out in avery satisfying way for a �nite number of linear constraints. These conditions are unlikelyto be realized for more general constraints, the key restriction being that there must be asingle �nite set of generators for all the tangent cones to the boundary of the feasible region.Still, understanding linear constraints is a �rst step, as is understanding these are probablythe most general constraints for which the appealing f
 approach is e�ective.



February 10, 2000 2The remainder of the paper is as follows: in the next section, we will give a brief descrip-tion of the GPS algorithm class. We adhere to a slightly di�erent, but equivalent versionof the Lewis and Torczon algorithm, because our major interest in these algorithms is forproblems where they are used with inexpensive surrogates for the expensive objectives theyare to be applied to. To see how this is organized, see [3] and [4]. In Section 3, we give thekey result and an easy corollary for unconstrained problems before we go on to results forthe Lewis and Torczon algorithm. We end with some acknowledgments and conclusions.2 Generalized Pattern Search AlgorithmsGeneralized pattern search algorithms for unconstrained or simply constrained minimizationgenerate a sequence of iterates fxkg in <n with non-increasing objective function values.Because of our interest in surrogate-based optimization, we like to view each iteration asbeing divided into a search and a poll phase. For each search, the objective function isevaluated at a �nite number of points on a mesh (a discrete subset of <n de�ned below) totry to �nd one that yields a lower objective function value than the incumbent. Any strategymay be used to select the mesh points that are to be candidates for the next iteration, as longas only a �nite number of points (including none) are selected. Before declaring the iterationunsuccessful, re�ning the mesh, and setting xk+1 = xk, it is required that the neighboringmesh points be polled to see if any one yields a lower function value. Only after a failedpoll of the neighbors can an iteration be declared unsuccessful.If the iteration is successful, then the new point xk+1 6= xk has a strictly lower objectivefunction value, the mesh size parameter is kept the same or increased, and the process isreiterated. Indeed, as long as the search steps are succeeding, one would likely choose trialpoints on a coarser submesh than the current mesh. Our experience with surrogate-basedsearch steps [3], [4] is that a great deal of progress can be made with few function values,and O(n) function values are needed only for unsuccessful poll steps, which indicate thatthe mesh needs to be re�ned.Pattern search algorithms are de�ned through a �nite set of matrices S, each of whosecolumns are a positive spanning set in <n, i.e., the nonnegative linear combinations of thecolumns of any such set S in S span <n. Moreover, for technical convergence reasons(Torczon's [15] proof of Theorem 3.2) every column s of each matrix must be generated froma single matrixGB 2 <n�n and from a �nite set of integer generating matricesG` 2 Zn�n for` = 1; 2; : : : ; `max as follows: s = GBG`z for some z 2 Zn. The current mesh Mk is de�nedthrough the lattices spanned by the elements of S: Mk = fxk + �kSz : z 2 ZnS ; S 2 Sg,where �k > 0 is the mesh size parameter, and nS is the number of columns of the matrix S.Before declaring an iteration unsuccessful, the objective function must be tested at themesh points that neighbor xk, the current iterate. This de�nes the poll set fxk + �ks :s is a column of Skg for some positive spanning matrix Sk 2 S. The points of the poll setare thus the neighbors of xk on its current mesh with respect to the spanning set Sk. If the



February 10, 2000 3iteration is unsuccessful, then the mesh is re�ned. More precisely, �k+1 is set to �m�k �k for0 < �m�k < 1 where � > 1 is a rational number that remains constant over all iterations andm�k � �1 is an integer bounded below by �mmax � 0.If the iteration is successful, then one may choose to coarsen the search to carry out farreaching and inexpensive search steps. In this case, one searches on a submesh coarsened bythe rule �m+k�k for some �m+k � 1 where m+k � 0 is an integer bounded above by mmax � 0.By modifying the mesh size parameters this way, it follows that for any k � 0, there existsan integer rk 2 Z such that �k = � rk�0, and the next iterate xk+1 can always be written asx0 +Pki=1�iSizi for some zi in ZnSi . This observation, together with the de�nition of thepositive spanning sets through GB and G`, are essential to the proof of Theorem 3.2.A Basic GPS Algorithm� Initialization:Let x0 2 
 be such that f(x0) is �nite, and letM0 be a mesh on <n de�ned by �0 > 0and x0. Set the iteration counter k to 0.� Search and poll steps:Perform the search and possibly the poll steps (or only part of the steps) until atrial point xk+1 with a lower objective function value is found, or when it is shown thatno such trial point exist.{ Search step: Evaluate the objective function on a �nite subset of feasible trialpoints on the meshMk (the strategy that gives the set of points is usually providedby the user).{ Poll step: Evaluate the objective function on the poll set around xk de�ned bySk and �k.� Parameter update:If the search or the poll step produced a feasible iterate xk+1 2 Mk \ 
 for whichf(xk+1) < f(xk), then declare the iteration successful and update �k+1 � �k.Otherwise, set xk+1 = xk, declare the iteration unsuccessful and update �k+1 < �k.Increase k k + 1 and go back to the search and poll step.The search strategy is the key to e�ectiveness. The poll step, as we will see, guaranteessome minimizer necessary conditions at least.



February 10, 2000 43 Key Convergence ResultsThe main result in this section uses no special assumptions about the feasible region
. Thiscon�rms our claim about the ability of the algorithm to do as much as one could reasonablyexpect for quite general problems (see also the remark following Theorem 3.7). To illustratethe power of this result, we obtain as an immediate corollary (Theorem 3.5) the strongestresult yet for the unconstrained case.Our convergence analysis of GPS algorithm is based on the standard (see [2], [8], [9], [10]and [11]) assumption that all iterates produced by the algorithm lie in a compact set. A nicesu�cient condition for this to hold for pattern search methods is given in [14]: the level setfx 2 
 : f(x) � f(x0)g is compact. We can not assume that the set is compact because weallow discontinuities and even f(x) = 1 sometimes, and so we do not know that the set isclosed. However we can assume that the set is precompact or bounded.Whatever we assume to ensure that the iterates are in a compact set, this already meansthat there are convergent subsequences of the iteration sequence, but we will identify aninteresting set of subsequences using the behavior of the algorithm. Speci�cally, we will beconcerned here with the iterates xk about which unsuccessful poll steps were conducted. Itis only when an iteration is unsuccessful that �k is reduced. This is not to say that othersubsequences may not exhibit interesting behavior, but we can prove that these do.Our �rst result is that there is a subsequence of such iterations for which the mesh sizeparameter goes to zero. In order to prove it we require the following lemma. Neither proofdepends at all on the smoothness of the objective, rather they use just the de�nition of thealgorithm and rationality of the polling sets.Lemma 3.1 The mesh size parameters �k are bounded above by a positive constant inde-pendent of the iteration number k.Proof. Let X be a compact set in <n that contains all the iterates. Choose � in < largeenough so that the set fx + �Sz 6= x j x 2 X ; S 2 S; z 2 ZnSg contains no points of X .Therefore, if any �k were as large as � then since all the trial points would lie outside whileall the iterates lie inside X , the kth iteration must have been unsuccessful and the mesh sizeparameter reduced. Hence, �k may never exceed �0�mmax , for some mmax.This lemma, combined with the assumption that all iterates lie in a compact set, issu�cient to show the following result. Its proof is omitted since it is identical to that of thesame result in Torczon [15].Theorem 3.2 The mesh size parameters satisfy lim infk!+1 �k = 0.Since the mesh size parameter shrinks only at unsuccessful iterations, Theorem 3.2 guar-antees that there are in�nitely many unsuccessful iterations. Now we can specify the iterationsubsequences we can show possess interesting properties:



February 10, 2000 5De�nition 3.3 A convergent subsequence of iterates fxkgk2K (for some subset of indicesK) of unsuccessful iterations is said to be a re�ning subsequence if limk2K �k = 0.Clearly there are re�ning subsequences, and we will show that the limit of any of them isan interesting point. We use x̂ to denote a given limit point. It is our experience that usingx� or x� to denote a limit point of a GPS iteration sometimes confuses people into thinkingthat the entire iteration converges, which is not generally true [1].Lemma 3.4 If x̂ is the limit of a re�ning subsequence, and if s is any direction for which apoll step was evaluated for in�nitely many iterates in the subsequence, and if f is Lipschitzin a neighborhood of x̂, then the generalized directional derivative of f at x̂ in the directions is nonnegative, i.e., f�(x̂; s) � 0.Proof. Let fxkgk2K be a re�ning subsequence and x̂ its limit point. >From Clarke [7], wehave by de�nition that:f�(x̂; s) = lim supy!x̂; t#0 f(y + ts)� f(y)t � lim supk f(xk +�ks)� f(xk)�k :First note that since f is Lipschitz near x̂, it must be �nite near x̂. Note also that sincea main point of the paper is to investigate the expedient of dealing with constraints bydeclining to evaluate f at infeasible points, we made the hypothesis that each term wasactually evaluated in�nitely many times. Thus, we have that in�nitely many terms of theright hand quotient sequence is de�ned, and all of them must be nonnegative or else thecorresponding poll step would have been successful (recall that re�ning subsequences areobtained from unsuccessful iterations). Of course, there may be no such s if Sk were de�nedin a way incompatible with the geometry of the constraints.The preceding easy result is the key to our analysis. Before we add the complication ofdealing with constraints, we give the following quick corollary, which strengthens Torczon'sunconstrained result. In this corollary, we will assume still that f is Lipschitz near x̂, andin addition, we will assume that the generalized gradient of f at x̂ is a singleton. Thisis equivalent to assuming that f is strictly di�erentiable at x̂, i.e., that rf(x) exists andlimy!x;t#0f(y+tw)�f(y)t = rf(x)Tw for all w 2 <n (see [7], Proposition 2.2.1 or Proposition 2.2.4).Theorem 3.5 Let 
 = <n and x̂ be the limit of a re�ning subsequence. If f is strictlydi�erentiable at x̂ then rf(x̂) = 0.Proof. Again from [7], if f is strictly di�erentiable at x̂, then for any direction w 6= 0,f�(x̂;w) = rf(x̂)Tw. Now let Ŝ be any positive spanning set that is used in�nitely manytimes in the re�ning subsequence, there must be at least one since S is �nite. Then byLemma 3.4, for each si 2 Ŝ, 0 � rf(x̂)Tsi. Thus, if we write w as a nonnegative linearcombination of the elements of Ŝ, then we see immediately that rf(x̂)Tw � 0. But thesame construction for �w shows that �rf(x̂)Tw � 0 and so rf(x̂) = 0.



February 10, 2000 63.1 Linearly Constrained Convergence ResultsIn this section, we will consider only the case where 
 is de�ned through a �nite set of linearconstraints. In order to prove the relevant optimality results, we will have to assume thatS, even though �nite, is rich enough to generate poll sets that conform to the geometryof the boundary of 
. Furthermore, to apply our proof technique, we must ensure that thespanning sets that reect this geometry get used in�nitely many times as we converge to apoint on the boundary. This implies a prescience with respect to the boundary geometry forpoints near the boundary, and it is a tall order. Fortunately, Lewis and Torczon [14] havebuilt the exactly machinery we need to generate the positive spanning matrices Sk 2 S.We pause to remind the reader that for x 2 
, the tangent cone to 
 at x is T
(x) =clf�(w � x) : � � 0; w 2 
g. The normal cone to 
 at x is N
(x) and can be written asthe polar of the tangent cone: N
(x) = fv 2 <n : 8w 2 T
(x); vTw � 0g. It is the positivespan of all the outwardly pointing constraint normals at x.It would add unnecessary length to this paper to rewrite the careful construction givenby Lewis and Torczon for S and the choice rule for Sk from S at each iteration (theirnotation for Sk is �k). The construction is presented there quite succinctly in Section 8 wherethey consider implementation issues. They also mention di�culties inherent to degenerateconstraints. We will use the a simpler abstracted version here. We will summarize theproperties we need in the following de�nition.De�nition 3.6 A �nite set S of positive spanning sets for <n conforms to 
 for some� > 0, if there is a mapping S : 
 ! S such that for every y is in the boundary of 
, withky � xk < �, some subset Sy(x) of columns of S(x) generate T
(y).This de�nition allows positive bases with fewer directions than the construction in Section8 of [14]. Consider for example the linear programming problem given in [13]minx=(a;b)T �a� 2bs.t. 0 � a � 1b � 0:The optimal solution is x̂ = (1; 0)t. Their construction of the spanning set Sk near theoptimal solution contains a total of four directions (none for the null space, two for thetangent cone, and two for its negative). De�nition 3.6 does not say how to construct thespanning set, but it does allows us to use fewer directions: two, (�1; 0)T and (0;�1)T , forthe tangent cone and only one more, for example (1; 1)T , to complete Sk into a positivespanning set.With this de�nition, we are ready for our convergence result. Note that if x 2 
 is notnear the boundary, then S(x) need only provide a positive spanning set for <n, which iscompletely sensible.



February 10, 2000 7Theorem 3.7 Let x̂ be the limit of a re�ning subsequence. If f is strictly di�erentiable atx̂, and if S conforms to 
 for an � > 0, then rf(x̂)Tw � 0 for w 2 T
(x̂), and �rf(x̂) 2N
(x̂). Thus, x̂ is a KKT point.Proof. If x̂ is interior to 
, then the result is just Theorem 3.5, and so we can proceeddirectly to the case where x̂ is on the boundary of 
. Since S conforms to 
 for an � > 0,we have from Lemma 3.4, that rf(x̂)T s � 0 for every column s of Sx̂(x̂). But since everyw 2 T
(x̂) is a nonnegative linear combination of the columns of Sx̂(x̂), rf(x̂)Tw � 0. Tocomplete the proof, we multiply both sides by �1 and conclude that �rf(x̂) is in N
(x̂).Remark 3.8 If f were only assumed to be Lipschitz near x̂, then we could still concludefrom Lemma 3.4, that f�(x̂; s) � 0 for every column s of Sx̂(x̂)4 Concluding RemarksThis paper puts together algorithmic contributions by Lewis and Torczon, some observationsof ours about what is really needed to obtain convergence of those algorithms, and elementsof nonsmooth analysis set forth by Clarke. Clarke's analysis is perfectly suited to expose thepowerful behavior of certain subsequences of the GPS iterates under weakened assumptionsthat more closely correspond to the class of real problems for which GPS is a likely choice.Since we appreciate good technical writing, we take this opportunity to acknowledge thework of these authors.We believe that this analysis helps con�rm that GPS methods for general constraints willnot be based on the appealingly simple \barrier" strategy of placing a high function valueon infeasible trial points. We have in preparation a paper suggesting and analyzing a GPSalgorithm for general constraints based not on a single objective, but on the �lter approachof Fletcher and his coauthors [9], [10] and [11].References[1] Audet C. (1998), \Convergence results for patterns search algorithms are tight,"TR98-24 Department of Computational & Applied Mathematics, Rice University,Houston Texas.[2] Audet C. and Dennis J.E.Jr (1998), \On the convergence of pattern search algo-rithms with mixed variables," TR99-02, Department of Computational and AppliedMathematics, Rice University, Houston Texas.[3] Booker A.J., Dennis J.E.Jr, Frank P.D., Serafini D.B., Torczon V. andTrosset M.W.(1999), \A rigorous framework for optimization of expensive functionsby surrogates," Structural Optimization Vol.17 No.1, 1-13.
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